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A Self-Organizing Map for Adaptive Processing
of Structured Data

Markus Hagenbuchner, Alessandro Sperddgémber, IEEEand Ah Chung TsgiSenior Member, IEEE

Abstract—Recent developments in the area of neural networks another. The output of the neurons corresponding to the source
produced models capable of dealing with structured data. Here, we node can then be obtained. A gradient descent method is used
propose the first fully unsupervised model, namely an extension of i |aarn the weights of the multilayer perceptrons. The models
traditional self-organizing maps (SOMs), for the processing of la- . o . . .
beled directed acyclic graphs (DAGSs). The extension is obtained &€ simplified by assuming that _al_l multilayer perceptrons in the
by using the unfolding procedure adopted in recurrent and recur- DAG and across the set of training DAGs have the same pa-
sive neural networks, with the replicated neurons in the unfolded rameters. This approach basically consists of an extension to
network comprising of a full SOM. This approach enables the dis- DAGs of the traditional “unfolding” process adopted by recur-
covery of similarities among objects including vectors consisting of rent neural networks for sequences [5], [6].

numerical data. The capabilities of the model are analyzed in de- Theoretical or i f recursive neural networks hav
tail by utilizing a relatively large data set taken from an artificial eoretical properties O recursive neural networks have

benchmark problem involving visual patterns encoded as labeled Peen studied [7]-[13] and applications are starting to emerge
DAGs. The experimental results demonstrate clearly that the pro- [14]-[17], especially in the field of chemistry [18]-[21], where
posed model is capable of exploiting both information conveyed in chemical compounds are naturally represented in graphical
the labels attached to each node of the input DAGs and informa- fgrm.
tion encoded in the DAG topology. Supervised information, however, either may not be available
Index Terms—Clustering, data mining which involves novel or very expensive to obtain. Thus it is very important to develop
types of data/knowledge, data reduction techniques, discovering models which are able to deal with structured data in an unsuper-
similarities, innovative algorithms, processing labeled graphs, \icad fashion. In this paper, we will show how self-organizing
recurrent neural networks, recursive neural networks, self orga- .
nizing maps (SOMs), vector quantization (VQ). maps (SOMs) [22] can be extended to'treat complex opjects rep-
resented by data structures. A SOM implements a discrete ap-
proximation of principal curves [23] by means of a set of neural
I. INTRODUCTION units arranged into a topological map, usually of dimension two.

ANY natural and artificial systems are more appropriThe ability of the SOM to preserve topological features [24] can
I\/I ately modeled using data structures. For example bR exploited to perform a clustering of the data on the basis of

image can be segmented into various components, and egGimilarity criterion and also to induce a metric onto the input

component can be considered in relation to one another in a'h”_' dth dard SOM model 122
form of a graph structure. This structured representation conve dn this paper, we exten the standar ; mode [22], so
much more information than a “flat’ one, e.g., a vector of mf_ys to allow the mapping of structured objects into a topolog-
. . ! R 1 H H . . . _
merical features extracted from the image. The use of structutlgaI map: This mapping can then be used to discover similar

representations is convenient also for representing data frgﬁssezrﬂg?vsotriei'zput:]gtg;fg‘(') Trzir:tazlf(;)ﬁgogmread Eﬁé "t::eaprgf-
many other areas such as molecular chemistry, the world w P P pograp p

. . . the input structures and substructures in which the spatial loca-
web, electronic documents, syntactic parsing trees, and others: e L
) tiohs of the neurons are indicative of statistical features of the
In recent years, supervised neural networks have been devel- : . o
. . ructures is novel especially when considering labeled DAGs
oped which are able to deal with structured data encoded as |a-

beled directed acyclic graphs (DAGs). These models are cal ere the labels are real-valued vectors. Although SOMs have
. yclic grap ) . ) een defined to work on vector spaces, some extensions to se-
recursive neural networks and are fully described in [1]-[4]. Th

o . . ences exist. The best known works include the temporal Ko-
essential idea of recursive neural networks is to model each nede | map (TKM) [25], and the recurrent self-organizing map
of an input DAG by a multilayer perceptron, and then to proce '

the DAG f its sink nodes t dth g ina t SOM) [26]. Both models use leaky integrators for the repre-
e r?”r]]' SD?AWC]; nodes owarr] e sourc;a hoae, usmg Entation of the state (context). A different approach is adopted
structure of the to connect the neurons from one NoGe;lpihe contextual self-organizing map (CSOM) [27], where re-
current connections between units in the map are used. The pro-
Manuscript received October 31, 2001; revised October 9, 2002. posed e_xtensmn to the domain of graphs produces an important
M. Hagenbuchner is with the Faculty of Informatics, University of WoIIon—(.:!eneral'Za-t'c’n OT the SOM mpdel, while !eavmg the computa-
gong, Wollongong NSW 2522, Australia (e-mail: markus@artificial-neuration of context simple and efficient. As will be seen, the treat-
net). ; _
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of DAG), and a vector as a labeled graph consisting of a singleNote that DAGs with labeled edges can be reduced to DAGs
node. The only other unsupervised neural-network approacthtaving only labels on the nodes. A straightforward method for
structured data we are aware of is described in [28] where tteglucing structures with labeled edges to structures with unla-
task is to find fixed-length vector representations for DAGs ibeled edges is to move each label attached to an edge leaving a
an unsupervised manner using a maximum entropy approachiven nodev to the label attached to node

