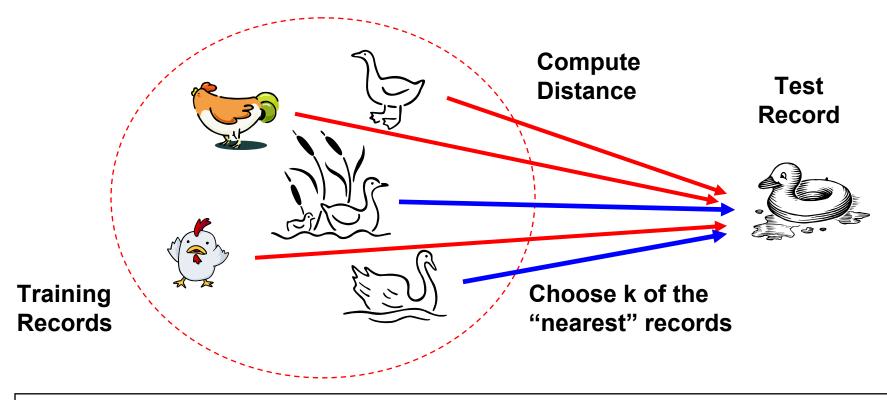
Data Mining Classification: Classifiers

Lecture Notes for Chapter 2 R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed. New York: Wiley, 2001.

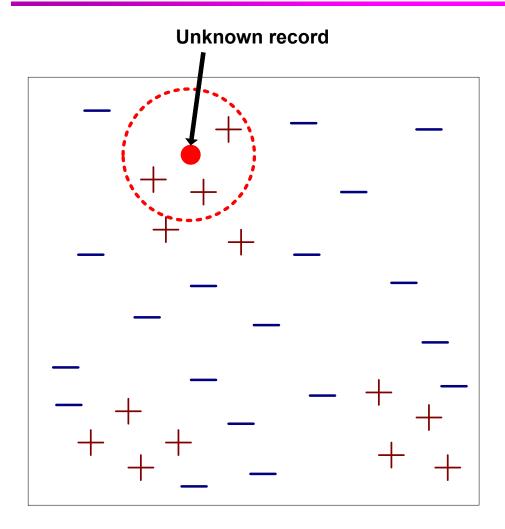
Lecture Notes for Chapter 5
Introduction to Data Mining
Tan, Steinbach, Kumar

Nearest Neighbor Classifiers (KNN)

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

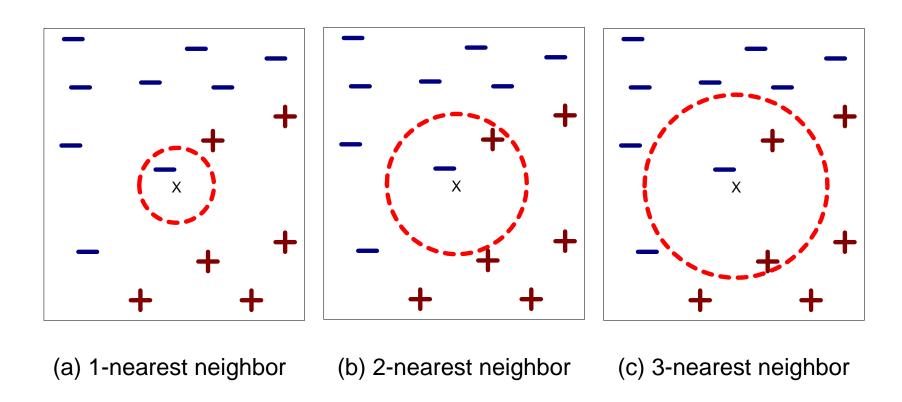


Nearest-Neighbor Classifiers



- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

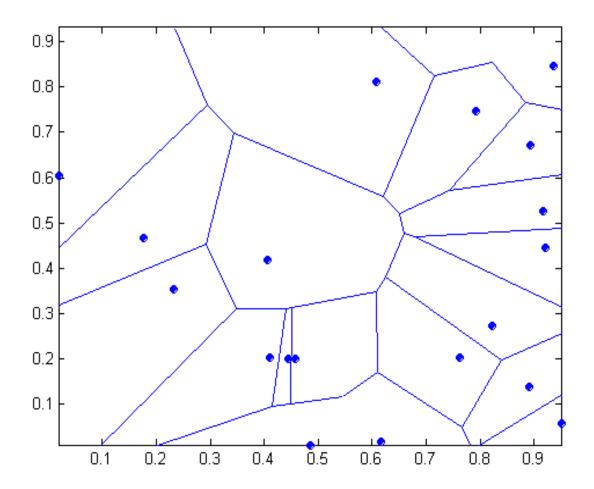
Definition of Nearest Neighbor



K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram: http://en.wikipedia.org/wiki/Voronoi_diagram



