Y
(@9) “{(z)Yg}xem = (z)%
UOISIOBP 91} 03 Buipiodde g sse[d 03 Juojaq 03 PauIULId}AP
st ¢ opdures ® JI (paziunurul SI SUOIJBOYISSRIISIW JO ajel a8y} ‘'o'1) A[fewrdo
payisse(o ase sajdures umouwun 3y} ‘93vIoAE 93} UO ey} Paf[eodl aq I jor]

(1'9) (18)d (5 > zlz)d = ()%
suoyounf Jupulwnostp ayj auya(] ‘A[dArjoadsal ‘1g uo T Jo uolounj
Ayisuap Appiqeqoid yeuolpuod 3y3 oq (¥ > x|r)d pue ‘Yg ssep jo Ljiqeqoid
wownd v Yy 3q (19)g 19T "dej1aao Ajrensn yorym jo suoynqusip ay3 ‘{¥g}
S9SSRID JO 198 MUY © WIOI] PIALIRP a1e = Jo sojdures [je jey) swnssy (¢'¢'1
300g) A)iqeqoid Jo A109y) sefeq 9y} JO NIOMOWRI} Y} UIY}m PIsSNosip
A{rensn st uoruboras utajynd (0o13s1YVIS 10 U0ISLP Puuido Jo wdiqord ayy,

uois1a(q rewnydo 1'9

"1eaul] 9simadold are pauyap Aqa1ay)
SI3PI0Q SSBJD JYJ, "SISSe[O JUIISJIp OJUI §198 10U0I0A deredes J8Y) UOIR[[9sS9)
[OUOIOA 31} JO SIaPI0q Yons aye) A[UO ued U0 SI19PI0q SSBID 10§ Jey) st HAT ul
2Inyes) [BUOHIPPe Uy 'SI000A j00qapod Sunoqysiou usem)aq (souejdiodAy)
soue[dprur Aq pauyep are ‘A Ul $)9S I0UOIOA 3y} 3YI] ‘Suoidel uoiyezijuenb
JY,J, "seurt) [e 10j uUoiSaI ssed Yora UM Ae)s 0) umoys pue ul paoeld aq ued
SWIY}1I03[e 3SaY] Ul SSE[D YoBa JO SI0JI0A YO0Qopod 9) ‘SI8pIoq ssep oY) je
dejxaso pnom sopdures yndui a3 Jo SUOINGUISIP SSEO 8Y) JI UIAD ‘UOIFDI SSB[D
yoea ojul pade[d sl §10)00A JOOQapOd pajaqe] AJTe[iuils JO)9sqns € puad sIy) O,
‘aoeds ejep yndur 9y} Wl suoifas ssppo uyep 03 st asodind Ajuo syt ‘poypow
u011uboIaL 40 UOLIDIYISSD]D DSIIVIS B I0] JuBoUI A[IOLIIS ST HAT 90Ul
*aNSUd 03 pajdadxo st 8103084
j00qapo ay) Jo I1opio [erjeds ou ospe Aqaraym ‘HAT diseq oy} ul Jurures]
Suump pouyep aI® JOUULM, Y} PUNOIR SPOOYIOGYSISU Ou ‘WO Ul Iyijun
‘puey Ioyjo oy} u() ‘buruuva) pasiasadns saquIssp HAT ‘spoyjewr Jurured|
pue 3urieisnio paswuuadnsun are WOS 21seq ay} pue HA S IOATO pue
‘COAT ‘TOAT ‘TOAT se yons ‘surgjrioffe paje[dal Jo ssB[O B soyludis aweu
ST, (OAT) uoyvziguond) 40393 buruinag st NOS Pue HA 01 pajeral L[9so))

uorjezijueng) I0329A Sururead| ‘9

246 6. Learning Vector Quantization

Let us recall that the traditional method in practical statistical pattern
recognition was to first develop approximations for the p(z|z € Si)P(Sx) and
then to use them for the 8 (z) in (6.1). The LVQ approach, on the other hand,
is based on a totally different philosophy. Consider Fig. 6.1. We first assign a
subset of codebook vectors to each class Sy and then search for that codebook
vector m; that has the smallest Euclidean distance from x. The sample z is
thought to belong to the same class as the closest m;. The codebook vectors
can be placed in such a way that those ones belonging to different classes
are not intermingled, although the class distributions of = overlap. Since now
only the codebook vectors that lie closest to the class borders are important
to the optimal decision, obviously a good approximation of p(z|z € Si) is not
necessary everywhere. It is more important to place the m; into the signal
space in such a way that the nearest-neighbor rule used for classification
minimizes the average expected misclassification probability.

