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Abstract

Up to now, neural networks have been used for classification of un-
structured patterns and sequences. Dealing with complex structures,
however, standard neural networks, as well as statistical methods, are
usually believed to be inadequate because of their feature-based ap-
proach. In fact, feature-based approaches usually fail to give satisfactory
solutions because of the sensitiveness of the approach to the a priori se-
lected features and the incapacity to represent any specific information
on the relationships among the components of the structures. On the
contrary, we show that neural networks can represent and classify struc-
tured patterns. The key idea underpinning our approach is the use of
the so called “complex recursive neuron”. A complex recursive neuron
can be understood as a generalization to structures of a recurrent neu-
ron. By using complex recursive neurons, basically all the supervised
networks developed for the classification of sequences, such as Back-
Propagation Through Time networks, Real-Time Recurrent networks,
Simple Recurrent Networks, Recurrent Cascade Correlation networks,



and Neural Trees can be generalized to structures. The results obtained
by some of the above networks (with complex recursive neurons) on
classification of logic terms are presented.

1 Introduction

Structured domains are characterized by complex patterns usually represented
as lists, trees, and graphs of variable sizes and complexity. The ability to
recognize and to classify these patterns is fundamental for several applica-
tions, such as medical and technical diagnosis (discovery and manipulation
of structured dependencies, constraints, explanations), molecular biology and
chemistry (classification of chemical structures, DNA analysis, quantitative
structure-property relationship (QSPR), quantitative structure-activity rela-
tionship (QSAR)), automated reasoning (robust matching, manipulation of
logical terms, proof plans, search space reduction), software engineering (qual-
ity testing, modularisation of software), geometrical and spatial reasoning
(robotics, structured representation of objects in space, figure animation, lay-
outing of objects), speech and text processing (robust parsing, semantic dis-
ambiguation, organising and finding structure in texts and speech), and other
applications that use, generate or manipulate structures.

While neural networks are able to classify static information or temporal
sequences, the current state of the art does not allow the efficient classification
of structures of different sizes. Some advances on this issue have been recently
presented in [SSG95], where preliminary work on the classification of logical
terms, represented as labeled graphs, was reported. The aim, in that case, was
the realization of a hybrid (symbolic/connectionist) theorem prover, where the
connectionist part had to learn a heuristic for a specific domain in order to
speed-up the search of a proof. Other related techniques for dealing with struc-
tured patterns can be found, for example, in [Pol90, Spe94b, Spe95, Spe9dal.

The aim of this report is to show, at least in principle, that neural net-
works can deal with structured domains. Some basic concepts, that we believe
very useful for expanding the computational capabilities of neural networks to
structured domains, are given. Specifically, we propose a generalization of a re-
current neuron, i.e., the complex recursive neuron which is able to build a map
from a domain of structures to the set of reals. This new defined neuron al-
lows the formalization of several supervised models for structures which stem



very naturally from well known models, such as Back-Propagation Through
Time networks, Real-Time Recurrent networks, Simple Recurrent Networks,
Recurrent Cascade Correlation networks, and Neural Trees.

The report is organized as follows. In Section 2 we introduce structured
domains and some preliminary concepts on graphs and neural networks. The
complex recursive neurons are defined in Section 3, where some related con-
cepts are discussed. Several supervised learning algorithms, derived by stan-
dard and well-known learning techniques, are presented in Section 4. Simula-
tion results for a subset of the proposed algorithms are reported in Section 5
and conclusions drawn in Section 6.

2 Structured Domains

In this report, we deal with structured patterns which can be represented as
labeled graphs. Some examples of these kind of patterns are shown in Figures
1-4, where we have reported some typical examples from structured domains
such as conceptual graphs representing medical concepts (Figure 1), chemical
structures (Figure 2), bubble chamber events (Figure 3), and logical terms
(Figure 4). All these structures can also be represented by using a feature-
based approach. Feature-based approaches, however, have the drawbacks of
being very sensitive to the features selected for the representation and in-
capable to represent any specific information about the relationships among
components. Standard neural networks, as well as statistical methods, are
usually bound to this kind of representation and thus considered not adequate
for dealing with structured domains. On the contrary, we will show that neural
networks can represent and classify structured patterns.

2.1 Preliminaries
2.1.1 Graphs

We consider finite directed node labeled graphs without multiple edges. For a
set of labels X, a graph X (over X)) is specified by a finite set Vx of nodes, a set
Ex of ordered couples of Vy x Vx (called the set of edges) and a function ¢x
from Vx to ¥ (called the labeling function). Note that graphs may have loops,
and labels are not restricted to be binary. Specifically, labels may also be real-
valued vectors. A graph X' (over X)) is a subgraph of X if ¢x» = ¢x, Vx» C Vyx,
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Figure 4: Example of logic terms represented as labeled directed acyclic graphs.

and Ex: C Ex. For a finite set V', #V denotes its cardinality. Given a graph
X and any node & € Vx, the function out_degreex(x) returns the number of
edges leaving from x, i.e., out_degreex(x) = #{(x,2) | (v,2) € Ex AN z € Vx}.
Given a total order on the edges leaving from , the node y = outx(x,j) in
Vx 1s the node pointed by the jth pointer leaving from z. The wvalence of a
graph X is defined as max{out_degreex(x)}. A labeled directed acyclic graph

.rGVX

(labeled DAG) is a graph, as defined above, without loops. A node s € Vy is
called a supersource for X if every node in X can be reached by a path starting
from s. The root of a tree (which is a special case of directed graph) is always
the (unique) supersource of the tree.