The organization of this paper is as follows: Section Il isanin- Given a data structur®, the DAG obtained by ignoring all
troduction to basic concepts in data structures and describesribde labels will be referred to as tis&eletonof D, denoted
notations used in this paper, while Section Il addresses recsikel(D). Clearly, any two data structures can be distinguished
sive neural networks. The basic idea underpinning our approdmdtause they have different skeletons, or, if they have the same
is explained in Section IV, while in Section IV-A, we discusskeleton, because they have different node labels.
a slightly modified standard SOM, which is used as a compo-In the following, we shall denote b§(°) the class of DAGs
nent of our approach. The training algorithm for this SOM is devith maximum outdegree. A generic class of DAGs with
scribed in Section IV-B. Section V presents a general algorithnounded (but unspecified) outdegree, will simply be denoted
for unsupervised learning of DAGs using the SOM techniquby #. The class of all data structures defined over the label
In Section VI, we show the results obtained by the algorithemiverse domairly and skeleton in#(<) will be denoted as
proposed in this paper on an image processing problem whgré(”_ The void DAG will be denoted by the special symiol
visual patterns are modeled by using DAGs. Finally, some con-|n Fig. 1, we have shown some examples of visual patterns

clusions are drawn in Section VII. represented as DOAGs. Each node of the graph represents a dif-
ferent colored component of the visual pattern, while edges are
Il. FUNDAMENTAL CONCEPTS OFDATA STRUCTURES used to encode the concept of “connected with.” The direction

We shall use lowercase bold letters to denote vectors, upp@rin€ edges is decided on the basis of a procedure which scans

case bold letters to denote matrices, calligraphic letters for rép€ Picture bottom-up and from left to right (see Section VI for

resenting graphs, and bold calligraphic letters for representiﬂ't?re details).
domains. We assume that instances in the learning domain are
structured pieces of information described by annotated DAGH!- SUPERVISEDLEARNING: RECURSIVENEURAL NETWORKS

In particular, we consider the followirfg. In this section, we briefly describe how supervised learning
1) Directed ordered acyclic graphs (DOAGS). A DOAG igan be performed by neural networks in structured domains.
a DAG D with vertex setvert(D) and edge seigd(D), This description is useful, since it helps in understanding how
where for each vertex € vert(D) a total order on the unsupervised learning can be defined by using a computational
edges leaving from is defined? framework which is essentially the same as that defined for re-
2) Directed positional acyclic graphs (DPAGs). DPAGS are@ursive neural networks.
superclass of DOAGs in which itis assumed that for each Recursive neural networks described in [29] are neural net-
vertexv, a bijection?” : egd(D) — IN is defined on the \orks capable of performing mappings from a set of labeled
edges leaving from. graphs to a set of real vectors. Specifically, the class of func-
Theindegreeof nodew is the number of incoming edges totions which can be realized by a recursive neural network can
v, whereas theutdegreeof v is the number of outgoing edgespe characterized as the class of functional graph transductions
from v. 7 : I# — R*, whereZ = R™, which can be represented in
We shall require the DAG (either DOAG or DPAG) to possesge following formr = ¢ o 7, where7 : 7# — RR" is theen-
a supersource, i.e., a vertexc vert(D) such that every vertex coding (or state transitibl)lfunction andg : R” — R is the

in vert(D) can be reached by a directed path starting from o, tfunction. Specifically, given a DOA®, 7 is defined re-
If no supersource is present, a new node connected with all E'i?rsively as

nodes of the graph having nutidegreecan be added.

Given a DAGD andv € vert(D), we denote byh[v] the set (D) = 0 (the null vector inR™), ifD=¢ 1)
of children ofwv, and thekth child of v by chy[v]. \ 7(y,, 7(DD),..., 7(D)), otherwise

The data structures that we consider are labeled DAGs, where . ,
labels are tuples of variables and are attached to vertices %Mk?feT Is defined as

pos_sibly to edges. These variables express features atta<_:hed to S RTXR % - XxR" — R" )
a given node. The label attached to neds coded by values in -
U C IR™. When using connectionist models either numerical ctimes

or categorical variables assume real-valued representations WjHerelR ™ denotes the label space, while the remaining domains
values ird. Subscript notation will be used when referring to thga present the encoded subgraphs spaces up to the maximum out-
labels attached to vertices in a data structure. Hagjc@enotes gegree of the input domaifi#, ¢ is the maximum out-degree

the vector of variables labeling vertexc vert(D). of DOAGs inT#, s = sourcéD), y, is the label attached to

1
2The model described in this paper allows the processing of some spem\? super-source _OD, and D™, i »p(() are the subgraphs
classes of directed cyclic graphs. We will not define these as our main aimgeinted bys. A typical neural realization for is
the processing of acyclic graphs such as directed positional acyclic graphs, and
trees. e
3For example, in the case of graphs representing logical terms, the order on 7 (y, gV . 2)) = F(Wu, + Z ijv(]) +6) (3)
outgoing edges is immediately induced by the order of the function arguments. =1
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Fig. 1. Examples of DOAGSs representing visual patterns. Labels are not shown.

