'S3INJONIJS UlRIQ SROLIEA Ul PUNOJ SUOIezZIUB3Io oY)}
urepdxa few ‘fem jersuss v ul ‘sesseoold QS aandepe ay3 ‘puey 19410 Y3
UOo ‘aWIdYOS [BO112109Y) © SY finjdsip jpuoisuawip-omy v yons uo $aovds jpubis
jouoisuduup-ybry azyonsia puv 3loud o3 ‘Aeire [euolsuswuip-omj Iendal B
SI jI0MJU [eInau ay) JI ‘10 ‘uorjiu8odal 11dY) Ioj suigjyed jo Suisseoordeid
9y} 10] pasn aq A[BAI)d0ld UA}JO uwd pazijeal Aqalay) sdeuwr ainjesy, ayJ,
‘jooq siy) jo joolqus urewr ayjy st yey) wyIodre (WOs) dopy buiziuvbag)
-f13§ ay3 Aq peugep st pewnioj are sSurddewr yons yorym ut sseooid ayf,

I0MIoU) JAAO pouyap
2IoM wa}shis IIPUIPLO0D AUNIDIf JWOS JI S8 ‘UIPLO NfHUIUDIUL D UL HIOMIDU B}
OjUO POULIO} 918 SIOPOIIP 3saYy I, *soeds ndur ay) ui sureuiop feusis aaljoadsal
IIY) JO §.4030273p 10 $43po0oap dYrads ojul do[aasp SUOINAU SNOLIRA Y} YY) St
7[Nsa1 SUMSLIYUT 210U USAS UB malA jo quiod [eorjorid e wogj jng ‘4nsel jue)
-zoduat pue Suryserajur auo Apealfe st UOISSaIZal, SIy) AQ HI0M)aU [BINSU 3}
ojuo ddeds [eusis oY) woyy Juiddew pesopio A[esrdojodo) e jo uoryew IO
*J%a9 SIY} Ul opewl Afureur si
yoroidde 193ye] oy], "y40m3au Jpinau 2y Huopp sUCINDU 3Y) UsMId(q d[qeuyap
are ‘maia Jo juiod Surepoul [BINGU ® WIOI] ‘suoljdRIaUI [eljeds OI)SIesl aIoul
seazoym ‘[2-1-g] 2o0ds poubis ayp ui SAPOU 8y} UIMIB(Q SUOIJORIINUL [€D0] 9Y3
suyep 0} 2q p[nom L)o19sela,, Ue yons juswe[duw o} Ayqiqissod suQ L3013
-SB[9,, JO PUD| ® SuIj00gol ‘s1U0300427UL [000] 1197} WOIJ AMNSUS SI0J0VA SIUDIDYOI
SurroqySiau 3y} Jo Ly1remnBa1 Jo 90139p urelsd € pue ‘Furddew siyy jo O1ySLIAY)
-oereyd J1opio Jedtdojodoy) ay) Aqaraym ‘YIomiau dijses,, [eatjeyjodAy jo pury
® JO SOpOU 9} UYop 0) SPBUI 3ISY 918 SI0JI0A aDUSIdJal 9} ‘sUoljouUNy snonury
-u0d ajeurrxordde o3 19pio uj ‘sojdures qndul [RLI0)9A JO UOIINQIISIP 9y} 0}
‘q" "399 Ul PasSNISIP SI003A JOOQIPOD 97} 0) IR[IWIS ‘S.L07390 IUAI[IL PaLIP
-40 ‘3734081p JO IQUINU B 3Ui))Y SOA[OAUI ‘TeAsmoy ‘193deyo SIY} Ul PaISpISU0D
Luorssa18ar owjewrereduou, ayJ, 'ejep jndul jo sanjea sjdures jo uolnqui}
-81p 94} 0} P33y A[rensn sI uorjOuUNj [ed1YRMWSYjRW A[dUllS SWIOS ‘UOISseIZal U]
‘uotssaubas 0} pojelaa osfe s1 uouswouayd s1y) ‘uopidopp Jo puny [eroeds
se 9[qez110807ed Sulaq I[IYAL 'SHIOMIoU [eInau Jurjoeiajul A[feryeds urelIsd ui
SINDJ0 pue ¢'Z "199§ Ul passnosip sdew ureiq ayj 03 diysuoije[al asop & sey
Appusredde jey} uouswrouayd juejiodull AIoA € 8)BIISUOUISP MOU [[RYS IM

INOS dised 9y, ‘¢

IMUI)S 9y} JO SEUILINIOO
ay) 03 uonjrodoxd ur pajsulpe st uorgeoylugew oy} ‘s|durexs I0j ‘Aem aures
oY) ur A[edtureudp aseyaq osfe Aoy} pue sdew ureiq Auewt o) Jefruis A19a
are SNOS pamdwod ayJ, ‘wiyiIod[e NOS 24} U0 paseq syiom (0P Isour[e
sys1f [08°g] ‘19U ‘ureiq ayj} ul sfeudis O1109[9Y} JO UOIFRZLIOBAIRD Y} pue
SPI0931 [RIdURUY JO UOIIBZI[ENSIA 3} ‘SolIRIq] JUWIRIOP JO SULISPIO dIjRMO}
-ne 9 01 [, ‘7L 7] 1013U00 ss0001d [eLIjSNpUL pUE ‘SISA[eUE 9FewW! ‘UOIHUZ0dI
yo9ads woxy Sutduel suoryedydde [eorjoeid aary A9y} pue $[00} [EIIJRWSYFR
Se pasn aq ued SWOS 943 ‘sdeur ure1q Ioj S[PPOW se SUIAISS 03 UOIHIPPR U]

[82-9L°2] 003 ‘ureiq oy
ut Supsixa sdewr £103930 YINS 10] OUBPIAS [BJUBWILIBAXS WIS S IV, 030
[g2-€2°Z] searjoafpe pue ‘sqioape ‘sqiaa ‘sunou Iy sor10391e0 0} Surduopq
se spiom ayj AJijuapr ued sdew yons ‘ofendue| [einjeu e Jo spiom jussaidas
S[OqUIAS 9y} JI ‘soue)sul 1o ‘sbups joquifis Ul INO00 YY) SUNJVIf JONILI}
-U0J QUIOS 2QIISAP suoITed0] 3y ‘sdewt Jo £10899e0 juejioduwl IByjoUR U]

039
[2€°g] woryeoo] orydei3osd —

[12°2] semjxey —

[££°2] seanjesy [eo13do Arejuswio —
[02°2] (uolyemyes pue ony) 10[00 —
(26°2] yooads Jo sowsuoyd —

[L£°Z] seuanbaij [eorysnooe —

jo sdew :ore sajdurexy -spgudis jndur sy} jo samjesj Jusurwoid
jsour oy} 0} puodseliod pauiioj Aqeiey; dew 8y} JO SUOISUSWIIP UTEW Oy}
yey) Aem & yons ut uajo ‘ededs [euds reuotsuswIp-ySiy (ougeur) Aue jo sdew
POIOPIO 381D URD ‘SUOINAU JO 30[J)e[[BUOISUSUIIP-OM) ® SB UONS ‘9Injonijs
jiomjou re[nSal e jey) st Suipuy (8213210913 FumBujur jsouwr 3y) sdeyiog
‘suorjeue[dxs 19110 opnjIxa A[LIessadou JOU Sa0p Yorym ‘sjdurexs ased
auo se poojsIdpuUn aq Isnw § 'Yy ul spew jdurelye Jurepouwr [eordojorsAyd
Jeorred ay) ‘momy am YRy s399]o [€0130[01q Ure} 8o ul s)rediajunod saey 03
UI99s SUOIHPUOD SUTUILd] [BI119109Y) 9Y3 SSA[eYjsuoN ‘payroads aq jou pasu
uoryejuowejdurt [ed130[olq Y3 Yolym I0j sesseoord [edrjewayjeur are yooq
SIY) Ul passnosip swyjuiod[e SurziueSIo-J[es JSOJN Suiules] 10 ‘YImois [ejeu
-1s0d ‘uorynjoas Aq pourioj axe sdewr ayj) I9YJOYM JSIIIUL SSI JO SI JI SLAIdYM
‘pourtoj oxe sdewr ureiq oy} Surjquiesal sdeur Yorym ur sesseoord Jurzruesio
-J[9s J0BI}SqE PUY 0 SN SI }SB} UIRWE INO ‘MIIA JO Jutod [ed132109) B WOL]
-300ds uoypjuasaidal 3y} fo uoINPaL
fppouorsuouup v buruiofsad apym suoyvas (wobojodoy ayy anuasaud o3 oqe
are ety sSurddew 3s1xo 918} YY) SULSUI OS[R I NSAI SIY) ‘sAeLre (JeUOISUIWIP
-om}) reuejd Afurewr Aj[ensn oIe SYIOmau Yons soulg ‘a3ueyo 0} dpew st pue
Ky1oy1oads s1yj souyop Jey) s4a3awoind [BULISIUL IISYY JO 106 3y} ST)1 ‘aroymAue

Surjepoy [eaneN 'z F01

106 3. The Basic SOM

3.1 A Qualitative Introduction to the SOM

The Self-Organizing Map (SOM) is a new, effective software tool for the
visualization of high-dimensional data. In its basic form it produces a simi-
larity graph of input data. It converts the nonlinear statistical relationships
between high-dimensional data into simple geometric relationships of their
~ image points on a low-dimensional display, usually a regular two-dimensional
grid of nodes. As the SOM thereby compresses information while preserving
the most important topological and/or metric relationships of the primary
data elements on the display, it may also be thought to produce some kind
of abstractions. These two aspects, visualization and abstraction, can be uti-
lized in a number of ways in complex tasks such as process analysis, machine
perception, control, and communication.

In its. present form the SOM was conceived by the author in 1982. At
present, about 4000 research papers have been published on it; a list of them
is available in the Internet [2.80]. Many tutorial texts and surveys on the SOM
have appeared (Chap. 10). Several software packages that contain all the cen-
tral procedures, a number of monitoring, diagnostic, and display programs,
and exemplary data are freely available in the Internet, too (Chap. 8).

The SOM may be described formally as a nonlinear, ordered, smooth
mapping of high-dimensional input data manifolds onto the elements of a
regular, low-dimensional array. This mapping is implemented in the following
way, which resembles the classical vector quantization (Sect. 1.5). Assume
first for simplicity that the set of input variables {{;} is definable as a real
vector = [£;,&2,...,&)T € R™. With each element in the SOM array we
associate a parametric real vector m; = [t;1, iz, - - - , fin] T € R™ that we call
a model. Assuming a general distance measure between z and m; denoted
d(z,m;), the image of an input vector x on the SOM array is defined as the
array element m. that matches best with z, i.e., that has the index

c=arg miin{d(a:, m)}. (3.1)

Differing from the traditional vector quantization, our task is to define
the m; in such a way that the mapping is ordered and descriptive of the
distribution of z. Before proceeding further, it must be emphasized that the
“models” m; need not be vectorial variables. It will suffice if the distance
measure d(x, m;) is defined over all occurring x items and a sufficiently large
set of models m;.

Consider Fig. 3.1 where a two-dimensional ordered array of nodes, each
one having a general model m; associated with it, is shown. The initial values
of the m; may be selected as random, preferably from the domain of the
input samples. Then consider a list of input samples x(t), where ¢t is an
integer-valued index. Let us recall that in this scheme, the z(t) and m; may
be vectors, strings of symbols, or even more general items. Compare each
z(t) with all the m; and copy each z(t) into a sublist associated with that

3.1 A Qualitative Introduction to the SOM 107

Inputs

x(1), x(2), x(3)
x4, x(5), x(6)
xM, ..

@) O
L~
O

L ~_ x(7) L~

()

@ x(1) /\/:
... /&)/ *3)
@)

L~

o @) [e}
LN

LN

)~ i _J
o

U (generalized median)

Fig. 3.1. Illustration of the batch process in which the input samples are dis-
tributed into sublists under the best-matching models, and then the new models
are determined as (generalized) medians of the sublists over the neighborhoods N;

node, the model vector of which is most similar to z(t) relating to the general
distance measure. When all the z(t) have been distributed into the respective
sublists in this way, consider the neighborhood set N; around model m,;. Here
N; consists of all nodes up to a certain radius in the grid from node i. In the
union of all sublists in IV;, the next task is to find the “middlemost” sample
I;, defined as that sample that has the smallest sum of distances from all the
samples z(t),t € N;. This sample Z; is now called the generalized median in
the union of the sublists. (cf. Sect. 1.2.3) If Z; is restricted to being one of
the samples z(t), we shall indeed call it the generalized set median; on the
other hand, since the z(t) may not cover the whole input domain, it may be
possible to find another item Z; that has an even smaller sum of distances
from the z(t),t € N;. For clarity we shall then call Z; the generalized median.

108 3. The Basic SOM

Notice too that for the Euclidean vectors the generalized median is equal to
their arithmetic mean if we look for an arbitrary Euclidean vector that hag
the smallest sum of squares of the Euclidean distances from all the sampleg
z(t) in the union of the sublists.

The next phase in the process is to form Z; or Z; for each node in the above
manner, always considering the neighborhood set N; around each node i, and
to replace each old value of m; by Z; or T, respectively, in a simultaneous
operation.)

The above procedure shall now be iterated: in other words, the original
z(t) are again distributed into the sublists (which now change, because the
m; have changed), and the new Z; or Z, are computed and made to replace
the m;, and so on. This is a kind of regression process.

There is an important question that we are not able to answer completely
at the moment: even if we keep the z(t) the same all the time, does this
process converge? Do the m; finally coincide with the ;7 If the z(t) and
m; are are Euclidean vectors, and a slightly modified (locally smoothed)
distance measure is used in place of d(x, m;), the convergence has been proved
by Cheng [3.8]. On the other hand, the original formulation of the SOM
process that we shall discuss at length below is closely related to the above
description.

Either the above process or the original SOM algorithm will then likely
produce asymptotically converged values for the models m;, the collection of
which will approximate the distribution of the input samples z(t), even in an
ordered fashion. Let us look at Fig. 3.2, which represents the self-organized
map of short-time acoustic spectra, viz. those taken from the (Finnish) speech
at 20 ms intervals. The round symbols stand for the nodes of the SOM, and
the curves inside them are models of spectra: low frequencies are on the left,
high frequencies on the right, and the ordinates of the curve correspond to the
voice intensity at the various spectral channels. One can immediately discern
the similarity of the spatially adjacent models: the neighboring models look
more similar than those farther apart. The collection of the models is also
supposed to approximate the distribution of the input spectra.

At the first glance one might also think that the global order in the “map”
reflects some kind of harmonicity: it seems as if every model were the average
of the neighboring models, like in the theory of the harmonic functions. On
a closer look, however, one can find several properties of the SOM that differ
from the harmonicity. First of all, there are no fired boundary values for the
models at the edges: the values are determined freely in the regression process,
when the neighborhood set N; of the edge nodes is made to contain nodes
from the inside of the grid. The nature of regression is slightly different at the
edges and in the inside of the grid, resulting in certain border effects, Another
deviation from the harmonicity, as later demonstrated by numerous examples,
is that there are areas in the map where the models are very similar, but
then there are again places where a bigger “jump” between the neighboring

3.2 The Original Incremental SOM Algorithm 109

Fig. 3.2. In this exemplary application, each processing element in the hexagonal
grid holds a model of a short-time spectrum of natural speech (Finnish). Notice
that neighboring models are mutually similar

models is discernible. If the collection of the models has to approximate the
distribution of the inputs, such uneven areas must exist in the map.

On the other hand, if one considers the process depicted in Fig. 3.1, one
can easily realize how the definition of “harmonicity” must be modified in
order to describe the input data: the collection of models is ordered by def-
inition, if each model is equal to the average of input data mapped to its
neighborhood.

3.2 The Original Incremental SOM Algorithm

We shall now proceed to the theory of the Self-Organizing Maps using the
original SOM algorithm as the starting point. This algorithm can be seen to
define a special recursive regression process, in which only a subset of models
is processed at every step.

Consider Fig. 3.3. The SOM here defines a mapping from the input data
space R” onto a two-dimensional array of nodes. With every node i, a para-
metric model vector, also called reference vector m; = [pi1, piz, . . - ,u,-n]T €
R" is associated. Before recursive processing, the m; must be initialized. In
the preliminary examples we select random numbers for the components of
the m; to demonstrate that starting from an arbitary initial state, in the long
run the m; will attain two-dimensionally ordered values. This is the basic ef-
fect of self-organization. Later in Sect. 3.7 we shall point out that if the initial

values of the m; are selected as regular, the process can be made to converge
much faster.

110 3. The Basic SOM

TR
00000
00000
OCO®OO
00000

Fig. 3.3. The array of nodes (neurons) in a two-dimensional SOM array. The
underlying mechanisms for parallel comparison of z and the m; are not shown

The lattice type of the array can be defined to be rectangular, hexagonal,
or even irregular; hexagonal is effective for visual display. In the simplest
case, an input vector z = [£1,£2,...,£,]T € R" is connected to all neurons
in parallel via variable scalar welghts Bij, | which are in general different for
different neurons. In an abstract scheme it may be imagined that the input z,
by means of some parallel computinig mechanisms, is compared with all the
m;, and the location of best match in some metric is defined as the location of
the “response.” We shall later in Chap. 4 demonstrate what kind of physical,
eventually physiological parallel computing mechanism is able to do this. By
computer programming, of course, location of the best match is a trivial task.

The exact magnitude of the response need not be determined: the input is.

simply mapped onto this location, like in a set of decoders.

Let £ € R™ be a stochastic data vector. One might then say that the
SOM is a “nonlinear projection” of the probability density function p(z) of
the high-dimensional input data vector z onto the two-dimensional display.
Vector £ may be compared with all the m; in any metric; in many pra.ctlcal
applications, the smallest of the Fuclidean distances ||z — m;|| can be made
to define the best-matching node, signified by the subscript@

c =@rgm3ﬂ"{||.1: —m;||} , which means the same as

(3.2)
llz — mell = min {|{z —mi||} .

In Sect. 3.3 and Chap. 4 we shall consider another, more “biological”
matching criterion, based on the dot product of z and m;.

During leammg, or the process in which the “nonlinear projection” is
formed, those nodes that are topographically close in the array up to a certain
geometric distance will activate each other to learn something from the same
input z.| This will result in a local relazation or smoothing effect on the weight
vectors of neurons in this neighborhood, which in continued learning leads
to global ordering. Consider the eventual convergence limits of the following

3.2 The Original Incremental SOM Algorithm 111

learning process, whereupon the initial values of the mi(Oj' can be arbitrary,
e.g., random:

ma(t+1) = my(t) + hei(D)e(t) - mi(2)] (3.3)

where t = 0,1,2,... is an integer, the discrete-time coordinate. In the re-
laxation_process, the function h;(t) has a very central role: it acts as the
so-called neighborhood function, a smoothing kernel defined over the lattice
points. For convergence it is necessary that hei(t) — 0 when t — oo. Usually

hei(t) = h(llre — rill,t), where 7. € R% and r; € R2 are the location vec-
tors of nodes c and i, respectively, in the array. With increasing ||r. — 7|,
hei — 0. The average width and form of h; define the “stiffness” of the
“elastic surface” to be fitted to the data points.