Hi2

1 —l
Bayes /
(a) (b)
Fig. 6.1. (a) Small dots: Superposition of two symmetric Gaussian density func-
tions corresponding to classes Sy and Si, with with their centroids shown by the
white and dark cross, respectively. Solid curve: Bayes decision border. (b) Large
black dots: reference vectors of class S;. Open circles: reference vectors of class

S2. Solid curve: decision border in the learning vector quantization. Broken curve:
Bayes decision border

6.2 The LVQ1

Assume that several codebook vectors are assigned to each class of = values,
and z is then determined to belong to the same class to which the nearest
m; belongs. Let

6.2 The LVQ1l 247

¢ = arg min{||z - m;||} (6.3)

define the index of the nearest m; to z.

Notice that ¢, the index of the “winner”, depends on z and all the m;. If
z is a natural, stochastic, continuous-valued vectorial variable, we need not
consider multiple minima: the probability for ||z — m;|| = ||lx — m;,|| for i # j
is then zero.

Let z(t) be an input sample and let the m;(t) represent sequential values of
the m; in the discrete-time domain, t = 0,1,2,.... Values for the m; in (6.3)
that approximately minimize the rate of misclassification errors are found
as asymptotic values in the following learning process [2.38], [2.40], [2.41].
Starting with properly defined initial values (as will be discussed in Sect.
6.9), the following equations define the basic Learning Vector Quantization
process; this particular algorithm is called LVQ1.

me(t+1) = m(t) + a(t)|z(t) — m.(t)]
if x and m. belong to the same class,
me(t+1) = m.(t) — a(t)[z(t) — m.(t)]
if z and m. belong to different classes,
mi(t+1) = mt) fori#c. (6.4)

Here 0 < a(t) < 1, and a(t) (learning rate) is usually made to decrease
monotonically with time. It is recommended that a should already initially
be rather small, say, smaller than 0.1. The exact law a = a(t) is not cru-
cial, and a(t) may even be made to decrease linearly to zero, as long as the
number of learning steps is sufficient; see, however, Sect. 6.3. If also only a
restricted set of training samples is available, they may be applied cyclically,
or the samples presented to (6.3)-(6.4) may be picked up from the basic set
of training samples at random.

The general idea underlying all LVQ algorithms is supervised learning,
or the reward-punishment scheme. However, it is extremely difficult to show
what the exact convergence limits are. The following discussion is based on
the observation that the classical VQ tends to approximate p(z) (or some
monotonic function of it). Instead of p(z), we may also consider approxima-
tion of any other (nonnegative) density function f(z) by the VQ. For instance,
let the optimal decision borders, or the Bayesian borders (which divide the
signal space into class regions By such that the rate of misclassifications is
minimized) be defined by (6.1) and (6.2); all such borders together are defined
by the condition f(z) = 0, where

for x € By, and h # k,
f(z) = p(z|z € Sk)P(Sk) — maxp{p(z|z € Sp)P(Sr)} -

Let Fig. 6.2 now illustrate the form of f(x) in the case of scalar z and
three classes 5,52, and S3 being defined on the z axis by their respective
distributions p(z|z € Si)P(Sk). In Fig. 6.2(a) the optimal Bayesian borders

(6.5)

248 6. Learning Vector Quantization

have been indicated with dotted lines. The function f(z) has zero points at
these borders according to (6.5), as shown by Fig. 6.2(b); otherwise f(z) > 0
in the three “humps.”

If we then use VQ to define the point density of the m; that approximates
f(z), this density also tends to zero at all Bayesian borders. Thus VQ and
(6.5) together define the Bayesian borders with arbitrarily good accuracy,
depending on the number of codebook vectors used.

The optimal values for the m; in the classical VQ were found by minimiz-
ing the average expected quantization error E, and in Sect. 1.5.2 its gradient
was found to be

V., E = —2/6ci -z — m;)p(x)dz ; (6.6)

here §.; is the Kronecker delta and c is the index of the m; that is closest to
z (i.e., the “winner”). The gradient step of vector m; is

mi(t+1) =my(t) = A Vi, E, (6.7)

where)\ defines the step size, and the so-called sample function of V,,,, E at
step t is Vo,) E = —26ci[z(t) — m;(t)]. One result is obvious from (6.6):
only the “winner” m.(t) should be updated, while all the other m;(t) are left
intact during this step.