whereF;(v) = sgd(v;) (sigmoidal function)u, € R™ is a Thisis obtained in the SOM by associating each poitd iith
label,@ € IR™ is the bias vecto®¥ € R™*" is the weight ma- a different neuron. Moreover, the output spatgopology is
trix associated with the label spaag!) € IR™ are the vectorial typically endowed by arranging this set of neurons as the com-
codes obtained by the application of the encoding functiom putation nodes of a one- or two-dimensional lattice. Given an
the subgraph®) (i.e.,z() = 7(DW)), andW; € R™*™ is input vectorv, the SOM returns the coordinates withi of
the weight matrix associated with thith subgraph space. the neuron with the closest weight vector. Thus, the set of neu-
The output functioy maps the state transition space tedi- rons induce a partition of the input spafeln typical appli-
mensional output space and is generally realized by a feedfoationsZ = R™, wherem > 2, and A is given by a two
ward network, i.e., it is realized as a linear combination of thrdimensional lattice of neurons. With this setting, high-dimen-
outputs of the hidden layer neurons in the hidden layer of tls®nal input vectors are projected into the two-dimensional co-
output node. ordinates of the lattice, with the aim of preserving, as much as
Given a training sefl” = {(D;,t;)}:=1,...~, Where for each possible, the topological relationships among the input vectors,
data structureD; a desired target valug is associated, using i.e., input vectors which are close to each other should maxi-
(1), (3), and the neural network implementing the output funeally activate neighbor neurons in the lattice. The SOM is, thus,
tion g, for eachD; a feedforward network can be generated arkrforming data reduction via a vector quantization apprdach,
trained so as to match the corresponding desired target #aluexnd the coordinates of the winning neuron can be understood as
Since the weights are shared among all the generated feedfoe compressed version of the input vector.
ward networks, the training converges to a set of weight valuesin the next section, we show how a SOM, due to its data
which reproduces the desired target value, to within a prescribrediuction ability, can be used to implement théunction in
error tolerance, for each data structure in the training set.  an unsupervised learning framework.
The functionT maps from a higher dimensional space (i.e.,
m + ¢ - n) to a lower dimensional space (i.). Thus, the role V. UNSUPERVISEDLEARNING WITHIN AN SOM FRAMEWORK

of 7 consists of compressing the information about a node (i.e.,We are interested in generalizing (4) to deal with the case
the label, and the compressed information about the children of_ Y7 e the input space is a structured domain with

the node) in a vector of dimension This observation is fun- labels inY. In this case, we need to specify how the function
damental to understand how (1) can be adapted to unsupervise(? ' ' P
learning within a SOM approach. In fact, the aim of the SOM M# T 4 (5)

learning algorithm is to learn &@ature map is realized. One possibility is to redefine (1) as shown in (6) at
M:T— A 4) the bottom of the page, whese= sourcgD), D), ... D)

are the (eventually void) subgraphs pointed by the outgoing

which given _a V_eCtor n th_e SPat'a”y continupus input SPACE 4t can be shown that a SOM is actually related to a discrete version of the
returns a point in the spatiallyiscreteoutput display spacd. principal curves algorithm [23].

Y [ milg, if D=¢
M*(D) = {Mmdc (yo, M#E(DW), ... M#(D©)) | otherwise ©)
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Fig. 2. Example of computation 0¢1# for an input graph. The picture shows the multiple applicatioMtf, . to the nodes of the graph. First of all, the leaf
node 3 is presented t&1,,.q. (top), where the null coordinates are represented-tl ¢ 1). The winning neuron has coordinates (2,2). This information is used
to define the input vector representing node 2. This vector is then presented@. (middle) and the winning neuron is found to have coordinates (0,1). Using
both this information and the previous one, the input vector for node 1 can be composed and presehted tibottom). This time, the winning neuron is found
to have coordinates (1,0) and it is associated to the whole graph\1&(D) = (1,0).

edges leaving from, nil 4 is a special coordinate vector intodata reduction capability of the SOM, still constituteeduced
the discrete output spacé, and descriptorof the node. An example of how the computation
) described above proceeds is shownin Fig. 2. Inthis eagg,is
Muode : Y X AX - x A=A @ represented by the coordinatesl( —1). Note that a highlighted
c times neuron in Fig. 2 refers to the best matching neuron for the given

is a SOM, defined on a generic node, which takes as ingaput vector.

the label of the node and the “encoding” of the subgraphs

DO, ..., D according to theW# map. By “unfolding” the A Model 0fMuoqe

recursive definition in (6), it turns out that1# (D) can be In the previous section, we saw that the computationtf

computed by starting to appW1...4. to leaf nodes (i.e., nodescan be recast as the recursive application ofAg,q. SOM

with null outdegree), and proceeding with the application @b the nodes compounding the input structure. Moreover, the

M 0ae bottom-up from the frontier nodes (sink nodes) to theecursive scheme for gragh follows the skeletomkel(D) of

supersource of the grafb. the graph. In this section, we give implementation details on
Notice howM 4. in (6) is playing exactly the same role of M 4. SOM.

7 in (1), with the difference that returns a real-valued vector We assume that each labeDtis encoded idd  IR™. Thus,

representing aeduced descriptoof the node, whileM 4. for each node in vert(D), we have a vectos, of dimension

returns the coordinates of the winning neuron, which, due to the Moreover, we realize the display output spattrough &
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dimensional lattice of neurortsiVe assume that each dimensiorthe pointers. In fact, the elemems ¢, ..., A, », are settquq,

of the ¢ dimensional lattice is quantized into integess, ¢ = while the remaining elemenis,, 1 m+1, . - -, Amtcq,m4cq Are
1,2,...,¢q,ie, A=[1...nq] x [1...n2] x --- X [1...ny]. settous. Notice that ifA is equal to the identity matrix, then
The total number of neurons§?_, n;, and each “point”in the the standard SOM algorithm is obtained.

lattice can be represented by @imensional coordinate vector Step 2—Cooperative StefThe weight vectowwe,. , as well

c. For example, ify = 2, and if we haven; neurons on the as the weight vector of neurons in the topological neighborhood
horizontal axis andw.y neurons on the vertical axis, then theof the winning neuron, are moved closer to the input vector

winning neuron is represented by the coordinate vecta: _ .
(c1,¢2) € [1...n1] x [1...ny] of the neuron which is most we, (14 1) = we, (1) + (1) f(Ai-r)(0(t) —we, (1)) (11)

active in this two-dimensional lattice. where the magnitude of the attraction is governed by the
With the above assumptions, we have learning rate; and by a neighborhood functiof(A;«;.). Aj«,
m c is the topological distance between and¢;- in the lattice
Miode : IR™ x ([1... X oo X [1... !S . ¢ !
d (L m] [L---mq) i.e., Ay« = |le, — ¢+]|, and it controls the amount to which

