
Faculty of Informatics

Faculty of Informatics - Papers

University of Wollongong Year 

A self-organizing map for adaptive

processing of structured data

M. Hagenbuchner∗ A. Sperduti†

A. C. Tsoi‡

∗University of Wollongong, markus@uow.edu.au
†University of Padova, Italy
‡University of Wollongong, act@uow.edu.au

This article was originally published as: Hagenbuchner, M, Sperduti, A & Tsoi, AC, A
self-organizing map for adaptive processing of structured data, IEEE Transactions on Neural
Networks, May 2003, 14(3), 491-505. Copyright IEEE 2003.

This paper is posted at Research Online.

http://ro.uow.edu.au/infopapers/147

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003 491

A Self-Organizing Map for Adaptive Processing
of Structured Data

Markus Hagenbuchner, Alessandro Sperduti, Member, IEEE, and Ah Chung Tsoi, Senior Member, IEEE

Abstract—Recent developments in the area of neural networks
produced models capable of dealing with structured data. Here, we
propose the first fully unsupervised model, namely an extension of
traditional self-organizing maps (SOMs), for the processing of la-
beled directed acyclic graphs (DAGs). The extension is obtained
by using the unfolding procedure adopted in recurrent and recur-
sive neural networks, with the replicated neurons in the unfolded
network comprising of a full SOM. This approach enables the dis-
covery of similarities among objects including vectors consisting of
numerical data. The capabilities of the model are analyzed in de-
tail by utilizing a relatively large data set taken from an artificial
benchmark problem involving visual patterns encoded as labeled
DAGs. The experimental results demonstrate clearly that the pro-
posed model is capable of exploiting both information conveyed in
the labels attached to each node of the input DAGs and informa-
tion encoded in the DAG topology.

Index Terms—Clustering, data mining which involves novel
types of data/knowledge, data reduction techniques, discovering
similarities, innovative algorithms, processing labeled graphs,
recurrent neural networks, recursive neural networks, self orga-
nizing maps (SOMs), vector quantization (VQ).

I. INTRODUCTION

M ANY natural and artificial systems are more appropri-
ately modeled using data structures. For example, an

image can be segmented into various components, and each
component can be considered in relation to one another in the
form of a graph structure. This structured representation conveys
much more information than a “flat” one, e.g., a vector of nu-
merical features extracted from the image. The use of structured
representations is convenient also for representing data from
many other areas such as molecular chemistry, the world wide
web, electronic documents, syntactic parsing trees, and others.

In recent years, supervised neural networks have been devel-
oped which are able to deal with structured data encoded as la-
beled directed acyclic graphs (DAGs). These models are called
recursive neural networks and are fully described in [1]–[4]. The
essential idea of recursive neural networks is to model each node
of an input DAG by a multilayer perceptron, and then to process
the DAG from its sink nodes toward the source node, using the
structure of the DAG to connect the neurons from one node to

Manuscript received October 31, 2001; revised October 9, 2002.
M. Hagenbuchner is with the Faculty of Informatics, University of Wollon-

gong, Wollongong NSW 2522, Australia (e-mail: markus@artificial-neural.
net).

A. Sperduti is with the Dipartimento di Matematica Pura ed Applicata, Uni-
versità di Padova, Padova 35122, Italy (e-mail: sperduti@math.unipd.it).

A. C. Tsoi is with the Office of Pro Vice-Chancellor, Information Technology
and Communications, University of Wollongong, Australia (e-mail: act@artifi-
cial-neural.net).

Digital Object Identifier 10.1109/TNN.2003.810735

another. The output of the neurons corresponding to the source
node can then be obtained. A gradient descent method is used
to learn the weights of the multilayer perceptrons. The models
are simplified by assuming that all multilayer perceptrons in the
DAG and across the set of training DAGs have the same pa-
rameters. This approach basically consists of an extension to
DAGs of the traditional “unfolding” process adopted by recur-
rent neural networks for sequences [5], [6].

Theoretical properties of recursive neural networks have
been studied [7]–[13] and applications are starting to emerge
[14]–[17], especially in the field of chemistry [18]–[21], where
chemical compounds are naturally represented in graphical
form.

Supervised information, however, either may not be available
or very expensive to obtain. Thus it is very important to develop
models which are able to deal with structured data in an unsuper-
vised fashion. In this paper, we will show how self-organizing
maps (SOMs) [22] can be extended to treat complex objects rep-
resented by data structures. A SOM implements a discrete ap-
proximation of principal curves [23] by means of a set of neural
units arranged into a topological map, usually of dimension two.
The ability of the SOM to preserve topological features [24] can
be exploited to perform a clustering of the data on the basis of
a similarity criterion and also to induce a metric onto the input
domain.

In this paper, we extend the standard SOM model [22], so
as to allow the mapping of structured objects into a topolog-
ical map.1 This mapping can then be used to discover similar-
ities among the input objects. The task performed by the pro-
posed network, i.e., the development of a “topographic” map of
the input structures and substructures in which the spatial loca-
tions of the neurons are indicative of statistical features of the
structures is novel especially when considering labeled DAGs
where the labels are real-valued vectors. Although SOMs have
been defined to work on vector spaces, some extensions to se-
quences exist. The best known works include the temporal Ko-
honen map (TKM) [25], and the recurrent self-organizing map
(RSOM) [26]. Both models use leaky integrators for the repre-
sentation of the state (context). A different approach is adopted
in the contextual self-organizing map (CSOM) [27], where re-
current connections between units in the map are used. The pro-
posed extension to the domain of graphs produces an important
generalization of the SOM model, while leaving the computa-
tion of context simple and efficient. As will be seen, the treat-
ment of sequences and vectors, respectively, turn out to be spe-
cial cases of our proposed general data structure model. In fact,
a sequence can be seen as a labeled list (which is a special type

1We will refer to this extended version of SOM as SOM-SD, SOM for struc-
tured data.

1045-9227/03$17.00 © 2003 IEEE

492 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

of DAG), and a vector as a labeled graph consisting of a single
node. The only other unsupervised neural-network approach to
structured data we are aware of is described in [28] where the
task is to find fixed-length vector representations for DAGs in
an unsupervised manner using a maximum entropy approach.

The organization of this paper is as follows: Section II is an in-
troduction to basic concepts in data structures and describes the
notations used in this paper, while Section III addresses recur-
sive neural networks. The basic idea underpinning our approach
is explained in Section IV, while in Section IV-A, we discuss
a slightly modified standard SOM, which is used as a compo-
nent of our approach. The training algorithm for this SOM is de-
scribed in Section IV-B. Section V presents a general algorithm
for unsupervised learning of DAGs using the SOM technique.
In Section VI, we show the results obtained by the algorithm
proposed in this paper on an image processing problem where
visual patterns are modeled by using DAGs. Finally, some con-
clusions are drawn in Section VII.