2.1.2 Structured Domain, Target Function, and Training Set

We define a structured domain D (over ¥) as any (possibly infinite) set of
graphs (over ¥). The valence of a domain D is defined as the maximum among
the valences of the graphs belonging to D. Since we are dealing with learning,
we need to define the target function we want to learn. In approximation
tasks, a target function £() over D is defined as any function £ : D — RF,
were k is the output dimension, while in (binary) classification tasks we have
£:D —{0,1} (or £ : D — {—1,1}.) A training set T" over a domain D is
defined as a set of couples (X,&(X)), where X € U C D and £() is a target

function defined over D.



2.1.3 Standard and Recurrent Neuron

The output ol of a standard neuron is given by
o) = f(z w; 1), (1)

where f() is some non-linear squashing function applied to the weighted sum of
inputs I'. A recurrent neuron with a single self-recurrent connection, instead,
computes its output o(")(1) as follows

o (1) = F(X2 wili(t) + oot — 1), (2)

where f() is applied to the weighted sum of inputs [ plus the self-weight, ws,
times the previous output. The above formula can be extended both con-
sidering several interconnected recurrent neurons and delayed versions of the
outputs. For the sake of presentation, we skip these extensions.

3 The First Order Complex Recursive Neu-
ron

Using standard and recurrent neurons, it is very difficult to deal with complex
structures. This is because the former was devised for processing of unstruc-
tured patterns, while the latter can only naturally process sequences. Thus,
neural networks using these kind of neurons can face approximation and clas-
sification problems in structured domains only using some complex and very
unnatural encoding scheme which maps structures onto fixed-size unstructured
patterns or sequences. We propose to solve this inadequacy of the present state
of the art in neural networks by introducing the complex recursive neuron. The
complex recursive neuron is an extension of the recurrent neuron where instead
of just considering the output of the unit on the previous time step, we have
to consider the outputs of the unit for all the nodes which are pointed by the
current input node (see Figure 5). The output o(®)(x) of the complex recursive

!The threshold of the neuron is included in the weight vector by expanding the input
vector with a component always to 1.
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Figure 5: Neuron models for different input domains. The standard neuron is
suited for the processing of unstructured patterns, the recurrent neuron for the

processing of sequences of patterns, and finally the proposed complex recursive
neuron can deal very naturally with structured patterns.



neuron to a node = of a graph X is defined as

N, out_degreex ()
o) = fQowili+ Y ol outx(w, ), (3)
i=1 j=1
where Ny, is the number of units encoding the label I = ¢x(x) attached to the
current input x, and w; are the weights on the recursive connections. Thus,
the output of the neuron for a node x is computed recursively on the output
computed for all the nodes pointed by it.

Note that, if the valence of the considered domain is n, then the complex
recursive neuron will have n recursive connections, even if not all of them will
be used for computing the output of a node & with out_degreex(x) < n.

When considering N. interconnected complex recursive neurons, eq. (3)

becomes
out_degreex (x)

0(z) = F(WI + z_j W 0 (outx (. 7)), (4)

where F;(v) = f(v;), 1 € RN, W € RNV 0(9)(2), 09 (outx(z,5)) € RNV,
/W]‘ € RNexNe,

In the following, we will refer to the output of a complex neuron dropping
the upper index.

3.1 Generation of Neural Representations for Graphs

To understand how complex recursive neurons can generate representations
for directed graphs, let us consider a single complex recursive neuron u and a
single graph X. The following conditions must hold:

Number of Connections: the complex recursive neuron « must have as
many recursive connections as the valence of the graph X;

Supersource: the graph X must have a reference supersource.

Note that, if the graph X does not have a supersource, then it is always
possible to define a convention for adding to the graph X an extra node s
(with a minimal number of outgoing edges) such that s is a supersource for
the new graph;

If the above conditions are satisfied, we can adopt the convention that the
graph X is represented by o(s), i.e., the output of u to s. Consequently, due
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Figure 6: The Encoding network for an acyclic graph. The graph is represented
by the output of the Encoding network.

to the recursive nature of eq. (3), it follows that the neural representation
for an acyclic graph is computed by a feedforward network (encoding network)
obtained by replicating the same complex recursive neuron u and connecting
these copies according to the topology of the structure (see Figure 6). If the
structure contains cycles then the resulting encoding network is recurrent (see
Figure 7) and the neural representation is considered to be well-formed only if
o(s) converges to a stationary value.

The encoding network fully describes how the representation for the struec-
ture is computed and it will be used in the following to derive the learning
rules for the complex recursive connections.

When considering a structured domain, the number of recursive connec-
tions of v must be equal to the valence of the domain. The extension to a
set of N. complex neurons is trivial: if the valence of the domain is k, each
complex neuron will have k groups of N, recursive connections each.

3.2 Optimized Training Set

When considering DAGs, the training set can be organized so to improve the
computational efficiency of both the reduced representations and the learning
rules. In fact, given a training set T' of DAGs, if there are graphs X7, X, € T
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Figure 7: The Encoding network for a cyclic graph. In this case, the Encoding
network is recurrent and the graph is represented by the output of the Encoding
network at a fixed point of the network dynamics.

which share a common subgraph X, then we need to explicitly represent X
only once. The optimization of the training set can be performed in two stages
(see Fig. 8 for an example):

1. all the DAGs in the training set are merged into a single minimal DAG,
i.e., a DAG with minimal number of nodes;

2. a topological sort on the nodes of the minimal DAG is performed to
determine the updating order on the nodes for the network.

Both stages can be done in linear time with respect to the size of all DAGs and
the size of the minimal DAG, respectively®. Specifically, stage (1.) can be done
by removing all the duplicates subgraphs through a special subgraph-indexing
mechanism (which can be implemented in linear time). The advantage of hav-
ing a sorted training set is due to the fact that all the reduced representations
(and also their derivatives with respect to the weights, as we will see when
considering learning) can be computed by a single ordered scan of the training
set.

