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Machine Perception

Build a machine that can recognize patterns:

– Speech recognition

– Fingerprint identification

– OCR (Optical Character Recognition)

– DNA sequence identification
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Pattern Classification (Definition)

Given a collection of records (training set )
– Each record contains a set of attributes, one of the 

attributes is the class.

Find a model for class attribute as a function of 
the values of other attributes.
Goal: previously unseen records should be 
assigned a class as accurately as possible.
– A test set is used to determine the accuracy of the 

model. Usually, the given data set is divided into 
training and test sets, with training set used to build 
the model and test set used to validate it.
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An Example

“Sorting incoming Fish on a conveyor according 
to species using optical sensing”

Sea bass
Species

Salmon
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Problem Analysis

Set up a camera and take some sample images 
to extract features

– Length
– Lightness
– Width
– Number and shape of fins
– Position of the mouth, etc…

This is the set of all suggested features to explore 
for use in our classifier!
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Pattern Classification Systems

Sensing
– Use of a transducer (camera or microphone)
– PR system depends of the bandwidth, the resolution sensitivity 

distortion of the transducer
Segmentation and grouping

– Patterns should be well separated and should not overlap
Feature extraction

– Discriminative features
– Invariant features with respect to translation, rotation and scale.

Classification
– Use a feature vector provided by a feature extractor to assign the 

object to a category
Post Processing

– Exploit context input dependent information other than from the 
target pattern itself to improve performance
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Pattern Classification Systems
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Classification

Select the length of the fish as a possible feature for discrimination

The length is a poor feature alone! Select the lightness as a possible feature.
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Two Features

Adopt the lightness and add the width of the fish
Fish xT = [x1 , x2 ]

Lightness Width
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Overfitting Problem

We might add other features that are not correlated with the ones we 
already have. A precaution should be taken not to reduce the 
performance by adding such “noisy features”.
Ideally, the best decision boundary should be the one which provides 
an optimal performance such as in the following figure:
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Generalization Ability

However, our satisfaction is premature because 
the central aim of designing a classifier is to 
correctly classify novel (unseen or unknown test 
data) input
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Overfitting avoidance (Occam’s razor)

Occam’s razor: one should not use classifiers that are 
more complicated than are necessary, where “necessary”
is determined by the quality of fit to the training data.
One should prefer the simpler model over the more 
complex model.
One should include model complexity when evaluating a 
model.
Avoid overfitting by means of regularization (inclusion of 
penalty terms), pruning (parameters and structures of 
classifiers), minimizing a description length (minimize the 
sum of the model’s algorithmic complexity and the 
description of the training data).
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The Design Cycle
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Bayesian Decision Theory

Thomas Bayes was born in London. In 1719 he enrolled at 
the University of Edinburgh to study logic and theology. 

– http://en.wikipedia.org/wiki/Thomas_Bayes
The Law of Total Probability and Bayes’ rule

Bayesian: http://www.authorstream.com/presentation/CoolDude26-
13453-nips06-tutorial-Entertainment-ppt-powerpoint/

http://en.wikipedia.org/wiki/London
http://en.wikipedia.org/wiki/University_of_Edinburgh
http://en.wikipedia.org/wiki/Logic
http://en.wikipedia.org/wiki/Theology
http://en.wikipedia.org/wiki/Thomas_Bayes
http://www.authorstream.com/presentation/CoolDude26-13453-nips06-tutorial-Entertainment-ppt-powerpoint/
http://www.authorstream.com/presentation/CoolDude26-13453-nips06-tutorial-Entertainment-ppt-powerpoint/
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Example

The sea bass/salmon example

– State of nature, prior

State of nature is a random variable

The catch of salmon and sea bass is equiprobable
– P(ω1 ) = P(ω2 ) (uniform priors)
– P(ω1 ) + P( ω2 ) = 1 (exclusivity and exhaustivity)

Decision rule with only the prior information
– Decide ω1 if P(ω1 ) > P(ω2 ) otherwise decide ω2

Use of the class –conditional information

P(x|ω1) and P(x|ω2) describe the difference in lightness between 
populations of sea and salmon
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Likelihood and Posterior
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Bayes Decision

Minimizing the probability of error 

Decide ω1 if P(ω1 | x) > P(ω2 | x);
otherwise decide ω2

Therefore:
P(error | x) = min [P(ω1 | x), P(ω2 | x)]

(Bayes decision)
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The Gaussian Distribution

Univariate density
– Density which is analytically tractable
– Continuous density
– A lot of processes are asymptotically Gaussian
– Handwritten characters, speech sounds are ideal or prototype 

corrupted by random process (central limit theorem)



© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               19

Multivariate Gaussian Distribution
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Discriminant Functions

We saw that the minimum error-rate classification 
can be achieved by the discriminant function

gi (x) = ln P(x | ωi ) + ln P(ωi )

(Avoiding underflow !! Logarithm and sum!)
Case of multivariate Gaussian



© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               21

Case Σi = σ2I (I is the identity matrix)
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A classifier that uses linear discriminant functions is called “a linear 
machine”.
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Decision Boundary
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Multi-class Problem
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Model Evaluation

Metrics for Performance Evaluation
– How to evaluate the performance of a model?

