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Machine Perception

e Build a machine that can recognize patterns:

— Speech recognition
— Fingerprint identification
— OCR (Optical Character Recognition)

— DNA sequence identification
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Pattern Classification (Definition)

e Given a collection of records (training set )

— Each record contains a set of attributes, one of the
attributes iIs the class.

e Find a model for class attribute as a function of
the values of other attributes.

e Goal: previously unseen records should be
assigned a class as accurately as possible.

— A test set is used to determine the accuracy of the
model. Usually, the given data set is divided into
training and test sets, with training set used to build
the model and test set used to validate it.
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An Example

e “Sorting incoming Fish on a conveyor according
to species using optical sensing”

Sea bass
Species
Salmon
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Problem Analysis

e Set up a camera and take some sample images
to extract features

— Length

— Lightness

— Width

— Number and shape of fins
— Position of the mouth, etc...

e This Is the set of all suggested features to explore
for use in our classifier!
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Pattern Classification Systems

e Sensing
— Use of a transducer (camera or microphone)

— PR system depends of the bandwidth, the resolution sensitivity
distortion of the transducer

e Segmentation and grouping

— Patterns should be well separated and should not overlap
e Feature extraction

— Discriminative features

— Invariant features with respect to translation, rotation and scale.
e Classification

— Use a feature vector provided by a feature extractor to assign the
object to a category

e Post Processing

— Exploit context input dependent information other than from the
target pattern itself to improve performance
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Pattern Classification Systems
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Classification

e Select the length of the fish as a possible feature for discrimination

The length is a poor feature alone! Select the lightness as a possible feature.
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Two Features

e Adopt the lightness and add the width of the fish
Fish XT = [Xq, X5]
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Overfitting Problem

e We might add other features that are not correlated with the ones we
already have. A precaution should be taken not to reduce the
performance by adding such “noisy features”.

e lIdeally, the best decision boundary should be the one which provides
an optimal performance such as in the following figure:
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Generalization Ability

e However, our satisfaction is premature because
the central aim of designing a classifier is to
correctly classify novel (unseen or unknown test

data) input
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Overfitting avoidance (Occam’s razor)

e Occam’s razor: one should not use classifiers that are
more complicated than are necessary, where “necessary
IS determined by the quality of fit to the training data.

e One should prefer the simpler model over the more
complex model.

e One should include model complexity when evaluating a
model.

e Avoid overfitting by means of regularization (inclusion of
penalty terms), pruning (parameters and structures of
classifiers), minimizing a description length (minimize the
sum of the model’s algorithmic complexity and the
description of the training data).
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The Design Cycle
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Bayesian Decision Theory

e Thomas Bayes was born in London. In 1719 he enrolled at
the University of Edinburgh to study logic and theoloqy.

— http://en.wikipedia.org/wiki/Thomas Bayes
e The Law of Total Probability and Bayes’ rule

p(z|w;) P(w;)

Plwjlz) = O
2
p(@) = p(rjw;)P(w;).
=1

likelithood X prior

posterior = :
evidence

e Bayesian: http://www.authorstream.com/presentation/CoolDude26-
13453-nips06-tutorial-Entertainment-ppt-powerpoint/
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Example

e The sea bass/salmon example

— State of nature, prior

¢ State of nature is a random variable

¢ The catch of salmon and sea bass is equiprobable
— P(o) = P(®,) (uniform priors)

— P(w) + P( »,) = 1 (exclusivity and exhaustivity)
e Decision rule with only the prior information
— Decide o, if P(w,) > P(w,) otherwise decide w,

e Use of the class —conditional information

e P(X|w,) and P(x|w,) describe the difference in lightness between
populations of sea and salmon
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Likelihood and Posterior
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FIGURE 2.1. Hypaothetical class-conditional probability density func
probability density of measuring a particular feature value x given tf
category ey, If x represents the lightness of a fish, the two curves mig
difference in lightness of populations of two types of fish. Density functii
ized, and thus the area under each curve is 1.0, From: Richard O, Dud;

and David G. Stork, Pattern Classification. Copyright @ 2001 by John
Inc.
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= 1/3 for the class-conditional probability densities shown in Fig. 2.1, Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category e, is roughly 0,08, and that itis in e, is 0.92. At every x, the posteriors sum
o 1.0, From: Richard O. Duda, Peter E. Harl, and David C. Stork, Pattern Classification.
Copyright @© 2001 by John Wiley & Sons, Inc.