?This analysis is due to Christoph Goller.
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Figure 8: Optimization of the training set: the set of structures (in this case,
trees) is transformed into the corresponding minimal DAG, which is then used
to generate the sorted training set. The sorted training set is then transformed
into a set of sorted vectors using the numeric codes for the labels and used as
training set for the network.

3.3 Well-formedness of Neural Representations

When considering cyclic graphs, to guarantee that each encoded graph gets
a proper representation through the encoding network, we have to guarantee
that for every initial state the trajectory of the encoding network converges
to an equilibrium, otherwise it would be impossible to perform the process-
ing of a nonstationary representation. This is particularly important when
considering cyclic graphs. In fact, acyclic graphs are guaranteed to get a con-
vergent representation because the resulting encoding network is feedforward,
while cyclic graphs are encoded by using a recurrent network. Consequently,
the well-formedness of representations can be obtained by defining conditions
guaranteeing the convergence of the encoding network. Regarding that, it
is well known that if the weight matrix is symmetric, an additive network
with first order connections possess a Liapunov function and is convergent
([Hop84, CG83]). Moreover, Almeida [Alm87] proved a more general symme-
try condition than symmetry of the weight matrix, i.e., a system satisfying
detailed balance

wij f(net;) = wjif(net;), ()
is guaranteed to possess a Liapunov function as well. On the other hand, if
the norm of the weight matrix (not necessarily symmetric) is sufficiently small,

12



e.g., satisfying
1
2
R L 6
;Zj:w” maz; f'(net;)’ (6)

the network’s dynamics can be shown to go to a unique equilibrium for a given
input (Atiya [Ati88]).

The above results are sufficient when the encoding network is static, how-
ever we will see that in several cases, e.g., in classification tasks, the encoding
network changes with learning. In this cases, these results can be exploited to
define the initial weight matrix, but there is no guarantee that learning will
preserve the stability of the encoding network.

4 Supervised Models

In this section, we discuss how several standard supervised algorithms for
neural networks can be extended to structures.

4.1 Back-propagation Through Structure

The task addressed by back-propagation through time networks is to produce
particular output sequences in response to specific input sequences. These
networks are, in general, fully recurrent, in which any unit may be connected
to any other. Because of that, they cannot be trained by using plain back-
propagation. A trick, however, can be used to turn an arbitrary recurrent
network into an equivalent feedforward network when the input sequences
have a maximum length 7. In this case, all the units of the network can
be duplicated T times (unfolding of time), so that the state of a unit in the
recurrent network at time 7 is hold from the 7th copy of the same unit in the
feedforward network. By preserving the same weight values through the layers
of the feedforward network, it is not difficult to see that the two networks will
behave identically for T' time steps. The feedforward network can be trained
by back-propagation, having care to preserve the identity constraint between
weights of different layers. This can be guaranteed by adding together the
individual gradient contributions of corresponding copies of the same weight
and then changing all copies by the total amount.

Back-propagation Through Time can be extended without difficulties to
structures. The basic idea is to use complex recursive neurons for encod-
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ing the structures; the obtained representations are then classified or used to
approximate an unknown function by a standard feedforward network. An
example of this kind of network for classification is given in Figure 9.

O Standard Neuron

@ Complex Neuron

Classifier ® |nput Neuron
"""""""" et
““““ L
/////I//,/ ///
\"J\\\y/ . ///// ///
4
Encoder oA S

\is, /\\\l\\(\ AR /
\y 0 T Q\\y/ S

Label Pointer Pointer

Figure 9: A possible architecture for the classification of structures: the com-
plex recursive neurons generate the neural representation for the structures,
which are then classified by a standard feedforward network.

Given an input graph X, the network output o(X) can be expressed as the
composition of the encoding function W() and the classification (or approxi-
mation) function ®() (see Figure 10):

o(X) = o(W(X)). (7)

Learning for the set of weights Wg can be implemented by plain back-
propagation on the feedforward network realizing ®()

dFError(®(y))
oW g ’

AWg = —p (8)

where y = U(X), i.e., the input to the feedforward network, while learning for

14



output

£

Feedforward
Network ®()

(classifier, approx.)

{} backward
forward

Encoder
Network W()

t

input

Figure 10: The functional scheme of the proposed network. The Encoder and
the Classifier are considered as two distinct entities which exchange informa-
tion: the Encoder forwards the neural representations of the structures to the
Classifier; in turn the Classifier returns to the Encoder the deltas which are
then used by the Encoder to adapt its weights.
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the set of weights, Wy, realizing ¥() can be implemented by

OFError(®(y)) Oy

AWy = —-n ay an;7 (9)

where the first term represents the error coming from the feedforward network
and the second one represents the error due to the encoding network.

How the second term is actually computed depends on the family of struc-
tures in the training set. If the training set is composed by DAGs, then plain
back-propagation can be used on the encoding network. Otherwise, i.e., if
there are graphs with cycles, then recurrent back-propagation [Pin88] must be
used. Consequently, we treat separately these two cases.

4.1.1 Case I: DAGSs

This case has been treated by Goller and Kiichler in LGK95]. Since the train-

ing set contains only DAGs, the computation of aﬂg

can be realized by

backpropagating the error from the feedforward networkqfthrough the encoding
network of each structure. As in back-propagation through time, the gradient
contributions of corresponding copies of the same weight are collected for each
structure. The total amount is then used to change all the copies of the same
weight. If the learning is performed by structure then the weights are updated
after the presentation of each single structure, otherwise, the gradient contri-
butions are collected through the whole training set and the weights changed
after that all the structures in the training set have been presented to the
network.