Methods for Performance Evaluation
– How to obtain reliable estimates?

Methods for Model Comparison
– How to compare the relative performance 

among competing models?
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Model Evaluation

Metrics for Performance Evaluation
– How to evaluate the performance of a model?

Methods for Performance Evaluation
– How to obtain reliable estimates?
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– How to compare the relative performance 

among competing models?
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Metrics for Performance Evaluation

Focus on the predictive capability of a model
– Rather than how fast it takes to classify or 

build models, scalability, etc.
Confusion Matrix:

PREDICTED CLASS

ACTUAL 
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)
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Metrics for Performance Evaluation…

Most widely-used metric:

PREDICTED CLASS

ACTUAL 
CLASS

Class=Yes Class=No

Class=Yes a 
(TP)

b 
(FN)

Class=No c 
(FP)

d 
(TN)

FNFPTNTP
TNTP

dcba
da

+++
+

=
+++

+
=Accuracy 
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Limitation of Accuracy

Consider a 2-class problem
– Number of Class 0 examples = 9990
– Number of Class 1 examples = 10

If model predicts everything to be class 0, 
accuracy is 9990/10000 = 99.9 %
– Accuracy is misleading because model does 

not detect any class 1 example
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Cost Matrix

PREDICTED CLASS

ACTUAL 
CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i
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Computing Cost of Classification

Cost 
Matrix

PREDICTED CLASS

ACTUAL 
CLASS

C(i|j) + -
+ -1 100
- 1 0

Model 
M1

PREDICTED CLASS

ACTUAL 
CLASS

+ -
+ 150 40
- 60 250

Model 
M2

PREDICTED CLASS

ACTUAL 
CLASS

+ -
+ 250 45
- 5 200

Accuracy = 80%
Cost = 3910

Accuracy = 90%
Cost = 4255



© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               31

Cost vs Accuracy

Count PREDICTED CLASS

ACTUAL 
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Cost PREDICTED CLASS

ACTUAL 
CLASS

Class=Yes Class=No

Class=Yes p q

Class=No q p

N = a + b + c + d

Accuracy = (a + d)/N

Cost = p (a + d) + q (b + c)

= p (a + d) + q (N – a – d)

= q N – (q – p)(a + d)

= N [q – (q-p) ×
 

Accuracy] 

Accuracy is proportional to cost if 
1. C(Yes|No)=C(No|Yes) = q 
2. C(Yes|Yes)=C(No|No) = p
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Cost-Sensitive Measures

cba
a

pr
rp

ba
a

ca
a

++
=

+
=

+
=

+
=

2
22(F) measure-F

(r) Recall

 (p)Precision 

Precision is biased towards C(Yes|Yes) & C(Yes|No)
Recall is biased towards C(Yes|Yes) & C(No|Yes)
F-measure is biased towards all except C(No|No)
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dwaw
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Model Evaluation

Metrics for Performance Evaluation
– How to evaluate the performance of a model?

Methods for Performance Evaluation
– How to obtain reliable estimates?

Methods for Model Comparison
– How to compare the relative performance 

among competing models?
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Methods for Performance Evaluation

How to obtain a reliable estimate of 
performance?

Performance of a model may depend on other 
factors besides the learning algorithm:
– Class distribution
– Cost of misclassification
– Size of training and test sets
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Learning Curve

Learning curve shows 
how accuracy changes 
with varying sample size
Requires a sampling 
schedule for creating 
learning curve:

Arithmetic sampling
(Langley, et al)
Geometric sampling
(Provost et al)

Effect of small sample size:
- Bias in the estimate
- Variance of estimate
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Methods of Estimation

Holdout
– Reserve 2/3 for training and 1/3 for testing 

Random subsampling
– Repeated holdout

Cross validation
– Partition data into k disjoint subsets
– k-fold: train on k-1 partitions, test on the remaining one
– Leave-one-out:   k=n

Stratified sampling 
– oversampling vs undersampling

Bootstrap
– Sampling with replacement
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Model Evaluation

Metrics for Performance Evaluation
– How to evaluate the performance of a model?

Methods for Performance Evaluation
– How to obtain reliable estimates?