II. FUNDAMENTAL CONCEPTS OFDATA STRUCTURES

We shall use lowercase bold letters to denote vectors, upper-
case bold letters to denote matrices, calligraphic letters for rep-
resenting graphs, and bold calligraphic letters for representing
domains. We assume that instances in the learning domain are
structured pieces of information described by annotated DAGs.
In particular, we consider the following.2

1) Directed ordered acyclic graphs (DOAGs). A DOAG is
a DAG with vertex set and edge set ,
where for each vertex a total order on the
edges leaving from is defined.3

2) Directed positional acyclic graphs (DPAGs). DPAGs are a
superclass of DOAGs in which it is assumed that for each
vertex , a bijection is defined on the
edges leaving from.

The indegreeof node is the number of incoming edges to
, whereas theoutdegreeof is the number of outgoing edges

from .
We shall require the DAG (either DOAG or DPAG) to possess

a supersource, i.e., a vertex such that every vertex
in can be reached by a directed path starting from.
If no supersource is present, a new node connected with all the
nodes of the graph having nullindegreecan be added.

Given a DAG and , we denote by the set
of children of , and the th child of by .

The data structures that we consider are labeled DAGs, where
labels are tuples of variables and are attached to vertices and
possibly to edges. These variables express features attached to
a given node. The label attached to nodeis coded by values in

. When using connectionist models either numerical
or categorical variables assume real-valued representations with
values in . Subscript notation will be used when referring to the
labels attached to vertices in a data structure. Hence,denotes
the vector of variables labeling vertex .

2The model described in this paper allows the processing of some special
classes of directed cyclic graphs. We will not define these as our main aim is
the processing of acyclic graphs such as directed positional acyclic graphs, and
trees.

3For example, in the case of graphs representing logical terms, the order on
outgoing edges is immediately induced by the order of the function arguments.

Note that DAGs with labeled edges can be reduced to DAGs
having only labels on the nodes. A straightforward method for
reducing structures with labeled edges to structures with unla-
beled edges is to move each label attached to an edge leaving a
given node to the label attached to node.

Given a data structure , the DAG obtained by ignoring all
node labels will be referred to as theskeletonof , denoted

. Clearly, any two data structures can be distinguished
because they have different skeletons, or, if they have the same
skeleton, because they have different node labels.

In the following, we shall denote by the class of DAGs
with maximum outdegree. A generic class of DAGs with
bounded (but unspecified) outdegree, will simply be denoted
by . The class of all data structures defined over the label
universe domain and skeleton in will be denoted as

. The void DAG will be denoted by the special symbol.
In Fig. 1, we have shown some examples of visual patterns

represented as DOAGs. Each node of the graph represents a dif-
ferent colored component of the visual pattern, while edges are
used to encode the concept of “connected with.” The direction
of the edges is decided on the basis of a procedure which scans
the picture bottom-up and from left to right (see Section VI for
more details).

III. SUPERVISEDLEARNING: RECURSIVENEURAL NETWORKS

In this section, we briefly describe how supervised learning
can be performed by neural networks in structured domains.
This description is useful, since it helps in understanding how
unsupervised learning can be defined by using a computational
framework which is essentially the same as that defined for re-
cursive neural networks.

Recursive neural networks described in [29] are neural net-
works capable of performing mappings from a set of labeled
graphs to a set of real vectors. Specifically, the class of func-
tions which can be realized by a recursive neural network can
be characterized as the class of functional graph transductions

, where , which can be represented in
the following form , where is theen-
coding(or state transition) function and is the
outputfunction. Specifically, given a DOAG , is defined re-
cursively as

the null vector in if
otherwise

(1)

where is defined as

times

(2)

where denotes the label space, while the remaining domains
represent the encoded subgraphs spaces up to the maximum out-
degree of the input domain , is the maximum out-degree
of DOAGs in , source , is the label attached to
the super-source of , and are the subgraphs
pointed by . A typical neural realization for is

(3)

HAGENBUCHNERet al.: SOM FOR ADAPTIVE PROCESSING 493

Fig. 1. Examples of DOAGs representing visual patterns. Labels are not shown.

where (sigmoidal function), is a
label, is the bias vector, is the weight ma-
trix associated with the label space, are the vectorial
codes obtained by the application of the encoding functionto
the subgraphs (i.e.,), and is
the weight matrix associated with theth subgraph space.

The output function maps the state transition space to a-di-
mensional output space and is generally realized by a feedfor-
ward network, i.e., it is realized as a linear combination of the
outputs of the hidden layer neurons in the hidden layer of the
output node.

Given a training set , where for each
data structure a desired target value is associated, using
(1), (3), and the neural network implementing the output func-
tion , for each a feedforward network can be generated and
trained so as to match the corresponding desired target value.
Since the weights are shared among all the generated feedfor-
ward networks, the training converges to a set of weight values
which reproduces the desired target value, to within a prescribed
error tolerance, for each data structure in the training set.

The function maps from a higher dimensional space (i.e.,
) to a lower dimensional space (i.e.,). Thus, the role

of consists of compressing the information about a node (i.e.,
the label, and the compressed information about the children of
the node) in a vector of dimension. This observation is fun-
damental to understand how (1) can be adapted to unsupervised
learning within a SOM approach. In fact, the aim of the SOM
learning algorithm is to learn afeature map

(4)

which given a vector in the spatially continuous input space
returns a point in the spatiallydiscreteoutput display space .

This is obtained in the SOM by associating each point inwith
a different neuron. Moreover, the output spacetopology is
typically endowed by arranging this set of neurons as the com-
putation nodes of a one- or two-dimensional lattice. Given an
input vector , the SOM returns the coordinates within of
the neuron with the closest weight vector. Thus, the set of neu-
rons induce a partition of the input space. In typical appli-
cations , where , and is given by a two
dimensional lattice of neurons. With this setting, high-dimen-
sional input vectors are projected into the two-dimensional co-
ordinates of the lattice, with the aim of preserving, as much as
possible, the topological relationships among the input vectors,
i.e., input vectors which are close to each other should maxi-
mally activate neighbor neurons in the lattice. The SOM is, thus,
performing data reduction via a vector quantization approach,4

and the coordinates of the winning neuron can be understood as
the compressed version of the input vector.

In the next section, we show how a SOM, due to its data
reduction ability, can be used to implement thefunction in
an unsupervised learning framework.