FIGURE 2.2, Posterior probabilities for the particular priors Plan) = 2/3 and Plew;)
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Bayes Decision

e Minimizing the probabillity of error

e Decide o, if P(w, | X) > P(@, | X);
otherwise decide w,

Therefore:
P(error | X) = min [P(w, | X), P(®, | X)]
(Bayes decision)
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The Gaussian Distribution

e Univariate density
— Density which is analytically tractable
— Continuous density
— A lot of processes are asymptotically Gaussian

— Handwritten characters, speech sounds are ideal or prototype
corrupted by random process (central limit theorem)

plx)
'
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FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
|x — ji| = 27, as shown. The peak of the distribution has value p(p) =1 fﬁﬂn. From:
Richard O. Duda, Peter E. Hart, and David C. Stork, Fattern Classification. Copyright

© 20071 by John Wiley & Sons, Inc.
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Multivariate Gaussian Distribution

The general multivariate normal density in d dimensions is written as

1 1

f _1 'S Lari
FeXp [~ (X —p)' X (x—p)l, (37)
(2)d/2|X2[1/2 9
where x 18 a d-component column vector, g 18 the d-component mean vector, X is the
d-by-d covariance matriz, |X| and 1 are its determinant and inverse, respectively,

and (x — pt)? is the transpose of x — p.* Our notation for the inner product is

p(x) =

o
a'h =) aib. (38)
i=1
and often called a dot product.
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Discriminant Functions

e \We saw that the minimum error-rate classification
can be achieved by the discriminant function

gi(x) = In P(x | @) + In P(w)
(Avoiding underflow ! Logarithm and sum!)

e Case of multivariate Gaussian

1 d 1
gi(x) = —E{:-;— ;Li}f‘E;l(:{ — ;) — 2 In 27 — 2 In |X;| +In P{w;).
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Case X; = 0%l (I is the identity matrix)

g:(X) =w x+w, (linear discriminant function)
where:
- 1
wo=H

 Wip
' o | 20

(@, Is called the threshold for the i th category!)

> # 44 +InP(@)

A classifier that uses linear discriminant functions is called “a linear
machine”.
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Multi-class Problem

Figure 2.16: The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex.
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Model Evaluation

e Metrics for Performance Evaluation
— How to evaluate the performance of a model?

e Methods for Performance Evaluation
— How to obtain reliable estimates?

e Methods for Model Comparison

— How to compare the relative performance
among competing models?
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Metrics for Performance Evaluation

e Focus on the predictive capability of a model

— Rather than how fast it takes to classify or
build models, scalability, etc.

e Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes |Class=No

Class=Yes a

b

Class=No C

d

a: TP (true positive)
b: FN (false negative)
c: FP (false positive)

d: TN (true negative)

© Tan,Steinbach, Kumar Introduction to Data Mining
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Metrics for Performance Evaluation...

PREDICTED CLASS
Class=Yes | Class=No

Class=Yes a b
ACTUAL (TP) (FN)

CLASS Class=No C d
(FP) (TN)

e Most widely-used metric:

a+d TP +TN

Accuracy =

at+b+c+d TP+TN+FP+FN
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Limitation of Accuracy

e Consider a 2-class problem
— Number of Class 0 examples = 9990
— Number of Class 1 examples = 10

e |If model predicts everything to be class 0,
accuracy iIs 9990/10000 = 99.9 %

— Accuracy Is misleading because model does
not detect any class 1 example
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Cost Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(il)) Class=Yes | Class=No
Class=Yes | C(Yes|Yes) | C(No|Yes)
Class=No | C(Yes|No) | C(No|No)

C(i])): Cost of misclassifying class j example as class |
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Computing Cost of Classification

