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Nearest Neighbor Classifiers (KNN)

Basic idea:
– If it walks like a duck, quacks like a duck, then 

it’s probably a duck

Training 
Records

Test 
Record

Compute 
Distance

Choose k of the 
“nearest”

 
records
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Nearest-Neighbor Classifiers

Requires three things
– The set of stored records
– Distance Metric to compute 

distance between records
– The value of k, the number of 

nearest neighbors to retrieve

To classify an unknown record:
– Compute distance to other 

training records
– Identify k nearest neighbors 
– Use class labels of nearest 

neighbors to determine the 
class label of unknown record 
(e.g., by taking majority vote)

Unknown record
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Definition of Nearest Neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points 
that have the k smallest distance to x
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1 nearest-neighbor

Voronoi Diagram: http://en.wikipedia.org/wiki/Voronoi_diagram

http://en.wikipedia.org/wiki/Voronoi_diagram
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Nearest Neighbor Classification

Compute distance between two points:
– Euclidean distance 

Determine the class from nearest neighbor list
– take the majority vote of class labels among 

the k-nearest neighbors
– Weigh the vote according to distance

weight factor, w = 1/d2

∑ −=
i ii

qpqpd 2)(),(
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Nearest Neighbor Classification…

Choosing the value of k:
– If k is too small, sensitive to noise points
– If k is too large, neighborhood may include points from 

other classes
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Nearest Neighbor Classification…

Scaling issues
– Attributes may have to be scaled to prevent 

distance measures from being dominated by 
one of the attributes

– Example:
height of a person may vary from 1.5m to 1.8m
weight of a person may vary from 90lb to 300lb
income of a person may vary from $10K to $1M
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Nearest Neighbor Classification…

Problem with Euclidean measure:
– High dimensional data 

curse of dimensionality

– Can produce counter-intuitive results

1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
vs

d = 1.4142 d = 1.4142

Solution: Normalize the vectors to unit length
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Nearest neighbor Classification…

k-NN classifiers are lazy learners 
– It does not build models explicitly
– Classifying unknown records are relatively 

expensive (weakness)

Demo: http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html
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Bayes Classifier (Bayesian Decision Theory)

A probabilistic framework for solving classification 
problems
Bayesian decision theory:

Bayes theorem:
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Naïve Bayes Classifier

Assume independence among attributes xi when class is 
given:    
– P(x1 , x2 , …, xn | wj) = P(x1 | Cj ) P(x2 | Cj )… P(xn | wj )

– Can estimate P(xi| wj) for all xi and wj.

– New point is classified to wj if  P(wj ) Π
 

P(Ai | Cj )  is 
maximal.
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How to Estimate Probabilities from Data?

All model parameters (i.e., class priors and 
feature probability distributions) can be 
approximated with relative frequencies from the 
training set. 
These are maximum likelihood estimates of the 
probabilities. 
Non-discrete features need to be discretized first. 
Discretization can be unsupervised (ad-hoc 
selection of bins) or supervised (binning guided 
by information in training data). 

http://en.wikipedia.org/wiki/Discretization
http://en.wikipedia.org/w/index.php?title=Unsupervised_discretization&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Supervised_discretization&action=edit&redlink=1


© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               14

If one of the conditional probability is zero, then 
the entire expression becomes zero
Probability estimation:

Original: ( | )

1
Laplace: ( | )

m-estimate: ( | )
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c: number of classes

p: prior probability

m: parameter

How to Estimate Probabilities from Data?
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How to Estimate Probabilities from Data?

Class:  P(C) = Nc/N
– e.g.,  P(No) = 7/10, 

P(Yes) = 3/10

For discrete attributes:
P(Ai | Ck) = |Aik|/ Nc

– where |Aik | is number of 
instances having attribute 
Ai and belongs to class Ck

– Examples:
P(Status=Married|No) = 4/7 
P(Refund=Yes|Yes)=0

k

Tid Refund Marital 
Status 

Taxable 
Income Evade

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

c c c
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How to Estimate Probabilities from Data?

Normal distribution:

– One for each (Ai ,ci ) pair

For (Income, Class=No):
– If Class=No

sample mean = 110
sample variance = 2975

Tid Refund Marital 
Status 

Taxable 
Income Evade

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Example of Naïve Bayes Classifier

Name Give Birth Can Fly Live in Water Have Legs Class
human yes no no yes mammals
python no no no no non-mammals
salmon no no yes no non-mammals
whale yes no yes no mammals
frog no no sometimes yes non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
cat yes no no yes mammals
leopard shark yes no yes no non-mammals
turtle no no sometimes yes non-mammals
penguin no no sometimes yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals
salamander no no sometimes yes non-mammals
gila monster no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals
eagle no yes no yes non-mammals

Give Birth Can Fly Live in Water Have Legs Class
yes no yes no ?