= L] x-x[long] (8) the weights of the neighboring neurons are updated. Typically,

and them + cq dimensional input vectos to M 4., repre- the neighborhood functioif(-) takes the form of a Gaussian
senting the information about a generic nadés defined as ~ function

2
v = ['u"u zchl[v] mchg[v] s zchc[v]] (9) f(ALx,) = exp <—%> (12)
wherez.,, [, is the coordinate vector of the winning neuron for _ _ _ _ _
the subgraph pointed by theth pointer ofv. In addition, we Whereo is the spread which determines teighborhood size
have to specify howtil 4 is definednil 4 must be chosen to be As the Iearning proceeds and new input vectors are given tp the
a coordinate vector outside the range of valid coordinates suBRp, the learning rate gradually decreases to zero according to
as (-1,...,—1) which is of dimension. the specified learning rate function type. Along with the learning
Of course, each neuron with coordinates veejon theg-di- ~ rate, the neighborhood radius decreases asowell.

mensional lattice will have an associated vector weight €
R™teq, V. TRAINING ALGORITHM FOR M#

Notice that, given a DAG, in order to computeVi# (D), It is now quite clear how to perform the training 8f(* by

the SOMM ;4. Must be recursive!y applied to the node§_:of using the definition and training algorithm fowt,,,4.. Here is
One node can be processed only if all the subgraphs pointedRy training algorithm.

it have already been processed.®b,.q.. Thus, the computa-

tion can be parallelized on the graph, with the condition that “”I‘?aining Algorithm for M#
above constraintis not violated. A data flow model of computa; -~ set of training DAGs T ={Di}\
tion fits completely this scenario. When considering a sequential ,aximum outdegree of DAGs in T, mgp
model of computation, a node update scheduling constituted b e
any inverted topological order [30] for the nodes of the gra%'bgin
suffices to guarantee the correct computationh o . randomly set the weights for Moode:
Finally, it is observed that, not only is the SOM,,,q. for- repeat
mally representing single graph nodes, it is also “coding” infor'randomly select D e T with uniform dis-
mation about the structures. This happens because of the St“fﬁbution;
tural information conveyed by the.,, [, used as part of the List(D) < an inverted topological order
input vectors. Thus, some neurons of the map will be maximally, vert(D);
active only for some leaf nodes, others will be maximally active,, first(List(D)) to last(List(D))do
only for some nodes which are roots of graphs, and so on. train( Mooqe ([uv M#(chi[v]) M#(chalv]) -
B. Training Algorithm forM oqe enéw#(dl"[”])] );
The weights associated with each neuron in ghéimen-
sional latticeM 4. Can be trained using the following two-step The statement
process.
Step 1—Competitive Stepn this step, the neuron which istrain(Mpeqe([t, M¥ (chy[v])
most similar to the input node (defined as in (9)) is chosen. x M#(chy[v]) -+ M#(ch[v])]))
Specifically, the (winning) neuron, at iteratioywith the closest
weight vector is selected as follows: means that training corresponding to (10) and (11) is performed
] just once for the input vector constituted by the label vector
ci-(t) = argmin [[A(v(t) — we, (1)) (10) 4w, and the updated coordinates for the subgraphs rooted in

. . : o ch;[v]. The coordinates for the subgraphs rootedcin|v
whereA is a(m+cq) x (m+ cq) diagonal matrix which is used i[v] grap in[v]
to balance the importance of the label versus the importance dfGenerally, the neighborhood radius in SOMs never decreases to zero. Oth-
erwise, if the neighborhood size becomes zero, the algorithm reduces to vector

50Often, in SOM,g = 2. quantization (VQ) and no longer has topological ordering properties [31].
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bull564 bull571

Fig. 3. Slection of artificially generated traffic policemen images and extracted graph structure. Data labels are not shown. Nodes are nadibateevtich
element they represent.

must be recomputed from scratch (i.84% (ch;[v])) at each plex grammar. The dataset consists of visual patterns and asso-
iteration, since training changes the weights of the neurons amdted graph structures from three different domains. A number
so the winning neurons may change as well. Notice that tbéclasses were defined for each domain. Structural representa-
adaptation for the neighborhood radius and the learning ratetioins had been obtained by a scan line algorithm where images
M ode follows the standard schedule. are scanned from bottom to top, and from left to right. The first
The above algorithm is computationally quite expensive beelored object found constitutes the root node. Objects directly
cause of the updating of the coordinates for the subgraphs befooanected to it form the offsprings. Applying this procedure re-
performing a step of training. However, since the graphs in ticarsively, all objects are considered and a graph representation
training set must be presented several times, the following ste-obtained. Each node in the graph receives a two-dimensional
chastic approximation to the algorithm can be defined. label stating the £, y} coordinate of the center of gravity of the
corresponding object. Examples are illustrated in Figs. 3-5.
The result is a dataset that provides directed acyclic graphs

. - . %
Stochastic Training Algorithm for M with the following properties.

input:  Set of training DAGs T =A{Di}ic1 . .~
¢ maximum outdegree of DAGs in T, map

Miode; Outdegr. Depth  Num. nodes | Num.
begin ) .

i Data set Max. Min Max Min Max | classes
randomly set the weights for Miode;
repeat Policemen 3 4 5 9 11 2
randomly select D € T with uniform dis- Houses 5 2 3 4 7 8
tribution; Ships 6 1 2 3 13 2

List(D) «— an inverted topological order
for vert(D);

for v first(List(D)) to last(List(D))do Hence, policemen patterns produce deep narrow graphs, ships
train(Muode ([e Tenifo) Tenao)  Ten,(v]]))i and houses have a flat and wide data structure. Some graph
Ty — Muode([t Ten o) Tenofs) ”"chr[v]b? structures produced by the ships and houses are identical in
end structure such as house648 in Fig. 4 and ship1034 in Fig. 5.