4.1.2 Case II: Cyclic Graphs

When considering cyclic graphs, % can be computed only resorting to
g

recurrent back-propagation. In fact, if the input structure contains cycles, then
the resulting encoding network is cyclic.

In the standard formulation, a recurrent back-propagation network A" with
n units is defined as

O(rbp)(t +1) = F(w(rbp)o(rbp)(t) + I(pr))7 (10)
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where I""”) € ®" is the input vector for the network, and W) € Rn x Rn
the weight matrix. The learning rule for a weight of the network is given by

Awl = gl S (L), 1)
k

where all the quantities are taken at a fixed point of the recurrent network,
er is the error between the current output of unit k& and the desired one,
Ly =6;— 0;(pr)wﬁ (6;; is a Kronecker delta), and the quantity

y](‘pr) — Z ek(L_l)kj _ Zog(rbp)wijyz(rbp) + ¢ (12)

k

can be computed by relaxing the adjoint network N”, i.e., a network obtained
from N by reversing the direction of the connections. The weight w;; from
neuron i to neuron j in N is replaced by ogrbp )wij from neuron j to neuron ¢
in A. The activation functions of N are linear and the output units in A
become input units in A with ¢; as input.

Given a cyclic graph X, let m = #Vx, N. be the number of complex
neurons and o,(t) the output at time ¢ of these neurons for a; € Vx. Then we
can define

olty=| . (13)

om(t)
as the global state vector for our recurrent network, where for convention we
impose 01(t) to be the output of the neurons representing the supersource of

X.
To account for the labels, we have to slightly modify eq. (10)

o(t+1) = F(Wyo(l) + WIIY), (14)
where
Iy
=\ : (15)
l,

17



with lZ = qﬁX(l'i), = 1, N I

w 0
O“W

m repetitions of W

and /Wfl,( € RrmlNexmNe g defined according to the topology of the graph.

In this context, the input of the adjoint network is e, = (%{;ﬂy)))k, and
the learning rules become:
A, = 10,0, Z ex(L™ ) ar, (17)
%
Aw,s = nl0, Z ex(L™" g (18)

k

To hold the constraint on the weights, all the changes referring to the same
weight are added and then all copies of the same weight are changed by the
total amount. Note that each structure gives rise to a new adjoint network
and independently contributes to the variations of the weights. Moreover,
the above formulation is more general than the one previously discussed and
it can be used also for DAGs, in which case the adjoint network becomes a
feedforward network representing the back-propagation of the errors.

4.2 Extension of Real-Time Recurrent Learning

The extension of Real-Time Recurrent Learning [WZ89] to complex recursive
neurons does not present particular problems when considering graphs without
cycles. Cyclic graphs, however, present problems, and in general yield to a
training algorithm that can be considered only loosely in real time. In the
following, we will discuss only acyclic graphs. In order to be concise, we
will only show how derivatives can be computed in real time, leaving to the
reader the development of the learning rules, according to the chosen network
architecture and error function.
Let N. be the number of complex neurons, s the supersource of X, and
out_degreex (s)
y=o(s)=F (WL, + > W, o(outx(s,j))) (19)

J=1
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be the representation of X according to the encoding network, where
Wy = [W,W,,....W,], (20)

and n_is the valence of the domain. The derivatives of y with respect to W
and W, (i € [1,...,n]) can be computed from eq. (19):

ayt - out_degTeeX(S)/\ aO(OUtX(Saj))
v, = o)) + ; ) e 2

wheret =1,..., N, k=0,..., Ny and (/Wj)t is the tth row of 1//V\j;

ayt -, . out_degreex(s)/\l aO(OUtX(S,j))
m_ot(s)(oq(OUtX(Svl))—l_ ]Z:; (W)t AW, ), (22)

wheret =1,...,N.,,and ¢ =1,..., N..
These equations are recursive on the structure X and can be computed by
noting that if v is such that out_degreex(v) =0, then

doy(v) doy(v)
W, (1,)k, and 7@(/1/‘72')15(1 = 0. (23)

This allows the computation of the derivatives in real time alongside with the
computation of the reduced descriptors for the graphs.

4.3 LRAAM-based Networks and Simple Recurrent
Networks

In this section, we present a class of networks which are based on the LRAAM
model [SSG95]. Learning in these networks is implemented via the combination
of a supervised procedure with an unsupervised one and, since it is based on
truncated gradients, it is suited for both acyclic and cyclic graphs. We will see
that this class of networks contains, as a special case, a network which results
to be the extension of a Simple Recurrent Network [EIm90] to structures.

In this type of networks (see Figure 11, the first part of the network is
constituted by an LRAAM (note the double arrows on the connections) whose
task is to devise a compressed representation for each structure. This com-
pressed representation is obtained by using the standard learning algorithm

19



Figure 11: LRAAM-based networks for the classification of structures.

for LRAAM [SSG94]. The classification task is then performed in the second
part of the network through a multi-layer feed-forward network with one or
more hidden layers (network A) or a simple sigmoidal neuron (network B).
Several options for the training of networks A and B are available. The dif-
ferent options we have for the training can be characterized by the proportion
of the two different learning rates (for the classifier and the LRAAM) and by
the different degrees x, and y of presence of the following two basic features:

o the training of the classifier is started not until x percent of the training
set is correctly encoded and successively decoded by the LRAAM;

o the error coming from the classifier is backpropagated across y levels of

the structures encoded by the LRAAM?.

Note that, even if the training of the classifier is started only when all the
structures in the training set are properly encoded and decoded, still the clas-
sifier’s error can change the compressed representations which, however, are
maintained consistent* by learning in the LRAAM.

The reason for allowing different degrees of interaction between the classi-
fication and the representation tasks is due to the necessity of having different
degrees of adaptation of the compressed representations to the requirements

3The backpropagation of the error across several levels of the structures can be imple-
mented by unfolding the encoder of the LRAAM (the set of weights from the input to the
hidden layer) according to the topology of the structures.