In the literature, two simple choices for h;(t) occur frequently. The sim-
pler of them refers to a neighborhood set of array points around node ¢ (Fig.
3.4). Let their index set be denoted N, (notice that we can define N = Nc(t)
as a function of time), whereby hc.(t) a(t) if i € N, and hy(t) = 0
if i € N.. The value of&a(ths then identified with a learning-rate factor
(0 < aft) < 1). Both a(t) and the radius of N.(t) are usually decreasing

thonotonically in time (during the ordering process).

Another widely applied, smoother neighborhood kernel can be written in
terms of the Gaussian function,

re — 13|12
ht) = a()-exp (-2l (3.4)
where a(t) is another scalar-valued “learmng~rate factor,” and the parameter
o(t) defines th@ldth\ of the kernel; the latter corresponds to the radius of

N,(t) above. Both a(t) and o(t) are some monotonically decreasing functions
of time.

The algorithm chosen here for preliminary simulations is only represen-
tative of many alternative forms. If the SOM network is not very large (say,
a few hundred nodes at most), selection of process parameters is not very
crucial. We can also use the simple neighborhood-set definition of hc;(t).

o _o0lojo

'-Nc(t‘) "Nc(t1)

0 0 o o o o
ojo o o o o}o

olofo o o]o]oe
o

oJdolo o oleoto

D.'

o {0 o o o olo
R

o0 o o o o ©

o [o,.f0
0
.

“N_(1,) N (1))

N (1) TR
(a) e 3 (b) c3

Fig. 3.4. a, b. Two examples of topological neighborhood (1 < t2 < t3)

112 3. The Basic SOM

Special caution, however, is required in the choice of the size of N, =
Nc(t). If the neighborhood is too small to start with, the map will not be
ordered globally. Instead various kinds of mosaic-like parcellations of the map
are seen, between which the ordering direction changes discontinuously. This
phenomenon can be avoided by starting with a fairly wide N, = N.(0) and
letting it shrink with time. The initial radius of N, can even be more than

“half the diameter of the network! During the first 1000 steps or so, when the
proper ordering takes place, and a = a(t) is fairly large, the radius of N, can
shrink linearly to, say, one unit; during the fine-adjustment phase, N, can
still contain the nearest neighbors of cell ¢.

If the initial values have been selected at random, for approximately the
first 1000 steps, a(t) should have reasonably high values (close to unity),
thereafter decreasing monotonically. An accurate time function is not impor-
tant: a = a(t) can be linear, exponential, or inversely proportional to t. For
instance, a(t) = 0.9(1 — t/1000) may be a reasonable choice. The ordering of
the m; occurs during this initial period, while the remaining steps are only
needed for the fine adjustment of the map. After the ordering phase, a = a(t)
should attain small values (e.g., of the order of or less than .02) over a long
period.| Neither is it crucial whether the law for a(t) decreases linearly or
exponentially during the final phasd.

With very large maps, however, it may be important to minimize the
total learning time. Then, Aelection of an optimal a(t) law may be crucial}
cf. Sect. 3.8, where we shall consider “optimal” choices, essentially inversely
proportional to t. ‘@i{ective choices for these functions and their parameters
have so far only been determined experimentallﬁ‘

Since learning is a stochastic process, the final statistical accuracy of the
mapping depends on the number of steps in the final convergence phase, which
must be reasonably long; there is no way to circumvent this requirement. A
“rule of thumb” is that, for good statistical accuracy, the number of steps
must be at least 500 times the number of network units. On the other hand,
the number of components in z has no effect on the number of iteration steps,
and if hardware neural computers are used, a very high dimensionality of
but for “fast learning,” e.g., in speech recognition, 10000 steps and even
less may sometimes be enough. Note that the algorithm is computationally
extremely light. If only relatively few samples are available, they must be
recycled for the desired number of steps.

Comment. In the preliminary examples described first our motive is to
demonstrate that, starting from a random initial state, the mapping will be
ordered in a finite number of learning steps. However, in practical applica-
tions one can start from an initial state that is already ordered and roughly
complies with the input density function. If this is done (cf. Sect. 3.7), the
learning process converges rapidly even if the neighborhood function were

3.2 The Original Incremental SOM Algorithin 113

very narrow (of the order of its final form) and o) wonld «tan with low
values, say. .2 or 1.

Examples of Ordering. It may be quite surprising that when starting with
random m;(0), the reference vectors will attain ordered values in the long run,
even in high-dimensional spaces. This ordering is first illustrated by means
of two-dimensional input data z = [£;,&]T € R? that have some arbitrarily
structured distribution. For simplicity, if = is a stochastic vector, its proba-
bility density function p(z) is in this example assumed uniform within the
framed areas in Fig. 3.5 and zero outside them. The topological relations be-
tween the neurons in a square array can be visualized by auxiliary lines that
are drawn between the neighboring reference or codebook vectors (points in
the signal space). The reference vectors in these graphs now correspond to
the crossings and end points of this network of auxiliary lines, whereby the
relative topological order becomes immediately visible.

4 4 \\\
”, W
S0 g /Z‘.Z’,‘,:::::E:st&?\\\
TRTER 1775 s WY
A LTI RALY ST YY)
— 4y i

Fig. 3.5. Two-dimensional distributions of input vectors (framed areas), and the
networks of reference vectors approximating them

The codebook vectors, while being ordered, also tend to approximate p(z),
the probability density function of z. This approximation, however, is not
quite accurate, as will be seen later.

The examples shown in Fig. 3.5 represent the approximately converged
state of the weight vectors. The different units have clearly become sensi-
tized to different domains of input vectors in an orderly fashion. There is a
boundary effect visible in Fig. 3.5, a slight contraction of the edges of the
maps. We shall analyze this effect in Sect. 3.5.1 On the other hand, the den-
sity of weight vectors is correspondingly higher around the contraction. The
relative contraction effect diminishes with increasing size of the array.

Examples of intermediate phases that occur during the self-organizing
process are given in Figs. 3.6 and 3.7. The initial values m;(0) were selected
at random from a certain (circular) support of values, and the structure of
the network becomes visible after some time. Notice that the array can be,
e.g., one-dimensional although the vectors are two-dimensional, as shown in

114 3. The Basic SOM

Q 29 100
y T
A RRNEERBE]
mEcanmE; BRRARNERE
jsannaNREE 1| T
LAl TT Ty I
ARRASY 11
] AALITTTTY
stsauEnaRN; * Ty .
‘l‘T‘.
T u:
’ an
11 T
HHT 1 o
84 T T - 7 T~
{4 -4 fodnd doded e ed
:bj‘b + H 4 94T i —
1000 5000 100000

Fig. 3.6. Reference vectors during the ordering process, square array. The numbers
at lower right-hand corner indicate learning cycles

Fig. 3.7. The “order” thereby created resembles a Peano curve, or fractal
form.

Calibration. When a sufficient number of input samples z(t) has been pre-
sented and the m;(t), in the process defined by (3.2) and (3.3), have converged
to practically stationary values, the next step is calibration of the map, in
order to locate images of different input data items on it. In practical appli-
cations for which such maps are used, it may be self-evident how a particular
input data set ought to be interpreted and labeled. By inputting a number of
typical, manually analyzed data sets, looking where the best matches on the
map according to Eq. (3.2) lie, and labeling the map units correspondingly,
the map becomes calibrated. Since this mapping is assumed to be continuous
along a hypothetical “elastic surface”, the unknown input data are approxi-
mated by the closest reference vectors, like in vector quantization.

Comment. An “optimal mapping” might be one that projects the proba-
bility density function p(z) in the most “faithful” fashion, trying to preserve
at least the local structures of p(z) in the output plane. (You might think of
p(z) as a flower that is pressed!)

It has to be emphasized, however, that description of the ezact form of
p(x) by the SOM is not the most important task. It will be pointed out that
the SOM automatically finds those dimensions and domains in the signal

3.3 The “Dot-Product SOM” 115

VAN
DM

1000 10000 25000

Fig. 3.7. Reference vectors during the ordering process, linear array

space where = has significant amounts of sample values, conforming to the
usual philosophy in regression problems.

3.3 The “Dot-Product SOM?”

It has sometimes been suggested that = be normalized before it is used in the
algoritthljormalization is not necessary in principle, but it may improve
numerical accuracy because the resulting reference vectors then tend to have
the same dynamic range.

Another aspect is that it is possible to apply fmany different metrics in
matchingJ then, however, {the matching and updating laws/should be mutually
compatible with respect to the same metric. For instance, if the dot-product.
definition of similarity of x and m; is applied, the learning &quations should
read

" (Omelt) = pax{a™ (mi(0)} (35)
m®)+ o/ O2(t)
mit+1) <] Tm@ @zl .

ma(t) if i ¢ No(t) ,

116 3. The Basic SOM

and 0 < o/(t) < oo; for instance, o/(t) ="100/t. This process automatically
normalizes the reference vectors at each step. The normalization computa-
tions slow down the training algorithm. On the other hand, during matching,
the dot product criterion applied during recognition is very simple and fast,
and amenable to many kinds of simple analog computation, both electronic
and optical. It also seems to have a connection to physiological processes, as
later discussed in Chap. 4.

Besides the Euclidean distances and dot products, many other matching
criteria can be used with the SOM. Sect. 3.12 points out how often other
SOM algorithms may be derivable. }

This author has frequently visualized the self-organizing process by means
of a mechanical gadget, depicted in Fig. 3.8. A regular 4 by 4 array of ro-
tary disks, each representing a neuron, has been pinned onto a substrate.
An arrow, representing a normalized two-dimensional reference vector m;, is
painted on each disk. The initial orientations of the reference vectors can be
randomized. The sequence of training vector values is selected at random,
too, to represent samples of p(z). The “winner” neuron is the one that has
the smallest angle of its reference vector with the input vector; the reference
vectors of all neurons in the neighborhood set (enclosed by the set line in Fig,.
3.8) are corrected by a fraction of the angles between x and the m;. After
a few corrective steps the m; values start looking smoothed and ordered, as
seen from the series of pictures in Fig. 3.8.

3.4 Other Preliminary Demonstrations
of Topology-Preserving Mappings

3.4.1 Ordering of Reference Vectors in the Input Space

The computer simulations given in this section will further illustrate the
effect that the reference vectors tend to approximate various distributions
of input vectors in an orderly fashion. In most examples, the input vectors
were chosen two-dimensional for visual display purposes, and?heir probability
density function was uniform over the area demarcated by its borderlines.
(Outside these borders the probability density function had the value zero.
The vectors z(t) were drawn from these density functions independently, at
random, whereafter they caused adaptive changes in the reference vectors

The m; vectors have mostly been illustrated as points in the same coordi-
nate system where the z(t) are represented like earlier, in order to indicate
to which unit each m; belongs, the end points of the m; have been connected
by a lattice of lines that conforms to the topology of the processing unit
array. A line connecting two weight vectors m; and m; is thus only used to
indicate that the two corresponding units ¢ and j are adjacent in the “neural”
network.

3.4 Preliminary Demonstrations of Topology-Preserving Mappings 117

h Y

OGO
CIOI0ICE
9000
G OI00:

OO

-

OOGR
CICIC

GOOG

._.
=
-
——
=
__4

—

[0 CIC
OO

L4
A

"
g
—td
p—
—
pu—

OO | OOOOA|| OOV
OO | OO OOOW
OO | GO | GEOGF

OOOOH| O

0. CICIC,
COOG
06 CC

Fig. 3.8. This sequence of pictures illustrates successive phases in the operation
of a two-dimensional dot-product SOM with two-dimensional input and reference
vectors (arrows). The first picture represents the initial state. In the rest of the pic-
tures, the small arrow in the upper left corner represents the input vector z, which
specifies the best-matching reference vector, “winner”. A set line drawn around the
“winner” defines the neighborhood set N, in which (in this demonstration) the
correction of each arrow was half of the angular difference of = and m;. A smooth
order of the m; is seen to emerge

118 3. The Basic SOM

The results are still more interesting if the input vectors and the array
have different dimensionalities: Fig. 3.9 illustrates a case in which the vectors
were three-dimensional, but the array was two-dimensional. For clarity, p(z)
and the network formed of the m; have been drawn separately, as explained
in the caption of Fig. 3.9.

Comments. One remark ought to be made now in relation to Fig. 3.9. Some
reference vectors seem to have remained outside p(z). This, however, should
not be interpreted as an error, as long as the SOM “net” is regarded to have
a certain degree of “stiffness” and represent a nonparametric regression. In
Sect. 5.4 we shall demonstrate how the SOM could be made to describe a
structured p(x) better, but is it then any longer a regression?

Eig. 3.9. SOM for a structured distribution of p(z). For clarity, the three-
dimensional p(x), having uniform density value inside the “cactus” shape and zero
outside it, is shown on the left, whereas the “net” of reference vectors is displayed
on the right in a similar coordinate system

Before proceeding further one should also note that there is yet no factor
present that would define a particular orientation of the map. Accordingly,
the latter can be realized in the process in any mirror- or point-symmetric in-
version. If a particular orientation had to be favored, the easiest way to reach
this result would be to choose the initial values m;(0) asymmetrically. Since
the symmetries may not be as interesting as the self-organizing behaviour
itself, we shall ignore them in the preliminary examples at least. Practical
questions of this kind will be discussed in Sect. 3.13.

3.4 Preliminary Demonstrations of Topology-Preserving Mappings 119

The SOM as a Nonlinear, Adaptive Projection Screen. Figure 3.9
also illustrates another aspect of the SOM, namely, that of a nonlinear pro-
jection. One may regard the elastic network as a flexible projection screen
that is first fitted through the distribution of the data points. After that, any
point of 3 (or in the general case, of an arbitrary-dimensional input space)
will become projected onto the closest node of the “screen.” This projection
may not be orthogonal, though, because the screen is not continuous: it is
only approximately orthogonal.

Automatic Selection of Feature Dimensions. There are two opposing
tendencies in the self-organizing process. First, the set of weight vectors tends
to describe the density function of the input vectors. Second, local interactions
between processing units tend to preserve continuity in the double (two-
dimensional) sequences of weight vectors. A result of these opposing “forces”
is that the reference vector distribution, tending to approximate a smooth
hypersurface, also seeks an optimal orientation and form in the pattern space
that best imitates the overall structure of the input vector density.

A very important detail of the above reference-vector distribution is that
it automatically tends to find those two dimensions of the pattern space where
the input vectors have a high variance and which, accordingly, ought to be
described in the map. As this effect might otherwise remain a bit obscure,
the following extremely simple experiment is intended to illustrate what is
meant. It is believed that the result that is here demonstrated using a one-
dimiensional topology (linear array of processing units) and a simple two-
dimensional input density function, is easily generalizable for higher-order
topology, arbitrary dimensionality of the input-vector density function, and
structured distribution of the input samples.

Assume that the system consists of only five neurons connected as a linear
open-ended array. Their reference vectors m; = [wi,pi2]T,i = 1,2,...,5
and the components of the input vectors z = [£;,£2]T are represented as an
already familiar illustration in Fig. 3.10. The variances of §; and &, are now
selected differently as shown by the borderlines in Fig. 3.10. As long as one
of the variances is significantly higher, the weight vectors form an almost
straight line that is aligned in the direction of the greater variance.

On the other hand, if the variances are almost equal, or if the length of
the array is much greater than the range of lateral interaction, the straight
form of the distribution is switched into a “Peano curve”. The transition
from straight to curved line is rather sharp, as shown in Fig. 3.11. Here the
variances are fixed but the length of the array is varied; the borders of the
Voronoi sets have also been drawn to the picture.

The next picture, Fig. 3.12 further illustrates what may happen when the
input vectors have a higher dimensionality than the network topology (which
in this case was two). As long as variance in the third dimension (£3) is small
enough, the map remains straight. However, with increasing variance and
short lateral interaction range the map tends to become corrugated, and in

120 3. The Basic SOM

I [J [~

\5./“..—-".__,‘_‘__.,-

Fig. 3.10. Automatic selection of dimensions for mapping

Fig. 3.11. Distribution of reference vectors with different length of a linear array

this connection one should note the “zebra stripes” that have been found in
brain maps experimentally. Here the “stripes” have a very simple and natural
ezplanation, namely, they occur whenever a two-dimensional map tries to
approzimate a higher-dimensional signal distribution which has significant
variance in more than two dimensions. |

The reader might be curious to know the mathematical explanation of this
intriguing self-ordering effect. The phenomenon is actually rather delicate and

needs a lengthy discussion, as will be seen in the rest of this book. We shall
start the mathematical discussion in Sect. 3.5.

3.4.2 Demonstrations of Ordering of Responses
in the Output Space)

All simulations reported in this subsection were performed in our group in
1982, and most of them appeared in [2.37].

“The Magic TV”. The following demonstration, Fig. 3.13 shows another,
more concrete example of self-organization. It describes a hypothetical image-
transferring system (dubbed here “The Magic TV”) in which there are no
control mechanisms for the encoding of the position of picture elements, but
where the order of image points in the output display automatically results
in the self-organizing learning process from their topological constraints. The
result is a one-to-one mapping of the points of the input plane onto the points

3.4 Preliminary Demdnstrations of Topology-Preserving Mappings 121

| >
.
)
5 4
AT B 1Y
A A
AT B A I
AR ey puM ST SR 2! 7
P

\\
\
RSO

R T ARG UTA AT LIRS
e

A
-

=
-

Fig. 3.12. Formation of “stripes”

in the ohtput plane; in the transmission of the signals, however, this order was
never specified explicitly. The system has to deduce the order gradually frf)m
the relations that are implicit in the transmitted signals. This system consists
of & primitive “TV camera” and an adaptive system of the above type. The
camera is thought to have a very poor optical system, such that whenever a
spot of light appears on the input plane, it forms a very diffuse focus ontf) the
photocathode. Assume that the cathode has three sectors, each producing a
signal directly proportional to the area that is illuminated t.)y the F)road focus.
Now let the light spot move at random in different points in the input pla.ne,
with a probability density that is uniform over a square area. The resulting
signals £, &2, and €3 are then transmitted to the processing-unit arr.ay, w?nere
they cause adaptive changes. Let this process continue for a suﬂi?lent time,
after which a test of the system is performed. This test is accomphshedz e.g.,
by recording the output of each unit in turn and locating that point in tlfe
input plane where the light spot must be in order to cause the best match in
the unit under consideration. .

The resulting output map can be tested in either of the follo?vmg ways:
A) One can look at which processing unit each of the test vectors in turn ha!s
the best match, and call this unit the image of the test vector. The array is
labeled accordingly. B) One can test to which training vector (j;vith known
classiﬁcation) each of the units has become most sensitive, making the best
match. . ‘

Obviously these tests are related, but the respective output maps look
slightly different. With Test A, two or more test vectors may become mapped
onto the same unit while the classification of some units may be left undefined.