There is no graph structure derived from policemen images that

In this version, the coordinates for the (sub)graphs are stofégontained in the domain houses or ships. Thus, some patterns
in ,,, once for each processing of graphand then used when ¢an be distinguished only through features encoded in the labels.
needed for the training ofM,,.q.. Of course, the stored vectorFOr example, when considering policemen, the location of the
is an approximation of the true coordinate vector for the gra@m is not encoded in the graph structure, but in the data label,

rooted inv, however, if the learning rateis small, this approx- While the graph structure is not affected. - o
imation may be acceptable. The maximum outdegree of all nodes in the data set is six.

As a result (with the dimension of the data lalek: 2) every

input vectorw is of dimensior2 + 2 x 6. The training (test) set

) ) contained 3750 (3750) graphs with a total of 29 864 (29 887)

~ For the experiments, we used an extended version dPthe podes. For the purpose of testing the network performance, 12
licemen Benchmaykvhich was obtained from [32]. In essenceg|asses are defined as shown in Table I. These classes are defined
the Policemen Benchmaiik a set of labeled DOAGs extractedsq that some of them can only be distinguished by considering
from images produced by means of a context free attributgformation provided through data labels such as class “a” and

“Notice that the use of an inverted topological order guarantees that the g'gass “F’-"_Sonﬁe classes require structural information in order
dating of the coordinate vectots is done before the use of, for training. to be distinguished such as classes “h” and “k.”

VI. EXPERIMENTS
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house648

Fig. 4. Artificially generated houses and associated graph structure. Data labels are not shown. Nodes are numbered to indicate which eleseatgds repr

ship433

Fig. 5. Atrtificially generated images of ships. Data labels are not shown.

TABLE |

DEFINITION OF THE 12 QLASSES AND THEIR SYMBOLS AS USED LATER IN

Fics. 6-13. (LL) MEANS “L OWER LEFT,” (UL) “U PPERLEFT,”

AND (UR) “UPPERRIGHT”

Class Description Symbol | Samples in set
Train Test

‘a’ Policemen with raised left arm X 645 670
b’ Policemen with lowered left arm O 605 580
¢ Ships featuring two masts ] 937 944
d’ Ships with three masts | < 313 306
e’ Houses without windows + 28 21
P Houses with 1 window in (LL) corner X 59 59
g Houses with 1 window in (UR) corner A 58 64
b Houses with 1 window in (UL) corner | 172 195
' | Houses with 2 windows in (LL) and (UL) | @ 53 71
i’ | Houses with 2 windows in (UL)) and (UR) A 170 173
k’ Houses with 2 windows in (LL) and (UR) Y 188 194
iy Houses with all three windows v 522 473
Total: 3750 | 3750
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Fig.6. Mapping of the root nodes on a randomly initialized netwdvk.(qa.)
of size114 x 87=9918 neurons (ratio 1:1.31). To avoid the cluttering of
symbols, the mapping of nodes other than root nodes is not shown here.

inal class membership of the data. The visualization of these
classes gives indications on how well the network encodes struc-
tures and the data labels. All the results described in this section
are obtained by SOM networks with a hexagonal topology and

Experiments were designed to demonstrate the typical eGaussian neighborhood function. Training was performed by
havior of SOM-SD networks in a given environment. Networkstilizing the stochastic training algorithm introduced earlier.
were trained on the same data set where class membership ifdere, we present a network fot,,,q. with about one third
formation was omitted during training. A software implemen@s many neurons as nodes in the data set. For this, we generated
tation of the SOM-SD model is available for download fron& 114x 87 output map, and initialized it with random valdes.

http://www.artificial-neural.net/simulators.html.

A. Results

Fig. 6 shows the state of the initial network. Displayed are the lo-
cations of neurons that were activated by root nodes only. It can
be observed that, at this initial state, the data is distributed ran-

This section discusses the behavior of sample SOM netwof@Mly across the map. Note that there are less neurons marked
for data structures¥{#) when applied to the data set describetfan the number of root nodes in the dataset. This is because

earlier. Tra.'r_"ngv of course, is performed unSUp?rV'Sed' HOW'SRandom values are chosen from within a range of valid values which were
ever, we utilize symbols to code the plots according to the origbtained by scanning the data set once.
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Fig. 7. Mapping of the root nodes after training a network of size:2 B¥ for a total of 350 iterations. A typical sample has been retrieved for many subclusters
and are displayed accordingly. The graph representation of a sample is displayed to its left, and its identity is plotted underneath.

some neurons were activated by several root nodes. In the cdiseriminated by looking at the label attached to the node repre-
where root nodes belonging to different classes activated by genting the arm, are not mapped onto two distinct clusters. This
same neuron, this is made visible through overlapping symbddsan issue which will be considered further later in this section.
(e.g., a cross within a square). Another interesting observation is that patterns belonging to
In afirst attempt, the network was trained for a total of 350 ithe domain: ships are mapped onto a relatively large region
erations. The initial learning parametg0) was set to 0.08, the whereas the mapping of houses is occurring in two regions, one
initial neighborhood spread was 60. During training, in order of which is just above the region that mapped the ships, the other
to assure convergence, the learning rate gradually decreaseid kzlow. We found that the houses mapped into the lower region
zero while the neighborhood radius decreased linearly to of€atured a chimney so that the associated graph is of depth two.
The vector components in were weighted withu; = 1.0 Houses mapped into the upper region did not feature a chimney
anduz = 1.9.° The resulting mapping of the root nodes aftego that associated graphs were of depth one. Interestingly, the
training is shown in Fig. 7. same was true for the ships. Ships mapped closer to the upper
It can be observed that during training, the mapping of roghd of the region did not feature flags so that the graphs repre-
nodes has drifted into clusters, and that the network has fousighting those ships were also of depth one. Ships mapped closer
an ordering that discriminates the classes: houses, ships, ana@he lower end of the region always featured some flags and
licemen, i.e., the network is able to encode structural informgy,s associated graphs were of depth 2. Similarly, we found that
tion. A further observation is that policemen patterns are regpuses and ships were mapped closer together if featuring the

resented in two distinct clusters but not according to the Wayme out-degree such as illustrated through pattern h1815 and
policemen classes defined earlier. Upon closer inspection We7o5, or pattern 1071 and h145.