Methods for Model Comparison
– How to compare the relative performance 

among competing models?
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ROC (Receiver Operating Characteristic)

Developed in 1950s for signal detection theory to 
analyze noisy signals 
– Characterize the trade-off between positive 

hits and false alarms
ROC curve plots TP (on the y-axis) against FP 
(on the x-axis)
Performance of each classifier represented as a 
point on the ROC curve
– changing the threshold of algorithm, sample 

distribution or cost matrix changes the location 
of the point
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ROC Curve

At threshold t:

TP=0.5, FN=0.5, FP=0.12, FN=0.88

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive
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ROC Curve

(TP,FP):
(0,0): declare everything

to be negative class
(1,1): declare everything

to be positive class
(1,0): ideal

Diagonal line:
– Random guessing
– Below diagonal line:

prediction is opposite of 
the true class
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Using ROC for Model Comparison

No model consistently 
outperform the other

M1 is better for 
small FPR
M2 is better for 
large FPR

Area Under the ROC 
curve

Ideal: 
Area = 1

Random guess:
Area = 0.5
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How to Construct an ROC curve

Instance P(+|A) True Class
1 0.95 +
2 0.93 +
3 0.87 -
4 0.85 -
5 0.85 -
6 0.85 +
7 0.76 -
8 0.53 +
9 0.43 -
10 0.25 +

• Use classifier that produces 
posterior probability for each 
test instance P(+|A)

• Sort the instances according 
to P(+|A) in decreasing order

• Apply threshold at each 
unique value of P(+|A)

• Count the number of TP, FP, 
TN, FN at each threshold

• TP rate, TPR = TP/(TP+FN)

• FP rate, FPR = FP/(FP + TN)
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How to construct an ROC curve

Class + - + - - - + - + +  

0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00 

TP 5 4 4 3 3 3 3 2 2 1 0 

FP 5 5 4 4 3 2 1 1 0 0 0 

TN 0 0 1 1 2 3 4 4 5 5 5 

FN 0 1 1 2 2 2 2 3 3 4 5 

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0 

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0 
 

Threshold >= 

ROC Curve:
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Test of Significance

Given two models:
– Model M1: accuracy = 85%, tested on 30 instances
– Model M2: accuracy = 75%, tested on 5000 instances

Can we say M1 is better than M2?
– How much confidence can we place on accuracy of 

M1 and M2?
– Can the difference in performance measure be 

explained as a result of random fluctuations in the test 
set?
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Confidence Interval for Accuracy

Prediction can be regarded as a Bernoulli trial
– A Bernoulli trial has 2 possible outcomes
– Possible outcomes for prediction: correct or wrong
– Collection of Bernoulli trials has a Binomial distribution:

x ∼ Bin(N, p)      x: number of correct predictions
e.g:   Toss a fair coin 50 times, how many heads would turn up?

Expected number of heads = N×p = 50 × 0.5 = 25

Given x (# of correct predictions) or equivalently, 
acc=x/N, and N (# of test instances),

Can we predict p (true accuracy of model)?
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Confidence Interval for Accuracy

For large test sets (N > 30), 
– acc has a normal distribution 

with mean p and variance 
p(1-p)/N

Confidence Interval for p:

α
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Confidence Interval for Accuracy

Consider a model that produces an accuracy of 
80% when evaluated on 100 test instances:
– N=100, acc = 0.8
– Let 1-α

 
= 0.95 (95% confidence)

– From probability table, Zα/2 =1.96

1-α Z

0.99 2.58

0.98 2.33

0.95 1.96

0.90 1.65

N 50 100 500 1000 5000

p(lower) 0.670 0.711 0.763 0.774 0.789

p(upper) 0.888 0.866 0.833 0.824 0.811
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Comparing Performance of 2 Models

Given two models, say M1 and M2, which is 
better?
– M1 is tested on D1 (size=n1), found error rate = e1

– M2 is tested on D2 (size=n2), found error rate = e2

– Assume D1 and D2 are independent
– If n1 and n2 are sufficiently large, then

– Approximate:

( )
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Comparing Performance of 2 Models

To test if performance difference is statistically 
significant:  d = e1 – e2
– d ~ NN(dt ,σt )   where dt is the true difference
– Since D1 and D2 are independent, their variance 

adds up:   

– At (1-α) confidence level, 
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An Illustrative Example

Given: M1: n1 = 30, e1 = 0.15
M2: n2 = 5000, e2 = 0.25

d = |e2 – e1| = 0.1   (2-sided test)

At 95% confidence level, Zα/2=1.96

=> Interval contains 0 => difference may not be
statistically significant

0043.0
5000

)25.01(25.0
30

)15.01(15.0ˆ =
−

+
−

=
d

σ

128.0100.00043.096.1100.0 ±=×±=
t

d
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Comparing Performance of 2 Algorithms

Each learning algorithm may produce k models:
– L1 may produce M11 , M12, …, M1k
– L2 may produce M21 , M22, …, M2k

If models are generated on the same test sets 
D1,D2, …, Dk (e.g., via cross-validation)
– For each set: compute dj = e1j – e2j

– dj has mean dt and variance σt

– Estimate: 
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