122 3. The Basic SOM

\J
Output plane g
(a)

AR AB AC BD AD AE AF AG AN A1 AJ AK AL AN AN A
BRABBBC - - BEBFBGBH - BUBKBLBMBNB
CRCB CC CDCE CF - CG CH C) CJ TK CL CM CN T
DR OB DC DD OE DF DO DH - D3 DJDK DL OM - D
EAEBEC EDEEEFEGEHE) EJEKEL - EMEDE
FRFBFCFDFEFFFOFHFIFUFK - FLFNFOF
GA GB GC GD GE GF GG GH G GJ GK GL GM ON 60 G
MA HB HC HD ME HF HG MM M1 HJ HK HL HN HN - Hi
JRISICIDIEIFIGINIITUIKIL ININTO)
JR UB JC JUD JE JF UG JH JT S - JK JN UN JO J
XQ KB KC KD KE KF KG KH K] - KJKK KMKN - K
LALBLCLDLELF - LGLHLILJLKLLLM - ¢t
MR MB M MD KE - MF MG MM M1 HJ MK ML MM MR N
NR N8B NC ND - NE NF NG NH NI NJ NK NL NI NN N
OR OB - - OD OE OF 0G OH 03 DJ OK OL GM ON O H=T14—++t L TT
PR PB OC PCPD PEPF - PGPHPI PJPKPHPNP YT
KLm

ABCDEFGCHITI UV

|

[[][] T]

I o o s |

1

\
—
I

A
I

/
]

Lidf

.l ¢ SN U T VN N A T T T e |

VO XT XM R =T OTMTMOO > D

o
® ©

Fig. 3.13. “The Magic TV” (a) System (b) Output plane. Pairs of letters corre-
spond to processing units, labeled by the images of test vectors (with coordinates
defined in (c)). (c) Input plane showing those points to which the various process-
ing units (corresponding to nodes of the net) have become most sensitive

Test B always defines a unique matching input to every output unit but it
eventually happens that some input vectors, especially near the edges, do not
become mapped at all.

Mapping by a Feeler Mechanism. The purpose of this example is to
demonstrate that a map of the environment of a subject can be formed in

3.4 Preliminary Demonstrations of Topology-Preserving Mappings 123

a self-organizing process whereby the observations can be mediated by very
rude, nonlinear, and mutually dependent mechanisms such as arms and de-
tectors of their turning angles. In this demonstration, two artificial arms,
with two joints each, were used for the feeling of a planar surface. The ge-
ometry of the setup is illustrated in Fig. 3.14. The tips of both arms touched
the same point on the plane, which during the training process was selected
at random, with a uniform probability density over the framed area. At the
same time, two signals, proportional to the bending angles, were obtained
from each arm; these signals were led to a self-organizing array of the earlier
type, and adaptation of its parameters took place.

'
\ .l'z g‘ :"

Fig. 3.14. Map of a feeler mechanism. The network of lines drawn onto the input
plane shows a “virtual image” of the weight vectors: a crossing in this network is
the input point to which the corresponding neuron in the SOM array is “tuned”

The lattice of lines that has been drawn onto the framed area in this

picture represents a virtual image of the reference vectors, i.e., showing to
which point on the plane each unit is most sensitive. When this point is
touched, the corresponding processing unit makes the best match between
z and m;. One might also define the map so obtained as the map of the
receptive fields of the array units. It can be tested for both arms separately,
i.e., by letting each of them to touch the plane and looking at which point
it had to be in order to cause the maximum response at a particular unit.
These two maps coincide almost perfectly.
Formation of a Topographic Map of the Environment Through
Many Different Channels. This example elucidates alternative mecha-
nisms that are able to create the perception of space. In the following sim-
ulation, observations of the environment were mediated by one eye and two
arms. Both arms touched some point on the input plane to which the gaze
was also directed. The turning angles of the eye, and the bending angles of
the arms were detected. Notice that no image analysis was yet performed.
Every point on the input plane corresponds to six transmitted signals used
for the &; variables, i = 1,...,6.

124 3. The Basic SOM

Training was made by selecting the target point at random, and letting
the resulting ¢; signals affect the adaptive system. The asymptotic state was
then tested for each arm and the eye separately. In other words, when the
output of each processing unit was recorded in turn, one could, e.g., find
the direction of gaze that caused the maximum match at this unit. (The
other signals were thereby zero.) Figure 3.15 shows the results of this test,
again projected on the target plane as a network of thin lines; their crossings
correspond to processing units, and these networks have been determined as
inverse mappings of the due weight vectors. It is remarkable that practically
the same input-output mapping is obtained with very different nonlinear
detectors.

-] -

. avy s

T il :

[T CTHH

~<j--mm...‘...':__ M- H

TTHHHHH T HHH »

e u.___;___ H

M N N

FHHHH ' 5 1

n » H

H H+4HH M

11 H

LEFT HAND RICHT HAND THE EYE

Fig. 3.15. Formation of a topographic map of the environment using one eye and
two hands simultaneously

Construction of a Topographic Map of Stage by a Freely Moving
Observer Using Vision Only. In this demonstration we show results of
an experiment that was intended to illustrate how a complete image of space
might be formed from its partial observations. Here the observatory mech-
anism was a very trivial one, consisting of a simple optic and a cylindrical
retina with eight photosensitive segments. Consider Fig. 3.16 that shows the
top view of a stage provided with walls, the scenery. Assume that the back-
ground is dark and the walls are white; a projection image of the scenery is
formed onto the retina. The observers moves at random within a restricted
area, and in this simple demonstration his orientation was fixed. The sig-

3.4 Preliminary Demonstrations of Topology-Preserving Mappings 125

ABCDEFGHIJUKLMNOP

; -, ,"ga

LIRS

TVOZIrXC=TOHATMOODD

(a)

M0 AC PE AF AB (AT - AJ AK AL A BN A RO WP
SLRCHEGF QU BNEIN) - BKOL - CNCO - CP
- CCCDCFCOCMEICS - CRCLOM DM - DODP
8 - - DEDOPHOL - SUDKELENEN - EOEF
PANC N - EOEW - EINJEXFLIN - PHFOFP
ERECEDEE - FOPNFIFIFR AL - 8N 8N 00 o
FRFC KO FEFF 00 OHOL 64 - MUML HIV il MO 1P

- SOGEOP B INNI MY - IRTILINEN - TP
L] NEWFIBIN . TSR AN - »
M - MCIEIF F JO N JT W KM KW - KO
18 JCJO JERF KORNKEL KJRKRL - LW - KP
J8 - KCKDRELF LOLRLILJLKLL - /emN Ly
KRXBLCLOLE MW MO M - NI WV MK w
LALE - PO ND NE M M0 N ML NI NK L S

M - NC - OF OF 00 oW OL OJ OK OL 0N O 00
MR WA NS OB OC PO PE PO PN PL PJ PR PL P PR OP (b)

Fig. 3.18. Topographic map of a stage. (a) Thick lines: scenery. The framed area
is where the observer moved: the coordinates are indicated by a pair of letters. (b)
Output map, with pairs of letters corresponding to processing units. The units are
labeled by coordinates of those points on the stage the images of which are formed
on the units in question

nals obtained from the segments of the retina are led to a self-organizing
processing unit array. After adaptation, the map was tested by letting the
observer stand in a particular location and recording the coordinates of the
corresponding image point in the map.

Tonotopic Map. The following effect was found already in the first SOM
experiments, but it has later been ignored. Nonetheless it demonstrates a very
important feature of self-organization, namely that the inputs to the map
units need not be identical, not even having the same dimensionality, as long
as some kind of metric-topological order of the various inputs to the different
“neurons” is preserved. This property is necessary in the biological models,
because the number of inputs to a neuron is never fixed.\Let us demonstrate
this effect with a simple model that refers to a possible mode of formation,
or at least refinement, of the physiological tonotopic map. This experiment
demonstrates that the inputs can be nonidentical as long as the signals to
every unit are correlated, and the topological order of their input vectors in
the respective signal subspaces is the same. Consider Fig. 3.17 that depicts

126 3. The Basic SOM

Signal
input

Resonators

Random
intercon-
nections

Mutually
interacting
processing
units

Output
responses

Fig. 3.17. System for tonotopic-map simulation

Table 3.1. Formation of frequency maps. There were twenty second-order filters
with quality factor Q = 2.5 (where Q is inversely proportional to the relative width
of resonance curve) and resonant frequencies distributed at random over the range
[1, 2]. The training frequencies were drawn at random from the range [0.5, 1]. The
numbers in the table indicate those test frequencies to which each processing unit
became most sensitive.

Unit 1 2 3 4 5 6 7 8 9 10

Experiment 1, 0.55 0.60 0.67 0.70 0.77 082 0.83 0.94 098 0.83
2000 training

steps

Experiment 2, 0.99 0.98 098 0.97 090 081 0.73 0.69 0.62 0.9
3500 training
steps

a one-dimensional array of processing units. This system receives sinusoidal
signals and becomes ordered according to their frequency. Assume a set of
resonators or bandpass filters tuned at random. The filters may have a rather
shallow resonance curve. The inputs to the array units (five to each) are now
also picked up at random from the resonator outputs, different samples for
different array units, so that there is no order or correlation in any structure or
initial parameters. Next a series of adaptation operations is carried out, every
time generating a new sinusoidal signal with a randomly chosen frequency.
After a number of iteration steps, the units start to become sensitized to
different frequencies in an ascending or descending order. Final results of two
experiments are shown in Table 3.1.

Phonotopic Map. A more practical example is mapping of natural stochas-
tic data, such as short-time spectra picked up from natural speech, onto the
network. In this example the input vector £ was 15-dimensional, and its com-
ponents corresponded to the output powers of a 15-channel frequency filter

3.5 Basic Mathematical Approaches to Self-Organization 127

NO
®
S

8@
®

o
®

®

30
®

o,
®

®
®
®
O)
©®
@@@
OOOOOOOOOOO®

Fig. 3.18. The neurons, shown as circles, are labeled with the symbols of the
phonemes with which they made the best match. Distinction of /k,p,t/ from this
map is not reliable, and this phonemic class is indicated by symbol #. An analysis
of the transient spectra of these phonemes by an auxiliary map is necessary

®
®
O
-
®
260
®
®
30
0
20
o2
oo

®
0D
S
20
®
®
®
X6,
®
O
30

Qe
&
®
©

©)
©)
©
©
©
©
©
©
©
©
©

bank, averaged over 10 ms intervals, with the midfrequencies of the filters
being selected from the range 200 Hz to 6400 Hz. The spectral samples were
applied in their natural order of occurrence at the inputs of the SOM, and
after learning the map was calibrated with known input samples and labeled
according to the phonemic symbols of the samples. Details of the system
used for the acquisition of speech samples will be given in Sects. 7.2 and 7.5.
Figure 3.18 shows the result directly on the neural network, not in the sig-
nal space. The various neurons have become “tuned” to different categories
of phonemes. (The speech used in this experiment was Finnish, phonetically
rather similar to Latin.) The cells labeled with the same phonemic symbol ac-
tually correspond to somewhat different reference or codebook vectors, which
like the various codebook vectors in VQ approximate the probability density
function of a particular set of samples. As /k,p,t/ have a very weak signal
power compared with the other phonemes, they are clustered together and
represented by a broad phonetic class with symbol “#.”

3.5 Basic Mathematical Approaches
to Self-Organization

Although the basic principle of the above system seems simple, the process
behaviour, especially relating to the more complex input representations, has
been very difficult to describe in mathematical terms. The first approach
made below discusses the process in its simplest form, but it seems that
fundamentally similar results are obtainable with more complex systems,
too. The other approaches made in this section are also simple, meant for
basic understanding. More refined discussions can be found in the literature
(Chap. 10).

128 3. The Basic SOM

3.5.1 One-Dimensional Case

We shall first try to justify the self-organizing ability analytically, using a
very simple system model. The reasons for the self-ordering phenomena are
actually very(subt} and have strictly been proven only in the simplest cases.
In this section we shall first delineate a basic Markov-process explanatlon
that should help to understand the nature of the process.

In the first place we shall restrict our considerations to a one-dimensional,
linear, open-ended array of functional units to each of which a scalar-valued
input signal € is connected. Let the units be numbered 1,2,...,[. Each unit i
has a single scalar input weight or reference value y;, whereby the similarity
between £ and p; is defined by the absolute value of their difference |¢ — p;|;
the best match is defined by

l€ — pel = min{j€ —) . (3.7)
We shall define the set of units N, selected for updating as follows:
N, = {max(1,c - 1),¢,min(l,c + 1)} . (3.8)

In other words, unit ¢ has the neighbors i — 1 and i + 1, except at the end
points of the array, where the neighbor of unit 1 is 2, and the neighbor of
unit ! is [— 1, respectively. Then N is simply the set of units consisting of
unit ¢ and its immediate neighbors.

The general nature of the process is similar for different values of a > 0;
it is mainly the speed of the process that is varied with.c. In the continuous-
time formalisin, the equations read

dpi/dt = o€ —p;) forie N,,
du;fdt= 0 otherwise . (3.9)

Proposition 3.5.1. Let { be a stochastic variable. Starting with randomly
chosen initial values for the p;, these numbers will gradually assume new
values in a process specified by (3.7)-(3.9), such that when t — oo, the set
of numbers (p1,p2, ...,) becomes ordered in an ascending or descending
sequence. Once the set is ordered, it remains so for all t. Moreover, the point
density function of the p; will finally approzimate some monotonic function
of the probability density function p(£) of €.

The discussion shall be carried out in two parts: formation of ordered
sequences of the p;, and their convergence to certain “fixed points”, respec-
tively.

Ordering of Weights.

Proposition 3.5.2. In the process defined by (3.7)-(5.9), the ui become or-
dered with probability one in an ascending or descending order when t — oo.

3.5 Basic Mathematical Approaches to Self-Organization 129

One might like to have a rigorous proof for that ordering occurs almost
surely (i.e., with probability one). Following the argumentation presented by
Grenander for a related problem [3.9], the proof of ordering can be delin-
eated as indicated below. Let £ = £(t) € R be a random (scalar) input that
has the probability density p(¢) over a finite support, with £(t;) and £(2)
independent for any t, # ts.

The proof follows from general properties of Markov processes, especially
that of the absorbing state for which the transition probability into itself is
unity. It can be shown [3.10] that if such a state, starting from arbitrary initial
state, is reached by some sequence of inputs that has a positive probability,
then allowing a random sequence of inputs, the absorbing state is reached
almost surely (i.e., with probability one), when ¢t — oo.

The absorbing state is now identified with any of the ordered sequences of
the p;. (Notice that there are two different ordered sequences, which together
constitute the absorbing state.) On the line of real numbers, select an interval
such that £ has a positive probability on it. By repeatedly choosing values
of ¢ from this interval, it is possible to bring all g; within it in a finite time.
After that it is possible to repeatedly choose values of £ such that if, e.g.,
Mi—2, pi—1, and p; are initially disordered, then p;_; will be brought between
;o and p;, while the relative order in the other subsequences is not changed.
Notice that if unit 7 is selected, then units i —1 and i+ 1 will change; if there
is disorder on both sides of i, we may consider that side which is ordered first,
stopping the application of (3.9) at that point, and calling this an elementary
sorting operation. For instance, if t;_1 < pi—2 < p;, then selection of £ from
the vicinity of p; will bring p;_, between p;_2 and p; (notice that p;_» is not
changed). The sorting can be continued systematically along similar lines.
An overall order will then result in a finite number of steps. Since the above
£ values are realized with positive probability, the proof of Proposition 3.5.2
is concluded.

Cottrell and Fort [3.11] have presented an exhaustive and mathematically
stringent proof of the above ordering process in the one-dimensional case,
but since it is very lengthy (forty pages), it will be omitted here. The reader
might instead study the shorter constructive proof presented in Sect. 3.5.2
for an almost equivalent system.

Corollary 3.5.1. If all the values p1, iz, . . ., pu are ordered, they cannot be-
come disordered in further updating.

The proof follows directly from the observation that if all partial sequences
are ordered, then process (3.9) cannot change the relative order of any pair
(ﬂiﬁll‘j)’i #J
Convergence Phase. After the p; have become ordered, their final con-
vergence to the asymptotic values is of particular interest since the latter
represent the image of the input distribution p(£).

In this subsection it is assumed henceforth that the u;,i = 1,2,...,1 are
already ordered and, on account of Corollary 3.5.1, remain such in further

130 3. The Basic SOM

updating processes. The aim is to calculate the asymptotic values of the p;. To
be quite strict, asymptotic values are obtained in the sense of mean squares or
almost sure convergence only if the “learning rate factor” a = af(t) in (3.9)
decreases to zero; the sequence {a(t)|t = 0,1,...} must obviously satisfy
certain conditions similar to those imposed on the Robbins-Monro stochastic
approximation process, cf. Sect. 1.3.3.

The convergence properties of the p; are discussed in this section in a less
restricted sense, namely, only the dynamic behavior of the expectation values
E{u;} is analyzed. These numbers will be shown to converge to unique limits.
The variances of the y1; can then be made arbitrarily small by a suitable choice
of a(t),t — oo.

It may be useful to refer to Fig. 3.19 that represents the values u; on a
line of real numbers. As stated above, the p; shall already be in order; we
may restrict ourselves to the case of increasing values. It is also assumed that
[£41, 1] is a proper subset of [a, b], the support of p(£), which is obviously due
if ordering has occurred through a process described above.

Support of p(x)

Si
[% 1 - d 1 L " 2 1 1
LI I M2 M M Bt Me2 P M b

Fig. 3.19. Reference values after ordering

Since ordering of the u; was postulated, and because a selected node can
only affect its immediate neighbours, it is obvious from (3.7)-(3.9) that any
particular value p; can be affected only if £ hits an interval S; defined in the
following way: assuming | > 5, we have

for3< i<I-2 : 8i={[}(pi—2+pi-1), L(pis1 + pis2)]

for i=1 i Si=la, %(HZ’ + u3)] ,

for i=2 2 Si=[a, 5(pa + pa)] , (3.10)
for i=l-1 : S;= [%(uz_s + pi—2), 8],

for i=1 2 Si = [5(p—2 + pi-1),b] .