IV. UNSUPERVISEDLEARNING WITHIN AN SOM FRAMEWORK

We are interested in generalizing (4) to deal with the case
, i.e., the input space is a structured domain with

labels in . In this case, we need to specify how the function

(5)

is realized. One possibility is to redefine (1) as shown in (6) at
the bottom of the page, where source ,
are the (eventually void) subgraphs pointed by the outgoing

4It can be shown that a SOM is actually related to a discrete version of the
principal curves algorithm [23].

if
otherwise

(6)

494 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Fig. 2. Example of computation ofM for an input graph. The picture shows the multiple application ofM to the nodes of the graph. First of all, the leaf
node 3 is presented toM (top), where the null coordinates are represented by (�1;�1). The winning neuron has coordinates (2,2). This information is used
to define the input vector representing node 2. This vector is then presented toM (middle) and the winning neuron is found to have coordinates (0,1). Using
both this information and the previous one, the input vector for node 1 can be composed and presented toM (bottom). This time, the winning neuron is found
to have coordinates (1,0) and it is associated to the whole graph, i.e.,M (D) = (1;0).

edges leaving from, is a special coordinate vector into
the discrete output space, and

times

(7)

is a SOM, defined on a generic node, which takes as input
the label of the node and the “encoding” of the subgraphs

according to the map. By “unfolding” the
recursive definition in (6), it turns out that can be
computed by starting to apply to leaf nodes (i.e., nodes
with null outdegree), and proceeding with the application of

bottom-up from the frontier nodes (sink nodes) to the
supersource of the graph.

Notice how in (6) is playing exactly the same role of
in (1), with the difference that returns a real-valued vector

representing areduced descriptorof the node, while
returns the coordinates of the winning neuron, which, due to the

data reduction capability of the SOM, still constitutes areduced
descriptorof the node. An example of how the computation
described above proceeds is shown in Fig. 2. In this case,is
represented by the coordinates (1 1). Note that a highlighted
neuron in Fig. 2 refers to the best matching neuron for the given
input vector.

A. Model of

In the previous section, we saw that the computation of
can be recast as the recursive application of the SOM
to the nodes compounding the input structure. Moreover, the
recursive scheme for graph follows the skeleton of
the graph. In this section, we give implementation details on

SOM.
We assume that each label inis encoded in . Thus,

for each node in , we have a vector of dimension
. Moreover, we realize the display output spacethrough a

HAGENBUCHNERet al.: SOM FOR ADAPTIVE PROCESSING 495

dimensional lattice of neurons.5 We assume that each dimension
of the dimensional lattice is quantized into integers,,

, i.e., .
The total number of neurons is , and each “point” in the
lattice can be represented by adimensional coordinate vector
. For example, if , and if we have neurons on the

horizontal axis and neurons on the vertical axis, then the
winning neuron is represented by the coordinate vector

of the neuron which is most
active in this two-dimensional lattice.

With the above assumptions, we have

(8)

and the dimensional input vector to , repre-
senting the information about a generic node, is defined as

(9)

where is the coordinate vector of the winning neuron for
the subgraph pointed by the-th pointer of . In addition, we
have to specify how is defined. must be chosen to be
a coordinate vector outside the range of valid coordinates such
as (1 1) which is of dimension .

Of course, each neuron with coordinates vectorin the -di-
mensional lattice will have an associated vector weight

.
Notice that, given a DAG , in order to compute ,

the SOM must be recursively applied to the nodes of.
One node can be processed only if all the subgraphs pointed by
it have already been processed by . Thus, the computa-
tion can be parallelized on the graph, with the condition that the
above constraint is not violated. A data flow model of computa-
tion fits completely this scenario. When considering a sequential
model of computation, a node update scheduling constituted by
any inverted topological order [30] for the nodes of the graph
suffices to guarantee the correct computation of .

Finally, it is observed that, not only is the SOM for-
mally representing single graph nodes, it is also “coding” infor-
mation about the structures. This happens because of the struc-
tural information conveyed by the used as part of the
input vectors. Thus, some neurons of the map will be maximally
active only for some leaf nodes, others will be maximally active
only for some nodes which are roots of graphs, and so on.

B. Training Algorithm for

The weights associated with each neuron in thedimen-
sional lattice can be trained using the following two-step
process.

Step 1—Competitive Step:In this step, the neuron which is
most similar to the input node (defined as in (9)) is chosen.
Specifically, the (winning) neuron, at iteration, with the closest
weight vector is selected as follows:

(10)

where is a diagonal matrix which is used
to balance the importance of the label versus the importance of

5Often, in SOM,q = 2.

the pointers. In fact, the elements are set to ,
while the remaining elements are
set to . Notice that if is equal to the identity matrix, then
the standard SOM algorithm is obtained.

Step 2—Cooperative Step:The weight vector , as well
as the weight vector of neurons in the topological neighborhood
of the winning neuron, are moved closer to the input vector

(11)

where the magnitude of the attraction is governed by the
learning rate and by a neighborhood function .
is the topological distance between and in the lattice,
i.e., , and it controls the amount to which
the weights of the neighboring neurons are updated. Typically,
the neighborhood function takes the form of a Gaussian
function

(12)

where is the spread which determines theneighborhood size.
As the learning proceeds and new input vectors are given to the
map, the learning rate gradually decreases to zero according to
the specified learning rate function type. Along with the learning
rate, the neighborhood radius decreases as well.6

V. TRAINING ALGORITHM FOR

It is now quite clear how to perform the training of by
using the definition and training algorithm for . Here is
the training algorithm.

Training Algorithm for
input: Set of training DAGs ,

maximum outdegree of DAGs in , map
;

begin
randomly set the weights for ;
repeat
randomly select with uniform dis-
tribution;

an inverted topological order
for ;
for to do
train(

);
end

The statement

means that training corresponding to (10) and (11) is performed
just once for the input vector constituted by the label vector

and the updated coordinates for the subgraphs rooted in
. The coordinates for the subgraphs rooted in

6Generally, the neighborhood radius in SOMs never decreases to zero. Oth-
erwise, if the neighborhood size becomes zero, the algorithm reduces to vector
quantization (VQ) and no longer has topological ordering properties [31].

496 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Fig. 3. Slection of artificially generated traffic policemen images and extracted graph structure. Data labels are not shown. Nodes are numbered to indicate which
element they represent.

must be recomputed from scratch (i.e.,) at each
iteration, since training changes the weights of the neurons and
so the winning neurons may change as well. Notice that the
adaptation for the neighborhood radius and the learning rate of

follows the standard schedule.
The above algorithm is computationally quite expensive be-

cause of the updating of the coordinates for the subgraphs before
performing a step of training. However, since the graphs in the
training set must be presented several times, the following sto-
chastic approximation to the algorithm can be defined.