found that the cluster in the upper right corner is formed by all |, addition, it is found that most classes were mapped onto

patterns featuring policemen that show two legs (wear a skifiinct clusters with little overlap between the clusters. Since
or short pants) such as the pattern identified as b100, wherggge clusters represented patterns with identical structure such

the other cluster next to it holds all policemen wearing longs the clusters associated with pattern h1815 and h643, the net-

pants (no legs visible) such as in pattern b108. The differenggy nas demonstrated that it is able to distinguish graphs by
between these two instances is that graphs obtained from B8hsidering information stored in the data labels.

licemen wearing long pants have a root node with a single off- o0 is"very Jittle overlap between clusters formed by dif-

spring, where the single offspring is the long pants. Al Otheférent classes with the exception for the graphs produced from

tg)r:aphswfvea'l[(ured twotoff;pring(]ff:flonletz.forsafc;h \;isible Iedg. ;en.golicemen patterns. This finding suggests that it is probably
€ network seems 1o have GITCUTtes 1o finely encode e ke agyisable to train the network with a modified set of

formation given in the data label. For example, policemen W'Weightsu,; so that the focus on the data label is strengthened.

raised arm and policemen with lowered arm, which can only llq'l:%<periments shown later in this section will find that the

9Input vectors are a composition of two components, the datatshetiaco- Opposite is true. Nevertheless, the SOM-SD has produced an

ordinate vectox.., [v]. The contribution of these components to the Euclidea[mpressive first result given that the general performance of
distance is better balanced usipg = 1.0 andp> = 1.9. These parameters

were obtained by considering the dimensionality of the vector components, &F'&S netwo_rk V‘_/as near 92.03% on the training data, and 91.52%
the magnitude of its elements (averaged over the dataset). on the validation set.
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deepest graph structure, and hence are better suited to demon-
strate the ordering of nodes on the map. Nodes from other do-
mains are not plotted to avoid cluttering of the data displayed.

The network displayed in Fig. 7 showed that the network was
not always able to build distinct clusters according to informa-
tion stored in the data label. The reason for this can be twofold.
One reason might be that the network has been chosen too small
(only 9918 neurons versus 29 808 different input nodes) so that
there was not enough space to map data according to both the
structure and the data label. Another reason may be the wrong
choice of the weighting parametesis. The following two ex-
periments are to bring more light into this. First, networks of
different sizes were trained. The initial neighborhood radius was

o KOS E L, g EP T set to the maximum extension of a map while all other learning

0 20 ~ o parameters remained unchanged. The result shown in Fig. 10 is
Fig. 8. Neurons as activated by nodes from the training set. Plus shapt)gglt the network performance can increase significantly when
symbols mark the location of neurons that represent root nodes, the squil@r€ nNeurons are used. However, a performance level of 100%
are neurons activated by intermediate nodes. Codebook entries that wonighaever achieved. In addition, the level of performance increase
competition for leaf nodes are shown as crosses. is getting weaker as the network grows. As a result, a network
of size 114x 87 seems an appropriate choice when considering

From F|g 7, we can assume that the empty Space on the nqw the network performance increases Only Sl|ght|y fOI’ net-
is consumed by all nodes other than the root nodes. This assuMfBtks larger than this but at the cost of increased computational
tion can be confirmed by considering Fig. 8. In this figure, wémand. Also, when choosing large networks, we lose the ad-
display neurons whose codebook vector resulted in the wini¥@ntage of SOM to perform data compression on large amount
for at least one node in the input data set. Activated neuropidata. Itis interesting to note that even for small networks not
are marked depending on the type of nodes that activated @lleeurons are activated by nodes in the training or test data set.
neuron. The plus shaped symbols are neurons that were defily for extremely small networks that featured just one neuron
vated by the root nodes independently of the class to which tH&y every 300 nodes in the data set that all neurons were utilized.
belong. Square shaped symbols indicate neurons that were asséhe second set of experiments is to determine the influence
ciated with intermediate nodes, and neurons marked by cros8kte weighting parameteys; and ., on the network perfor-
were activated by at least one leaf node. mance. For this, the ratipl/m was varied within [O}O] The

It can be observed that there are areas for which neurons weedgghborhood spread was set to 114, and other training pa-
not activated by any node in the data set. It is found that 388dmeters are left the same as those used in the initial experiment
neurons (39.26%) are unused. We will find later, that the larg@d the network size remained at 1487. The result is illus-
number of unused neurons contribute to a good generalizatieated in Fig. 11.
performance. Of the 6024 neurons activated, 785 neurons ar&he two weighting values balanced the vector components at
used by root nodes, 2022 by intermediate nodes, and 3227d&pt at a ratio 1:1.9 as stated earlier. However, better results are
leaf nodes. Ten neurons were activated by at least one root abthined when stressing the influence of structural information
one intermediate node (overlap). There was no overlap betwégn) considerably stronger than the data label. The experiment
intermediate and leaf nodes or between leaf nodes and rootsstiows that withu, chosen 100 times larger than, the net-
fact, in almost all other experiments we found only few neurongork performs at best. This result is not surprising when con-
that were activated by two different types of nodes (e.g., integidering that vital information is often given in nodes far away
mediate and root nodes). from the root node (i.e., only the data label associated with leaf