The expectation values of the du;/dt def ft;, conditional on the p,, ..., u,
according to (3.9) read

.y def N
Gis) = B{in} = a(B{el € S} - m)PE €), (3.11)
where P(£ € S;) is the probability for ¢ falling into the interval S;. Now
E{¢|¢ € S;} is the center of gravity of S;, see (3.10), which is a function of
the p; when p(£) has been defined. In order to solve the problem in simplified

closed form, it is assumed that p(£) = const over the support [a, b] and zero
outside it, whereby one first obtains:

3.5 Basic Mathematical Approaches to Self-Organization 131

for 3<i<I-2:

() = Sln-atmoy o buie WP S,
() = S@a+p+us—4m)PEES).
() = S+ s+ —4m)PEES),
(fu-1) = %(M!—s + p—2 +2b— A1) P(§ € Si-1)
() = %(m—2 + -1 +2b - 4u)PE € S) - (3.12)

Starting with arbitrary initial conditions y;(0), the most probable, “aver-
aged” trajectories p;(t) are obtained as solutions of an equivalent differential
equation corresponding to (3.12), namely,

dz/dt = P(z)(Fz+h), where (3.13)
z = [P’lau2,' . -,l‘l‘l]T ’
T4 1 1 0000 ..]
0-4 1 1000
1 1-4 1100
0 1 1-4110
o .
F = i §
011-4 1 1 O
001 1-4 1 1
000 1 1-4 0
I ...000 0 1 1 -4
h = %[a,a,O,O,...,O,b,b]T, (3.14)

and P(z) is now a diagonal matrix with the P(§ € S;) its diagonal elements.
The averaging, producing (3.13) from (3.12), could be made rigorous along
the lines given by Geman [2.54]. Equation (3.13) is a first-order differential
equation with constant coefficients. It has a fixed-point solution, a particular
solution with dz/dt = 0, which is (taking into account that P(z) is diagonal
and positive definite)

20=—F1h, (3.15)

provided that F~! exists; this has been shown strictly by the author [3.12] but
the proof is too cumbersome and lengthy to be reproduced here. The general
solution of (3.13) is difficult to obtain. Some recent studies, e.g. [3.11] indicate
that convergence to the fixed point is generally true, and thus we restrict our
considerations to showing the asymptotic solution only.

132 3. The Basic SOM

The asymptotic values of the u;, for uniform p(¢) over the support [0, 1]
have been calculated for a few lengths ! of the array and presented in Table
3.2 as well as in Fig. 3.20.

Table 3.2. Asymptotic values for the u;, witha=0and b=1

Length of .
array (I) m1 p2 ps pa ps -pe Wr B8 P9 1o
5 0.2 03 05 07 08 - - - = -
6 017 025 043 056 075 083 -— - - -
7 0.15 022 037 0.5 063 0.78 0.85 - - -
8 013 019 033 044 056 067 081 087 - -
9 6.12 0.17 029 039 05 061 0.7 083 088 -~
10 0.11 016 027 036 045 055 064 073 084 0.89
1=5, 1 1 1 1 1 4

6 I 1 1 L1 |

7T 1 1 1 A 21 4

8 [. 1 1 1 N —

9 t 11 1 1 1 1 1 L1 4

101 1.1 PE N B | L1 S G

s B —> b

Fig. 3.20. Asymptotic values for the p: for different lengths of the array, shown
graphically

It can be concluded that

— the outermost values y; and y; are shifted inwards by an amount which is
approximately 1/! whereas for uniform distribution this amount should be
about 1/2l; this is the “boundary effect” that occurs in the illustrations of
Sect. 3.4, and vanishes with increasing [

— the values p3 through p;_2 seem to be distributed almost evenly.

3.5.2 Constructive Proof of Ordering
of Another One-Dimensional SOM

Since the ordering proof of the original SOM algorithm has turned out prob-
lematic although possible, we now carry out a simple proof for a somewhat
modified but still logically similar system model. This proof appeared in

3.5 Basic Mathematical Approaches to Self-Organization 133

[3.13]. One of the main differences is redefinition of the “winner,” because
in the case of a tie, all “winners” are taken into account for learning in this
modified model. The learning rule is then applied to the neighborhoods of
all “winners,” and the neighborhood set is modified in such a way that the
“winner” itself is excluded from it. These modifications allow a rigorous con-
structive proof of ordering in the one-dimensional case.

The Problem. Assume an open-ended linear array of units named nodes.
Let the nodes be indexed by 1,2,...,1.

With every node, a real number i = pi(t) € R, which is a function of
time, is associated. Let £ = £(t) € R be a random input variable with a
stationary probability density function p(£) over a support [a, b].

A self-organizing process is defined as follows: the degree of similarity of £
with the numbers p; is at every instant ¢ evaluated in terms of the distances
|€ — ;| that define one or several “winner” nodes ¢ according to

|§ = pre| = min{ — puil} - (3.16)

The numbers pu; are continuously updated according to

%= a(¢ —p;) forie N,
d:t' = 0 otherwise , (3.17)

where a is a “gain coefficient” (> 0), and N, is a set of indices defined in the
following way:

Nl = {2},
Ny = {i-1,i+1} for 2<i<Il-1,
N, = {1-1}. | (3.18)

In case ¢ is not unique, the union of all sets N, must be used in stead of
N, in (3.17), excluding all the selected nodes themselves. The non-uniqueness
of ¢ is commented in the proof of Theorem 3.5.1.

The following discussion aims at showing that with time, the set of num-
bers (1, H2,...,m) becomes ordered almost surely if certain rather mild
conditions are fulfilled.

The degree of ordering is conveniently expressed in terms of the index of
disorder D,

i
D=3 |um—pial =l —ml, (3.19)
i=2
which is > 0.

134 3. The Basic SOM

Definition. The numbers py, ..., are ordered if and only if D = 0, which
15 equivalent to either py > p2 > ... > orpuy <pa <... < .

Note that this definition also allows the case in which a subset of the
i, or in fact all of them, become equal. In the present process this is in-
deed possible unless the input attains all its values sufficiently often. In nu-
merous computer simulations, however, under the assumptions of Theorem
3.5.1, the asymptotic values have invariably ordered in a strictly monotonic
sequence.

Theorem 3.5.1. Let £ = £(t) be a random process satisfying the following
assumptions:

(i) &(t) is almost surely integrable on finite intervals;

(1) the probability density p(¢) of £(t) is independent of t and strictly positive
on [a,b] and zero elsewhere, and &(t) attains all values on [a,b] almost
surely during all time intervals [t, 00);

(i) the initial values for the p; are randomly chosen from an absolutely
continuous distribution on |[a,b].

Then, in the process defined by (3.16), (3.17), and (3. 18), the p; will become
almost surely ordered asymptotically.

Proof. Under the assumptions on ¢, and starting from almost surely different
initial values, two numbers p;(t) and p;(t), i # j, are almost surely different
except in the following case: if ¢ is the “winner,” or one of the “winners,”
then p._y or pc41 may become equal to p. at some instant ¢. Then the
index, say ¢ — 1, is added to the set of “winner” indices. Since now dp,, /dt =
dpim_1/dt = 0,the values of p. and p..; stay equal as long as ¢ remains
one of the “winners.” The result is that a set of values with consequent
indices, say pc_r, fle—r41y- .-, fetp With 7 > 0, p > 0, may be equal over
time intervals of positive length. Then and only then c is non-unique with a
positive probability.

Convention 3.5.1. In view of the above, the considerations will be reduced
to the case of a unique ¢ with always p.—1 # p. and pey1 # pe. If ¢ is not
unique, the indices must be redefined so that ¢ — 1 stands for ¢ — r — 1 and
c+1 stand for c+p+1, and p. stands for all pc_,, ..., petp. This convention
is followed throughout the proof without further mention.

Step 1. It will be shown first that D = D(t) is a monotonically decreasing
function of time, for all ¢, if £ = £(t) satisfies assumption (i).

The process (3.17) affects at most three (according to Convention 3.5.1)
successive values of p; at a time; therefore it will suffice to inspect only
those terms in D which may change. Let these constitute the partial sum S
dependent on ¢ in the following way (notice that |u; — p;| may change only
forc=2o0rl—-1):

3.5 Basic Mathematical Approaches to Self-Organization 135

v
for 3 < e <1-2, .S'fle'-"I'v 1K
B
for c = 1, §=|pg—p2|+Ip2—ml:
for c = 2, S=|pa—pal+pa—p2l+p2—ml =l —ml;
forc = 1-1, '
S = —] F ey — pi—a| + -2 = pi-al = g -l
for c = I, §=|wm—pi—a]+|pi-1— p-2|. (3.20)

Since the cases ¢ = [— 1 and ¢ = [are obviously symmetric with respect
to ¢ = 2 and ¢ = 1, respectively, they need not be discussed separately.

At any given instant ¢, and any c, the signs of the differences p; — pi—a
in S attain one of at most 16 combinations. For any particular sign combi-
nation, the expression of dS/dt is given below. Of all different cases, half are
symmetric in the sense that they produce the same analytical expression; ac-
cordingly, only the cases listed below need to be discussed separately. Around
c one has (denoting fi; = dp;/dt)

I:"c—2 = 0,
free1 = ofé— Be-1)
ﬁc = 0,
P’c+1 = al§ — pes1),
fex2 = 0. (3.21)

These linear differential equations have almost surely unique continuous so-
lutions due to assumption (i).

We shall now consider the cases 3 < ¢ <1—2, ¢ =1, and ¢ = 2 separately.

A. 3<c<l—-2;assume pc—1 > fe—2.

Case ftc = fhe—1 He+1 = Pe Hct2 = Hetl

. a0 >0 >0 >0
al >0 >0 <0
a2 >0 <0 >0
a3 >0 <0 <0
a4 <0 >0 >0
a5 <0 >0 <0
a6 <0 <0 - >0
a7 <0 <0 <0 .

If the symbols a0 through a7 are used as subscripts for the labeling of S,
and it is denoted S = dS/dt, one obtains taking into account (3.21):

136 3. The Basic SOM

Sa0 = —fe—2 + Pey2, $ao =0;

Sa1 = —pe—2 + 2ptc 41 = He+2 Sa1 =20a(§ = pe41) <0 ; ¥)
Sa2 = —phe-2 + 2pc — 2ptcq1 + Pet2, Sa2 = 20(pte41 — €) <0

Sa3 = —phe—2 + 2pc — P2, Sa3=0;

Saa = —pic—2 + 2c—1 = 2ic + flcy2, Sa4 =2a(¢ ~ Pe-1) <0 ;
Sas5 = —pte—2 + 21 — 2pc + 2ptcty — Het2y

Sas = 20[(€ - I‘C-1)

o HE—pet)] <0
Sa6 = —pe—2 + 2pic—1 = 2ppc+1 + fet2, Sae = 20(pte+1 — He-1) <O ;
Sar = —pe—2 + 2ptc—1 — fic2, Sar = 2a(€ = pe-1) <0 .

*) Notice that for ¢ the “winner,” 3(pc—1 + pc) <€ < %(Nc + Het1)

(3.22)

B. ¢ = 1: The proof is similar for nodes 1 and ! and will be carried out for 1
only. Now only four cases need be considered.

Case p2—p p3—po

b0 >0 >0
bl >0 <0
b2 <0 >0
b3 <0 <0
Sb0=“ll1“"ﬂ31 Sho = 0;

Sp1 = —p1 + 2p2 — p3, Sm = 2a(§ — p2) < 0;
Sp2 =1 —2p2+p3, Sez =2a(p2 —€) <0;
Sb3 = p1 — 3, Sp3 = 0.

(3.23)

C. ¢ = 2: It will suffice to consider the case y; > p; only, since the case
i < py is symmetric to the other one.

Cose pa—m pa—p2 pa—p3

i} >0 >0 >0
cl >0 >0 <0
c2 >0 <0 >0
3 >0 <0 <0
c4 <0 >0 >0
ch <0 >0 <0
cb <0 <0 >0

c7 <0 <0 <0

3.5 Basic Mathematical Approaches to Self-Organization 137

Sco = —m + pu4, S0 = 0;

S = —m + 2u3 — pa, Se1 = 2a(§ ~ p3) < 0;

Sez = — + 2p2 — 2p3 + pa, Se2 = 2a(puz —) < 0;

Sez = —p + 2p2 — pa, Se3 =0;

Sca = —p +2p1 — 2p2 + py, Ses =2a(§ — p1) <0; -

Ses = ~p + 201 — 22 + 203 — pa, Ses = 20{(§ — p1) + (£ — n3)] <O;
Se6 = —p + 2p1 — 2p3 + pa, See = 20(p3 — 1) < 0;

Ser = —p + 211 — pa, Ser =2a(§ — m) <0.

(3.24)

Step 2. Since D(t) is monotonically decreasing and nonnegative, it must
tend to some limit D* = lim;_o, D(t). It is now shown that D* = 0 with
probability one if £(t) satisfies the assumption (ii).

Since D* is constant with respect to t, dD*/dt = 0 for all ¢. Still, D* sat-
isfies the same differential equation as D(t). Assume now that D* > 0. Then
there is disorder in the set (u1,...,p); without loss of generality, assume
that there is an index j, 2 < j <1 — 1, such that p; > pj4q1 and p; > pj1.
(The proof would be similar for the case in which p; < pj41 and p; < pj—1.
Note that here, too, it is possible that u; stands for a set of equal values with
consequent indices.)

With probability one £(t) will eventually attain a value such-that j = ¢
is the “winner,” due to assumption (ii). If j =2 (or j = [— 1), then we have
either case ¢2 with dD*/dt < 0 which would mean contradiction, or case c3
with dD*/dt = 0.

The magnitude relations of the p; values corresponding to case c3 are:
P2 > pa, p3 < Mg, and pgq < p3. Due to assumption (ii), with probability
one £(t) will eventually also attain a value such that ¢ = 3 is the “winner,”
and £ < pg3. If the y; values are as above, with ¢ = 3 they can be written as
Peo1 > Me—2, fe < fte—1, and et < pc. Then they correspond to case a6 or
a7, with-the difference that equality is possible in pc41 < pc. However, both
Sa6 and S,7 in (3.22) are now negative. This implies dD*/dt < 0 which then
again leads to contradiction.

If the “winner” ¢ is equal to j with 3 < j <1 — 2, then either case a2 is
due, and dD*/dt < 0, which means contradiction, or case a3 is due whereby
dD* /dt = 0. The magnitude relations of the p; values corresponding to case
a3 are: p; > pj_1, pjy1 < pj, and pjpo < pj1. Again, due to assumption
(i), with probability one £(t) will eventually also attain a value such that
j+1 =cis the “winner” and £ < p;41. If the y; values are as above, with
¢ = j + 1 they can be written as pto_1 > fic—2, fte < pe—1, and pcp1 < .
Then they correspond -to case a6 or a7, with the difference that equality is
possible in .41 < p.. However, again both Sa6 and S,7 in (3.22) are negative,
leading to the contradiction dD*/dt < 0.

138 3. The Basic SOM

From the above, we can conclude that D* must be equal to zero, or other-
wise a contradiction is bound to occur. The asymptotic state must therefore
be an ordered one.

3.6 The Batch Map

It will be useful to understand what the convergence limits m} in the sequence
defined by (3.3) actually represent.

Assuming that the convergence to some ordered state is true, the expec-
tation values of m;(t + 1) and m;(t) for ¢ — oo must be equal, even if h;(t)
were then selected nonzero. In other words, in the stationary state we must
have

Vi, E{hci(z —m})} =0. (3.25)

In the simplest case h.;(t) was defined: h; = 1 if i belongs to some
topological neighborhood set N, of cell ¢ in the cell array, whereas otherwise
he; = 0. With this h; there follows

. Jv, zp(z)dzx
o fv‘_p(:l:)dz ’

where V; is the set of those z values in the integrands that are able to update
vector m;; in other words, the “winner” node c for each z € V; must belong
to the neighborhood set N; of cell i.

Let us now exemplify (3.25) or (3.26) by Fig. 3.21. In this special case,
the neighborhood of cell i consists of the cells i — 1,7, and i + 1, except at
the ends of the array, where only one neighbor exists.

In the case described in Fig. 3.21 we have two-dimensional vectors as
inputs, and the probability density function of z € R? is uniform over the
framed area (support of the = values) and zero outside it. The neighborhood
set N, has the simple form defined above. In this case at least the equilib-
rium condition (3.25) or (3.26) means that each m! must coincide with the

(3.26)

Influence region
of unit j

Fig. 3.21. Illustration for the explanation of the equilibrium state in self-
organization and definition of “influence region”

3.6 The Batch Map 139

centroid of the respective influence region. At least in this case it may be in-
tuitively clear that the equilibrium represents the case whereby the Voronoi
sets around the m; contact each other in the same order as the “topologi-
cal links” between the nodes in the neuron array are defined. In general, with
more complicated network architectures, a similar topological correspondence
has been discussed in [3.14].

The equilibrium condition (3.25) or (3.26) with a general probability den-
sity function p(z) means that each m; must coincide with the centroid of p(x)
over the respective influence region. This could then be taken for the definition
of the ordered state. It may be intuitively clear that with general dimension-
alities, such an equilibrium can only be valid with a particular configuration
of the m;.

Equation (3.26) is already in the form in which the so-called iterative
contractive mapping used in the solving of nonlinear equations is directly
applicable. Let z be an unknown vector that has to satisfy the equation
f(z) = 0; then, since it is always possible to write the equation as z =
z + f(2) = g(z), the successive approximations of the root can be computed
as a series {z,} where

Zns1 = g(zn) - (3.27)

We shall not discuss any convergence problems here. In the SOM context
we have never encountered any, but if there would exist some, they could be
overcome by the so-called Wegstein modification of (3.27):

Vz,.+1 = (1-XA)g(zn) + Az, ,where 0 <A <1. (3.28)

The iterative process in which a number of samples of z is first classified
into the respective V; regions, and the updating of the m} is made iteratively
as defined by (3.26), can be expressed as the following steps. The algorithm
dubbed “Batch Map” [3.15, 16] resembles the Linde-Buzo-Gray algorithm
discussed in Sect. 1.5, where all the training samples are assumed to be
available when learning begins. The learning steps are defined as follows:

1. For the initial reference vectors, take, for instance, the first K training
samples, where K is the number of reference vectors.

2. For each map unit %, collect a list of copies of all those training samples x
whose nearest reference vector belongs to unit 1.

3. Take for each new reference vector the mean over the union of the lists in
N;.

4. Repeat from 2 a few times.

It is easy to see that this algorithm describes the same process that was
described in the general setting in Sect. 3.1. If now a general neighborhood
function hj; is used, and Z; is the mean of the z(t) in Voronoi set Vj, then
we shall weight it by the number n; of samples V; and the neighborhood
function. Now we obtain

140 3. The Basic SOM

m* — > nihji%;
toXnghi
where the sum over j is taken for all units of the SOM, or if hj; is truncated,

over the neighborhood set N; in which it is defined. For the case in which no
weighting in the neighborhood is used,

(3.29)

m? = ZjeN.» n;Zj . (3.30)
D jen, M

A discussion of the convergence and ordering of the Batch Map type
algorithm has been presented in [3.8].

This algorithm is particularly effective if the initial values of the reference
vectors are already roughly ordered, even if they might not yet approximate
the distribution of the samples. It should be noticed that the above algorithm
contains no learning-rate parameter; therefore it has no convergence problems
and yields stabler asymptotic values for the m; than the original SOM.