Stochastic Training Algorithm for
input: Set of training DAGs ,

maximum outdegree of DAGs in , map
;

begin
randomly set the weights for ;
repeat
randomly select with uniform dis-
tribution;

an inverted topological order
for ;
for to do

;
;

end

In this version, the coordinates for the (sub)graphs are stored
in , once for each processing of graph, and then used when
needed7 for the training of . Of course, the stored vector
is an approximation of the true coordinate vector for the graph
rooted in , however, if the learning rateis small, this approx-
imation may be acceptable.

VI. EXPERIMENTS

For the experiments, we used an extended version of thePo-
licemen Benchmark, which was obtained from [32]. In essence,
thePolicemen Benchmarkis a set of labeled DOAGs extracted
from images produced by means of a context free attributed

7Notice that the use of an inverted topological order guarantees that the up-
dating of the coordinate vectorsxxx is done before the use ofxxx for training.

plex grammar. The dataset consists of visual patterns and asso-
ciated graph structures from three different domains. A number
of classes were defined for each domain. Structural representa-
tions had been obtained by a scan line algorithm where images
are scanned from bottom to top, and from left to right. The first
colored object found constitutes the root node. Objects directly
connected to it form the offsprings. Applying this procedure re-
cursively, all objects are considered and a graph representation
is obtained. Each node in the graph receives a two-dimensional
label stating the { } coordinate of the center of gravity of the
corresponding object. Examples are illustrated in Figs. 3–5.

The result is a dataset that provides directed acyclic graphs
with the following properties.

Hence, policemen patterns produce deep narrow graphs, ships
and houses have a flat and wide data structure. Some graph
structures produced by the ships and houses are identical in
structure such as house648 in Fig. 4 and ship1034 in Fig. 5.
There is no graph structure derived from policemen images that
is contained in the domain houses or ships. Thus, some patterns
can be distinguished only through features encoded in the labels.
For example, when considering policemen, the location of the
arm is not encoded in the graph structure, but in the data label,
while the graph structure is not affected.

The maximum outdegree of all nodes in the data set is six.
As a result (with the dimension of the data label) every
input vector is of dimension . The training (test) set
contained 3750 (3750) graphs with a total of 29 864 (29 887)
nodes. For the purpose of testing the network performance, 12
classes are defined as shown in Table I. These classes are defined
so that some of them can only be distinguished by considering
information provided through data labels such as class “a” and
class “b.” Some classes require structural information in order
to be distinguished such as classes “h” and “k.”

HAGENBUCHNERet al.: SOM FOR ADAPTIVE PROCESSING 497

Fig. 4. Artificially generated houses and associated graph structure. Data labels are not shown. Nodes are numbered to indicate which element is represented.

Fig. 5. Artificially generated images of ships. Data labels are not shown.

TABLE I
DEFINITION OF THE 12 CLASSES ANDTHEIR SYMBOLS AS USED LATER IN

FIGS. 6–13. (LL) MEANS “L OWER LEFT,” (UL) “U PPERLEFT,”
AND (UR) “UPPERRIGHT”

Experiments were designed to demonstrate the typical be-
havior of SOM-SD networks in a given environment. Networks
were trained on the same data set where class membership in-
formation was omitted during training. A software implemen-
tation of the SOM-SD model is available for download from
http://www.artificial-neural.net/simulators.html.

A. Results

This section discusses the behavior of sample SOM networks
for data structures () when applied to the data set described
earlier. Training, of course, is performed unsupervised. How-
ever, we utilize symbols to code the plots according to the orig-

Fig. 6. Mapping of the root nodes on a randomly initialized network (M)
of size 114 � 87=̂9918 neurons (ratio 1:1.31). To avoid the cluttering of
symbols, the mapping of nodes other than root nodes is not shown here.

inal class membership of the data. The visualization of these
classes gives indications on how well the network encodes struc-
tures and the data labels. All the results described in this section
are obtained by SOM networks with a hexagonal topology and
a Gaussian neighborhood function. Training was performed by
utilizing the stochastic training algorithm introduced earlier.

Here, we present a network for with about one third
as many neurons as nodes in the data set. For this, we generated
a 114 87 output map, and initialized it with random values.8

Fig. 6 shows the state of the initial network. Displayed are the lo-
cations of neurons that were activated by root nodes only. It can
be observed that, at this initial state, the data is distributed ran-
domly across the map. Note that there are less neurons marked
than the number of root nodes in the dataset. This is because

8Random values are chosen from within a range of valid values which were
obtained by scanning the data set once.

498 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Fig. 7. Mapping of the root nodes after training a network of size 114� 87 for a total of 350 iterations. A typical sample has been retrieved for many subclusters
and are displayed accordingly. The graph representation of a sample is displayed to its left, and its identity is plotted underneath.

some neurons were activated by several root nodes. In the case
where root nodes belonging to different classes activated by the
same neuron, this is made visible through overlapping symbols
(e.g., a cross within a square).

In a first attempt, the network was trained for a total of 350 it-
erations. The initial learning parameter was set to 0.08, the
initial neighborhood spread was 60. During training, in order
to assure convergence, the learning rate gradually decreased to
zero while the neighborhood radius decreased linearly to one.
The vector components in were weighted with
and .9 The resulting mapping of the root nodes after
training is shown in Fig. 7.

It can be observed that during training, the mapping of root
nodes has drifted into clusters, and that the network has found
an ordering that discriminates the classes: houses, ships, and po-
licemen, i.e., the network is able to encode structural informa-
tion. A further observation is that policemen patterns are rep-
resented in two distinct clusters but not according to the two
policemen classes defined earlier. Upon closer inspection we
found that the cluster in the upper right corner is formed by all
patterns featuring policemen that show two legs (wear a skirt
or short pants) such as the pattern identified as b100, whereas
the other cluster next to it holds all policemen wearing long
pants (no legs visible) such as in pattern b108. The difference
between these two instances is that graphs obtained from po-
licemen wearing long pants have a root node with a single off-
spring, where the single offspring is the long pants. All other
graphs featured two offsprings, one for each visible leg. Hence,
the network seems to have difficulties to finely encode the in-
formation given in the data label. For example, policemen with
raised arm and policemen with lowered arm, which can only be

9Input vectors are a composition of two components, the data labelu and a co-
ordinate vectorx [v]. The contribution of these components to the Euclidean
distance is better balanced using� = 1:0 and� = 1:9. These parameters
were obtained by considering the dimensionality of the vector components, and
the magnitude of its elements (averaged over the dataset).

discriminated by looking at the label attached to the node repre-
senting the arm, are not mapped onto two distinct clusters. This
is an issue which will be considered further later in this section.