Nearest Neighbor Classification

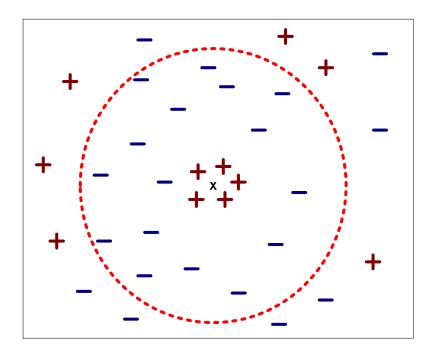
- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - ◆ weight factor, w = 1/d²

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes



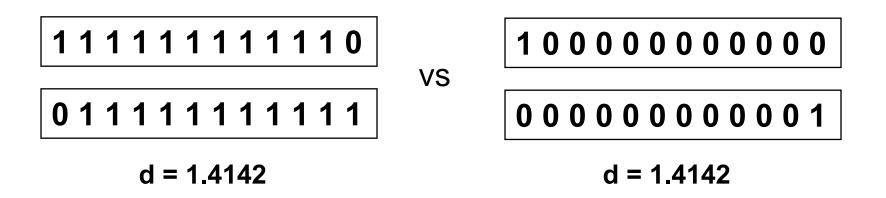
Nearest Neighbor Classification...

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results



Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Classifying unknown records are relatively expensive (weakness)

Demo: http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

Bayes Classifier (Bayesian Decision Theory)

- A probabilistic framework for solving classification problems
- Bayesian decision theory:

$$posterior = \frac{likelihood \times prior}{evidence}.$$

Bayes theorem:

$$P(\omega_j|x) = \frac{p(x|\omega_j)P(\omega_j)}{p(x)},$$

Naïve Bayes Classifier

- Assume independence among attributes x_i when class is given:
 - $P(x_1, x_2, ..., x_n | w_j) = P(x_1 | C_j) P(x_2 | C_j)... P(x_n | w_j)$
 - Can estimate $P(x_i|w_j)$ for all x_i and w_j .
 - New point is classified to w_j if $P(w_j) \prod P(A_i | C_j)$ is maximal.

- All model parameters (i.e., class priors and feature probability distributions) can be approximated with relative frequencies from the training set.
- These are maximum likelihood estimates of the probabilities.
- Non-discrete features need to be <u>discretized</u> first.
 Discretization can be <u>unsupervised</u> (ad-hoc selection of bins) or <u>supervised</u> (binning guided by information in training data).

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original:
$$P(x_i \mid \omega_j) = \frac{N_{ij}}{N_j}$$

Laplace:
$$P(x_i \mid \omega_j) = \frac{N_{ij} + 1}{N_j + c}$$

m-estimate:
$$P(x_i \mid \omega_j) = \frac{N_{ij} + mp}{N_i + m}$$

c: number of classes

p: prior probability

m: parameter

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class: $P(C) = N_c/N$

- e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{ck}$$

- where |A_{ik}| is number of instances having attribute
 A_i and belongs to class C_k
- Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(x \mid \omega_1) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(x \mid \omega_2) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(x \mid \omega_1)P(\omega_1) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(x \mid \omega_1)P(\omega_1) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(x \mid \omega_2)P(\omega_2) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(x|w1)P(w1) > P(x|w2)P(w2)

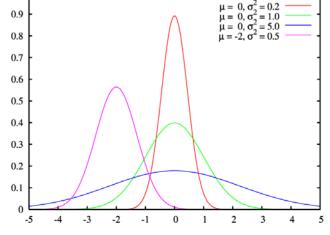
=> Mammals

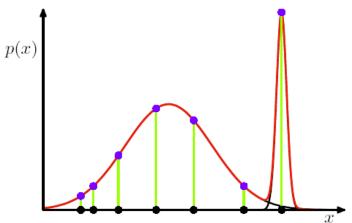
Gaussian Mixture Models (GMMs)

 Motivation: traditional Guassian models are unimodal, but real data distributions are often

multimodal.