1

2

1 1

2 2

6 6 2 2( | ) 0.06
7 7 7 7
1 10 3 4( | ) 0.0042

13 13 13 13
7( | ) ( ) 0.06 0.021
20

13( | ) ( ) 0.004 0.0027
20

P x

P x

P x P

P x P

ω

ω

ω ω

ω ω

= × × × =

= × × × =

= × =

= × =

A: attributes

M: mammals

N: non-mammals

P(x|w1)P(w1) > P(x|w2)P(w2)

=> Mammals
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Gaussian Mixture Models (GMMs)

Motivation: traditional Guassian models are 
unimodal, but real data distributions are often 
multimodal.  

Solution: using 
mixture models 
to approach the 
multimodal 
distribution in 
real-world data.  
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Gaussian Mixture Models (GMMs)

Multivariate Gaussian Distribution:

Gaussian mixture models (GMMs):

where the mixing weight, 
1

1, 0.
M

m m
m

w w
=

= >∑
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Generative vs Discriminative Models 

Classifiers broadly fall into two categories: discriminative 
models and generative models.
In statistics, a generative model is a model for randomly 
generating observable data, typically given some hidden 
parameters. It specifies a joint probability distribution over 
observation and label sequences. 
Discriminative models differ from generative models in 
that they do not allow one to generate observations from 
joint probability distributions.
More details:
– http://en.wikipedia.org/wiki/Generative_model
– http://en.wikipedia.org/wiki/Discriminative_model

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Joint_distribution
http://en.wikipedia.org/wiki/Generative_model
http://en.wikipedia.org/wiki/Discriminative_model
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Examples

Generative models include:
– Gaussian distribution
– Gaussian mixture model
– Multinomial distribution
– Hidden Markov model
– Naive Bayes
– Latent Dirichlet allocation

Discriminative models include:
– Linear discriminant analysis
– Support vector machines
– Boosting
– Conditional random fields
– Logistic regression
– Neural Networks

http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Gaussian_mixture_model
http://en.wikipedia.org/wiki/Multinomial_distribution
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Naive_Bayes
http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
http://en.wikipedia.org/wiki/Linear_discriminant_analysis
http://en.wikipedia.org/wiki/Support_vector_machines
http://en.wikipedia.org/wiki/Boosting
http://en.wikipedia.org/wiki/Conditional_random_field
http://en.wikipedia.org/wiki/Logistic_regression
http://en.wikipedia.org/wiki/Neural_Network
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GMMs: Parameter Estimation 

Maximum-likelihood estimation (MLE)
– Suppose that training data D contains n samples, x1 , 

x2 ,…, xn

– MLE of parameter θ
 

is, by definition the value that  
maximizes P(D | θ)

– “It is the value of θ
 

that best agrees with the actually 
observed training sample”.

1

( | ) ( | ) ( )

( | ) is called the likelihood of  w.r.t. the set of samples)

k n

k
k

P D P x F

P D

θ θ θ

θ θ

=

=

= =∏
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Expectation-maximization (EM) Algorithm

EM is an optimization algorithm that can find the 
parameter θ that maximizes P(D | θ) according to 
the MLE.
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Two Steps

Initialize the means μ, covariances Σ and mixing 
coefficients w, and evaluate the initial value of the 
log likelihood.
E-step: evaluate the responsibilities using the 
current parameter values.

M-step: Re-estimate the parameters using the 
current responsibilities.
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Hidden Markov Models (HMMs)

Top ten cited papers in IEEE: 
– Lawrence R. Rabiner (February 1989). "A tutorial on Hidden Markov 

Models and selected applications in speech recognition". Proceedings of 
the IEEE 77

 
(2): 257-286. 

Markov Chains

Goal: make a sequence of decisions

– Processes that unfold in time, states at time t are influenced by a state 
at time t-1

– Applications: speech recognition, gesture recognition, parts of speech 
tagging and DNA sequencing, 

– Any temporal process without memory
ωT = {ω(1), ω(2), ω(3), …, ω(T)} sequence of states
We might have ω6 = {ω1, ω4, ω2, ω2, ω1, ω4} 

– The system can revisit a state at different steps and not every state 
need to be visited

http://en.wikipedia.org/wiki/Lawrence_Rabiner
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial on hmm and applications.pdf
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial on hmm and applications.pdf
http://en.wikipedia.org/wiki/IEEE
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First-order Markov models

Our productions of any sequence is described by 
the transition probabilities 
P(ωj (t + 1) | ωi (t)) = aij
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Example

θ
 

= (aij , ωT)
P(ωT | θ) = a14 . a42 . a22 . a21 . a14 . P(ω(1) = ωi )

Example: speech recognition

“production of spoken words”
Production of the word: “pattern” represented by 

phonemes
/p/ /a/ /tt/ /er/ /n/ // ( // = silent state)