Cost PREDICTED CLASS
Matrix
C(ilj) + -
ACTUAL
+ -
CLASS 1 100
- 1 0

Model PREDICTED CLASS

Ml
+ -
ACTUAL
+
CLASS 150 | 40
- 60 | 250

Accuracy = 80%

Cost = 3910

Model PREDICTED CLASS

MZ
+ -
ACTUAL
+
CLASS 250 | 45
- 5 200

Accuracy = 90%

Cost = 4255
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Cost vs Accuracy

Count PREDICTED CLASS
Class=Yes | Class=No
Class=Yes a b
ACTUAL
CLASS | Class=No C d
Cost PREDICTED CLASS
Class=Yes | Class=No
Class=Yes P q
ACTUAL
CLASS | Class=No q D

Accuracy is proportional to cost if
1. C(Yes|No)=C(No|Yes) = q
2. C(Yes|Yes)=C(No|No) =p

N=a+b+c+d

Accuracy = (a + d)/N

Cost=p(a+d)+qg(b+c)
=p(a+d)+q(N-a-d)
=gN-(qg-p)(a+d)
=N [g — (g-p) x Accuracy]
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Cost-Sensitive Measures

Precision (p) = &
a+cC
Recall (r) = 2
a+b
21p 2a

F-measure (F) = =
r+p 2a+b+c

e Precision is biased towards C(Yes|Yes) & C(Yes|No)
e Recall is biased towards C(Yes|Yes) & C(No|Yes)

e F-measure is biased towards all except C(No|No)
wa+w.d

Weighted Accuracy =
wa+wb+wc+wd
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Model Evaluation

e Metrics for Performance Evaluation
— How to evaluate the performance of a model?

e Methods for Performance Evaluation
— How to obtain reliable estimates?

e Methods for Model Comparison

— How to compare the relative performance
among competing models?
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Methods for Performance Evaluation

e How to obtain a reliable estimate of
performance?

e Performance of a model may depend on other
factors besides the learning algorithm:

— Class distribution
— Cost of misclassification
— Size of training and test sets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
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Accuracy

Learning Curve
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e Learning curve shows
how accuracy changes
with varying sample size

e Requires a sampling
schedule for creating
learning curve:

e Arithmetic sampling
(Langley, et al)

e Geometric sampling
(Provost et al)

Effect of small sample size:
- Bias in the estimate
- Variance of estimate
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Methods of Estimation

e Holdout
— Reserve 2/3 for training and 1/3 for testing
e Random subsampling
— Repeated holdout
e Cross validation
— Partition data into k disjoint subsets
— k-fold: train on k-1 partitions, test on the remaining one
— Leave-one-out: k=n
e Stratified sampling
— oversampling vs undersampling
e Bootstrap
— Sampling with replacement
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Model Evaluation

e Metrics for Performance Evaluation
— How to evaluate the performance of a model?

e Methods for Performance Evaluation
— How to obtain reliable estimates?

e Methods for Model Comparison

— How to compare the relative performance
among competing models?
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ROC (Receliver Operating Characteristic)

e Developed in 1950s for signal detection theory to
analyze noisy signals

— Characterize the trade-off between positive
hits and false alarms

e ROC curve plots TP (on the y-axis) against FP
(on the x-axis)

e Performance of each classifier represented as a
point on the ROC curve

— changing the threshold of algorithm, sample
distribution or cost matrix changes the location
of the point
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ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x >t is classified as positive

1
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ROC Curve

(TP,FP):

1

e (0,0): declare everything ool
to be negative class ;|
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e Diagonal line:
— Random guessing
— Below diagonal line:
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Using ROC for Model Comparison

—_

True Positive Fate
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e No model consistently
outperform the other

e M, is better for
small FPR

e M, IS better for
large FPR

e Area Under the ROC
curve

e Ideal:
=Area=1

e Random guess:
= Area=0.5
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How to Construct an ROC curve

Instance P(+|A) True Class
1 0.95 +
2 0.93 +
3 0.87
4 0.85
5 0.85
6 0.85 +
7 0.76
8 0.53 +
9 0.43

10 0.25 +

» Use classifier that produces
posterior probability for each
test instance P(+|A)