 Solution: using mixture models to approach the multimodal distribution in real-world data.





Gaussian Mixture Models (GMMs)

• Multivariate Gaussian Distribution:

$$N(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \, \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right],$$

Gaussian mixture models (GMMs):

$$p(\mathbf{x}|\omega) = \sum_{m=1}^{M} w_m N(\mathbf{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m),$$

where the mixing weight, $\sum_{m=1}^{M} w_m = 1, w_m > 0.$

Generative vs Discriminative Models

- Classifiers broadly fall into two categories: discriminative models and generative models.
- In <u>statistics</u>, a <u>generative model</u> is a model for randomly generating observable data, typically given some hidden parameters. It specifies a <u>joint probability distribution</u> over observation and label sequences.
- Discriminative models differ from generative models in that they do not allow one to generate observations from joint probability distributions.
- More details:
 - http://en.wikipedia.org/wiki/Generative_model
 - http://en.wikipedia.org/wiki/Discriminative_model

Examples

- Generative models include:
 - Gaussian distribution
 - Gaussian mixture model
 - Multinomial distribution
 - Hidden Markov model
 - Naive Bayes
 - Latent Dirichlet allocation
- Discriminative models include:
 - Linear discriminant analysis
 - Support vector machines
 - Boosting
 - Conditional random fields
 - <u>Logistic regression</u>
 - Neural Networks

GMMs: Parameter Estimation

- Maximum-likelihood estimation (MLE)
 - Suppose that training data D contains n samples, x₁,
 x₂,..., x_n

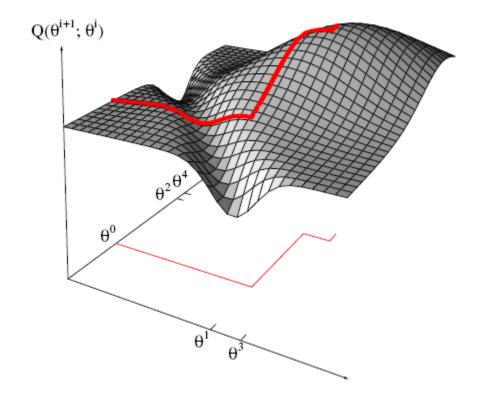
$$P(D \mid \theta) = \prod_{k=1}^{k=n} P(x_k \mid \theta) = F(\theta)$$

 $P(D | \theta)$ is called the likelihood of θ w.r.t. the set of samples)

- MLE of parameter θ is, by definition the value that maximizes P(D | θ)
- "It is the value of θ that best agrees with the actually observed training sample".

Expectation-maximization (EM) Algorithm

• EM is an optimization algorithm that can find the parameter θ that maximizes P(D | θ) according to the MLE.



Two Steps

- Initialize the means μ, covariances Σ and mixing coefficients w, and evaluate the initial value of the log likelihood.
- E-step: evaluate the responsibilities using the current parameter values.

$$L_{nm} = \frac{w_m N(\mathbf{x}_n; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)}{\sum_{m=1}^{M} w_m N(\mathbf{x}_n; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)}$$

 M-step: Re-estimate the parameters using the current responsibilities.

$$N_{m} = \sum_{n=1}^{N} L_{nm} \qquad \hat{\mu}_{m} = \frac{1}{N_{m}} \sum_{n=1}^{N} L_{nm} \mathbf{x}_{n}$$

$$w_{m} = \frac{N_{m}}{N} \qquad \hat{\Sigma}_{m} = \frac{1}{N_{m}} \sum_{n=1}^{N} L_{nm} (\mathbf{x}_{n} - \hat{\mu}_{m}) (\mathbf{x}_{n} - \hat{\mu}_{m})^{\mathrm{T}}$$

Hidden Markov Models (HMMs)

- Top ten cited papers in IEEE:
 - Lawrence R. Rabiner (February 1989). "A tutorial on Hidden Markov Models and selected applications in speech recognition". Proceedings of the IEEE 77 (2): 257-286.
- Markov Chains
- Goal: make a sequence of decisions
 - Processes that unfold in time, states at time t are influenced by a state at time t-1
 - Applications: speech recognition, gesture recognition, parts of speech tagging and DNA sequencing,
 - Any temporal process without memory $\omega^T = \{\omega(1), \omega(2), \omega(3), ..., \omega(T)\}$ sequence of states We might have $\omega^6 = \{\omega 1, \omega 4, \omega 2, \omega 2, \omega 1, \omega 4\}$
 - The system can revisit a state at different steps and not every state need to be visited