Another interesting observation is that patterns belonging to
the domain: ships are mapped onto a relatively large region
whereas the mapping of houses is occurring in two regions, one
of which is just above the region that mapped the ships, the other
is below. We found that the houses mapped into the lower region
featured a chimney so that the associated graph is of depth two.
Houses mapped into the upper region did not feature a chimney
so that associated graphs were of depth one. Interestingly, the
same was true for the ships. Ships mapped closer to the upper
end of the region did not feature flags so that the graphs repre-
senting those ships were also of depth one. Ships mapped closer
to the lower end of the region always featured some flags and
thus, associated graphs were of depth 2. Similarly, we found that
houses and ships were mapped closer together if featuring the
same out-degree such as illustrated through pattern h1815 and
s1705, or pattern s1071 and h145.

In addition, it is found that most classes were mapped onto
distinct clusters with little overlap between the clusters. Since
some clusters represented patterns with identical structure such
as the clusters associated with pattern h1815 and h643, the net-
work has demonstrated that it is able to distinguish graphs by
considering information stored in the data labels.

There is very little overlap between clusters formed by dif-
ferent classes with the exception for the graphs produced from
policemen patterns. This finding suggests that it is probably
more advisable to train the network with a modified set of
weights so that the focus on the data label is strengthened.
Experiments shown later in this section will find that the
opposite is true. Nevertheless, the SOM-SD has produced an
impressive first result given that the general performance of
this network was near 92.03% on the training data, and 91.52%
on the validation set.

HAGENBUCHNERet al.: SOM FOR ADAPTIVE PROCESSING 499

Fig. 8. Neurons as activated by nodes from the training set. Plus shaped
symbols mark the location of neurons that represent root nodes, the squares
are neurons activated by intermediate nodes. Codebook entries that won the
competition for leaf nodes are shown as crosses.

From Fig. 7, we can assume that the empty space on the map
is consumed by all nodes other than the root nodes. This assump-
tion can be confirmed by considering Fig. 8. In this figure, we
display neurons whose codebook vector resulted in the winner
for at least one node in the input data set. Activated neurons
are marked depending on the type of nodes that activated the
neuron. The plus shaped symbols are neurons that were acti-
vated by the root nodes independently of the class to which they
belong. Square shaped symbols indicate neurons that were asso-
ciated with intermediate nodes, and neurons marked by crosses
were activated by at least one leaf node.

It can be observed that there are areas for which neurons were
not activated by any node in the data set. It is found that 3894
neurons (39.26%) are unused. We will find later, that the large
number of unused neurons contribute to a good generalization
performance. Of the 6024 neurons activated, 785 neurons are
used by root nodes, 2022 by intermediate nodes, and 3227 by
leaf nodes. Ten neurons were activated by at least one root and
one intermediate node (overlap). There was no overlap between
intermediate and leaf nodes or between leaf nodes and roots. In
fact, in almost all other experiments we found only few neurons
that were activated by two different types of nodes (e.g., inter-
mediate and root nodes).

At this point, we know where the root and leaf nodes are
located and that root nodes are ordered mainly according to a
structural criterion. But what about intermediate nodes? One
would expect that intermediate nodes located closer to a leaf
node of a graph are also mapped to nearby codebook entries rep-
resenting leaf nodes. Also, intermediate nodes nearer to the root
are expected to be mapped near codebook entries representing
root nodes. Hence, one would assume that the mapping of in-
termediate nodes drifts from clusters representing leaf nodes to-
ward clusters holding root nodes depending on the relative posi-
tion of the intermediate node within the graph. This assumption
is confirmed through the sequence of plots shown in Fig. 9. This
plot shows nodes obtained from policemen images according to
their relative position within the graph. We considered plotting
nodes associated with policemen patterns since they featured the

deepest graph structure, and hence are better suited to demon-
strate the ordering of nodes on the map. Nodes from other do-
mains are not plotted to avoid cluttering of the data displayed.

The network displayed in Fig. 7 showed that the network was
not always able to build distinct clusters according to informa-
tion stored in the data label. The reason for this can be twofold.
One reason might be that the network has been chosen too small
(only 9918 neurons versus 29 808 different input nodes) so that
there was not enough space to map data according to both the
structure and the data label. Another reason may be the wrong
choice of the weighting parameters. The following two ex-
periments are to bring more light into this. First, networks of
different sizes were trained. The initial neighborhood radius was
set to the maximum extension of a map while all other learning
parameters remained unchanged. The result shown in Fig. 10 is
that the network performance can increase significantly when
more neurons are used. However, a performance level of 100%
is never achieved. In addition, the level of performance increase
is getting weaker as the network grows. As a result, a network
of size 114 87 seems an appropriate choice when considering
that the network performance increases only slightly for net-
works larger than this but at the cost of increased computational
demand. Also, when choosing large networks, we lose the ad-
vantage of SOM to perform data compression on large amount
of data. It is interesting to note that even for small networks not
all neurons are activated by nodes in the training or test data set.
Only for extremely small networks that featured just one neuron
for every 300 nodes in the data set that all neurons were utilized.

The second set of experiments is to determine the influence
of the weighting parameters and on the network perfor-
mance. For this, the ratio was varied within [0;]. The
neighborhood spread was set to 114, and other training pa-
rameters are left the same as those used in the initial experiment
and the network size remained at 11487. The result is illus-
trated in Fig. 11.

The two weighting values balanced the vector components at
best at a ratio 1:1.9 as stated earlier. However, better results are
obtained when stressing the influence of structural information
() considerably stronger than the data label. The experiment
shows that with chosen 100 times larger than, the net-
work performs at best. This result is not surprising when con-
sidering that vital information is often given in nodes far away
from the root node (i.e., only the data label associated with leaf
nodes distinguishes between policemen with a raised or low-
ered arm). Thus, it is essential, that information derived from a
node’s offsprings is passed to parent nodes accurately. This can
be achieved by choosing large ratio of .

An additional finding was that when choosing the optimal
configuration, only 4234 neurons are activated by nodes in the
training set. Hence, only 42.69% of neurons on the map are used
compared to 51.07% when having . This shows that
the representation of the nodes is more compact, and explains
why the generalization performance on the validation set is im-
proved.

This experiment has shown another very interesting result.
Note that we trained a network with set to zero. In this case
the algorithm reduces itself to the standard SOM. Another net-
work was trained with set to zero in which case only struc-

500 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Fig. 9. Nodes from policemen patterns sorted by the distance from the leaf nodes. The upper left plot shows neurons as activated by the leaf nodes (distance 0),
the next plot to the right are nodes at distance 1, and so on. The lower right plot shows the root nodes located at distance 5. Note that the network has beentrained
on the entire dataset and is the same shown as in Fig. 7 . Nodes belonging to a class other than policemen are not displayed here.