If p(z) in E is now replaced by f(z), the gradient steps must be computed
separately in the event that the sample z(t) belongs to S, and in the event
that z(t) € Sy, respectively.

Bayesian borders

Sk(x)
(a)

fix)
(b)

Fig. 6.2. (a) Distribution of scalar samples in three classes Si, Sz, and Ss. (b)
Illustration of the respective function f(x)

6.2 The LVQ1 249

The gradient of E, with p(z) replaced by f(z), is

Vi, B = —2‘/66,-(2: —m;) f(x)dx
= —2/601(:1; —my)|[p(z|z € Si)P(Sk)
— max{p(z|z € Sp)P(Sk)}dz . (6.8)

In the event that z(t) € Sy we thus obtain for the sample function of
Vm,E with the a priori probability P(Sy):.

Vm.—(t)E = —260;[z(t) — m;(t)] . (6.9)

If the class with maxy, {p(z|z € Sy)P(S.)} is signified by index r meaning
the “runner up” class, and in the event that z(t) € S, the sample function
of V., E is obtained with the a priori probability P(S,) and reads

V) E = +26i[x(t) — mi(t)] . (6.10)
Rewriting a(t) = 2, there results

me(t+1) = me(t) + a(t)[z(t) — m(t)] ifz(t) € By and z(t) € Sk,

me(t+1). = m.(t) — a(t)[x(t) — m.(t)] ifz(t) € By and z(t) € S, ,

me(t+1) = m.(t) ifx(t)e Byandx(t) € Sp, h# 7,

mi(t+1) = my(t) ifi#ec (6.11)

If the m; of class Sy were already within By, and we take into account the
humped form of f(z) (Fig. 6.2b), the m; € Si would further be attracted by
VQ to the hump corresponding to the By, at least if the learning steps are
small.

Near equilibrium, close to the borders at least, (6.4) and (6.11) can be
seen to define almost similar corrections; notice that in (6.4), the classification
of x was approrimated by the nearest-neighbor rule, and this approximation
will be improved during learning. Near the borders the condition z € S, is
approximated by looking for which one of the m; is second-closest to z; in
the middle of By this method cannot be used, but there the exact values
of the m,; are not important. However, notice that in (6.4), the minus-sign
corrections were made every time when x was classified incorrectly, whereas
(6.11) only makes the corresponding correction if z is exactly in the runner-
up class. This difference may cause a small bias to the asymptotic values of
the m; in the LVQ1. As a matter of fact, the algorithms called LVQ2 and
LVQ3 that will be discussed below are even closer to (6.11) in this respect.
Two codebook vectors m; and m; that are the nearest neighbors to = are
eventually updated in them at every learning step; the one that is classified
correctly is provided with the plus sign, whereas in the case of incorrect
classification the correction is opposite.

250 6. Learning Vector Quantization

6.3 The Optimized-Learning-Rate LVQ1 (OLVQ1)

The basic LVQI algorithm will now be modified in such a way that an individ-
ual learning-rate factor a;(t) is assigned to each m;, whereby we obtain the
following learning process [3.15]. Let ¢ be defined by (6.3). Then we assume
that

me(t+1) = me(t) + ac(t)[z(t) — mc(t)] if z is classified correctly,

me(t+1) = me(t) — ac(t)[z(t) — mc(t)] ifris classified incorrectly,
mi(t+1) = my(t) fori#ec (6.12)

The problem is whether the a;(t) can be determined optimally for fastest
convergence of (6.12). We express (6.12) in the form

meo(t + 1) = [1 — s(t)oe(t)me(t) + s(t)ac(t)z(t) , (6.13)

where s(t) = +1 if the classification is correct, and s(t) = —1 if the classifica-
tion is wrong. It may be obvious that the statistical accuracy of the learned
codebook vector values is approximately optimal if all samples have been
used with equal weight, i.e, if the effects of the corrections made at different
times, when referring to the end of the learning period, are of approximately
equal magnitude. Notice that m.(t + 1) contains a trace of z(t) through the
last term in (6.13), and traces of the earlier z(t'),t' = 1,2,...,t — 1 through
m(t). In a learning step, the magnitude of the last trace of z(t) is scaled
down by the factor a.(t), and, for instance, during the same step the trace
of z(t — 1) has become scaled down by [1 — 8(t)ac(t)] - ac(t —1). Now we first
stipulate that these two scalings must be identical:

ao(t) = [1 - s(t)ac()]ac(t — 1) . (6.14)