1A consistent compressed representation is a representation of a structure which contains
all the information sufficient for the reconstruction of the whole structure.

20
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Figure 12: The network B, with x= 0 and y= 1 (right side), can be considered
as a generalization of the Simple Recurrent Network by Elman (left side).

of the classification task. If no interaction at all is allowed, i.e., the LRAAM
is trained first and then its weights frozen (y= 0), the compressed represen-
tations will be such that similar representations will correspond to similar
structures, while if full interaction is allowed, i.e., the LRAAM and the clas-
sifier are trained simultaneously, the compressed representations will be such
that structures in the same class will get very similar representations®. On
the other hand, when considering DAGs, by setting y= maxz_depth, where
max_depth is the number of nodes traversed by the longest path in the struc-
tures, the classifier error will be backpropagated across the whole structure,
thus implementing the backpropagation through structure defined in Section
4.1.

It is interesting to note that the SRN by Elman can be obtained as a special
case of network B. In fact, when considering network B (with x= 0 and y=1)
for the classification of lists (sequences) the same architecture is obtained, with
the difference that there are connections from the hidden layer of the LRAAM
back to the input layer®, i.e., the decoding part of the LRAAM. Thus, when
considering lists, the only difference between a SRN and network B is in the
unsupervised learning performed by the LRAAM. However, when forcing the
learning parameters for the LRAAM to be null, we obtain the same learning
algorithm as in SRN. Consequently, we can claim that SRN is a special case of

>Moreover, in this case, there is no guarantee that the LRAAM will be able to encode
and to decode consistently all the structures in the training set, since the training is stopped
when the classification task 1s performed correctly.

5The output layer of the LRAAM can be considered the same as the input layer.
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network B. This can be better understood by looking at the right side of Figure
12, where we have represented network B in terms of elements of a SRN. Of
course, the copy function for network B is not as simple as the one used in a
SRN, since the right relationships among components of the structures to be
classified must be preserved”.

4.4 Cascade-Correlation for Structures

The Cascade-Correlation algorithm [FLI0] grows a standard neural network
using an incremental approach for classification of unstructured patterns. The
starting network A is a network without hidden nodes trained with a Least
Mean Square algorithm; if network ANy is not able to solve the problem, a
hidden unit u; is added such that the correlation between the output of the
unit and the residual error of network Nj is maximised®. The weights of wu;
are frozen and the remaining weights are retrained. If the obtained network
N1 cannot solve the problem, the network is further grown, adding new hid-
den units which are connected (with frozen weights) with all the inputs and
previously installed hidden units. The resulting network is a cascade of nodes.
Fahlman extended the algorithm to classification of sequences, obtaining good
results [Fah91]. In the following, we show that Cascade-Correlation can further
be extended to structures by using complex recursive neurons. For the sake of
simplicity, we will discuss the case of acyclic graphs, leaving to the reader the
extension to cyclic graphs (see Section 4.1, cyclic graphs).

The output of the kth hidden unit, in our framework, can be computed as

k out_degreex (x)

Zw l —I—Z Z ﬁ)gf?j)o( )(outX (x,7) —I—Zw

(24)
where wgfi)j) is the weight of the kth hidden unit associated to the output of

the vth hidden unit computed on the jth component pointed by x, and wg’ﬂ
is the weight of the connection from the ¢th (frozen) hidden unit, ¢ < k, and

"The copy function needs a stack for the memorization of compressed representations.
The control signals for the stack are defined by the encoding-decoding task.

8Since the maximization of the correlation is obtained using a gradient ascent technique
on a surface with several maxima, a pool of hidden units is trained and the best one selected.
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the kth hidden unit. The output of the output neuron w«(*" is computed as

o9(x) = Y ;o (), (25)

where ; is the weight on the connection from the ith (frozen) hidden unit to
the output unit.

Learning is performed as in standard Cascade-Correlation, with the differ-
ence that, according to equation (24), the derivatives of o*)(z) with respect
to the weights are now:

90} AT ) 9ol ot ()

GRS IDY Wiy PRI (26)
i J=1 i

ao(k) (l’) out_degreex (x) aO(k) (OUt (l’ ))

R Se (@) ~ (k) X\, ] /

P CH (0¥ (z) + ]Z:; Wik iy P ) f (27)
aO(k) r out_degreex(xz aO(k) out w,j
07— (o outx (e, )+ 3 o, 2 0d)) (o
aw(v7t) ]':1 aw(v7t)

wheret=1,....Np,q=1,...,(k=1),v=1,....k t=1,... out_degreex(z),
[’ is the derivative of f(). The above equations are recurrent on the structures

and can be computed by observing that for a leaf node y equation (26) reduces

t 3ok y
Hu'F)

only need to store the output values of the unit and its derivatives for each

= [;, and all the remaining derivatives are null. Consequently, we

component of a structure. Figure 13 shows the evolution of a network with two
pointer fields. Note that, if the hidden units have self-recurrent connections
only, the matrix defined by the weights L?)Ef)j) is not triangular, but diagonal.