At this point, we know where the root and leaf nodes amodes distinguishes between policemen with a raised or low-
located and that root nodes are ordered mainly according ter@d arm). Thus, it is essential, that information derived from a
structural criterion. But what about intermediate nodes? Onede’s offsprings is passed to parent nodes accurately. This can
would expect that intermediate nodes located closer to a lémf achieved by choosing large ratio/of/ i1 .
node of a graph are also mapped to nearby codebook entries regkn additional finding was that when choosing the optimal
resenting leaf nodes. Also, intermediate nodes nearer to the roatfiguration, only 4234 neurons are activated by nodes in the
are expected to be mapped near codebook entries represeritaiging set. Hence, only 42.69% of neurons on the map are used
root nodes. Hence, one would assume that the mapping of @@mpared to 51.07% when havipg = 1.9. This shows that
termediate nodes drifts from clusters representing leaf nodesttoe representation of the nodes is more compact, and explains
ward clusters holding root nodes depending on the relative poshy the generalization performance on the validation set is im-
tion of the intermediate node within the graph. This assumptigmoved.
is confirmed through the sequence of plots shown in Fig. 9. ThisThis experiment has shown another very interesting result.
plot shows nodes obtained from policemen images accordingNote that we trained a network wilh, set to zero. In this case
their relative position within the graph. We considered plottinthe algorithm reduces itself to the standard SOM. Another net-
nodes associated with policemen patterns since they featuredtiogk was trained withu; set to zero in which case only struc-
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Fig. 9. Nodes from policemen patterns sorted by the distance from the leaf nodes. The upper left plot shows neurons as activated by the leahce@®s (dista
the next plot to the right are nodes at distance 1, and so on. The lower right plot shows the root nodes located at distance 5. Note that the netwoaknleds been
on the entire dataset and is the same shown as in Fig. 7 . Nodes belonging to a class other than policemen are not displayed here.
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Fig. 10. Performance of the SOM-SD when varying the size of the network. The left plot illustrates the overall performance, the right plot givesitioed amo
neurons activated by at least one node.
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Fig. 11. Performance of the SOM-SD when varyingandy.. The network performance is shown on the left, the right plot illustrates the network utilization in
percent. The logarithm is to the base

tural information is encoded. It was found, that information eronly the combination of both, numerical information presented
coded in the data label contributes more strongly to a gogdthe data label and structural information, can produce well
network performance~{ 73% with pu»> = 0) than pure struc- performing SOM networks. However, it is not possible to accu-
tural information & 67% with u; = 0). Also, when consid- rately predict the best combination of valuesfgrandy,. With

ering the network usage rates, it is found that data compresskig. 12, we illustrate the mapping of root nodes when choosing
is growing with smallenu, /u ratio. This shows thati, con- us = 0 (left plot), andu; = 0 (right plot). With s = 0, the net-

trols the “focus” of the SOM on features whilg effects the work has particular difficulties in distinguishing the classes de-
“separation” of features. However, it has become evident théated from within each domain. The three domains themselves
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Fig. 12. Neurons as activated by root nodes when setting= 0 (left), andu; = 0 (right).
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Fig. 13. Mapping of nodes whemn, = 100u,. This setting produced a well-performing network.

are well distinguished. This shows that classes within each do¢gperiment varies the size of the data set to give a better insight.
main can be distinguished only when considering the struthe quantity of training data is gradually reduced until only 61
tural information as well. In contrast, the right plot in Fig. 12yraphs (1/64 of the original set) are left. The network is then
shows the mapping of root nodes after training the network witested against the test set where no pattern in the training set is
u1 = 0. With this, reasons for poor network performance bgresent in the validation set. Training parameters and the size
come evident. of the network are the same as the first experiment described
The mapping of nodes for the optimal setgfis illustrated in this section with the exception af which was set to 114.
in Fig. 13. The left plot shows the mapping of nodes dependifdne result is illustrated in Fig. 14. It is found that the network
on their class memberships. It shows that there is very litgieerforms always around the 90% mark on the training data in-
overlap between nodes from different classes. The interestitgpendent of how many patterns are present during training. In
observation is that the training algorithm has placed a consibntrast, generalization performance decreases as soon as the
erable focus on structural information even when structural itraing set consists of less than16 000 nodes. Also illustrated
formation itself does not help to separate the classes, e.g., ihthe network utilization rate where the amount of neurons ac-
policemen classes. Here, the focus on the structure assuresttdty activated by any node from the training (test) setis plotted
vital information encoded in the data label associated with nodagainst the size of the data set. It is observed that just over 3%
away from a root node are passed back to the root accuratefyneurons on the map are utilized after training a set with only
The plot on the right shows the mapping of nodes depending 6h graphs, while the test set activates almost ten times as many
the type of a node. A plus shaped symbol corresponds to a raetirons. This clearly shows that overfitting has occured, con-
node, squares represent the mapping of intermediate nodes,tabdting to a poor generalization performance. With this result,
crosses show the location on which leaf nodes are mappedt ftas been demonstrated that the dataset is sufficiently complex
can be observed that relatively large areas are left blank. Thigequire a large amount of training patterns to allow good gen-
resembles neurons which were not activated by any nodeeralization.
the training set, and contributes to a good generalization perdin the following, we consider the influence of the number of
formance. training iterations on the performance of a SOM-SD network.
It has been demonstrated that SOM-SDs generalization p@mne would assume that due to the large size of the training data,
formance is generally very good in that the performance on valnly a relatively small number of iterations is required to achieve
idation data is typically less than 1% behind the performangeod results. To verify this, we trained some networks for just
achieved on the training data. This gives no implications &0 iterations while others with as many as for 500 iterations.
whether this is due to data of low complexity, the sheer size dhe result of these experiments is shown in Fig. 15. The figure
the data set, or a strength of the SOM-SD model. The followirsdnows that the network performance increases steadily with the
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Fig. 14. Network performance versus size of the training set. The network performance is shown on the left plot. The right plot illustrates theremammg o
activated by at least one node.
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Fig. 15. Network performance versus the total number of iterations trained. The left plot shows the network performance while the right plajgavez gion
error.