Fig. 10. Performance of the SOM-SD when varying the size of the network. The left plot illustrates the overall performance, the right plot gives the amount of
neurons activated by at least one node.

Fig. 11. Performance of the SOM-SD when varying� and� . The network performance is shown on the left, the right plot illustrates the network utilization in
percent. The logarithm is to the basee.

tural information is encoded. It was found, that information en-
coded in the data label contributes more strongly to a good
network performance (73 with) than pure struc-
tural information (67 with). Also, when consid-
ering the network usage rates, it is found that data compression
is growing with smaller ratio. This shows that con-
trols the “focus” of the SOM on features while effects the
“separation” of features. However, it has become evident that

only the combination of both, numerical information presented
in the data label and structural information, can produce well
performing SOM networks. However, it is not possible to accu-
rately predict the best combination of values forand . With
Fig. 12, we illustrate the mapping of root nodes when choosing

(left plot), and (right plot). With , the net-
work has particular difficulties in distinguishing the classes de-
rived from within each domain. The three domains themselves

HAGENBUCHNERet al.: SOM FOR ADAPTIVE PROCESSING 501

Fig. 12. Neurons as activated by root nodes when setting� = 0 (left), and� = 0 (right).

Fig. 13. Mapping of nodes when� � 100� . This setting produced a well-performing network.

are well distinguished. This shows that classes within each do-
main can be distinguished only when considering the struc-
tural information as well. In contrast, the right plot in Fig. 12
shows the mapping of root nodes after training the network with

. With this, reasons for poor network performance be-
come evident.

The mapping of nodes for the optimal set ofis illustrated
in Fig. 13. The left plot shows the mapping of nodes depending
on their class memberships. It shows that there is very little
overlap between nodes from different classes. The interesting
observation is that the training algorithm has placed a consid-
erable focus on structural information even when structural in-
formation itself does not help to separate the classes, e.g., the
policemen classes. Here, the focus on the structure assures that
vital information encoded in the data label associated with nodes
away from a root node are passed back to the root accurately.
The plot on the right shows the mapping of nodes depending on
the type of a node. A plus shaped symbol corresponds to a root
node, squares represent the mapping of intermediate nodes, and
crosses show the location on which leaf nodes are mapped. It
can be observed that relatively large areas are left blank. This
resembles neurons which were not activated by any node in
the training set, and contributes to a good generalization per-
formance.

It has been demonstrated that SOM-SDs generalization per-
formance is generally very good in that the performance on val-
idation data is typically less than 1% behind the performance
achieved on the training data. This gives no implications on
whether this is due to data of low complexity, the sheer size of
the data set, or a strength of the SOM-SD model. The following

experiment varies the size of the data set to give a better insight.
The quantity of training data is gradually reduced until only 61
graphs (1/64 of the original set) are left. The network is then
tested against the test set where no pattern in the training set is
present in the validation set. Training parameters and the size
of the network are the same as the first experiment described
in this section with the exception of which was set to 114.
The result is illustrated in Fig. 14. It is found that the network
performs always around the 90% mark on the training data in-
dependent of how many patterns are present during training. In
contrast, generalization performance decreases as soon as the
traing set consists of less than16 000 nodes. Also illustrated
is the network utilization rate where the amount of neurons ac-
tually activated by any node from the training (test) set is plotted
against the size of the data set. It is observed that just over 3%
of neurons on the map are utilized after training a set with only
61 graphs, while the test set activates almost ten times as many
neurons. This clearly shows that overfitting has occured, con-
tributing to a poor generalization performance. With this result,
it has been demonstrated that the dataset is sufficiently complex
to require a large amount of training patterns to allow good gen-
eralization.

In the following, we consider the influence of the number of
training iterations on the performance of a SOM-SD network.
One would assume that due to the large size of the training data,
only a relatively small number of iterations is required to achieve
good results. To verify this, we trained some networks for just
50 iterations while others with as many as for 500 iterations.
The result of these experiments is shown in Fig. 15. The figure
shows that the network performance increases steadily with the

502 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Fig. 14. Network performance versus size of the training set. The network performance is shown on the left plot. The right plot illustrates the amount of neurons
activated by at least one node.

Fig. 15. Network performance versus the total number of iterations trained. The left plot shows the network performance while the right plot gives thequantization
error.

number of training iterations. However, training the network
for more than 350 iterations did not help to improve the per-
formance much further. Instead, the generalization performance
was observed to decrease due to the effects of “overfitting.” Also
shown in this figure is the quantization error as obtained at the
last training iteration. The quantization error shown is the total
sum over all nodes in the training set.10 It is observed that while
the network performance is at about 85% when training for only
50 iterations, the quantization error is more than twice as large
when trained for 500 iterations where the increase in perfor-
mance is just about 6%.

So far, most experiments were based on an initial learning
parameter set to 0.08 and a neighborhood radius set to the max-
imum dimension of the SOM. During training, the learning pa-
rameter decreases linearly to zero while the neighborhood ra-
dius decreases linearly to one. Traditionally, the initial neigh-
borhood radius is chosen large so as to reduce the chances of
falling into a local minima situation [31]. To verify whether
this is true for SOM-SD, we conducted the following experi-
ments. Networks were trained with different initial radii, then
the network performance was evaluated. From the results dis-
played in Fig. 16, it can be observed that SOM-SDs perfor-
mance actually increases with smaller initial radius. This is in
contrast with observations typically made on traditional SOM.
An explanation to this behavior is that SOM-SD clusters input
data into areas depending on the type of node (root, interme-

10This is the quantization error for the nodes of the structure as opposed to
the quantization error for structures which is not shown.

diate at different levels, leaf). This clustering has been observed
to be established very early during training (within the first or
second iteration). From then on, those clusters change in loca-
tion only little whereas major updates are happening only within
each cluster. Thus, it is beneficial for the network to have a
small neighborhood function so that training can be focused on
smaller areas of the network. Evidently, large radius does have
a rather disturbing effect. This is confirmed by considering the
plot showing the minimum quantization error as obtained after
training. The quantization error actually increases the larger the
initial radius.

The last parameter to be considered for experiments is the
initial learning parameter. So far, all experiments were based on
an initial learning rate starting at 0.08 which decreased linearly
with the training iterations down to zero. Kohonen described
that in the standard SOM case [22], too large and too small
learning rates can lead to a poor network performance. There
is no clear guideline which suggests good learning rates to any
given learning problem. Hence, the following experiments are
conceived to find the optimal learning rate for the benchmark
problem under consideration. Networks of size 11487 were
trained with a range of different initial learning parameters .
All other parameters were left the same as the first experiment
described in this section. Results are illustrated in Fig. 17.