If this condition is made to hold for all £, by induction it can be shown
that the traces collected up to time t of all the earlier z(t") will be scaled
down by an equal amount at the end, and thus the ’optimal’ values of a;(t)
determined by the recursion

ac(t—1)
1+s(t)act—-1)

A precaution is necessary, however: since a.(t) can also increase, it is
especially important that it shall not rise above the value 1. This condition
can be imposed in the algorithm itself. For the initial values of the a; one may
then take 0.5, but it is almost as good to start with something like a; = 0.3.

It must be warned that (6.15) is not applicable to the LVQ2 algorithm,
since thereby the «;, on the average, would not decrease, and the process
would not converge. The reason for this is that LVQ2 is only a partial ap-
proximation of (6.11), whereas LVQ3 will be more accurate and probably
could be modified like LVQ1. If LVQ3 is modified, then it should be called
“OLvVQ3.”

ac(t) = (6.15)

6.4 The Batch-LVQ1 251

6.4 The Batch-LVQ1

The basic LVQ1 algorithm can be written in a compressed form as

mi(t+1) = myi(t) + a(t)s(t)be[z(t) — mi(t)] ,
where s(t) = +1 if z and m, belong to the same class,
but s(t) = -1 if z and m. belong to different classes. (6.16)

Here 6.; is the Kronecker delta (6; = 1 for ¢ =, é.; = 0 for ¢ # i).

The LVQ1 algorithm, like the SOM, can be expressed as a batch version.
In a similar way as with the Batch Map (SOM) algorithm, the equilibrium
condition for the LVQ1 is expresssed as

Vi, E¢{86ci(x—m])}=0. (6.17)

The computing steps of the so-called Batch-LVQ! algorithm (in which at
steps 2 and 3, the class labels of the nodes are redefined dynamically) can
then be expressed, in analogy with the Batch Map, as follows:

1. For the initial reference vectors take, for instance, those values obtained
in the preceding unsupervised SOM process, where the classification of
z(t) was not yet taken into account.

2. Input the z(t) again, this time listing the z(t) as well as their class labels
under each of the corresponding winner nodes.

3. Determine the labels of the nodes according to the majorities of the class
labels of the samples in these lists.

4. Multiply in each partial list all the z(t) by the corresponding factors s(t)
that indicate whether z(t) and m.(t) belong to the same class or not.

5. At each node i, take for the new value of the reference vector the entity

. _ 2ps(t)z(
m; = % , (6.18)

where the summation is taken over the indices ¢’ of those samples that
were listed under node 3.
6. Repeat from 2 a few times.

Comment 1. For stability reasons it may be necessary to check the sign of
> s(t'). If it becomes negative, no updating of this node is made.

Comment:, 2. Unlike in usual LVQ, the labeling of the nodes was allowed
tf) cha.nge in the iterations. This has sometimes yielded slightly better clas-
sification accuracies than if the labels of the nodes were fixed at first steps.

Alternatively, the labeling can be determined permanently immediately after
the SOM process.

252 6. Learning Vector Quantization

6.5 The Batch-LVQ1 for Symbol Strings

Consider that S = z(i) is the fundamental set of strings z(i) that have been
assigned to different classes. Let m; denote one of the reference strings. The
identity vs. nonidentity of the classes of #(i) and m; shall be denoted by s(i),
as in Sect. 6.4. Then the equilibrium condition that corresponds to (6.17) in
6.4 is assumed to read

Vi, Y s(i)dlz(i),m]] = min! (6.19)
z(i)ES

where d is some distance measure defined over all possible inputs and models,
s(i) = +1 if z(¢) and m} belong to the same class, but s(i) = —1 if z(i) and
m; belong to different classes.

In accordance with the Batch-LVQ1 procedure introduced in Sect. 6.4 we
obtain the Batch-LVQ1 for strings by application of the following computa-
tional steps:

1. For the initial reference strings take, for instance, those strings obtained
in the preceding SOM process.

2. Input the classified sample strings once again, listing the strings as well
as their class labels under the winner nodes.