First-order Markov models

 Our productions of any sequence is described by the transition probabilities

$$P(\omega_{i}(t+1) \mid \omega_{i}(t)) = a_{ii}$$

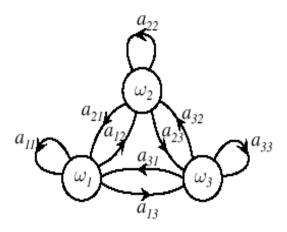


FIGURE 3.8. The discrete states, ω_i , in a basic Markov model are represented by nodes, and the transition probabilities, a_{ij} , are represented by links. In a first-order discrete-time Markov model, at any step t the full system is in a particular state $\omega(t)$. The state at step t+1 is a random function that depends solely on the state at step t and the transition probabilities. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Example

$$\theta = (a_{ij}, \omega^T)$$

$$P(\omega^T \mid \theta) = a_{14} \cdot a_{42} \cdot a_{22} \cdot a_{21} \cdot a_{14} \cdot P(\omega(1) = \omega_i)$$

Example: speech recognition

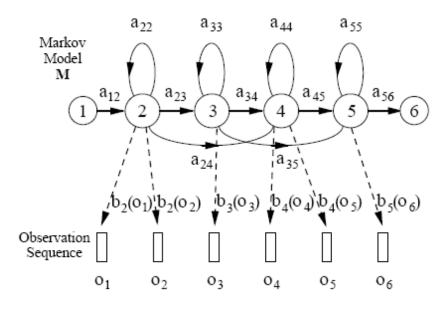
"production of spoken words"

Production of the word: "pattern" represented by phonemes

/p/ /a/ /tt/ /er/ /n/ // (// = silent state)

Transitions from /p/ to /a/, /a/ to /tt/, /tt/ to er/, /er/ to /n/ and /n/ to a silent state

HMMs



- Three problems are associated with this model
 - The evaluation problem
 - The decoding problem
 - The learning problem

The evaluation problem

It is the probability that the model produces a sequence V^T of visible states. It is:

$$P(V^T) = \sum_{r=1}^{r_{\text{max}}} P(V^T \mid \omega_r^T) P(\omega_r^T)$$

where each r indexes a particular sequence $\omega_r^T = \{\omega(1), \omega(2), ..., \omega(T)\}$ of T hidden states.

(1)
$$P(V^T \mid \omega_r^T) = \prod_{t=1}^{t=T} P(v(t) \mid \omega(t))$$

(2)
$$P(\omega_{r}^{T}) = \prod_{t=1}^{t=T} P(\omega(t) \mid \omega(t-1))$$

The evaluation problem...

Using equations (1) and (2), we can write:

$$P(V^{T}) = \sum_{r=1}^{r_{\text{max}}} \prod_{t=1}^{t=T} P(v(t) \mid \omega(t)) \ P(\omega(t) \mid \omega(t-1))$$

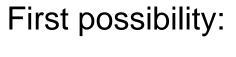
Interpretation: The probability that we observe the particular sequence of T visible states V^T is equal to the sum over all r_{max} possible sequences of hidden states of the conditional probability that the system has made a particular transition multiplied by the probability that it then emitted the visible symbol in our target sequence.

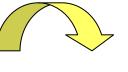
Example: Let ω_1 , ω_2 , ω_3 be the hidden states; v_1 , v_2 , v_3 be the visible states and $V^3 = \{v_1, v_2, v_3\}$ is the sequence of visible states

$$P(\{v_1, v_2, v_3\}) = P(\omega_1).P(v_1 | \omega_1).P(\omega_2 | \omega_1).P(v_2 | \omega_2).P(\omega_3 | \omega_2).P(v_3 | \omega_3)$$

+...+ (possible terms in the sum= all possible (3³= 27) cases!)

The evaluation problem...