It is found, that the SOM-SD can be trained using a wide
range of initial learning rates. Any initial learning rate larger
than 0.32 and smaller than 1.5 can produce good results.
Learning rates larger than two produced data overflow errors,

HAGENBUCHNERet al.: SOM FOR ADAPTIVE PROCESSING 503

Fig. 16. Network performance versus initial neighborhood radii. The upper left plot visualizes the network performance. The amount of neurons utilized in the
final mapping is shown in the upper right plot. The plot to the left illustrates the quantization error.

Fig. 17. Network performance versus the initial learning parameter. The plot
to the right gives an overview over the network performance. The table to
the left givens an indication to how�(0) influences network utilization and
performance. Note that for�(0) � 3 produced data overflow errors.

rates smaller than 0.32 were insufficient to make the SOM-SD
to converge to high performance levels. The ability of this
model to accept a large range of together with the ob-
servation that a local minimum situation was never observed
in any of the 106 training sessions conducted for this paper
indicates that this model is more robust than the original SOM.
This may partially be due to the use of the stochastic training
method which adds some “noise” to the learning process if the
data is structured.

By putting all results described in this section together, we
find that for the given learning problem, and for a network
of size 114 87 (number of neurons approximately 1/3 the
number of nodes in the training set), the best set of parameters
is , , , and the number of
training iterations is greater than 450.

A network trained with this set of parameters produced the
following results: 97.63% performance on the training set,
97.33% on the validation set. 54.19% network utilization on the
training set, and 54.40% utilization on the test set. The quan-
tization error was 90.9 10 . This indeed is the best result,
no better performance was observed by any other experiments
conducted so far. Nevertheless, there is still an error of about
2.5%. It was observed, that the greatest contributors to the
network error are patterns belonging to classes that are rep-
resented by a small number of samples. Also some ships and
policemen patterns contributed to the total error. It was found
that these misclassifications were caused by the fact that the
patterns actually shared an identical structural representation
with some patterns from another class. Evidently, information
provided by the data label was insufficient to produce a better
mapping.

Obviously, for other problems these parameters will not
necessarily be optimal. However, by showing this set of
parameters, it is hoped that this gives a good indication of
what to expect in other practical problems. Perhaps this set of
parameters could be used as an initial set of parameters for
other practical problems.

It is observed that the results for the test set are often very
similar to those obtained from the training set. This is due
to the number of training samples in the data set which has
been chosen to be large in order to demonstrate the ability of
SOM-SD to handle large amount of data efficiently. Hence,
the training data cover the input space quite well. This is a
good result when considering that some classes are represented
poorly (e.g., class “e” is represented by just 28 training samples,
whereas class “c” has 937 samples.

504 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

VII. CONCLUSION

In this paper, we have described a new way of addressing un-
supervised learning problems involving structured objects using
an SOM technique. Specifically, we showed how an SOM net-
work can be used recursively in order to learn a map defined
on DAGs. The major innovation is to treat each leaf node as a
standard input for an SOM, and the coordinates of the winning
neuron as pointer within a parent node. In other words, we as-
sume that the information transferred between the children and
the parent is via the coordinates of the winning neuron in the
child node.

We demonstrated the capabilities of the model by utilizing
a relatively large data set taken from a recognized benchmark
problem involving visual patterns encoded as labeled DAGs.
The experimental results clearly show that the model is able to
encode structural features in a coherent way. The information on
the labels, on the other hand, can be encoded finely only if the
map is sufficiently large and training parameters are chosen ap-
propriately. In addition, it has been shown that the performance
of SOM is improved through the incorporation of structural in-
formation. The fact, with SOM-SD, that smaller initial learning
radius can be utilized opens the door for optimizations.

It has become clear that the model described here is in fact
able to build a two-dimensional metric on the structured input
space. The abilities of this model allow the application to new
domains, involving data mining and knowledge discovery,
which were not possible to directly attack in the past.

As a final remark on the computational efficiency of the pro-
posed model, it must be stressed that recent techniques based on
random projections [33], could be used in the future to speed up
the selection of the winning neuron.

REFERENCES

[1] A. Sperduti, D. Majidi, and A. Starita, “Extended cascade-correlation
for syntactic and structural pattern recognition,” inAdvances in Struc-
tural and Syntactical Pattern Recognition, P. Perner, P. Wang, and A.
Rosenfeld, Eds. New York: Springer-Verlag, 1996, vol. 1121, Lecture
Notes in Computer Science, pp. 90–99.

[2] C. Goller and A. Küchler, “Learning task-dependent distributed struc-
ture-representations by backpropagation through structure,”Proc. IEEE
Int. Conf. Neural Networks, pp. 347–352, 1996.

[3] A. Sperduti and A. Starita, “Supervised neural networks for the classifi-
cation of structures,”IEEE Trans. Neural Networks, vol. 8, pp. 714–735,
May 1997.

[4] P. Frasconi, M. Gori, and A. Sperduti, “A general framework for adaptive
processing of data structures,”IEEE Trans. Neural Networks, vol. 9, p.
768, Sept. 1998.

[5] J. L. Elman, “Finding structure in time,” Center for Research in Lan-
guage, Univ. California at San Diego, La Jolla, CRL Tech. Rep. 8801,
1988.

[6] , “Finding structure in time,”Cogn. Sci., vol. 14, pp. 179–211,
1990.

[7] A. Sperduti, “On the computational power of recurrent neural networks
for structures,”Neural Networks, vol. 10, no. 3, pp. 395–400, 1997.

[8] P. Frasconi, M. Gori, and A. Sperduti, “On the efficient classification
of data structures by neural networks,”Proc. Int. Joint Conf. Artificial
Intelligence, pp. 1066–1071, 1997.

[9] M. Gori, A. Kuchler, and A. Sperduti, “On the implementation of fron-
tier-to-root tree automata in recursive neural networks,”IEEE Trans.
Neural Networks, vol. 10, pp. 1305–1314, Nov. 1999.

[10] B. Hammer, “On the learnability of recursive data,”Math. Contr. Signals
Syst., vol. 12, pp. 62–79, 1999.

[11] P. Frasconi, M. Gori, and A. Sperduti, “Learning efficiently with neural
networks: A theoretical comparison between structured and flat repre-
sentations,”Proc. Eur. Conf. Artificial Intelligence, pp. 301–305, 200.

[12] B. Hammer, “Generalization ability of folding networks,”IEEE Trans.
Knowledge Data Eng., vol. 13, no. 2, pp. 196–206, 2001.