3. Determine the labels of the nodes according to the majorities of the class
labels in these lists. _

4. For each string in these lists, compute an expression equal to the left side
of (6.19), where the distance of the string from every other string in the
same list is provided with the plus sign, if the class label of the latter
sample string agrees with the label of the node, but with the minus sign
if the labels disagree.

5. Take for the set median in each list the string that has the smallest sum
of expressions defined at step 4 with respect to all other strings in the re-
spective list. Compute the generalized median by systematically varying
each of the symbol positions in the set median by replacement, insertion,
and deletion of a symbol, accepting the variation if the sum of distances
(provided with the same plus and minus signs that were used at the pre-
vious step) between the new reference string and the sample strings in the
list is decreased.

6. Repeat steps 1 through 5 a sufficient number of times.

6.6 The LVQ2 (LVQ2.1)

The classification decision in this algorithm is identical with that of the LVQ1.
In learning, however, two codebook vectors m; and m; that are the nearest
neighbors to = are now updated simultaneously. One of them must belong
to the correct class and the other to a wrong class, respectively. Moreover,

6.7 The LVQ3 253

must fall into a zone of values called a ‘window’ that is defined around the
midplane of m; and m;. Assume that d; and d; are the Euclidean distances
of z from m; and m;, respectively; then z is defined to fall in a ‘window’ of
relative width w if
d; d; 1-

min (E—;, —J’;) > s, where s = l_]-_g . (6.20)

A relative ‘window’ width w of 0.2 to 0.3 is recommended. The version of
LVQ2 called LVQ2.1 below is an improvement of the original LVQ2 algorithm
[2.39] in the sense that it allows either m; or m; be the closest codebook vector
to z, whereas in the original LVQ2; m; had to be closest.

Algorithm LVQ2.1:

mi(t+1) = mi(t) - a®)z(t) - mi(t)],

m;(t+1) = m;(t)+ a(t)z(t) — m;(t)], (6.21)
where m; and m; are the two closest codebook vectors to z, whereby = and

m; belong to the same class, while z and m; belong to different classes,
respectively. Furthermore x must fall into the ‘window.’

6.7 The LVQ3

The LVQ2 algorithm was based on the idea of differentially shifting the de-
cision borders toward the Bayesian limits, while no attention was paid to
what might happen to the location of the m; in the long run if this process
were continned. Therefore it seems necessary to introduce corrections that
ensure that the m; continue approximating the class distributions, or more
accurately the f(z) of (6.5), at least roughly. Combining the earlier ideas, we
now obtain an improved algorithm [6.1-3] that may be called LVQ3:

m(t + 1) mi(t) — a(t)[e(t) —mi(t)] ,
m;(t+1) m;(t) + a(t)[z(t) — m;(2)]

where m; and m; are the two closest codebook vectors to z, Whereby x and
m; belong to the same class, while z and m; belong to different classes,
respectively; furthermore & must fall into the 'window’;

me(t+1) = me(t) + ea(t)|z(t) — me(t)], (6.22)

i

for k € {1, j}, if z,m;, and m; belong to the same class.

In a series of experiments, applicable values of € between 0.1 and 0.5 were
found, relating to w = 0.2 or 0.3. The optimal value of ¢ seems to depend on
the size of the window, being smaller for narrower windows. This algorithm
seems to be self-stabilizing, i.e., the optimal placement of the m; does not
change in continued learning,

254 6. Learning Vector Quantization

Comment. If the idea were only to approximate the humps of f(z) in (6.5)
as accurately as possible, we might also take w = 1 (no window at all),
whereby we would have to use the value € = 1.

6.8 Differences Between LVQ1, LVQ2 and LVQ3

The three options for the LVQ-algorithms, namely, the LVQ1, the LVQ2 and
the LVQ3 yield almost similar accuracies in most statistical pattern recog-
nition tasks, although a different philosophy underlies each. The LVQ1 and
the LVQ3 define a more robust process, whereby the codebook vectors as-
sume stationary values even after extended learning periods. For the LVQ1
the learning rate can approximately be optimized for quick convergence (as
shown in Sect. 6.3). In the LVQ2, the relative distances of the codebook vec-
tors from the class borders are optimized whereas there is no guarantee of the
codebook vectors being placed optimally to describe the forms of the class dis-
tributions. Therefore the LVQ2 should only be used in a differential fashion,
using a small value of learning rate and a restricted number of training steps.