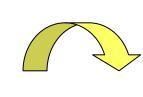


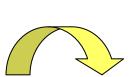


$$\omega_3$$
 $(t=3)$

Second Possibility:

(t=1)





$$\omega_2$$
 $(t=1)$

$$\omega_1$$

$$(t=3)$$

$$P(\{v_1, v_2, v_3\}) = P(\omega_2).P(v_1 \mid \omega_2).P(\omega_3 \mid \omega_2).P(v_2 \mid \omega_3).P(\omega_1 \mid \omega_3).P(v_3 \mid \omega_1) + ... +$$

Therefore:

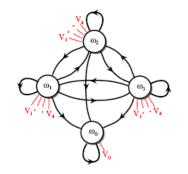
$$P(\{v_1, v_2, v_3\}) = \sum_{\substack{possible \text{ sequence} \\ \text{of hidden states}}} \prod_{t=1}^{t=3}$$

$$\prod_{t=1}^{t=3} P(v(t) \mid \omega(t)).P(\omega(t) \mid \omega(t-1))$$

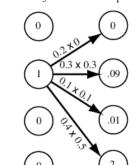
The Forward-backward Algorithm

 This is a belief propagation (BP) algorithm, that passes messages to neighboring states.

```
1 <u>initialize</u> \omega(1), t = 0, a_{ij}, b_{jk}, visible sequence \mathbf{V}^T, \alpha(0) = 1
       \underline{\mathbf{for}}\ t \leftarrow t+1
             \alpha_j(t) \leftarrow \sum_{i=1}^{c} \alpha_i(t-1)a_{ij}b_{jk}
       until t = T
5 return P(\mathbf{V}^T) \leftarrow \alpha_0(T)
\epsilon end
```



```
1 <u>initialize</u> \omega(T), t = T, a_{ij}, b_{jk}, visible sequence V^T
           \beta_j(t) \leftarrow \sum_{i=1}^c \beta_i(t+1)a_{ij}b_{jk}v(t+1)
      until t=1
7 <u>return</u> P(V^T) \leftarrow \beta_i(0) for the known initial state
s \, \underline{\text{end}}
                                                                                       \omega_3
```



t =

3

(.001ì

Left-right HMMs

Simple structure with wide applications

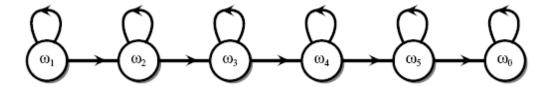


Figure 3.12: A left-to-right HMM commonly used in speech recognition. For instance, such a model could describe the utterance "viterbi," where ω_1 represents the phoneme /v/, ω_2 represents /i/, ..., and ω_0 a final silent state. Such a left-to-right model is more restrictive than the general HMM in Fig. 3.10, and precludes transitions "back" in time.

The decoding problem

- Given a sequence of visible states V^T, the decoding problem is to find the most probable sequence of hidden states.
- This problem can be expressed mathematically as: find the single "best" state sequence (hidden states).

$$\hat{\omega}(1), \hat{\omega}(2), ..., \hat{\omega}(T) \quad such \quad that:$$

$$\hat{\omega}(1), \hat{\omega}(2), ..., \hat{\omega}(T) = \underset{\omega(1), \omega(2), ..., \omega(T)}{\arg \max} P\left[\omega(1), \omega(2), ..., \omega(T), v(1), v(2), ..., V(T) \mid \lambda\right]$$

 Note that the summation disappeared, since we want to find Only one unique best case!

The decoding problem

Where:
$$\lambda = [\pi, A, B]$$

 $\pi = P(\omega(1) = \omega)$ (initial state probability)
 $A = a_{ij} = P(\omega(t+1) = j \mid \omega(t) = i)$
 $B = b_{ik} = P(v(t) = k \mid \omega(t) = j)$

In the preceding example, this computation corresponds to the selection of the best path amongst:

$$\{\omega_{1}(t=1), \omega_{2}(t=2), \omega_{3}(t=3)\}, \{\omega_{2}(t=1), \omega_{3}(t=2), \omega_{1}(t=3)\}\}$$

$$\{\omega_{3}(t=1), \omega_{1}(t=2), \omega_{2}(t=3)\}, \{\omega_{3}(t=1), \omega_{2}(t=2), \omega_{1}(t=3)\}$$