The size of the neighborhood set N; above can be similar to the size used
in the basic SOM algorithms. “Shrinking” of N; in this algorithm means that
the neighborhood radius is decreased while steps 2 and 3 are repeated. At
the last couple of iterations, N; may contain the element i only, and the last
steps of the algorithm are then equivalent with the K-means algorithm, which
guarantees the most accurate approximation of the density function of the
input samples. A few iterations of this algorithm will usually suffice.

Elimination of Border Effects for Low-Dimensional Signals. Inspec-
tion of Fig. 3.22 may further clarify the border effects in the one-dimensional
SOM and help to understand how they could be eliminated.

If every cell of the SOM has two neighbors, except one at the ends, the
“influence region” of cell ¢ (¢ > 2 and i < k — 1) (or the range of = values
that can affect cell 1) is defined V; = [%(mi_z +m;_1), %(mi“ + miy2)]- In
the asymptotic equilibrium, according to (6.18), every m; must coincide with
the centroid of p(z) over the respective V;. The definition of the “influence

p(x)

"Influcnce region”
of m,
Fig. 3.22. One-dimensional SOM with five reference “vectors” m; (scalars) that

approximate the probability density function p(z), and delineation of the weighting
function W

3.6 The Batch Map 141

regions” near the borders of the SOM is different, however, and therefore the
m; do not approximate p(x) everywhere in the same way.

In computing the centroids, it is now possible to provide the z samples
with conditional weights W that depend on index i and the relative magnitude
of z and m;. This weighting can be used both in the old stepwise SOM
algorithm (with the given definition of the neighborhood set N.), and with
the Batch Map, too. In the former case, the weight should be applied to the
learning-rate factor «, not to z. For to guarantee stability, one must then
have aW < 1, so this trick is not applicable during the first steps when «a is
still large. In the Batch Map algorithm, however, the = samples are always
weighted directly, so no such restriction exists. Henceforth we assume that
the Batch Map is used.

The following rules may first sound a bit complicated, but they are simple
to program, and in practice they are also very effective and robust in elim-
inating the border effects to a large extent. Assume that the m; values are
already ordered.

Weighting Rule for the One-Dimensional SOM:

In updating, each T sample is provided with weight W. Normally W =
1, but W > 1 for the border (end) cells in the case that x is bigger than
the biggest m; or smaller than the smallest m;, AND when updating
of the border cell (but not of its neighbors) is due.

éonsider the special case that p(x) is uniform over some singly connected
domain of x and zero outside it. It may then be easy to deduce on the basis of
Fig. 3.22 and the above weighting rule that if we select for the special weight
a value of W = 9, all the m; will become equidistant in the asymptotic
equilibrium; then they describe p(x) in an unbiased way. Naturally, for other
forms of p(z), we should take other values for W. In many practical cases,
however, the default value W = 9 compensates for the most part of the
border effects in general. :

It is possible to eliminate the border effects totally, if after a couple of
Batch Map iterations the neighborhood set N; is replaced by {:}, i.e., having
a couple of simple K-means iterations at the end.

In a two-dimensional SOM, the weighting rules are slightly different. While
we used, say, the value of W = 9 for the end cells in the one-dimensional array,
in the updating of the two-dimensional array we must have a different weight
W, for the corner cells, and another value W5 for edge cells that are not in
the corner. Inside the array, the weight is equal to unity.

Weighting Rules for the Two-Dimensional SOM:

The value Wy is applied if both of the following two conditions are
satisfied: Al. The value of x is in one of the four “outer corner
sectors,” i.e. outside the array and such that the m; of some corner

142 3. The Basic SOM

cell is closest. A2. Updating of this selected m; (but not of any other
of its topological neighbors) is due.

The value Wy is applied if both of the following conditions are sat-
isfied: B1. The value of x lies outside the m; array, but the closest m;
does not belong to any corner cell. B2. Updating of the selected edge
cell or any of its topological neighbors, which must be one of the edge
cells (eventually even a corner cell) is due.

If p(z) in the two-dimensional input épa.ce were uniform over a square
domain and zero outside it, it would be easy to deduce, in analogy with
the one-dimensional case, that for an equidistant equilibrium distribution of
the m; values we must have W; = 81, W, = 9. Again, for other p(z) the
compensation is not complete with these weights. Then, as earlier, the Batch
Map process may be run for a couple of iterations, followed by a couple of
K-means iterations. Such a combination of methods is again both robust and
unbiased and follows the two-dimensional input states very effectively.

3.7 Initialization of the SOM Algorithms

Random Initialization. The reason for using random initial values in the
demonstrations of the SOM was that the SOM algorithms can be initialized
using arbitrary values for the codebook vectors m;(0). In other words it has
been demonstrated that initially unordered vectors will be ordered in the
long run, in usual applications in a few hundred initial steps. This does not
mean, however, that random initialization would be the best or fastest policy
and should be used in practice.

Linear Initialization. As the m;(0) can be arbitrary, one might reason that
any ordered initial state is profitable, even if these values do not lie along the
main extensions of p(x). A method we have used with success is to first de-
termine the two eigenvectors of the autocorrelation matrix of z that have the
largest eigenvalues, and then to let these eigenvectors span a two-dimensional
linear subspace. A rectangular array (with rectangular or hexagonal regular
lattice) is defined along this subspace, its centroid coinciding with that of
the mean of the z(t), and the main dimensions being the same as the two
largest eigenvalues. The initial values of m;(0) are then identified with the
array points. If one wants to obtain an approximately uniform lattice spacing
in the SOM, the relative numbers of cells in the horizontal and vertical di-
rections of the lattice, respectively, should be proportional to the two largest
eigenvalues considered above.

Since the m;(0) are now already ordered and their point density roughly
approximates p(z), it will be possible to directly start the learning with the
convergence phase, whereby one can use values for a(t) that from the be-
ginning are significantly smaller than unity, and a neighborhood function

3.8 On the “Optimal” Learning-Rate Factor 143

the width of which is close to its final value, to approach the equilibrium
smoothly.

3.8 On the “Optimal” Learning-Rate Factor

The period during which a rough order in the SOM is obtained is usually
relatively short, on the order of 1000 steps, whereas most of the computing
time is spent for the final convergence phase, in order to achieve a sufficiently
good statistical accuracy. It is not clear how the learning-rate factor should
be optimized during the first phase, since the width of the neighborhood
function is thereby changing, too, which complicates the situation.

On the other hand, in Sect. 3.7 we already pointed out that it is always
possible to start the SOM algorithm with an already ordered state, e.g. with
all the m; lying in a regular array along a two-dimensional hyperplane. Also,
since during the final convergence phase we usually keep the width of the
neighborhood fixed, it seems possible to determine some kind of “optimal”
law for the sequence {a(t)} during the convergence phase. Before deriving
this law for the SOM we shall discuss a couple of simpler examples, from
which the basic idea may be seen.

Recursive Means. Consider a set of vectorial samples {z(t)}, z(t) €
Rt = 0,1,2,...,T. From the way in which the mean m of the z(t) is
computed recursively it may be clear that m(t) is at all times correct with
respect to samples taken into account up to step ¢ + 1:

1 T
m = TZz(t)=m(T);
t=1

t 1
m(t+1) = m—m(t) + mx(t +1)

= m(t) + t—i—l[x(t +1) = m(t)]. (3.31)

This law will now be reflected in the VQ processes, too.

“Optimized” Learning-Rate Factors for Recursive VQ. The steepest-
descent recursion for the classical vector quantization was derived in Sect. 1.5
and reads

mi(t + 1) = m;(t) + a(t)be[z(t) — mi(t)] , (3.32)
where &,; is the Kronecker delta. Let us rewrite (3.32) as
mi(t+1) = [(1 — a(t)beijmi(t) + a(t)beix(t) . (3.33)

(Notice a shift in the index of z(t) with respect to (3.31). It is a matter of
convention how we label the x(t).) If we consider m;(t + 1) as a “memory”
of all the values z(t'),t' = 0,1,...,t, we see that if m; is the “winner”, then

144 3. The Basic SOM

a memory trace of z(t), scaled down by af(t), is superimposed on it. If m;
was “winner” at step t, it has a memory trace of z(t — 1), scaled down by
[1—a(t)]a(t — 1) through the first term of (3.33); if m;(¢) was not winner, no
memory trace from z(t — 1) was obtained. It is now easy to see what happens
to earlier memory traces from z(t'); every time when m; is a “winner”, all
z(t') are scaled down by the factor [1 — a(t)], which we assume < 1. If oft)
were constant in time, we see that in the long run the effects of the z(t') on
m(t + 1) will be forgotten, i.e., m(t + 1) only depends on relatively few last
samples, the “forgetting time” depending on the value of a. If, on the other
hand, the earlier values of a(t’) are selected as bigger, we might be able to
compensate for the “forgetting” and have a roughly equal influence of the
z(t'y on m(t + 1).

Comment. Since the Voronoi tessellation in VQ is changed at every step,
the supports from which the z(t) values are drawn for a particular m; are
also changing, so this case is not as clear as for the simple recursive means;
therefore the a(t) values we derive will only approximately be “optimal.”

Consider now the two closest instants of time ¢; and tp, t3 > ti, for
which the same m;, denoted by m,, was the “winner.” If we stipulate that
the memory traces of z(t;) and z(t;) shall be equal in different neurons at
all times, obviously we have to select an individual learning-rate factor a;(t)
for each m;. For steps t;, and ¢ we must then have

1 = ac(t2)]ac(ts) = ac(ta) - (3.34)
Solving for a.(t;) from (3.34) we get
_ QC(tl)
ac(tg) = -————1 n ac(tl) . (335)

Let us emphasize that o;(t) is now only changed when m; was the “winner”;
otherwise a;(t) remains unchanged. Since a.(t1) retains the same value up to
step ¢ — 1, we can easily see that the following recursion of a; can be applied
at the same time when the “winner” m, is updated:

ac(t)

It must once again be emphasized that (3.36), as well as similar expres-
sions to be derived for SOM and LVQ, do not guarantee absolutely optimal
convergence, because the Voronoi tessellations in these algorithms are chang-
ing. Conversely, however, one may safely state that if (3.36) is not taken into
account, the convergence is less optimal on the average.

“Optimized” Learning-Rate Factor for the SOM. It is now straight-
forward to generalize the above philosophy for the SOM. If we define an
individual «;(t) for each m; and write

m.-(t + 1) = m,-(t) + ai(t)hcg[.’l,'(t) - m,(t)] , (337)

3.9 Effect of the Form of the Neighborhood Function 145

where h.; (in the convergence phase) is time-invariant, we may update a;(t)
whenever a correction to the m; values is made, relative to that correction:

(l,’(t)
14 hgoy(t)

The law for a;(t) derived above was based on a theoretical speculation;
it may not work in the best way in practice, due to the very different val-
ues for a;(t) obtained in the long run for different i. Let us recall that the
point density of the codebook vectors in the original SOM algorithm was
some monotonic function of p(x). This density is influenced by differences in
learning-rate factors.

In vector quantization, especially in Learning Vector Quantization dis-
cussed in Chap. 6 this idea works reasonably well, though: no harmful defor-
mations of point densities of the m; have thereby been observed.

ai(t+1) = (3.38)

Semi-Empirical Learning-Rate Factor. For the above mentioned rea-
sons it also seems justified to keep a(t) in the SOM identical for all the neu-
rons and to look for an average optimal rate. Mulier and Cherkassky {3.17)
have ended up with an expression of the form

a(t) = #473_ , | (3.39)

where A and B are suitably chosen constants. At least this form satisfies
the stochastic-approximation conditions. The main justification for (3.39) is
that earlier and later samples will be taken into account with approximately
similar average weights.

3.9 Effect of the Form of the Neighborhood Function

As long as one starts the self-organizing process with a wide neighborhood
function, i.e., with a wide radius of the neighborhood set N.(0), or a wide
standard deviation of h;(0) such a value being of the same order of mag-
nitude as half of the largest dimension of the array, there are usually no
risks for ending up in “metastable” configurations of the map (for which the
average expected distortion measure or average expected quantization error
would end up in a local minimum instead of the global one.) However, with
time-invariant neighborhood function the situation may be quite different,
especially if the neighborhood function is narrow.

Erwin et al. [3.18] have analyzed the “metastable states” in a one-
dimensional array. They first defined the neighborhood function being convex
on a certain interval I = {0,1,2,..., N}, if the conditions |3 — g| > |s — r|
and |s — g| > |r — q| imply that [h(s,s) + h(s,q)] < [h(s,7) + h(r,q)] for all
s,7,q € I. Otherwise the neighborhood function was said to be concave.

The main results they obtained were that if the neighborhood function
is convex, there exist no stable states other than the ordered ones. If the

146 3. The Basic SOM

neighborhood function is concave, there exist metastable states that may
slow down the ordering process by orders of magnitude. Therefore, if in the
beginning of the process the neighborhood function is convex, like the middle
part of the Gaussian h;(t) at large standard deviation is, the ordering can
be achieved almost surely; and after ordering the neighborhood function can
be shrunk to achieve an improved approximation of p(z).

The ordering conditions in general are most severe if the input signal
space has the same dimensionality as the array; in practice, however, the
dimensionality of the input signal space is usually much higher, whereby
“ordering” takes place easier.

3.10 Does the SOM Algorithm Ensue
from a Distortion Measure?

Since the SOM belongs to the category of vector quantization (VQ) methods,
one might assume that the starting point in its optimization must be some
kind of quantization error in the vector space. Assume that =z € R" is the
input vector and the m; € R*,i € {indices of neurons} are the reference
vectors; let d(z,m;) define a generalized distance function of z and m;. The
quantization error is then defined as

d(.’t, mc) = miin{d(:z, mt)} ’ (340)

where ¢ is the index of the “closest” reference vector to z in the space of
input signals.

An even more central function in the SOM, however, is the neighborhood
function he; = hei(t) that describes the interaction of reference vectors m;
and m, during adaptation and is often a function of time ¢. To this end one
might try to define the distortion measure in the following way. Denote the
set of indices of all lattice units by L; the distortion measure e is defined as

e=) had(z,m), (3.41)
i€l
that is, as a sum of distance functions weighted by h.;, whereby c is the index
of the closest codebook vector to x. If we now form the average erpected
distortion measure

E= /ep(:c)dz = /thid(m, m;)p(z)dz , (3.42)
i€l
one way of defining the SOM is to define it as the set of the m; that globally
minimizes E.

Exact optimization of (3.42), however, is still an unsolved theoretical prob-
lem, and extremely heavy numerically. The best approximative solution that
has been found so far is based on the Robbins-Monro stochastic approxima-
tion (Sect. 1.3.3). Following this idea we consider stochastic samples of the

3.10 Does the SOM Algorithm Ensue from a Distortion Measure? 147

distortion measure: if {r(t).t = 1.2, .. .} is A segnence of inpat samples and

{mi(t).t = 1.2....} the recursively defined sequence of codebook vevtor m,,
then
e(t) = Y hai(t)dlz(t), ms(t)] (3.43)
i€l

is a stochastic variable, and the sequence defined by
mi(t+ 1) =m;(t) — A Vomitye(t) (3.44)

is used to find an approximation to the optimum, as asymptotic values of
the m;. This would then define the SOM algorithm for a generalized distance
function d(x,m;). It must be emphasized, however, that although the con-
vergence properties of stochastic approximation have been thoroughly known
since 1951, the asymptotic values of the m; obtained from (3.44) only min-
imize E approximately. We shall see in Sect. 3.12.2 that at least the point
density of the reference vectors obtained from (3.44) are differen from those
derived directly on the basis of (3.42). Then, on the other hand, (3.43) and
(3.44) may be taken as still another definition of a class of SOM algorithms.

Comment 3.10.1. For those readers who are not familiar with the Robbins-
Monro stochastic approximation it may be necessary to point out that E need
not be a potential function, and the convergence limit does not necessarily
represent the ezxact minimum of E, only an approximation of it. Nonetheless
the convergence properties of this class of processes are very robust and they
have been studied thoroughly long ago in the theory of this method.

Comment 3.10.2. Above, the neighborhood function h.; was assumed time-
invariant, and it will be assumed such also in Sect. 3.11 where an optimization
attempt will be made. It seems to be an important property of the SOM
algorithms, however, that the kernels h.; are time-variable.

Example 3.10.1. Let d(x,m;) = ||z — m;||2. Then we obtain the original
SOM algorithm:

m(t + 1) = my(t) + a(t)ha(t)[z(t) — mi(t)). (3.45)

Example 3.10.2. In the so-called city-block metric, or Minkowski metric of
power one,

d(z,m;) = Z 15 — pisl- (3.46)
J

Now we have to write the SOM algorithm in component form:
pij(t + 1) = pi(t) + a(t)hei(t)sgnl§; () — pij (2)], (3.47)

where sgn|-] is the signum function of its argument.

148 3. The Basic SOM

3.11 An Attempt to Optimize the SOM

It has to be emphasized that we do not know any theoretical reason for
which the recursive algorithm of the basic SOM should ensue from any ob-
jective function E that describes, e.g., the average expected distortion mea-
sure. The following facts only happen to hold true: 1. The usual stochastic-
approximation optimization of E leads to the basic SOM algorithm, but this
optimization method is only approximative, as will be seen below. 2. The
(heuristically established) basic SOM algorithm describes a nonparametric
regression that often reflects important and interesting topological relation-
ships between clusters of the primary data.

In order to demonstrate what the “energy function” formalism pursued
in this context actually may mean, we shall proceed one step deeper in the
analysis of the average expected distortion measure [1.75].

The effect of the index c of the “winner,” which is a discontinuous function
of x and all the m;, can be seen more clearly if the integral F in (3.42), with
d(x,m;) = ||z — m;||? is expressed as a sum of partial integrals taken over
those domains X; where z is closest to the respective m; (partitions in the
Voronoi tessellation, cf. Fig. 3.23):

E= Z/ > hikllz — m|*p(x)da . (3.48)
i JreX:

When forming the true (global) gradient of E with respect to an arbitrary
m;, one has to take into account two different kinds of terms: first, when
the integrand is differentiated but the integration limits are held constant,
and second, when the integration limits are differentiated (due to changing
m;) but the integrand is held constant. Let us call these terms G and H,
respectively:

Vo,E=G+H, (3.49)
whereby it is readily obtained

G=-2- / hij(z — m;)p(x)dz
;. JTEX;
=-2. / hej(x — mj)p(z)dx .
x Space

In the classical VQ (Sect. 1.5), H = 0, due to the facts that h. = 6.k, and
there, across the border of the Voronoi tessellation between X; and Xj, the
terms ||z — m;||? and ||z — m;||? were equal. With general h., computation
of H is a very cumbersome task, because the integrands are quite different
when crossing the borders in the Voronoi tessellation.

To start with, I am making use of the fact that only those borders of the
tessellation that delimit X; are shifting in differentiation.

Consider Fig. 3.23 that delineates the partition X, and the shift of its
borders due to dm;. The first extra contribution to V,,, E, with the |jz—m]|?