number of training iterations. However, training the networdliate at different levels, leaf). This clustering has been observed
for more than 350 iterations did not help to improve the pete be established very early during training (within the first or
formance much further. Instead, the generalization performarsgeond iteration). From then on, those clusters change in loca-
was observed to decrease due to the effects of “overfitting.” Alson only little whereas major updates are happening only within
shown in this figure is the quantization error as obtained at tkach cluster. Thus, it is beneficial for the network to have a
last training iteration. The quantization error shown is the totamall neighborhood function so that training can be focused on
sum over all nodes in the training sétlt is observed that while smaller areas of the network. Evidently, large radius does have
the network performance is at about 85% when training for ondyrather disturbing effect. This is confirmed by considering the
50 iterations, the quantization error is more than twice as largt showing the minimum quantization error as obtained after
when trained for 500 iterations where the increase in perfdraining. The quantization error actually increases the larger the
mance is just about 6%. initial radius.

So far, most experiments were based on an initial learningThe last parameter to be considered for experiments is the
parameter set to 0.08 and a neighborhood radius set to the miaiial learning parameter. So far, all experiments were based on
imum dimension of the SOM. During training, the learning paan initial learning rate starting at 0.08 which decreased linearly
rameter decreases linearly to zero while the neighborhood vth the training iterations down to zero. Kohonen described
dius decreases linearly to one. Traditionally, the initial neighhat in the standard SOM case [22], too large and too small
borhood radius is chosen large so as to reduce the chancegaining rates can lead to a poor network performance. There
falling into a local minima situation [31]. To verify whetheris no clear guideline which suggests good learning rates to any
this is true for SOM-SD, we conducted the following experigiven learning problem. Hence, the following experiments are
ments. Networks were trained with different initial radii, ther(honceived to find the 0ptima| |earning rate for the benchmark
the network performance was evaluated. From the results disoblem under consideration. Networks of size X187 were
played in Fig. 16, it can be observed that SOM-SDs perfofained with a range of different initial learning parametgi).
mance actually increases with smaller initial radius. This is i§|| other parameters were left the same as the first experiment
contrast with observations typically made on traditional SOMescribed in this section. Results are illustrated in Fig. 17.

An explanation to this behavior is that SOM-SD clusters input |; jg found, that the SOM-SD can be trained using a wide

data into areas depending on the type of node (root, intermgnge of initial learning rates. Any initial learning rate larger

10This is the quantization error for the nodes of the structure as opposecﬂf@n (_)'32 and smaller than 1.5 can produce good results.
the quantization error for structures which is not shown. Learning rates larger than two produced data overflow errors,
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Fig. 16. Network performance versus initial neighborhood radii. The upper left plot visualizes the network performance. The amount of needirsthli
final mapping is shown in the upper right plot. The plot to the left illustrates the quantization error.

h T — A network trained with this set of parameters produced the
=r 1 following results: 97.63% performance on the training set,
st : 97.33% on the validation set. 54.19% network utilization on the

training set, and 54.40% utilization on the test set. The quan-
tization error was 90.910°. This indeed is the best result,
no better performance was observed by any other experiments
conducted so far. Nevertheless, there is still an error of about
2.5%. It was observed, that the greatest contributors to the
network error are patterns belonging to classes that are rep-
. . ) resented by a small number of samples. Also some ships and
° os i teming e ' : policemen patterns contributed to the total error. It was found
that these misclassifications were caused by the fact that the
Fig-h17-ri r']\:et\i/\vlzrsk gﬁrgg\é}igsvegsé-:»tltiéhﬁei?xioar'k'ea;}glr?n F;érllfcaemeTtﬁg I:;eplt%attems actually shared an identical structural representation
:get I:eaft giver?s an indication to howy(0) influencespnetwork utiliiation and with _Some patterns from anOthe_r clas_s_. Evidently, information
performance. Note that fof(0) > 3 produced data overflow errors. provided by the data label was insufficient to produce a better
mapping.
rates smaller than 0.32 were insufficient to make the SOM-SDObviously, for other problems these parameters will not
to converge to high performance levels. The ability of thisecessarily be optimal. However, by showing this set of
model to accept a large range ¢f0) together with the ob- parameters, it is hoped that this gives a good indication of
servation that a local minimum situation was never observadat to expect in other practical problems. Perhaps this set of
in any of the 106 training sessions conducted for this papesrameters could be used as an initial set of parameters for
indicates that this model is more robust than the original SOMther practical problems.
This may partially be due to the use of the stochastic traininglt is observed that the results for the test set are often very
method which adds some “noise” to the learning process if teemnilar to those obtained from the training set. This is due
data is structured. to the number of training samples in the data set which has
By putting all results described in this section together, weeen chosen to be large in order to demonstrate the ability of
find that for the given learning problem, and for a networSOM-SD to handle large amount of data efficiently. Hence,
of size 114x 87 (number of neurons approximately 1/3 th¢he training data cover the input space quite well. This is a
number of nodes in the training set), the best set of parametgo®d result when considering that some classes are represented
is o =~ 60, 7(0) € [0.32;1.5], uo =~ 1004, and the number of poorly (e.g., class “e” is represented by just 28 training samples,
training iterations is greater than 450. whereas class “c” has 937 samples.

Performance in %
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