[13] R. C. Carrasco and M. L. Forcada, “Simple strategies to encode tree au-
tomata in sigmoid recursive neural networks,”IEEE Trans. Knowledge
Data Eng., vol. 13, no. 2, pp. 148–156, 2001.

[14] C. Goller, “A Connectionist Approach for Learning Search-Control
Heuristics for Automated Deduction Systems,” Ph.D. dissertation,
Dept. Computer Science, Tech. Univ. Munich, Munich, Germany, 1997.

[15] E. Francesconi, P. Frasconi, M. Gori, S. Marinai, J. Q. Sheng, G. Soda,
and A. Sperduti, “Logo recognition by recursive neural networks,” in
Graphics Recognition—Algorithms and Systems, R. Kasturi and K.
Tombre, Eds. New York: Springer-Verlag, 1997, vol. 1389, Lecture
Notes in Computer Science, pp. 104–117.

[16] M. Diligenti, M. Gori, M. Maggini, and E. Martinelli, “Adaptive graph-
ical pattern recognition: The joint role of structure and learning,” in
Proc. Int. Conf. Advances Pattern Recognition, Plymouth, UK, Nov.
1998, pp. 425–432.

[17] F. Costa, P. Frasconi, V. Lombardo, and G. Soda, “Toward incremental
parsing of natural language using recursive neural networks,”Appl. In-
tell., to be published.

[18] T. Schmitt and C. Goller,Relating Chemical Structure to Activity With
the Structure Processing Neural Folding Architecture, 1998.

[19] A. M. Bianucci, A. Micheli, A. Sperduti, and A. Starita, “Application of
cascade correlation networks for structures to chemistry,”Appl. Intell.,
vol. 12, pp. 115–145, 2000.

[20] , “Analysis of the internal representations developed by neural net-
works for structures applied to quantitative structure-activity relation-
ship studies of benzodiazepines,”J. Chem. Inform. Comput. Sci., vol.
41, no. 1, pp. 202–218, 2001.

[21] A. Micheli, A. Starita, A. Sperduti, and A. M. Bianucci, “Design of new
biologically active molecules by recursive neural networks,”Proc. Int.
Joint Conf. Neural Networks, vol. 4, pp. 2732–2737, 2001.

[22] T. Kohonen,Self-Organization and Associative Memory, 3rd ed. New
York: Springer-VERLAG, 1990.

[23] M. van Hulle, Ed., Faithful Representations and Topographic
Maps. New York: Wiley, 2000.

[24] T. Villmann, R. Der, M. Herrmann, and T. M. Martinetz, “Topology
preservation in selforganizing feature maps: Exact definition and mea-
surement,”IEEE Trans. Neural Networks, vol. 8, pp. 256–266, Mar.
1997.

[25] G. Chappell and J. Taylor, “The temporal Kohonen map,”Neural Net-
works, vol. 6, pp. 441–445, 1993.

[26] M. Varsta, J. Del, R. Millan, and J. Heikkonen, “A recurrent self-orga-
nizing map for temporal sequence processing,” inProc. 7th Int. Conf.
Artificial Neural Networks, 1997, pp. 421–426.

[27] T. Voegtlin, “Context quantization and contextual self-organizing
maps,” Proc. Int. Joint Conf. Neural Networks, vol. VI, pp. 20–25,
2000.

[28] C. Goller, M. Gori, and M. Maggini, “Feature extraction from data struc-
tures with unsupervised recursive neural networks,” inProc. Int. Joint
Conf. Neural Networks, Washington, DC, July 1999, pp. 425–432.

[29] A. Sperduti, “A tutorial on neurocomputing of structures,” in
Knowledge-Based Neurocomputing, I. Cloete and J. M. Zurada,
Eds. Cambridge, MA: MIT Press, 2000, pp. 117–152.

[30] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1990.

[31] T. Kohonen,Self-Organizing Maps. Berlin, Germany: Springer, 1995,
vol. 30, Springer Series in Information Sciences.

[32] M. Hagenbuchner, A. C. Tsoi, and A. Sperduti, “A supervised self-orga-
nizing map for structured data,” inAdvances in Self-Organizing Maps,
N. Allinson, H. Yin, L. Allinson, and J. Slack, Eds., 2001, pp. 21–28.

[33] P. Indyk and R. Motwani, “Approximate nearest neighbors: Toward re-
moving the curse of dimensionality,” inProc. 30th Symp. Theory Com-
puting, 1998, pp. 604–613.

Markus Hagenbuchnerwas born in Germany. He received the Bachelor degree
with honors in computer science and the Ph.D. degree in informatics from the
University of Wollongong, Australia, in 1997 and 2002, respectively.

He was a Research Assistant with the Department of Artificial Neural Com-
puting at the University of Ulm, Germany, from 1997 to 1998. His research in-
terest include neural networks, processing and classification of structural data,
and data mining. He is currently a Research Associate with the University of
Wollongong.

HAGENBUCHNERet al.: SOM FOR ADAPTIVE PROCESSING 505

Alessandro Sperduti(M’98) received the Laurea and Doctoral degrees in com-
puter science from the University of Pisa, Pisa, Italy, in 1988 and 1993, respec-
tively.

In 1993, he spent a period at the International Computer Science Institute,
Berkeley, CA, supported by a postdoctoral fellowship. In 1994, he moved back
to the Computer Science Department, University of Pisa, where he was Assistant
Professor and Associate Professor. Currently, he is Full Professor with the De-
partment of Pure and Applied Mathematics, University of Padova, Padova, Italy.
His research interests include pattern recognition, image processing, neural net-
works, and hybrid systems. In the field of hybrid systems his work has focused
on the integration of symbolic and connectionist systems. He is the author of 90
refereed papers mainly in the areas of neural networks, fuzzy systems, pattern
recognition, and image processing.

Dr. Sperduti contributed to the organization of several workshops on this sub-
ject and he also served on the program committee of several conferences on
neural networks and machine learning.He gave several tutorials within interna-
tional schools and conferences, such as IJCAI ’97, IJCAI ’99, IJCAI ’01. He
was Guest Coeditor of the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING for a special issue on connectionist models for learning in struc-
tured domains. He is a member of the Executive Board of the Italian Neural
Network Society (SIREN) and the European Neural Networks Council.

Ah Chung Tsoi (S’70–M’72–SM’90) was born in Hong Kong. He received the
Higher Diploma degree in electronic engineering from Hong Kong Technical
College in 1969, and the M.Sc. degree in electronic control engineering, and
Ph.D. degree in control engineering, both from University of Salford, Salford,
U.K., in 1970 and 1972, respectively. He also received the B.D. degree from
University of Otago in 1980.

Dr. Tsoi received the Outstanding Alumni Award, Hong Kong Polytechnic
University in 2001.