(3.50)

3.11 An Attempt to Optimize the SOM 149

Fig. 3.23. Illustration of the border effect in differentiation with respect to m;

evaluated over the topological neighborhood of m;, is now obtained as the
integral of the integrand of E taken over the shaded differential hypervolume.
Because all the borders are segments of midplanes (hyperplanes) between the
neighboring m;, at least some kind of “average shift” seems to be estimable.
As a matter of fact, if there were so many neighbors around m; that X; could
be approximated by a hypersphere, and m; were varied by the amount dm;,
then X; would preserve its shape and be shifted by the amount (1/2)dm;. In
a general case with arbitrary dimensionality of the x space and constellation
of the m;, the shape of X; would be changed; but my simplifying and av-
eraging approximation is that this change of shape is not considered, in the
first approximation at least, and X; is only shifted by (1/2)dm;. Another
approximation that is needed to simplify the order-of-magnitude discussion
is o assume p(x) constant over the partition X, and this is justified if many
m; are used to approximate p(z). If both of the above approximations are
made, then the first contribution to H obtained from the variation of X, de-
noted H,, is approximately the difference of two integrals: the integral over
the displaced X, and the integral over the undisplaced X;, respectively. This
is equal to the integral of 3_ hjk||z — (mk — (1/2)dm;)||? times p(x) minus the
integral of 3~ hjk|lx — mi||? times p(z). But one may think that this again
is equivalent to the case where each of the m; is differentiated by the same
amount —(1/2)dm;. Therefore this difference can also be expressed as the
sum of the gradients of the integral of ¥~ hjk||z —my||* times p(z) taken with
respect to each of the my, and multiplied by —(1/2)dm;:

=120 [S hula - mople)is
X ks (3.51)
= [Shalz - map(a)s .
z€X, k#c

The case k = ¢ can be excluded above because this term corresponds to
the basic Vector Quantization, and its contribution can be shown to be zero

[1.75].
We must not forget that E is a sum over all i, and so the second extra
contribution to H, named Ha, is due to the integral of the integrand of E

150 3. The Basic SOM

over all the partial differential hypervolumes (shaded segments in Fig. 3.23)
bordering to X;» where j’ is the index of any of the neighboring partitions
of X;. To compute H seems to be even more cumbersome than to get the
approximation of H,. There are good reasons, however, to assume that on
the average, [|H2|| < ||H:1]|], since each of the integration domains in H is
only one segment of the differential of X;, and the x — m;. are different in
each of these subdomains. In an order-of-magnitude analysis of the extra
corrections at least, it is perhaps more interesting to concentrate on the
major contribution H; quantitatively, whereby it is also possible to give an
illustrative interpretation for it.

When trying to derive the results obtained into a recursive stepwise de-
scent in the “E landscape”, we may notice that in the expression of G, «
runs over the whole x space, and V,,, E has contributions from all those X,
for which m; is a topological neighbor in the network. Conversely, in H;, the
integral is only over X, whereas the integrand contains terms that depend
on the topological neighbors my of m;. In analogy with Egs. (1.166), (1.167),
and (1.168) in Sect. 1.5 we can then write (neglecting terms due to Ha):

me(t + 1) = me(t) + a(t){hela(t) — me(t)]
~1/2) hekla(t) — mi(9)]} , (3.52)

k#c
m;(t + 1) = m;(t) + a(t)halz(t) — mi(t)], for i#c.

Notice in particular that the term —1/23%", hel[z(t) — me(t)] was derived
under the assumption that p(x) is constant over each partition in the Voronoi
tessellation. For nodes at the edges of the tessellation, the corresponding
partitions X; extend to infinity, and this approximation is then no longer
quite valid; so boundary effects, slightly different from those encountered
with the basic SOM, are also here discernible.

Before reporting numerical experiments, we can give an interpretation to
the extra terms due to the Hy integral. Consider Fig. 3.24 that illustrates the
old and the new algorithm. Assume that at some learning step, one of the
m; is offset from the rest of the parameter vector values. When z is closest
to it, in the old algorithm this m; = m. and its topological neighbors m;
would be shifted toward z. In the new algorithm, only the m; # m,. are
shifted toward z, whereas m,. is “relaxed” in the opposite direction toward
the center of the m; neighborhood. This extra relaxation seems to be useful
for self-organization, as demonstrated below.

A numerical experiment was performed to study the convergence proper-
ties of (3.52). A square array of nodes, with two-dimensional z and m;, was
used in the experiment. Both the old algorithm and (3.52) were run with iden-
tical initial state, values of a(t), and random number sequence. The m;(0)
were selected as independent random values and a(t) decreased linearly from
0.5 to 0. The neighborhood kernel h . was constant for all nodes within one

d.41 AR ALLCIIPL LW UPLIIILE LIS DA sava PRV

The other m;

The other m;

(a) (®)

Fig. 3.24. Differences in correction: (a) The basic SOM, (b) Eq. (3.52)

lattice spacing from c in the horizontal and vertical direction, and hy =0
otherwise. (It must be recalled that in practical applications, to make conver-
gence faster and safer, the kernel is usually made to “shrink” over time.) In
Fig. 3.25, the values of m; for a square lattice as in Fig. 3.5 after 8000 steps
of the process are displayed. The p(z) had a constant value in the framed
square and zero outside it. From many similar experiments (of which one is
shown in Fig. 3.25), two conclusions transpire: 1. The new algorithm orders
the m; somewhat faster and safer; after 8000 steps (with the narrow constant
kernel h.x), none of the old-algorithm states was completely ordered, whereas
about half of the new-algorithm states were. 2. The boundary effects in the
new algorithm are stronger.

j

(a) (b)

Fig. 3.25. Two-dimensional map after 8000 steps. (a) The basic SOM with small
neighborhood, (b) The same neighborhood but with (3.52) used

Special Case. If the probability density function p(z) of input data is
discrete-valued, such as the case is in the famous traveling-salesman prob-
lem, the original SOM algorithm can be derived from the average expected
distortion measure. (For a textbook account, see [1.40], Sect. 6.2 of that
book.) In view of the above discussion this result may now be clear, because
p(z) at the borders of the Voronoi tessellation is then zero, and the extra
term H, due to differentiation of the integration limits, then vanishes.

Modification of the Definition of the “Winner.” It has been pf)inted
out [3.19, 20] that if the matching criterion for the definition of the “winner”
¢ is modified as

152 3. The Basic SOM

lzhcillz - mi”2 = II;_il’l {21: hji”z - millz} » (353)

where h,; is the same neighborhood function as that applied during learning,
then the average expected distortion measure becomes an energy or potential
function, the minimization of which can be carried out by the usual gradient-
descent principle accurately. While this observation has certain mathematical
interest, the following facts somewhat neutralize its value in neural-network
modeling: 1. In the physiological explanation of the SOM (Chap. 4) the neigh-
borhood function A only defines the control action on the synaptic plastic-
ity, not control of network acticity in the WTA function as implied by (3.53).
2. The hj; above have to be normalized,) ;hji = 1, whereby in general
hji # hij for ¢ 7'“S]

For a practical ANN algorithm, computation of (3.53) for finding the
“winner” is also more tedious compared with simple distance calculations.
~ Nonetheless, this kind of parallel theory, by analogy, may shed some extra
light on the nature of the SOM process.

3.12 Point Density of the Model Vectors
3.12.1 Earlier Studies

In biological brain maps, the areas allocated to the representations of various
sensory features are often believed to reflect the importance of the corre-
sponding feature sets; the scale of such a map is somewhat loosely called
the “magnification factor.” As a matter of fact, different parts of a receptive
surface such as the retina are transformed in the brain in different scales,
almost like in mathematical quasiconformal mappings.

It is true that a higher magnification factor usually corresponds to a higher
density of receptor cells, which might give a reason to assume that the mag-
nification factor depends on the number of axons connecting the receptive
surfaces to that brain area. However, in the nervous systems there also ex-
ist numerous “processing stations,” called nuclei in the sensory pathways,
whereby one cannot directly compare input-output point densities in such a
mapping. In the light of the SOM theory it rather seems that the area allo-
cated to the representation of a feature in a brain map is somehow propor-
tional to the statistical frequency of occurrence of that feature in observations.

As the nervous pathways in the biological realms are very confused, we
shall use the term “magnification factor” in the sequel only to mean the
inverse of point density of the m;. For instance, in the classical vector quan-
tization with squared errors we had this density proportional to [p(z)]7+z,

where n is the dimensionality of z. The “magnification factor” would then
be the inverse of this.

3.12 Point Density of the Model Vectors 153

Ritter and Schulten (3.21] and Ritter [3.22] analyzed the point density
for the linear map in the case that the map contained a very large number
of codebook vectors over a finite area. If N neighbors on both sides of the
“winner” and the “winner” itself were included in the neighborhood set, the
asymptotic point density (denoted here M) can be shown to be.M o [p(z)]",
where the exponent is

2 1
3 3N2+3(N+1)2°

One thing has to be made clear first. The SOM process, although it may
start with a wide neighborhood function, can have an arbitrary neighborhood
function width at the end of the learning process (especially if the Gaussian
kernel is used). Then at the last phases we may even have the zero-order
topology case, i.e., no neighbors except the “winner” itself. However, with
zero-order topological interaction the process no longer maintains the order
of the codebook vectors, and this order may disappear in extensive learn-
ing with narrow neighborhoods. Therefore one has to make a compromise
between the wanted approximation accuracy of p(x), which is best in the
VQ case, and the wanted stability of ordering, for which the neighborhood
interactions are needed.

With N = 0 we get above the one-dimensional VQ (or the so-called scalar
quantization) case, whereby r = 1/3. It seems that the low value of r (com-
pared with unity) is often regarded as a handicap; it may be felt that approx-
imation of probability density functions should be necessary in all statistical
pattern recognition tasks, to which the neural networks are also supposed
to bring the “optimal” solution. One has to note, however: 1. If classifica-
tion is based on finding the Bayesian borders where the density functions of
two classes have equal value, the same result can be obtained by compar-
ing any (but the same) monotonic functions of densities. 2. Most practical
applications have data vectors with very high dimensionality, say, dozens to
hundreds. Then, e.g., in classical VQ, the exponent actually is n/(n+2) = 1,
where n is the dimensionality of z. It is not yet quite clear what the corre-
sponding exponent in two-dimensional SOMs with very high input density
is, but it is certainly lower than unity.

In the work of Dersch and Tavan [3.23] the neighborhood function was
Gaussian, and it is possible to see from Fig. 3.26 how the exponent a depends
on the normalized second moment o of the neighborhood function. (The
integral values of o correspond, very roughly, to N? above.)

Further works on the SOM point density can be found in [3.24, 25].

e (3.54)

3.12.2 Numerical Check of Point Densities
in a Finite One-Dimensional SOM

Strictly speaking, the scalar entity named the “point density” as a function
of z has a meaning only in either of the following cases: 1. The number of

154 3. The Basic SOM

2/3f--==sceveccecccoooe oo cann
® N 4
5 172

1/3 b

0 1 2 3 4
o .

Fig. 3.26. Distortion exponent a for a Gaussian neighborhood interaction as the
function of its normalized second moment o [3.23]

points (samples) in any reasonable “volume” differential is large, or 2. The
points (samples) are stochastic variables, and their differential probability of
falling into a given differential “volume,” i.e., the probability density p(z)
can be defined.

Since in vector quantization problems one aims at the minimum expected
quantization error, the model or codebook vectors m; tend to assume a more
or less regular optimal configuration, and cannot be regarded as stochastic.
Neither can one usually assume that their number in any differential volume
is high.

Consider now the one-dimensional coordinate axis z, on which some prob-
ability density function p(z) is defined. Further consider two successive points
m; and m; 4 on this same axis. One may regard (m;+; — m;)~! as the local
“point density.” However, to which value of = should it be related? The same
problem is encountered if a functional dependence is assumed between the
point density and p(z). Below we shall define the point density as the inverse
of the width of the Voronoi set, i.e., [(m;+1 —m;)/2]™?, and refer the density
to the model m;, which is only one choice, of course.

Asymptotic State of the One-Dimensional, Finite-Grid SOM Al-
gorithm in Three Exemplary Cases. Consider a series of samples of
the input z(t) € R, ¢ = 0,1,2,... and a set of k model (codebook) values
m;(t) € R, ¢t =0,1,2,..., whereupon i is the model index (i = 1,...,k). For
convenience assume 0 < z(t) < 1.

The original one-dimensional self-organizing map (SOM) algorithm with
at most one neighbor on each side of the best-matching m; reads:

mi(t+1) = my(t)+e(t)z(t) - m;(t)] for i € N,
mi(t+1) = m;(t) for i ¢ N,
¢ = arg miin{|x(t) - m;(t)]}, and

N, = {max(l,c¢-1),¢,min(k,c+1)}, (3.55)

3.12 Point Density of the Model Vectors 190

where N, is the neighborhood set around node ¢, and ¢(t) is a small scalar
value called the learning-rate factor. In order to analyze the asymptotic values
of the m;, let us assume that the m; are already ordered. Let the Voronoi set
V; around m; be defined as

[mi_l +m; m;+ mg+1]

forl<i<k, V; 3 , 2

Vi = [0, In_I%_r_n_z] y Ve = [ﬂ-—l;ﬂ,l] , and denote
forl<i<k, U; = V.-_1UV,-UV,-+1 s
Uy = UV, U=V UVi. (3.56)

In other words, U; is the set of such z(t) values that are able to mod-
ify m;(t) during one learning step. Following the simple case discussed in
Sect. 3.5.1 one can write the condition for stationary equilibrium of the m;
for a constant ¢ as:

Vi, m;=E {z |z € Ui}. (3.57)

This means that every m; must coincide with the centroid of the proba-
bility mass in the respective U;.
For 2 < i < k — 1 we have for the limits of the U;:

1
A = z(mi—g+mi),
J 2

1
B; = —2-(m¢+1 + mi+2) . (3.58)

‘For i = 1 and i = 2 we must take B; as above, but A; =0;and fori =k —1
and i = k we have A; as above and B; = 1.

Case 1: p(x) = 2x. The first case we discuss here is the one where the
probability density function of z is linear, p(x) = 2x for 0 < z < 1 and
p(z) = 0 for all the other values of z. .

It is now straightforward to compute the centroids of the trapezoidal

probability masses in the Uj;:
2B} - A (3.59)
3(Bf — A})

The stationary values of the m; are defined by the set of nonlinear equa-
tions

E{zlz € U;} =

3(B7 - A2)

and the solution of (3.60) is sought by the so-called contractive mapping. Let
us denote

V’i, m; =

z = [ml,mg,...,mk]T . (361)

156 3. The Basic SOM

Then the equation to be solved is of the form
z=f(z). (3.62)

Starting with the first approximation for z denoted z(®), each improved
approximation for the root is obtained recursively:

20D = £z, (3.63)

In this case one may select for the first approximation of the m; equidistant
values.

With a small number of grid points, (3.63) converges reasonably fast, but
already with 100 grid points the required number of steps for the accuracy
of, say, five decimal places may be about five thousand.

It may now be expedient to define the point density g; around m; as the
inverse of the length of the Voronoi set, or ¢; = [(miy1 — mi—1)/2]".

The problem expressed in a number of previous works, e.g., [3.21, 22,
23], is to find out whether ¢; could be approximated by the functional form
const.[p(m;)]*. Previously this was only shown for the continuum limit, i.e.
for an infinite number of grid points. The present numerical analysis allows
us to derive results for finite-length grids, too. Assuming tentatively that the
power law holds for the models m; through m; (leaving aside models near to
the ends of the grid), we shall then have

_ log(miy1 — miy) — log(mj41 —mj_1)
=T logp(my) —loglp(m)] (.64

Naturally, more values of the m; could be taken for improved accuracy. In
Table 3.3, using ¢ = 4 and j = k — 3, between which the border effects may
be assumed as negligible, the exponent a has been estimated from (3.64) for
10, 25, 50, and 100 grid points, respectively.

Case 2: p(z) = 3z? (convez). Now we have the system of equations

_ 3B — A

V’l, m; = m (3.65)
and the approximations for a are in Table 3.3.
Case 3: p(z) = 3z — %zz (concave). The system of equations reads
3 _ A3) — 4 _ A4
Vi, mi -— S(BI l) 3(Bl t) (3.66)

12(B? — A7) — 4(B} - A7)

and the approximations for o are also in Table 3.3.

These simulations show convincingly that for three qualitatively different
p(z) the exponent «, even for a reasonably small number of grid points, is
fairly close to the value of a = 0.6 as derived in the continuum limit in [3.22],
in the case of one neighbor on both sides of the best-matching m;.

3.12 Point Density of the Model Vectors 157

Table 3.3. Exponent derived from the SOM algorithm

Exponent a

Grid points Casel Case2 Case3

10 0.5831 0.5845 0.5845
25 0.5976 0.5982 0.5978
50 0.5987 0.5991 0.5987
100 0.5991 0.5994 0.5990

Numerically Accurate Optimum of the One-Dimensional SOM Dis-
tortion Measure with Finite Grids: Case 1. Equation 3.48 can also be
written as

E=Y3 [holle—m;IPpiad, (367)
i j vVIEV:

where 7 and j run over all the values for which h;; has been defined, and V;
is the Voronoi set around m;.

In the simple one-dimensional case, when h;; is defined as
hij =1 if |i—j| <2, and h;; =0 otherwise, (3.68)

when we take Case 1, or p(z) = 2z for 0 < z < 1, p(z) = 0 otherwise, and
wheg we assume the m; as ordered in the ascending sequence, (3.67) becomes
J

. D;
E = ZZZ/CZ‘ (x — m;)zdz

i jEN;
4 1
= 3 Y miDI-Cl) - gmy(DI - CH) +5(DE-CH) (3.69)
i JEN; 2

where the neighborhood set of indices N; was defined in (3.55), and the bor-
ders C; and D; of the Voronoi set V; are

C'1 = Oa

C; = '_“_'122"_ for 2<i<k,

D, = m—'%’&i‘- for 1<i<k-1,

Dy = 1. (3.70)

When forming the accurate gradient of E, it must be noticed that index
i is contained in N;_;, N;, and N;;,, whereupon

oE a 4
e > (m.?(Diz—l_Ciz—l)—gmj(D?—l—C?—l)

P JEN:,

1
+ 'Z_(D?—l - ?—1))

158 3. The Basic SOM

2 2/ 2 2 4 3 3y, 14 4
t om; ,-;‘ (mj(Di -CY) - ng(Di -Ci)+ E(Di -C;))
{4 2.2 2 4 3 3

* om Y (mi(DE, - Chy) - 3™ (Di1 — Cipa)

' jENi
1
+ 5(D3+1 - C?+1)) . (3.71)

The result of this differentiation is given as follows (notice that C; =
D;_,):

OF 4
%I = 2m1D§ - ng - mgCg +2m3C§ - Cg ,
_‘?;_E___ - 2D) D2 D3 2 é 3 _ a2 2
mia miD, — 2my D5 + D5 + 2m3 D3 3D3 m3Cs + 2m3Cj
—C3 — m2Cs + 2myCE — CF ,
OFE
. = m?_2D,’_1 — 2m,-_2D?_1 + D?—-l + mf_lD,- — 2mi_1D? + D?
(3
—m? 1 Ci + 2mi1C? — C? — mZ,,Cit1 + 2mi32CY — C3,
4
+2m,(D?+1 - C?_l) - ‘3“(D?+1 - C?—l) for 2 < i < k - 1 Y
OF 2
"‘2mk_2Dz__1 + Di_l bl m‘%Ck_l + 2kag_1
4
-C3_, +2mp_(1-CE_,) - 3(1 -C3_,), and
OF
T = m2_,Dy1 —2my_oD?_, + D}_,

4
+2m(1-C2_,) ~ -5(1 -C3). (3.72)

The question is whether one can obtain the optimal values of the m; by
the gradient-descent method, i.e.,

Vi) m,‘(t + 1) = m,-(t) -)\(t) . 6E/6m,|t y (373)

where A(t) is a suitable small scalar factor. In the present problem E is of
the fourth degree in the m; and at least one kind of spurious local optimum
has been found: for instance, when starting with the asymptotic m; values
obtained from the SOM algorithm and keeping A(t) at a value of the order of
.001 or smaller, a very shallow local minimum of E has been reached, which
has given the wrong value of about .6 for a. However, with A(t) > .01 (even
with A(t) = 10) and starting with very different initial values for the m;, the

3.13 Practical Advice tor the Construction ot Good Maps 109

process robustly converges to a unique global minimum. After computation
of the optimal values {m;}, in order to facilitate a direct comparison with
the values presented in Table 3.3 the exponent a of the tentative power law
was computed from (3.64) of the previous section and presented in Table 3.4
for different lengths of the grid.