» Sort the instances according
to P(+|A) in decreasing order

* Apply threshold at each
unique value of P(+|A)

e Count the number of TP, FP,
TN, FN at each threshold

- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)
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How to construct an ROC curve

m |
TP 5 4 4 3 3 3 3 2 2 1 0

FP 5 5 4 4 3 2 1 1 0 0 0
N 0 0 1 1 2 3 4 4 5 5 5
FN 0 1 1 2 2 2 2 3 3 4 5
— | TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0
— | FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0
1 ; : :
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Test of Significance

e Given two models:
— Model M1: accuracy = 85%, tested on 30 instances
— Model M2: accuracy = 75%, tested on 5000 instances

e Can we say M1 is better than M2?
— How much confidence can we place on accuracy of
M1 and M2?

— Can the difference in performance measure be
explained as a result of random fluctuations in the test

set?
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Confidence Interval for Accuracy

e Prediction can be regarded as a Bernoulli trial
— A Bernoulli trial has 2 possible outcomes
— Possible outcomes for prediction: correct or wrong
— Collection of Bernoulli trials has a Binomial distribution:
¢ X~ Bin(N, p)  x: number of correct predictions

¢ e.g. Toss a fair coin 50 times, how many heads would turn up?
Expected number of heads = Nxp =50 x 0.5 = 25

e Given x (# of correct predictions) or equivalently,
acc=x/N, and N (# of test instances),

Can we predict p (true accuracy of model)?
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Confidence Interval for Accuracy

Area=1-a

e For large test sets (N > 30), /

— acc has a normal distribution
with mean p and variance

p(1-p)/N
acc—p
P(Z < </ : ' 0 '
( al? \/ p(l— p)/ N 1—a/2) - / ‘\
- 1_ a Zoc/2 Zl— /2

e Confidence Interval for p:

- 2xNxacc+2Z’ +.,/Z° +4xNxacc—4x N xacc’

- 2(N+27)
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Confidence Interval for Accuracy

e Consider a model that produces an accuracy of
80% when evaluated on 100 test instances:

— N=100, acc =0.8
— Let 1-a = 0.95 (95% confidence)

— From probability table, Z_,,=1.96

1-a

0.99

2.58

N

50

100

500

1000

0.98

2.33

5000\

0.95

1.96

p(lower)

0.670

0.711

0.763

0.774

0.789

0.90

1.65

p(upper)

0.888

0.866

0.833

0.824

0.811
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Comparing Performance of 2 Models

e Given two models, say M1 and M2, which is
better?
— M1 is tested on D1 (size=n1), found error rate = e,
— M2 is tested on D2 (size=nZ2), found error rate = e,
— Assume D1 and D2 are independent
— If n1 and n2 are sufficiently large, then

€ ~ N(/ul’al)
€~ N(ﬂzigz)
e(l-e)

— Approximate: O, = -
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Comparing Performance of 2 Models

e To test If performance difference Is statistically
significant: d=el —e2
— d ~ N(d,c,) where d, is the true difference

— Since D1 and D2 are independent, their variance
adds up:

c'=0+0 =0 +0,
_el(1-el) N e2(1-e?2)
nl n2

— At (1-a) confidence level, dt = d T Z(m&t

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
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An lllustrative Example

e Given: M1: n1 =30,e1 =0.15
M2: n2 = 5000, e2 =0.25

ed=|e2-el|=0.1 (2-sided test)

P 0.15(1-0.15) N 0.25(1-0.25)
d 30 5000

e At 95% confidence level, Z_,,=1.96

=0.0043

d =0.100+1.96x+/0.0043 =0.100+0.128

=> Interval contains 0 => difference may not be
statistically significant

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
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Comparing Performance of 2 Algorithms

e Each learning algorithm may produce k models:
— L1 may produce M11, M12, ..., M1k
— L2 may produce M21 , M22, ..., M2k
e If models are generated on the same test sets
D1,D2, ..., Dk (e.g., via cross-validation)
— For each set: compute d, = e;; — e,
— d; has mean d, and variance c;,

— Estimate: Jzk;(dj _a)z

N2

T k(k=1)
d=d+t &

l-a k-1 t
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