6.9 General Considerations

In the LVQ algorithms, vector quantization is not used to approximate the
density functions of the class samples, but to directly define the class borders
according to the nearest-neighbor rule. The accuracy achievable in any clas-
sification task to which the LVQ algorithms are applied and the time needed
for learning depend on the following factors:

— an approximately optimal number of codebook vectors assigned to each
class and their initial values,

— the detailed algorithm, a proper learning rate applied during the steps, and
a proper criterion for the stopping of learning.

Initialization of the Codebook Vectors. Since the class borders are rep-
resented piecewise linearly by segments of midplanes between codebook vec-
tors of neighboring classes (a subset of borders of the Voronoi tessellation), it
may seem to be a proper strategy for optimal approximation of the borders
that the average distances between the adjacent codebook vectors (which de-
pend on their numbers per class) should be the same on both sides of the
borders. Then, at least if the class distributions are symmetric, this means
that the average shortest distances of the codebook vectors (or alternatively,
the medians of the shortest distances) should be the same everywhere in
every class. Because, due to unknown forms of the class distributions, the
final placement of the codebook vectors is not known until at the end of the
learning process, their distances and thus their optimal numbers cannot be

6.9 General Considerations 255

determined before that. This kind of assignment of the codeluok vistors to
the various classes st therefore be mande stemtiredy
In many practical applications such as speech recognition, even when the

a priori probabilities for the samples falling in ditferent classes are very differ-
ent, a very good strategy is thus to start with the same number of codebook
vectors in each class. An upper limit to the total number of codebook vectors
is set by the restricted recognition time and computing power available.

For good piecewise linear approximation of the borders, the medians of
the shortest distances between the codebook vectors might also be selected
somewhat smaller than the standard deviations (square roots of variances)
of the input samples in all the respective classes. This criterion can be used
to determine the minimum number of codebook vectors per class.

Once the tentative numbers of the codebook vectors for each class have
been fixed, for their initial values one can use first samples of the real train-
ing data picked up from the respective classes. Since the codebook vectors
should always remain inside the respective class domains, for the above initial
values too one can only accept samples that are not misclassified. In other
words, a sample is first tentatively classified against all the other samples in
the training set, for instance by the K-nearest-neighbor (KNN) method, and
accepted for a possible initial value only if this tentative classification is the
same as the class identifier of the sample. (In the learning algorithm itself,
however, no samples must be excluded; they must be applied independent of
wl}ether they fall on the correct side of the class border or not.)

Initialization by the SOM. If the class distributions have several modes
(peaks), it may be difficult to distribute the initial values of the codebook
vectors to all modes. Recent experience has shown that it is then a better
strategy to first form a SOM, thereby regarding all samples as unclassified,
for its initialization. After that the map units are labeled according to the
class symbols by applying the training samples once again and taking their
labels into account like in the calibration of the SOM discussed in Sect. 3.2.

The labeled SOM is then fine-tuned by the LVQ algorithms to approxi-
mate the Bayesian classification accuracy.

Learning. It is recommended that learning always be started with the op-
timized LVQ1 (OLVQ1) algorithm, which converges very fast; its asymptotic
recognition accuracy will be achieved after a number of learning steps that is
about 30 to 50 times the total number of codebook vectors. Other algorithms
may continue from those codebook vector values that have been obtained in
the first phase.

Often the OLVQ1 learning phase alone may be sufficient for practical
applications, cspecially if the learning time is critical. However, in an attempt
to ultimately improve recognition accuracy, one may continue with the basic
LVQ1, the LVQ2.1, or the LVQ3, using a low initial value of learning rate,
which is then the same for all the classes.

256 6. Learning Vector Quantization

Stopping Rule. It often happens that the neural-network algorithms ‘over-
learn’; e.g., if learning and test phases are alternated, the recognition accuracy
is first improved until an optimum is reached. After that, when learning is
continued, the accuracy starts to decrease slowly. A possible explanation of
this effect in the present case is that when the codebook vectors become very
specifically tuned to the training data, the ability of the algorithm to general-
ize for new data suffers. It is therefore necessary to stop the learning process
after some 'optimal’ number of steps, say, 50 to 200 times the total number of
the codebook vectors (depending on particular algorithm and learning rate).
Such a stopping rule can only be found by experience, and it also depends
on the input data.