Transitions from /p/ to /a/, /a/ to /tt/, /tt/ to er/, /er/ to /n/ 
and /n/ to a silent state
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HMMs

Three problems are associated with this model

– The evaluation problem

– The decoding problem

– The learning problem
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The evaluation problem

It is the probability that the model produces a sequence 
VT of visible states. It is:

where each r indexes a particular sequence
of T hidden states. 

max

1
( ) ( | ) ( )

r
T T T T

r r
r

P V P V Pω ω
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=∑

{ }(1), (2),..., ( )T
r Tω ω ω ω=

1

T
r

1

(1)          ( | ) ( ( ) | ( ))  
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t
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=
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=

= −
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The evaluation problem…

Using equations (1) and (2), we can write:

Interpretation: The probability that we observe the particular sequence of T 
visible states VT is equal to the sum over all rmax possible sequences of 
hidden states of the conditional probability that the system has made a 
particular transition multiplied by the probability that it then emitted the 
visible symbol in our target sequence.

Example: Let ω1 , ω2 , ω3 be the hidden states; v1 , v2 , v3 be the visible states 
and V3 = {v1 , v2 , v3 } is the sequence of visible states

P({v1 , v2 , v3 }) = P(ω1 ).P(v1 | ω1 ).P(ω2 | ω1 ).P(v2 | ω2 ).P(ω3 | ω2 ).P(v3 | ω3 )
+…+ (possible terms in the sum= all possible (33= 27) cases !)

max

1 1

( ) ( ( ) | ( )) ( ( ) | ( 1)
r t T

T

r t

P V P v t t P t tω ω ω
=

= =

= −∑∏
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The evaluation problem…

First possibility:

Second Possibility:

P({v1 , v2 , v3 }) = P(ω2 ).P(v1 | ω2 ).P(ω3 | ω2 ).P(v2 | ω3 ).P(ω1 | 
ω3 ).P(v3 | ω1 ) + …+

Therefore:

v3

ω1
(t = 1)

ω2
(t = 2)

ω3
(t = 3)

v1 v2 v3

ω2
(t = 1)

ω1
(t = 3)

ω3
(t = 2)

v3v2v1

3

1 2 3
1 sequence 

of hidden states

({ , , }) ( ( ) | ( )). ( ( ) | ( 1))
t

tpossible
P v v v P v t t P t tω ω ω

=

=

= −∑ ∏
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The Forward-backward Algorithm

This is a belief propagation (BP) algorithm, that 
passes messages to neighboring states.



© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               33

Left-right HMMs

Simple structure with wide applications
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The decoding problem

Given a sequence of visible states VT, the decoding 
problem is to find the most probable sequence of hidden 
states.
This problem can be expressed mathematically as: find 
the single “best” state sequence (hidden states).

Note that the summation disappeared, since we want to 
find Only one unique best case !

[ ]
(1), (2),..., ( )

ˆ ˆ ˆ(1), (2),..., ( )    :
ˆ ˆ ˆ(1), (2),..., ( ) arg max (1), (2),..., ( ), (1), (2),..., ( ) |

T

T such that
T P T v v V T

ω ω ω

ω ω ω
ω ω ω ω ω ω λ=
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The decoding problem

Where:     λ = [π,A,B]
π = P(ω(1) = ω) (initial state probability)
A = aij = P(ω(t+1) = j | ω(t) = i)
B = bjk = P(v(t) = k | ω(t) = j)

In the preceding example, this computation corresponds to 
the selection of the best path amongst:

{ω1 (t = 1),ω2 (t = 2),ω3 (t = 3)}, {ω2 (t = 1),ω3 (t = 2),ω1 (t = 3)}
{ω3 (t = 1),ω1 (t = 2),ω2 (t = 3)}, {ω3 (t = 1),ω2 (t = 2),ω1 (t = 3)}

{ω2 (t = 1),ω1 (t = 2),ω3 (t = 3)}
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The Viterbi Algorithm

This is a dynamic programming algorithm for 
finding the most likely sequence of hidden states.

Pass the best messages to neighbors!

http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Likelihood_function
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The learning problem

This third problem consists of determining a method to 
adjust the model parameters λ = [π,A,B] to satisfy a 
certain optimization criterion. We need to find the best 
model 

Such that to maximize the probability of the observation 
sequence:

We use an iterative procedure such as Baum-Welch (EM 
algorithm) or Gradient to find this local optimum

ˆ ˆ ˆˆ[ , , ]A Bλ π=

( | )TMax P V
λ

λ
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GMMs as the hidden states!
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Learning: Parameter Estimation

Transition:

Updating weights:

Update mean vector, 
covariance matrix and mixing 
weights:
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Summary

K-nearest-neighbor (non-parametric method)
Naïve Bayes classifier (density modeling)
Gaussian mixture models (density modeling)
Hidden Markov models (sequential data)
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