$$\{\omega_{2}(t=1), \omega_{1}(t=2), \omega_{3}(t=3)\}$$

The Viterbi Algorithm

 This is a <u>dynamic programming</u> <u>algorithm</u> for finding the most <u>likely</u> sequence of hidden states.

```
<u>begin initialize</u> Path = \{\}, t = 0
                     for t \leftarrow t+1
    \mathcal{Q}
                            k = 0, \alpha_0 = 0
                            \underline{\mathbf{for}} \ k \leftarrow k+1
    5
                                  \alpha_k(t) \leftarrow b_{jk}v(t)\sum_{i=1}^{\tilde{c}}\alpha_i(t-1)a_{ij}
    \gamma
                                                                                         V_3
                                                                                                       V_1
                                                                                                                     V_3
                                                                                                                                    V_2
                                                                                                                                                  V_0
                            until k=c
    8
                            j' \leftarrow \arg\max \alpha_j(t)
  10
                                                                                                                                                (.0011
                            AppendTo Path \omega_{i'}
  11
                     until t = T
  12
                                                                                                                    .0052
                                                                              \omega_1
          return Path
  13
  14 end
                                                                                                                                  .0002
                                                                              \omega_2
Pass the best messages to neighbors!
                                                                              \omega_3
                                                                                                                                                  5
                                                                                                        2
                                                                                                                      3
                                                                              t =
```

The learning problem

• This third problem consists of determining a method to adjust the model parameters $\lambda = [\pi, A, B]$ to satisfy a certain optimization criterion. We need to find the best model

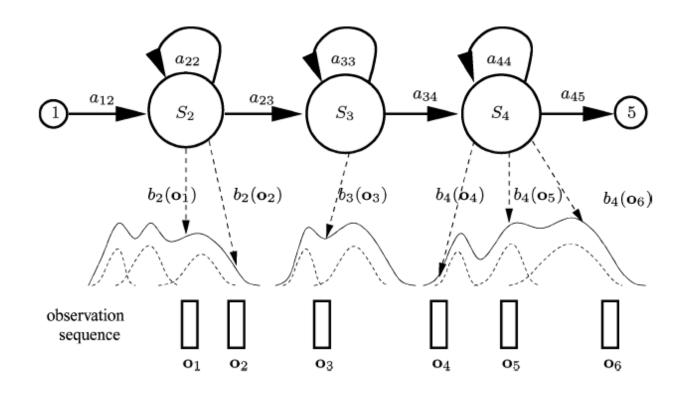
$$\hat{\lambda} = [\hat{\pi}, \hat{A}, \hat{B}]$$

Such that to maximize the probability of the observation sequence:

$$\max_{\lambda} P(V^T \mid \lambda)$$

We use an iterative procedure such as Baum-Welch (EM algorithm) or Gradient to find this local optimum

GMMs as the hidden states!



Learning: Parameter Estimation

Transition:

$$\hat{a}_{ij} = \frac{\sum_{r=1}^{R} \frac{1}{P_r} \sum_{t=1}^{T_r-1} \alpha_i^r(t) a_{ij} b_j(o_{t+1}^r) \beta_j^r(t+1)}{\sum_{r=1}^{R} \frac{1}{P_r} \sum_{t=1}^{T_r} \alpha_i^r(t) \beta_i^r(t)} \qquad \hat{a}_{1j} = \frac{1}{R} \sum_{r=1}^{R} \frac{1}{P_r} \alpha_j^r(1) \beta_j^r(1) \qquad \hat{a}_{iN} = \frac{\sum_{r=1}^{R} \frac{1}{P_r} \alpha_i^r(T) \beta_i^r(T)}{\sum_{r=1}^{R} \frac{1}{P_r} \sum_{t=1}^{T_r} \alpha_i^r(t) \beta_i^r(t)}$$

$$L_j(t) = \frac{1}{P}\alpha_j(t)\beta_j(t),$$

Update mean vector, covariance matrix and mixir weights:

$$\hat{\mu}_{jm} = \frac{\sum_{r=1}^{R} \sum_{t=1}^{T_r} L_{jm}^r(t) \mathbf{o}_t^r}{\sum_{r=1}^{R} \sum_{t=1}^{T_r} L_{jm}^r(t)},$$

$$\hat{\Sigma}_{jm} = \frac{\sum_{r=1}^{R} \sum_{t=1}^{T_r} L_{jm}^r(t) (\mathbf{o}_t^r - \hat{\mu}_{jm}) (\mathbf{o}_t^r - \hat{\mu}_{jm})'}{\sum_{r=1}^{R} \sum_{t=1}^{T_r} L_{jm}^r(t)},$$

$$\hat{w}_{jm} = \frac{\sum_{r=1}^{R} \sum_{t=1}^{T_r} L_{jm}^r(t)}{\sum_{t=1}^{R} \sum_{t=1}^{T_r} L_{jm}^r(t)}.$$

Summary

- K-nearest-neighbor (non-parametric method)
- Naïve Bayes classifier (density modeling)
- Gaussian mixture models (density modeling)
- Hidden Markov models (sequential data)