Let us recall that the OLVQI algorithm may generally be stopped after a
number of steps that is 30 to 50 times the number of codebook vectors.

6.10 The Hypermap-Type LVQ

The principle discussed in this section could apply to both LVQ and SOM
algorithms. The central idea is selection of candidates for the “winner” in
sequential steps. In this section we only discuss the Hypermap principle in
the context of LVQ algorithms.

The idea suggested by this author [6.4] is to recognize a pattern that occurs
in the context of other patterns (Fig. 6.3). The context around the pattern
is first used to select a subset of nodes in the network, from which the best-
matching node is then identified on the basis of the pattern part. The contexts
need not be specified at high accuracy, as long as they can be assigned to a
sufficient number of descriptive clusters; therefore, their representations can
be formed by unsupervised learning, in which unclassified raw data are used
for training. On the other hand, for best accuracy in the final classification
of the pattern parts, the representations of the latter should be formed in a
supervised learning process, whereby the classification of the training data
must be well-validated. This kind of context level hierarchy can be continued
for an arbitrary number of levels.

The general idea of the Hypermap principle is thus that if different sources
of input information are used, then each of the partial sources of information
only defines a set of possible candidates for best-matching cells; the final clas-

Paltern
(e Y ssnemes Uamsnmun

4

[~3 L I p—— 1§ | —

Context

Fig. 6.3. Definition of pattern and context parts in a time series of samples

6.10 The Hypermap-Type LVQ 257

sification decision is suspended until all the sources have been utilized. Each
of the neural cells is assumed to receive inputs from a number of differeﬁt
kinds of sources, but these subsets of inputs are not used simultaneously. In-
stead, after application of one particular signal set to the respective inputs
the neural cell is only left in a state of preactivation, in which it will not;
yet elicit an output response. Preactivation is a kind of binary memory state
or bias of the neural cell, in which the latter is facilitated to be triggered
by further inputs. Without preactivation, however, later triggering would be
impossible. There may be one or more phases in preactivation. When a partic-
ular set of inputs has been used, information about its accurate input signal
values will be “forgotten”, and only the facilitatory (binary) information of
the cell is memorized; so preactivation is not a bias for “priming” like in some
other neural models. One can thereby discern that no linear vector sum of
the respective input signal groups is formed at any phase; combination of the
signals is done in a very nonlinear but at the same time robust way. Only in
the last decision operation, in which the final recognition result is specified
the decision operation is based on continuous-valued discriminant functionsj

Example: Two-Phase Recognition of Phonemes. The operation of the
LVQ-Hypermap is now exemplified in detail by the following phoneme recog-
nition experiment. It must be emphasized, however, that the principle is much
more general. Consider Fig. 6.3, which illustrates a time sequence of samples,
such as spectra. For higher accuracy, however, it is better to use in this exper-
iment another feature set named the cepstrum, Sects. 7.2 and 7.5. We have
used such features, so-called cepstral coefficients (e.g., 20 in number) instead
of simple spectra. Assume that the phonemic identity of the speech signal
shall be determined at time £. A pattern vector Tpatt can be formed, e.g., as
a concatenation of three parts, each part being the average of three adjacent
cepstral feature vectors, and these nine samples are centered around time ¢.
In order to demonstrate the Hypermap principle, T, is now considered in
the context of a somewhat wider context vector Teont, Which is formed as
a concatenation of four parts, each part being the average of five adjacent
:.epst:al feature vectors. The context “window” is similarly centered around
ime t.

'Figure 6.4 illustrates an array of neural cells. Each cell has two groups
of inputs, one for Tpare and another for Zeqnt, respectively. The input weight
vectors for the two groups, for cell i, are then denoted M patt aNd M; cone
respectively. We have to emphasize that the cells in this “m'ap” were no’t):al;
ordered spatially: they must still be regarded as a set of unordered “codebook
vectors” like in classical Vector Quantization.

Clagsiﬁ.cation' of the Input Sample. For simplicity, the classification op-
eration is explained first, but for that we must assume that the input weights

have al.rea.dy been formed, at least tentatively. The matching of z and m; is
determined in two phases.