4.4.1 Computational Complexity

The algorithm implements a gradient technique (local search) and thus it is
not possible to guess how many iterations are necessary for convergence. In
the following, to have a feeling of the complexity, we suppose that each hidden
unit is trained for a bounded number of iterations?. Let P be the number of

°In practice, a bound on the number of iterations for the training of a single hidden unit
1s always used.
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Label

Figure 13: The evolution of a network with two pointer fields. The units in
the label are fully connected with the hidden units and the output unit.

nodes in the minimal DAG. The number of free parameters (connections and

threshold) ny for the kth hidden unit is

k(k 4+ 1
= N+ NV(%) k- o+ (29)
threshold

~—~—

label connections %’_/ frozen wnits connections

recursive connections

where Ny is the valence of the domain. Consequently, observing that dur-
ing learning the output of the frozen hidden units computed on the train-
ing set can be stored, the output of the kth hidden unit on a single pattern
(i.e., graph node) can be calculated in O(k*Ny ). This complexity dominates
the cost of computing the output of the output unit which is proportional
to( Np + k ). Concerning learning, it is trivial to note that the

~—~ ~

label's bits  frozen units
cost of training a single hidden unit dominates the cost of training the out-

put unit. According to eq.s (26)-(28), the derivatives for the kth hidden
unit with respect to a single pattern can be computed in O(k*N{) in time,
since out_degreex(x) < Ny. Thus, considering the full training set it takes
O(PK*N{) in time. Finally, when building a network with & hidden units, the
computation of all the derivatives takes O( Pk* N{ ) in time'®. The complexity
in space is dominated by the space necessary for storing the derivatives of the
current trained unit, i.e., O(Pk*Ny).

10The total number of computations in one step is proportional to Zle Pi#NE =

B E(k+1)(2k+1
PNE Yo, i = PN (FEEE),
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When considering a diagonal connection matrix, i.e., hidden units with
self-recursive connections only, the complexity of learning becames O( Pk* NZ )
in time and O(PkNy) in space.

4.5 Extension of Neural Trees

Neural Trees (NT) have been recently proposed as a fast learning method
in classification tasks. They are decision trees [BFOS84] where the splitting
of the data for each node, i.e., the classification of a pattern according to
some features, is performed by a perceptron [SN90] or a more complex neural
network [SM91]. After learning, each node at every level of the tree corresponds
to an exclusive subset of the training data and the leaf nodes of the tree
completely partition the training set. In the operative mode, the internal
nodes route the input pattern to the appropriate leaf node which represents
the class of it. An example of how a binary neural tree splits the training set
is shown in Figure 14.

Figure 14: An example of neural tree.

One advantage of the neural tree approach is that the tree structure is
constructed dynamically during learning and not linked to a static structure
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like a standard feed-forward network. Moreover, it allows incremental learning,
since subtrees can be added as well as deleted to recognize new classes of
patterns or to improve generalization. Both supervised [SN90, Set90, Aa92,
SM91] and unsupervised [P192, LFJ92, Per92] splitting of the data have been
proposed. We are interested in supervised methods.

The learning and classification algorithms for binary neural trees is de-
scribed in Figure (15), respectively. Algorithms for general trees can be found
in [SM91]. The extension of these algorithms to structures is straightforward:
the standard discriminator (or network) associated to each node of the tree
is replaced by a complex recursive discriminator (or network) which can be
trained with any of the learning algorithms we have presented so far.

5 Experimental Results

We have tested some of the proposed architectures on several classification
tasks involving logic terms. In the next subsection, we present the classification
problems. Then, we discuss the results obtained with LRAAM-based networks
and Cascade-Correlation for structures.

5.1 Description of the Classification Problems

We have summarized the characteristics of each problem in Table 1. The first
column of the table reports the name of the problem, the second one the set
of symbols (with associated arity) compounding the terms, the third column
shows the rule(s) used to generate the positive examples of the problem!!,
the fourth column reports the number of terms in the training and test set
respectively, the fifth column the number of subterms in the training and test
set, and the last column the maximum depth'? of terms in the training and
test set. For each problem about the same number of positive and negative
examples is given. Both positive and negative examples have been generated
randomly. Training and test sets are disjoint and have been generated by the
same algorithm.

!'Note that the terms are all ground.
12We define the depth of a term as the maximum number of edges between the root and
leaf nodes in the term’s LDAG-representation.
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Learning Algorithm

Let {(Ik,lx)} be the training set, where I} is a real valued feature vector and [ the
label of the associated class, k = 1,---, P. Let T(¢) be the current training set for
node t, D; the discriminator associated to t, if it is a nonterminal node, or the label
of a class if it is a leaf.

1. Set t = root and T'(root) = {(Ix,lx)};
2. If T(t) = 0 then stop;

3. Train the discriminator D; to split T(¢) in two sets: Tj(t), where
the output of Dy is 0, and T,(t), where the output of D, is 1;

4. (a) Add to t a left node t;; if Tj(¢) contains only patterns with
label I; for any j, then ¢; is a leaf with training set T'(¢;) = 0,
otherwise it is an internal node with training set 7'(¢;) = Ti(t);

(b) Add to t a right node ¢,; if T,.(¢) contains only patterns with
label {; for any j, then ¢, is a leaf with training set T'(¢,) = 0,
otherwise it is an internal node with training set 7T'(¢,) =

T (1);

5. repeat the same algorithm for ¢; and ¢,, starting from step 2.

The discriminators can be implemented by a simple perceptron or by a feed-forward
network.

Classification Algorithm

The class of a pattern I can be established by the following algorithm:

1. Set t = root;

2. If the node t is a leaf, classify I, by the associated label [, and
stop, otherwise:

(a) If D¢(Ij) =0 then set t = ¢;
(b) otherwise set t = t,;

3. go to step 2.