Table 3.4. Exponent derived from the SOM distortion measure

Grid points Exponent o

10 0.3281
25 0.3331
50 0.3333
100 0.3331

Clearly the computed « is an approximation of the value of 1/3, the same
as the exponent in vector quantization for n = 1 and r = 2, rather than of
a = .6 of the simple SOM algorithm.

The result that transpired in this numerical check is that the point density
of the model (codebook) vectors resulting as asymptotic values in the basic
SOM algorithm is different from that ensuing as the parameter values of the
SOM distortion measure at its minimum. Nonetheless the m; in both cases
can be regarded as the nodes of an “elastic” network that is regressed onto
the manifold of the input samples in an orderly fashion. The conclusion is
thus that the Robbins-Monro stochastic approximation does not exactly lead
to the basic SOM algorithm, but the algorithm and the distortion measure
may be two optional ways to define the self-organizing map.

3.13 Practical Advice for the Construction
of Good Maps

Although it is possible to obtain some kind of maps without taking into
account any precautions, nonetheless it will be useful to pay attention to the
following advice in order that the resulting mappings be stable, well oriented,
and least ambiguous. Let us recall that the initialization problem was already
discussed in Sect. 3.7. The reader is now adviced to study the two extensive
software packages SOM_PAK [3.26] and LVQ_PAK [3.27].

Form of the Array. For visual inspection, the hezagonal lattice is to be
preferred, because it does not favor horizontal and vertical directions as much
as the rectangular array. The edges of the array ought to be rectangular
rather than square, because the “elastic network” formed of the reference
vectors m; must be oriented along with p(z) and be stabilized in the learning
process. Notice that if the array were, e.g., circular, it would have no stable

160 J. Lhe basic SUM

orientation in the data space; so any oblongated form is to be preferred. On
the other hand, since the m; have to approximate p(z), it would be desirable
to find such dimensions for the array that roughly correspond to the major
dimensions of p(z). Therefore, visual inspection of the rough form of p(zx),
e.g., by Sammon’s mapping [1.34] (Sect. 1.3.2) ought to be done first.

Learning with a Small Number of Available Training Samples. Since
for a good statistical accuracy the complete learning process may require an
appreciable number, say, 100’000 steps, and the number of available sam-
ples is usually much smaller, it is obvious that the samples must be used
reiteratively in training. Several alternatives then exist: the samples may be
applied cyclically or in a randomly permuted order, or picked up at random
from the basic set (so-called bootstrap learning). It has turned out in prac-
tice that ordered cyclic application is not noticeably worse than the other,
mathematically better justifiable methods.

Enhancement of Rare Cases. It may also be obvious from the above
that the SOM in one way or another tends to represent p(z). However, in
many practical problems important cases (input data) may occur with small
statistical frequency, whereby they are not able to occupy any territory at all
in the SOM. Therefore, such important cases can be enhanced in learning by
an arbitrary amount by taking a higher value of a or h,; for these samples,
or repeating these samples in a random order a sufficient number of times
during the learning process. Determination of proper enhancement in learning
should be done in cooperation with the end users of these maps.

Scaling of the Pattern Components. This is a very subtle problem. One
may easily realize that the orientation, or ordered “regression” of the reference
vectors in the input space must depend on the scaling of the components
(or dimensions) of the input data vectors. However, if the data elements
have already been represented in different scales, there does not exist any
simple rule to determine what kind of optimal rescaling should be used before
entering the training data to the learning algorithm. The first guess, which
is usually rather effective, especially with high input dimensionality, is to
normalize the variance of each component over the training data. One may
also try many heuristically justifiable rescalings and check the quality of
the resulting maps by means of Sammon’s mapping or average quantization
€errors.

Forcing Representations to a Wanted Place on the Map. Sometimes,
especially when the SOM is used to monitor experimental data, it may be
desirable to map “normal” data onto a specified location (say, into the middle)
of the map. In order to force particular data into wanted places, it is advisable
to use their copies for the initial values of reference vectors at these locations,
and to keep the learning-rate factor a low for these locations during their
updating.

J. 14 LLXallpicd Ul Data Allalyses liupieinented Ly Lue OWIvL FAVNY

Monitoring of the Quality of Learning. Different learning processes can
be defined starting with different initial values m;(0), and applying different
sequences of the training vectors z(t) and different learning parameters. It is
obvious that some optimal map for the same input data may exist. It may
also be obvious that the best map is expected to yield the smallest average
quantization error, approximately at least, because it is then fitted best to
the same data. The mean of ||z — m,||, defined via inputting the training
data once again after learning, is then a useful performance index. Therefore,
an appreciable number (say, several dozens) of random initializations of the
m;(0) and different learning sequences ought to be tried, and the map with
the minimum quantization error might be selected.

The accuracy of the maps in preserving the topology, or neighborhood
relations, of the input space has been measured in various ways. One ap-
proach is to compare the relative positions of the reference vectors with the
relative positions of the corresponding units on the map [3.28]. For exam-
ple, the number of times the Voronoi region of another map unit “intrudes”
the middle of the reference vectors of two neighbor units can be measured
[3.29]. A different approach is to consider, for each input vector, the distance
of the best-matching unit and the second-best-matching unit on the map: If
the units are not neighbors, then the topology is not preserved [3.30, 31] .
When the distance between map units is defined suitably, such a measure
can be combined with the quantization error to form a single measure of
map goodness [3.32]. Although it is not at present possible to indicate the
best measure of map quality, these measures may nevertheless be useful in
choosing suitable learning parameters and map sizes.

3.14 Examples of Data Analyses Implemented
by the SOM

This section contains demonstrations of the SOM, intended to visualize so-
called data matrices. In the simplest cases we assume that all items possess
values for all their attributes; later in Sect. 3.14.2 we consider another case
in which almost all of the items lack some of their attributes.

3.14.1 Attribute Maps with Full Data Matrix

Abstract Hierarchical Data Structure. Consider a finite set of items,
each one having a number of characteristics or attributes. The latter can be
binary, or integer- or continuous-valued; at any rate the sets of attributes
should be comparable in some metric.

If we first apply the SOM to abstract data vectors consisting of hypo-
thetical attributes, we can thereby define very clear data structures. We shall
consider an example with implicitly defined (hierarchical) structures in the

162 3. The Basic SOM

primary data, which the map algorithm is then supposed to reveal and dis-
play. Although the SOM is a single-level network, it can produce a hierarchical
representation of the relations implicit in the primary data.

In Table 3.5, 32 items, with five hypothetical attributes each, are recorded
in a data matrix. (Let us recall that this example is completely artificial.)
Each of the columns represents one item, and for later inspection the items
are labeled “A” through “6”, although these labels are not referred to during
learning.

Table 3.5. Input data matrix

Item
ABCDEFGHIJKLMNOPQRSTUVWXYZ123456
Attribute

a; 12345333333333333333333333333333
az 00000123453333333333333333333333
a3 0000000000123 456783333¢626¢66¢6¢6¢6¢6¢6°¢6
as 00000000000000000012341234222222
as 00000000000000000000000000123456

The attribute values (a1, as, . . ., as) were defined artificially and they con-
stitute the pattern vector x that acts as a set of signal values at the inputs
of the network of the type of Fig. 3.3. During training, the vectors =z were
selected from Table 3.5 at random. Sampling and adaptation was continued
iteratively until one could regard the asymptotic state of the SOM as sta-
tionary. Such a “learned” network was then calibrated using the items from
Table 3.5 and labeling the map units according to the best match with the
different items. Such a labeled map is shown in Fig. 3.27. It is discernible
that the “images” of different items are related according to a taxonomic
graph where the different branches are visible. For comparison, Fig. 3.28 il-
lustrates the so-called minimal spanning tree (where the most similar pairs
of items are linked) that describes the similarity relations of the items in
Table 3.5.

Map of a Binary Data Matrix. Attributes are usually variables with
scalar-valued discrete or continuous values, but they may also attain qualita-
tive properties such as “good” or “bad”. If the property of being “good” or

BCDE=*QR=*YZ
A % X p o]
TF S NO W X
TEAEMY 2N
HKL*TU%3##

R T R

X JxSkrY G4

Fig. 3.27. Self-organized map of the data matrix in Table 3.5

3.14 Examples of Data Analyses Implemented by the SOM 163

Fig. 3.28. Minimal spanning tree of the data matrix in Table 3.5

“bad”, respectively, should be describable by a numerical attribute, it would
be simplest to assume that such an attribute has the binary value, say 1
or 0, depending on the presence vs. absence of that attribute, respectively.
Then the (unnormalized) similarity between two (binary) attribute sets may
be defined in terms of the number of attributes common to both sets, i.e.,
as the dot product of the respective attribute vectors. It might seem more
effective to use the value +1 to indicate the presence of an attribute, and
-1 for its absence, respectively; however, if we normalize the input vectors,
in their subsequent comparison using the dot product the attribute values 0
have a qualitatively similar effect as negative components in a comparison on
the-basis of vectorial differences. Euclidean distances can naturally be used
directly for comparison, too.

To illustrate the self-organizing result with a concrete model simulation
[2.73], consider the data given in Table 3.6. Each column is a schematic
description of an animal, based on the presence (= 1) or absence (= 0) of
some of the 13 different attributes given on the left. Some attributes, such as
“feathers” and “2 legs” are correlated, indicating more significant differences
than the other attributes, but we shall not take this correlation into account
in learning in any way. In the following, we will take each colnmn for the
input vector of the animal indicated at the top. The animal name itself does
not belong to the vector but instead specifies the label of the animal in the
calibration of the map.

The members of the data set were presented iteratively and in a random
order to a SOM of 10 x 10 neurons subject to the adaptation process described
above. The initial connection strengths between the neurons and their n = 29
input lines were chosen to be small random values, i.e. no prior order was
imposed. However, after a total of 2000 presentations, each neuron became
more or less responsive to one of the occuring attribute combinations and
simultaneously to one of the 16 animal names, too. Thus we obtain the map
shown in Fig. 3.29 (the dots indicate neurons with weaker responses). It
is very apparent that the spatial order of the responses has captured the
essential “family relationships” among the animals. Cells responding to, e.g.,

164 3. The Basic SOM

Table 3.6. Animal names and their attributes

g € t h 2

d d ¢ h g :‘)’ i 1 o e

h u o a c g i b
3 e € g wow] (f) g 1 a ¢ cl) ; r cc)
e n k e 1 k e x g f t r n e a w
small 1 11111 000O0O0O01O0UO0O0TO0OTFG0O
is mediuom 0 0 0 0 0 0 1 1 1 1 0 0 O O O O
big 0 0000 0 0 O0OO0CO OT1 1111
2 legs 11111 11000 O0O0U0OUOO0OU0O0
4 legs 00 900 0 0111 111111
has hair 0 0000 0 0111 111111
hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
mane 0 0 000 0 0001 001110
feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 O
hunt ¢ 0001 1t 1101 111000
likes run 00 0 00 0 0011 011110
to fly 1 01111 00O0OOOOUO0OUOOUOTOGO
swim 0 0110 0 0O0O0OO0COUOOUODOUOTD0

“birds” occupy the left part of the lattice, “hunters” such as “tiger”, “lion”
and “cat” are clustered toward the right, and more “peaceful” species such
as “zebra”, “horse” and “cow” are situated in the upper middle. Within each
cluster, a further grouping according to similarity is discernible.

duck . . horse . . . cow
zebra
tiger
goose wolf
hawk
owl lion
dove dog
eagle
hen fox . . cat

Fig. 3.29. After the network had been trained with inputs describing attribute sets
from Table 3.6, the map was calibrated by the columns of Table 3.6 and labeled
correspondingly. A grouping according to similarity has emerged

3.15 Using Gray Levels to Indicate Clusters in the SOM 165

3.14.2 Case Example of Attribute Maps Based
on Incomplete Data Matrices (Missing Data): “Poverty Map”

It has turned out that the SOM is a very robust algorithm, compared with
many other neural models. One of the frequently encountered problems in
practical (especially statistical) applications is caused by missing data [3.33,
34]. However, if the number of attributes taken into account is appreciable,
say, at least on the order of hundreds, an appreciable fraction of data may
be missing without making the similarity comparison impossible.

To start with, it is advisable to normalize each attribute scale such that
its variance taken over all the items is unity. Similarly one may subtract the
mean from each attribute: thus the scales are said to be (0, 1) -normalized.

Comparison of an item with the codebook vectors is best made in the
Euclidean metric, unless some better metric is deducible from the nature
of the problem. Then, however, only the known components of x, and the
corresponding components of each m;, can be taken into account in the com-
parison: during this step the vectors are redimensioned correspondingly.

The data used in this case example were the same as in Sect. 1.3.2, namely,
from the statistics published by World Bank [1.26]. The 39 indicators describe
the poverty of the countries, or their citizens. All indicators are relative to
population.

For 126 countries of the world listed, 12 or more indicator values of 39
possible ones were given to 78 countries and these countries were then taken
to.the data matrix used in training the SOM process. In Fig. 3.30, these
countries are labeled by capital letters. For the countries labeled by lower-
case symbols, more than 11 attribute values were missing, and they were
mapped onto the SOM after training.

The “poverty map” of the countries is presented in Fig. 3.30. The symbols
used in the map have been explained in Table 3.7. It has to be noted that
horizontal or vertical directions have no explicit meaning in this map: only
the local geometric relations are important. One might say that countries
that are mapped close to each other in the SOM have a similar state of
development, expenditure pattern, and policy.

3.15 Using Gray Levels to Indicate Clusters in the SOM

From the above map and the previous ones, however, we still do not see any
boundaries between eventual clusters. That problem will be discussed in this
section.

A graphic display called the U-matriz, to illustrate the clustering of code-
book vectors in the SOM has been developed by Ultsch and Siemon [3.35],
as well as Kraaijveld et al. [3.36]. They suggested a method in which the
average distances between neighboring codebook vectors are represented by
shades in a gray scale (or eventually pseudocolor scales might be used). If the

166 3. The Basic SOM

afg gin
CHN bur BGD
BEL SWE ITA YUG rom SOR 1w MG - NpL b M;lL ner
HUN
AUT che bgr R } R gab moz mrt
pEuFRa NLO JPN - ok PO br M PAK invem
MW
ESP GRC - - THA MAR - IND caf SEN TzZA
uga
DNK EcU 120
GBR FIN IRL . URY ARG - EGY hi png - ted
NOR mex ZAR
KOR - zat - TUN ‘i‘rz: GHA NGA - ETH
- ISR - . gg; bn by ZWE omn - ago hvo
AUS MUs PAY hnd BwA Kken BEN g bd
tto syr n CIV som RWA
NZL - - CHL PAN ab ’;‘a"l? . vam ::; - - 1go
HKG . CR JAM N . B g MRk
SGP VEN MYS L o nam ZMB

Fig. 3.30. “Poverty map” of 126 countries of the world. The symbols written in
capital letters correspond to countries used in the formation of the map; the rest
of the symbols (in lower case) signify countries for which more than 11 attribute
values were missing, and which were mapped to this SOM after the learning phase

average distance of neighboring m; is small, a light shade is used; and vice
versa, dark shades represent large distances. A “cluster landscape” formed
over the SOM then clearly visualizes the classification.

_ The case example of Sect. 3.14.2, with the gray-level map superimposed on
it, is now shown in Fig. 3.31, and it clearly shows “ravines” between clusters.
The interpretation is left to the reader.

3.16 Interpretation of the SOM Mapping

The Self-Organizing Map combines nonlinear projection (Sect. 1.3.2) and
clustering (Sect. 1.3.4) methods in an ordered vector quantization graph.
Therefore the mapping that it produces is expected to be explainable in
terms of some classical concepts of statistics.

3.16.1 “Local Principal Components”

The main difference between the SOM and the principal component analysis
(PCA) is that the latter describes the global statistical properties of the
data distribution: the first “principal axis” defines the direction in which
the variance of the distribution is largest, the second “principal axis” that

3.16 Interpretation of the SOM Mapping

Fig. 3.31. “Poverty map,” with the clustering shown by shades of gray

167

168 3. The Basic SOM

Table 3.7. Legend of symbols used in Figs. 3.29 and 3.30:

AFG Afghanistan GRC Greece NOR Norway

AGO Angola GTM Guatemala NPL Nepal

ALB Albania HKG Hong Kong NZL New Zealand
ARE United Arab Emirates HND Honduras OAN Taiwan, China
ARG Argentina HTI Haiti OMN Oman

AUS Australia HUN Hungary PAK Pakistan
AUT Austria HVO Burkina Faso PAN Panama

BDI Burundi IDN Indonesia PER Peru

BEL Belgium IND India PHL Philippines
BEN Benin IRL Ireland PNG Papua New Guinea
BGD Bangladesh IRN Iran, Islamic Rep. POL Poland

BGR Bulgaria IRQ Iraq PRT Portugal
BOL Bolivia ISR Israel PRY Paraguay
BRA Brazil ITA Italy ROM Romania
BTN Bhutan JAM Jamaica RWA Rwanda
BUR Myanmar JOR Jordan SAU Saudi Arabia
BWA Botswana JPN Japan SDN Sudan

CAF Central African Rep. KEN Kenya SEN Senegal

CAN Canada KHM Cambodia SGP Singapore
CHE Switzerland KOR Korea, Rep. SLE Sierra Leone
CHL Chile KWT Kuwait SLV El Salvador
CHN China LAO Lao PDR SOM Somalia

CIvV Cote d’Ivoire LBN Lebanon SWE Sweden

CMR Cameroon LBR Liberia SYR Syrian Arab Rep.
COG Congo LBY Libya TCD Chad

COL Colombia LKA Sri Lanka TGO Togo

CRI Costa Rica LSO Lesotho THA Thailand
CSK Czechoslovakia MAR Morocco TTO Trinidad and Tobago
DEU Germany MDG Madagascar TUN Tunisia

DNK Denmark MEX Mexico TUR Turkey

DOM Dominican Rep. MLI Mali TZA Tanzania
DZA Algeria MNG Mongolia UGA Uganda

ECU Ecuador MOZ Mozambique URY Uruguay
EGY Egypt, Arab Rep. MRT Mauritania USA United States
ESP Spain MUS Mauritius VEN Venezuela
ETH Ethiopia MWI Malawi VNM Viet Nam
FIN Finland MYS Malaysia YEM Yemen, Rep.
FRA France NAM Namibia YUG Yugoslavia
GAB Gabon NER Niger ZAF South Africa
GBR United Kingdom NGA Nigeria ZAR Zaire

GHA Ghana NIC Nigaragua ZMB Zambia

GIN Guinea NLD Netherlands ZWE Zimbabwe

direction of all directions orthogonal to the first principal axis in which the
residual variance is largest, and so on.

