Assignment 3 — indicative solutions

1a: Order of importance: Hiddens — Iterations — State

The finding becomes clear when varying Hiddens while leaving states and iterations fixed, then by
varying iterations while leaving hiddens and states fixed, and then by varying states while leaving
hiddens and states fixed. States and hiddens should be varied within 3 and 25 neurons, while the
iterations can vary from 1 to 10,000 (and more if a fast CPU is available). The analysis of the
results reveals that the best cost benefit ratio is obtained when increasing the number of hidden
layer neurons. This is followed by the number of iterations. Lastly, the system's performance is also
slightly affected by the states though the computational cost does not justify the benefit in
performance.

Maximum achievable performance is 100% on both training and test set.

1b: Changing the seed value can reduce the best performance achieved in 1a. This is because the
parameters used in 1a (which achieved the best performance) were best for the given initial network
condition. By changing the network condition, this affects the parameters which will produce the
best performing system.

1c: The classification is better if the training set is a good representation (provides a good coverage)
of the problem domain. If the training set is a suitably sampled subset of the domain then the
performance of the training set can be at most equal to the performance of the training set. The test
performance can be worse due to overfitting. The test performance can be better (than the training
performance) if the test samples are not suitably covering the domain (i.e. if the training samples
only cover a region which is easily learned).

1d: It is hard (but possible) to obtain 100% classification performance. This is due to some
discriminating features being very similar, or are far away from the supervised root node. For
example, the two classes 0 and 1 can only be discriminated by the label attached to one of the leaf
nodes (the one representing the right hand), while the supervised node is the root node. It takes a
long tome for the network to propagate back the error through the structure all the way to the
furthest node (the leaf node).

Another reason could be (even so it is not the problem for this given learning problem) that perfect
classification may only be obtain when we are near the minimum network error. However, the
closer we get to the minimum error, the smaller is the gradient, and hence, the learning speed will
slow down as we approach the minimum. However, Rprop addresses the issue, and hence, this later
issue is not the reason for the difficulty of this learning problem.

le: Training the system for several thousand iterations (several hours of training time on a fast
computer) can help achive 100% on both, training and test set.

The reason to why the existing benchmark performance is less than 100% is due to the fact that
computers were a lot slower 6 years ago. Training could not be done within a reasonable time to
justify the minor improvement in performance. In fact, 6 years ago, the systems were only trained
for at most 400 iterations. However, todays' computers are fast enough so that training can be done
for many more iterations (as many as 10,000 iterations and more). This allows the system to
converge to a lower error, producing a better classification rate.

2a: The dataset is severely unbalanced. The smallest class is class A which contains only 28
samples whereas class ¢ contains 937 samples. Thus, the dataset is unbalanced by a factor
937/28=33.46

2b: An unbalanced dataset reflects a property of the learning domain: The occurrence of some data
is more likely than the occurrence of data from some other class. The smaller the sample size of a



small class, the more likely it is that this data was generated by noise, and hence, the more likely it
is that the system is to ignore such data. Moreover, the fewer samples we have for a given class the
less certainty we have about the accuracy in the representation of the class. The reduced certainty
causes the system to focus on classes for which there is greater certainty (classes which are
represented by more training samples).

In contrast, a properly trained system can be tested by using an arbitrary number of test samples.
The system makes no assumption about the certainty of a test sample. This is because the system
does not know the class membership of a test sample, and hence, the test sample appears transparent
to the system (it could belong to any class). The output of the system determines the class
membership of a given sample.

2¢: The learning rate can be increased for the smaller classes. For example, when updating the
weights of the system for a pattern that belongs to class A then the learning rate should be 33.46
times larger than when updating the weights for a pattern that belongs to class c. the inverse is
possible, too: Use a smaller learning rate for larger classes.

Another popular solution is to increase the samples of smaller classes by simply copying existing
samples. For example, each training sample in class A would be copied 33 times so as to generate as
many samples as there are in the much larger class c.

3a: Confidence of {a} — {b} = support(a,b)/support(a) =0.2/0.25 = 0.8
The rule is interesting because the confidence of the rule exceeds the threshold value of 60%.

3b: Interest of {a,b} = support(a,b)/(support(a) * support(b)) = 0.2/(0.25 * 0.85) =0.9412
The items are negatively correlated according to interest measure.

-END-