Figure 15: The Learning and Classification Algorithms for Binary Neural
Trees.
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Classification Problems

Problem Symbols Positive Examples. #terms #subterms depth
(tr.,test) (tr.,test) (pos.,neg.)

lbllsncgl £/2i/1 a/0 bf0 c/O no occurrence of label ¢ (259,141) (444,301) (5,5)

termoccl | 1/2i/1 a/0 b/0 ¢/0 the (sub)terms i(a) or (173,70) (179,79) (2,2)
f(b,c) occur somewhere

termoccl | £/2i/1 a/0 b/0 ¢/0 the (sub)terms i(a) or (280,120) | (559,291) (6,6)
very long f(b,c) occur somewhere

instl /2 af0 b/0 c/0 instances of (X ,X) (200,83) (235,118) (3,2)

ilr:)snt; /2 af0 b0 c/0 instances of f(X,X) (202,98) (403,204) (6,6)

inst4 /2 af0 b/0 c/0 instances of {(X,{(a,Y)) (175,80) (179,97) (3,2)

ilr:)sntg /2 af0 b0 c/0 instances of f(X,f(a,Y)) (290,110) (499,245) (7,6)

inst7 téf}é/g/g/f/i()/g/l'él instances of t(i(X),g(X,b),b) | (191,109) | (1001,555) (6,6)

Table 1: Description of a set of classification problems involving logic terms.

It must be noted that the set of proposed problems range from the detection
of a particular atom (label) in a term to the satisfaction of a specific unification
pattern. Specifically, in the unification patterns for the problems inst1, and
instl long the variable X occurs twice making these problems much more
difficult than inst4 _long, because any classifier for these problems would have

to compare arbitrary subterms corresponding to X.

5.2 LRAAM-based networks

Best Results for an LRAAM-based Network

Problem #L-unit #H-unit Learning Par. % Dec.-Enc. % Tr. % Ts. #epochs
lbll(fn“l 8 35 7 =02, =000, u=0.5 1.25 100 98.58 11951

termogccl 3 35 =01, c=01, =02 100 98.84 | 94.29 37796
Tnstl B 35 7 =102, <=006, u=05 100 97 93.98 10452
ilnstl 6 45 n=0.2, ¢=0.005 pu=0.5 36.14 94.55 | 90.82 80000
stk 3 35 7 =02, c=0005 n=05 98.86 100 100 1759
ilr(‘)sntg 6 35 n=0.2, ¢=0.005 pu=0.5 8.97 100 100 6993
Tnst7 13 10 n=01, c=001, n=02 T.05 100 100 6158

Table 2: The best results obtained for almost all the classification problems

by an LRAAM-based network.
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In Table 2, we have reported the best result we obtained for almost all the prob-
lems described in Table 1, over 4 different network settings (both in number
of hidden units for the LRAAM and learning parameters) for the LRAAM-
network with a single unit as classifier. The simulations were stopped after
30,000 epochs, apart for problem instl long for which we used a bound of
80,000 epochs, or when the classification problem over the training set was
completely solved. We made no extended effort for optimizing the size of the
network and the learning parameters, thus it should be possible to improve
on the reported results. The first column of the table shows the name of the
problem, the second one the number of units used to represent the labels, the
third the number of hidden units, the fourth the learning parameters (7 is the
learning parameter for the LRAAM, € the learning parameter for the classifier,
¢ the momentum for the LRAAM), the fifth the percentage of terms in the
training set which the LRAAM was able to properly encode and decode, the
sixth the percentage of terms in the training set correctly classified, the seventh
the percentage of terms in the test set correctly classified, and the eighth the
number of epochs the network emploied to reach the reported performances.

From the results, it can be noted that some problems get a very satisfac-
tory solution even if the LRAAM performs poorly. Moreover, this behavior
does not seem to be related with the complexity of the classification prob-
lem, since both problems involving the simple detection of an atom (label) in
the terms (1bloccl long) and problems involving the satisfaction of a spe-
cific unification rule (inst4 long, inst7) can be solved without the need of
a fully developed LRAAM. Thus, it is clear that the classification of the terms
is exclusively based on the encoding power of the LRAAM’s encoder which is
shaped both by the LRAAM error and the classification error. However, even
if the LRAAM’s decoder is not directly involved in the classification task, it
helps the classification process since it forces the network to generate different
representations for terms in different classes!®.

In order to give a feeling of how learning proceeds, the performance of
the networks during training is shown for the problems termocci, inst4 and
inst4 long in Figures 16-18, where the encoding-decoding performance curve
of the LRAAM on the training set is reported, together with the classification

13 Actually, the decoder error forces the LRAAM network to develop a different represen-
tation for each term, however, when the error coming from the classifier is very strong, it
can happen that terms in the same class get almost identical representations.
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Figure 17: Performance curves for inst4.

curves on the training and test set.

5.2.1 Reduced Representations for Classification

In this section, we briefly discuss the representational differences between a
basic LRAAM (without classifier) and the architecture we used. The basic
LRAAM organizes the representational space in such a way that similar struc-
tures get similar reduced representations (see [Spe94b| for more details). This
happens because, even if the LRAAM is trained in supervised mode both over
the output of the network and over the relationships among components (i.e.,
the information about the pointers), the network is auto-associative and thus it
decides by itself the representation for the pointers. Consequently, the learning
mode for the LRAAM is, mainly, unsupervised. When a classifier is introduced
(as in our system), the training of the LRAAM is no longer mainly unsuper-
vised, since the error of the classifier constrains the learning. The resulting
learning regime is somewhat between an unsupervised and a supervised mode.
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Figure 19: The first, second, and third principal component of the reduced
representations, devised by a basic LRAAM on the training and test sets of
the inst1 problem, yield a nice 3D view of the term’s representations.
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Figure 20: Results of the principal components analysis (first, second, and
third principal component) of the reduced representations developed by the
proposed network (LRAAM + Classifier) for the inst1 problem.
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In order to understand the differences between representations devised by
a basic LRAAM and the ones devised in the present paper, we trained a ba-
sic LRAAM (of the same size of the LRAAM used by our network) over the
training set of inst1, then we computed the first, second, and third principal
component of the reduced representations obtained both for the training and
test set'. These principal components are plotted in Figure 19. It can be
noted that the obtained representations mainly cluster themselves in specific
points of the space. Terms of the same depth constitute a single cluster, and
terms of different depth are in different clusters. The same plot for the reduced
representations devised by our network (as from Table 2, row 3) is presented
in Figure 20. The overall differences with respect to the basic LRAAM plot
consists in a concentration of more than half (57%) of the positive examples of
the training and test sets in a well defined cluster, while the remaining repre-
sentations are spread within two main subspaces. The well defined cluster can
be understood as the set of representations for which there was no huge inter-
ference between the decoder of the LRAAM and the classifier (this allowed the
formation of the cluster), while the remaining representations do not preserve
the cluster structure since they have to satisfy competitive constraints coming
from the classifier and the decoder. Specifically, the classifier tends to cluster
the representations into two well defined clusters (one for each class), while the
LRAAM decoder tends to develop well distinct reduced representations since
they must be decoded to different terms.