The SOM, however, can be characterized as a two-dimensional, finite-
element “elastic surface” or network that is fitted to the distribution of the
input samples. This network has locally, at every node of it, two principal
directions that are found considering the differences between the neighboring
vectors. For instance, the subset of reference vectors {m;} in the closest neigh-
borhood of reference vector m; and including the latter may be regarded as
a smoothed set of samples that is trying to represent a local two-dimensional
hyperplane. The principal axes of this hyperplane, and the two largest princi-
pal components of this subset can be computed in the normal way from the
subset of neighboring reference vectors.

3.16 Interpretation of the SOM Napping 169

As the reference vectors resulting in the smoothing process earried out
by the SOM may not accurately represent the original statistics of the input
samples, we may only qualitatively regard the two principal components of
the neighborhood set as the “local principal components.” If we want more
than two of them, we must fit a higher-dimensional SOM to the input data.
Nonetheless, as the “local principal components” can be computed readily
and in an almost unique way (depending only on the SOM process and the
definition of the neighborhood), they allow one to get an illustrative insight
into complex and “noisy” data distributions.

One may further apply the classical factor analysis (Sect. 1.3.1) to each
neighborhood set of the reference vectors, in order to find the factor loadings
of the input variables in each local area of the SOM. Notice that the local
factor loadings may be totally different in different domains of the input
data.

Notice that it would be absurd to carry out a local PCA, or to com-
pute the local factors on the basis of the subset of input samples that are
mapped to neighboring Voronoi sets. Consider, for. instance, Fig. 3.11 and
look what distribution the samples in the union of any three neighboring
Voronoi sets have: no “principal axes” have any sense. On the other hand,
the neighboring SOM reference vectors lie neatly in a direction that takes
into account the global form of the distribution, but still the local directions
are sensitive to local statistics. Therefore it is more sensible to define the
“local factors” on the basis of the reference vectors. In other words, like in
the mathematical discipline called differential geometry, the local directions
must fulfill certain “compatibility conditions” that the SOM automatically
takes into account.

3.16.2 Contribution of a Variable to Cluster Structures

This analysis is related to the local PCA and local factor analysis but is com-
putationally simpler and more directly describes the discriminatory power of
an input variable in the mapping.

Consider the vectorial differences between neighboring reference vectors.
Similary one can form the respective differences of each vector component
separately. If the correlation between the vectorial differences and the differ-
ences of some component ina local area of the SOM is large, this component
(variable) has a significant contribution to the cluster structure and a large
explanatory power in that domain of values.

The discriminatory power of a variable is manifested most strongly at
the cluster borders, where one is looking for variables that make the biggest
difference between the neighboring clusters.

Example. In Fig. 3.32, the animal example defined in Table 3.6 and depicted
in Fig. 3.29 has been interpreted by both of the above methods.

170 3. The Basic SOM

arey sey

saAoO0Y sey

Fig. 3.32. Illustration of the two interpretation methods applied to the animal data.
The top row visualizes the variable “has hair” and the bottom row “has hooves,”
respectively. (a) The component planes. The shade of gray describes the valite of the
respective component of the reference vectors (white: large, black: small). (b) The
contribution of the variables in the two local factors (white: maximal contribution,
black: minimal contribution). (c) The (spatially smoothed) contribution of the
variables in the local cluster structures (dark: large contribution, white: minimal
contribution)

3.17 Speedup of SOM Computation

3.17.1 Shortcut Winner Search

If there are M map units (neurons) in the SOM, and one stipulates that
for a certain statistical accuracy the number of updating operations per unit
shall be some constant (say, on the order of 100), then the total number
of comparison operations to be performed during learning by an exhaustive
search of the winners is ~ M?2.

By a tree-structured multilayer SOM architecture to be discussed in Sect.
5.3 it will be possible to reduce the number of searching operations to ~
M log M. However, since the winner is thereby determined in a multistep
decision process in which the later decisions depend on the earlier ones, the
partition of the input signal space is not exactly the same as the Voronoi
tessellation discussed earlier.

We will now show that the total number of comparison operations can
be made ~ M, provided that the training vectors have been given in the
beginning, i.e., their set is finite and closed. Koikkalainen [3.37, 38| has used a
somewhat similar idea in the tree-structured SOM, but the scheme presented
below {3.39] can be used in connection with any traditional SOM. Moreover,

3.17 Speedup of SOM Computation 171

in principle at least, the decision can also be regarded as a one-level process,
comparable to the basic SOM.

Assume that we are somewhere in the middle of an iterative training
process, whereby the last winner corresponding to each training vector has
been determined at an earlier cycle. If the training vectors are expressed as a
linear table, a pointer to the corresponding tentative winner location can be
stored with each training vector (Fig. 3.33).

Training pointers
vectors

new winner

winner

SOM

/\\/

Fig./3.33. Finding the new winner in the vicinity of the old one, whereby the old
winner is directly located by a pointer. The pointer is then updated

Assume further that the SOM is already smoothly ordered although not
yet asymptotically stable. This is the situation, e.g., during the lengthy fine-
tuning phase of the SOM, whereupon the size of the neighborhood set is also
constant and small. Consider that updating of a number of map units is made
before the same training input is used again some time later. Nonetheless it
may be clear that if the sum of the corrections made during this period
is not large, the new winner is found at or in the vicinity of the old one.
Therefore, in searching for the best match, it will suffice to locate the map
unit corresponding to the associated pointer, and then to perform a local
search for the winner in the neighborhood around the located unit. This will
be a significantly faster operation than an exhaustive winner search over the
whole SOM. The search can first be made in the immediate surround of the
said location, and only if the best match is found at its edge, searching is
continued in the surround of the preliminary best match, until the winner is
one of the middle units in the search domain. After the new winner location
has been identified, the associated pointer in the input table is replaced by
the pointer to the new winner location.

For instance, if the array topology of the SOM is hexagonal, the first
search might be made in the neighborhood consisting of the seven units at

172 3. The Basic SOM

or around the winner. If the tentative winner. is one of the edge units of
this neighborhood, the search must be continued in the new neighborhood
of seven units centered around the last tentative winner. Notice that in each
new neighborhood, only the three map units that have not yet been checked
earlier need to be examined.

This principle can be used with both the usual incremental-learning SOM
and its batch-computing version.

A benchmark with two large SOMs relating to our recent practical exper-
iments has been made. The approximate codebook vector values were first
computed roughly by a traditional SOM algorithm, whereafter they were
fine-tuned using this fast method. During the fine-tuning phase, the radius
of the neighborhood set in the hexagonal lattice decreased linearly from 3
to 1 units equivalent to the smallest lattice spacings, and the learning-rate
factor at the same time decreased linearly from 0.02 to zero. There were 3645
training vectors for the first map, and 9907 training vectors for the second
map, respectively. The results are reported in Table 3.8.

Table 3.8. Speedup due to shortcut winner search

Input dimensionality Map size Speedup factor ~ Speedup factor

in winner search in training
270 315 43 14
315 768 93 16

The theoretical maximum of speedup in winner search is: 45 for the first
map, and 110 for the second map, respectively. The training involves the
winner searches, codebook updating, and overhead times due to the operating
system and the SOM software used. The latter figures may still be improved
by optimization of the management of the tables.

3.17.2 Increasing the Number of Units in the SOM

Several suggestions for “growing SOMs” (cf., e.g. [3.40-54]) have been made.
The detailed idea presented below has been optimized in order to make very
large maps, and is believed to be new. The basic idea is to estimate good
initial values for a map that has plenty of units, on the basis of asymptotic
values of a map with a much smaller number of units.

As the general nature of the SOM process and its asymptotic states is now
fairly well known, we can utilize some “expert knowledge” here. One fact is
that the asymptotic distribution of codebook vectors is generally smooth, at
least for a continuous, smooth probability density function (pdf) of input, and
therefore the lattice spacings can be smoothed, interpolated, and extrapolated
locally.

3.17 Speedup of SOM Computation 173

} 1 I} H i 1]

5) 1S) s o
a Tt M uY b

{ i 1 I I 1 i 1 1 1 1 I
10) 10) o
a M u Mg’ b

Fig. 3.34. Asymptotic values for the u; for two lengths of the array

As an introductory example consider, for instance, the one-dimensional
SOM and assume tentatively a uniform pdf of the scalar input in the range
[a,b]. Then we have the theoretical asymptotic codebook values for different
numbers of map units that approximate the same pdf, as shown in Fig. 3.34.

Assume now that we want to estimate the locations of the codebook values
for an arbitrary pdf and for a 10-unit SOM on the basis of known codebook
values of the 5-unit SOM. A linear local interpolation-extrapolation scheme

can then be used. For instance, to interpolate ;1,,(310) on the basis of ;1,35) and
u:(;"), we first need the interpolation coefficient A5, computed from the two

ideal lattices with uniform pdf:
10
§'9 = e + (1= 25)u8” (3.74)

from which \j for u(;o) can be solved. If then, for an arbitrary pdf, the true

values of “/2(5) and u;(s) have been computed, the estimate of the true ,1;,(‘°)
is

s = asp® + (1~ As)ps® (3.75)

Notice that a similar equation can also be used for the eztrapolation of,
say, ,4"’) on the basis of u?) and ug’).

Application of local interpolation and extrapolation to two-dimensional
SOM lattices (rectangular, hexagonal, or other) is straightforward, although
the expressions become a little more complicated. Interpolation and extrapo-
lation of a codebook vector in a two-dimensional lattice must be made on the
basis of vectors defined at least in three lattice points. As the maps in practice
may be very nonlinear, the best estimation results are usually obtained with
the three closest reference vectors.

Consider two similarly positioned overlapping “ideal” two-dimensional

lattices in the same plane, with the codebook vectors mfld) € %z,m?) €

§R2,m§") € ®2, and m{”) € R? its nodes, where the superscript d refers to a
“dense” lattice, and s to a “sparse” lattice, respectively. If m?’,mj.’), and
mscs) do not lie on the same straight line, then in the two-dimensional signal

plane any mfld) can be expressed as the linear combination

d
mgl) = ahm,(") + ﬂ;.mﬁ-” +(1—an— ﬂh)m;:)) (3.76)

174 3. The Basic SOM

where ay, and (), are interpolation-extrapolation coefficients. This is a two-
dimensional vector equation from which the two unknowns ay and 85, can be
solved.

Consider then two SOM lattices with the same topology as in the ideal ex-
ample, in a space of arbitrary dimensionality. When the true pdf may also be
arbitrary, we may not assume the lattices of true codebook vectors as planar.
Nonetheless we can perform a local linear estimation of the true codebook
vectors m;l(d) € R" of the “dense” lattice on the basis of the true codebook
vectors m;, (", m;(’), and m;(s) € R™ of the “sparse” lattice, respectively.

In practice, in order that the linear estimate be most accurate, we may
stipulate that the respective indices h, i, j, and k are such that in the ideal
lattice m(3 mgs), and m(’) are the three codebook vectors closest to m() §
the 81gnal space (but not on the same line). With ay, and 3y, solved from (3 76)
for each node h separately we obtain the wanted interpolation-extrapolation
formula as

r‘n’h(d) = ah"_lz (o) + ﬂhm;(’) +(1—ap— ﬁh)m;c(s) . 3.77)

Notice that the indices h,i,j, and k refer to topologically identical lat-
tice points in (3.76) and (3.77). The interpolation-extrapolation coefficients
for two-dimensional lattices depend on their topology and the neighborhood
function used in the last phase of learning. For the “sparse” and the “dense”
lattice, respectively, we should first compute the ideal codebook vector values
in analogy with Fig. 3.34. As the closed solutions for the reference lattices
may be very difficult to obtain, the asymptotic codebook vector values may be
approximated by simulation. If the ratio of the horizontal vs. vertical dimen-
sion of the lattice is H : V, we may assume tentatively that two-dimensional
input vectors are selected at random from a uniform, rectangular pdf, the
width of which in the horizontal direction is H and the vertical width of
which is V. These inputs are then used to train two-dimensional SOMs that
approximate the ideal two-dimensional lattices.

Initialization of the Pointers for a Larger Map. When the size (num-
ber of grid nodes) of the maps is increased stepwise during learning using
the estimation procedure, the initial pointers for all data vectors after each
increase can be estimated quickly by utilizing the formula that was used in
increasing the map size, equation (3.76). The winner is the map unit for
which the inner product with the data vector is the largest, and so the inner
products can be computed rapidly using the expression

:tngld) = ah.'l:T (o) + ﬂthm(s) +(1-an— ﬁh)“’Tm(S) (3.78)

Expresswn (3.78) can be interpreted as the inner product between two three-
dimensional vectors, [an; Br; (1 — ax — Br)]T and [z m("),x m(’) (’)]T
irrespective of the dimensionality of x. If necessary, the wmner search can
still be speeded up by restricting the winner search to the area of the dense

map that corresponds to the neighborhood of the winner on the sparse map.

3.17 Speedup of SOM Computation 175

This is especially fast if only a subset (albeit a subset that covers the whole
map) of all the possible triplets (i, j, k) is allowed in (3.76) and (3.78).

3.17.3 Smoothing

It may not always be desirable or possible to use an excessive computing
time just to guarantee very high accuracy or correctness of the asymptotic
state of the map. Consider, for instance, that the number of available training
samples is so small that they anyway do not approximate the pdf well enough.
However, as the smooth form of the map is necessary for good resolution in
comparing matching at the adjacent units, one might rather stop the training
when there are still appreciable statistical errors in the codebook vectors, and
apply a smoothing procedure to achieve this fine resolution.

Smoothing and relazation are related concepts, although with quite differ-
ent scopes. In smoothing one aims at the reduction of stochastic variations,
whereas in relaxation a typical task is to solve a differential equation by dif-
ference approximations. An example of the latter is the Dirichlet problem,
computation of the values of a harmonic function inside a domain, when the
boundary conditions have been given.

Smoothing also differs from relaxation because it is usually only applied
a few times differentially; in relaxation problems the “smoothing” steps are
iterated until the asymptotic state can be regarded as stable, whereby the
final state may look very different from the initial one.

Consider, for example, that we stop the SOM algorithm when the code-
book vectors have achieved the values m},. A smoothing step looks similar
to (3.76) and (3.77), except that the lattice is now the same: the new value
of a codebook vector is obtained from, say, three old codebook vectors that
are closest to the one to be smoothed in the two-dimensional signal space of
the ideal lattice, but do not lie on the same straight line. In analogy with
(3.76) and (3.77), let my, (of the ideal lattice) first be expressed as the linear
combination

mp = Ypm; + 6pmj + (1 — yp — Sp)my . (3.79)

From this vector equation, v, and 6, can be solved. The smoothed value
of m}, in the corresponding true SOM lattice with arbitrary pdf reads

S(mp) = elyaml + 8um’; + (1 — yh — Sp)ml] + (1 — e)m} (3.80)

where the degree of smoothing has been further moderated using the factor
£,0<e<l.

This scheme is similar for units both in the inside and at the edges of the
SOM lattice. In smoothing, the new values of all codebook vectors must first
be computed on the basis of the old ones and buffered, whereafter they are
made to replace the old values simultaneously.

176 3. The Basic SOM

3.17.4 Combination of Smoothing, Lattice Growing,
and SOM Algorithm

It now seems to be the most reasonable strategy to first perform an equal
number of identical smoothing steps for both the ideal and the real lattice,
respectively, after which (3.76), (3.77), and (3.80) are applied:

m® = anS*(m®) + FrS* (M) + (1 - an — B)S* (M), (3.81)
@ = 0p S (m]) + BuSF (M) + (1 —an - Br)S*(m(), (3.82)

where S*(-) means k successive smoothing operations.
Finally, some fine-tuning steps of the map can be made with the SOM,
eventually using the shortcut winner search at its later cycles.

Comment. The results of this Sect. 3.17 have been utilized in the applica-
tion to be described in Sect. 7.8, whereby very large SOMs are computed.

4. Physiological Interpretation of SOM

It may be recalled (Sect. 2.15) that three types of neuronal organization can
be called “brain maps”: sets of feature-sensitive cells, ordered projections
between neuronal layers, and ordered anatomical maps of abstract features.
The latter reflect the most central properties of the organism’s experiences
and other occurrences. Such feature maps are probably learned in a process
that involves parallel input to neurons in a brain area and adaptation of
neurons in the neighborhood of the cells that respond most strongly to this
input.

Since it might take days, weeks, months, or years for the biological SOM
processes in neural realms to form or alter neural maps, the organizing effects
are not immediately measurable and may be disguised by other, stronger
changes in short-term signal activities. Changes in the m; and their effects
on signal transmission occur gradually, probably only intermittently during
shdrt periods of “learning” when some specific plasticity-control factor is on.

Nonetheless it has now become possible to demonstrate theoretically that
a SOM process is implementable by quite usual biological components, and
there may even exist many candidates for the latter. The purpose of this
chapter is to devise general principles according to which physiological SOM
models may be built. It is based on [2.45].

4.1 Conditions for Abstract Feature Maps in the Brain

It were unrealistic to expect that maps as clearly organized as in the simu-
lation studies should exist in the brain. The biological sensory preprocessing
is already much more complex than that used in simulations. Nonetheless
there exist many kinds of feature maps in the brain, either orderly represen-
tations of the skin, retina, or cochlea, or more abstract maps. For instance,
there are acoustic maps associated with sound to which the organism is most
frequently exposed to. The tonotopic maps are known to exist both in the
auditory pathways and in the areas of hearing on the cortex [4.1, 2] They are
often thought to represent the order of the acoustic resonances on the basilar
membrane of the inner ear, and preservation of the same order in the path-
ways originating from the hair cells and ending up at the cortex. Nonetheless