The above considerations on the final representations for the terms are
valid only if the LRAAM reaches a good encoding-decoding performance on
the training set. However, as we have reported in Table 2, some classification
problems can be solved even if the LRAAM performs poorly. In this case,
the reduced representations contain almost exclusively information about the
classification task. In Figure 21 and Figure 22 we have reported the results of
a principal components analysis on the representations developed for the prob-
lems inst4 long and inst7, respectively. In the former, the first and second
principal components suffice for a correct solution of the classification problem.
In the latter, the second principal component alone gives enough information
for the solution of the problem. Moreover, notice how the representations
developed for inst7 clustered with smaller variance than the representations

14We considered only the reduced representations for terms. No reduced representation
for subterms was included in the analysis.
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Figure 21: Results of the principal components analysis (first, and second
principal component ) of the reduced representations developed by the proposed
network (LRAAM + Classifier) for the inst4-long problem. The resulting
representations are clearly linearly separable.

developed for inst4_long, and how this is in accordance with the better perfor-
mance in encoding-decoding of the latter than the former. Of course, this does
not constitute enough evidence for concluding that the relationship between
the variance of the clusters and the performance of the LRAAM is demon-
strated. However, it seems to be enough for calling a more accurate study on
this issue.

5.3 Cascade-Correlation for Structures

The results obtained by Cascade-Correlation for structures, shown in Table 3,
are obtained for a subset of the problems using a pool of 8 units. The networks
used have both triangular and diagonal recursive connections matrices and no
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Figure 22: Results of the principal components analysis (first, and second
principal component) of the reduced representations developed by the pro-

posed network (LRAAM + Classifier) for the inst7 problem. The resulting
representations can be separated using only the second principal component.
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Results
(Networ ks without connections between hidden units)

# Label i # Hidden Units % Test
Problem Units #Trids Mean (Min - Max) Mean (Min - Max)
termoccl
very-long 8 4 13.25 (8- 19) 97.70 (95 - 100)
8 [
—= | inst4
% long 6 5 72 (4-12) 99.64 (99.09 - 100)
E instl 6 9 11.33 (7-19) 90.09 (86.75 - 92.77)
instl
long 6 16 7.81 (6-11) 91.65 (88.87 - 94.89)
termoccl
very-long 8 3 11 (8- 16) 96.94 (95-99.17)
e }Qﬁg 6 3 1266 (9 - 15) 98.48 (97.27 - 100)
2
a instl 6 5 124 (7-21) 90.6 (87.95-92.77)
instl
long 6 3 18.66 (17-21) 82.99 (75.51-91.84)

Table 3: Results obtained on the test sets for each classification problem using
both networks with triangular and diagonal recursive connection matrices. The
same number of units (8) in the pool was used for all networks.

connection between hidden units. We decided to remove the connections
between hidden units to reduce the probability of overfitting.

We made no extended effort for optimizing the learning parameters and the
number of units in the pool, thus it should be possible to significantly improve
on the reported results.

6 Conclusion

We have proposed a generalization of the standard neuron, namely the com-
plex recursive neuron, for extending the computational capability of neural
networks to processing of structures. On the basis of the complex recursive
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neuron, we have shown how several of the learning algorithms defined for stan-
dard neurons, can be adapted to deal with structures. We believe, that other
learning procedures, which are not covered by this report, can be adapted as
well.

The proposed approach to learning in structured domains can be adopted
for automatic inference in syntactic and structural pattern recognition. Specit-
ically, in this report, we demonstrated the possibility to perform classification
tasks involving logic terms. It must be noted that automatic inference can also
be obtained by using Inductive Logic Programming [MR94]. The proposed ap-
proach, however, has its own specific peculiarity, since it can approximate func-
tions from a structured domain (possibly with real valued vectors as labels)
to the reals. Specifically, we believe that the proposed approach can fruit-
fully be applied to molecular biology and chemistry (classification of chemical
structures, quantitative structure-property relationship (QSPR), quantitative
structure-activity relationship (QSAR)), where it can be used for the auto-
matic determination of topological indexes [Rou90], which are usually designed
through a very expensive trial and error approach.

In conclusion, the proposed architectures extends the processing capabili-
ties of neural networks, allowing the processing of structured patterns which
can be of variable size and complexity. However, it must be pointed out that
same of the proposed architectures have computational limitations. For exam-
ple, Cascade-Correlation for structures has computational limitations due to
the fact that frozen hidden units cannot receive input from hidden units in-
troduced after their insertion into the network. These limitations, in the con-
text of standard Recurrent Cascade-Correlation (RCC), have been discussed
in [GCST95], where it is demonstrated that certain finite state automata can-
not be implemented by networks built up by RCC using monotone activation
functions. Since our algorithm reduces to standard RCC when considering
sequences, it follows that it has limitations as well.
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