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Nearest Neighbor Classifiers (KNN)

e Basic idea:

— If it walks like a duck, quacks like a duck, then
It’s probably a duck
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Nearest-Neighbor Classifiers

Unknown record

o®
o® e

e Requires three things
— The set of stored records

— Distance Metric to compute
distance between records

— The value of k, the number of
nearest neighbors to retrieve

e To classify an unknown record:

— Compute distance to other
training records

— Identify k nearest neighbors

— Use class labels of nearest
neighbors to determine the
class label of unknown record
(e.g., by taking majority vote)
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Definition of Nearest Neighbor
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(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points
that have the k smallest distance to x
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1 nearest-neighbor

Voronoi Diagram: http://en.wikipedia.org/wiki/Voronoi diagram
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http://en.wikipedia.org/wiki/Voronoi_diagram

Nearest Neighbor Classification

e Compute distance between two points:
— Euclidean distance

d(p,q)=/(p,—9q)

e Determine the class from nearest neighbor list

— take the majority vote of class labels among
the k-nearest neighbors

— Weigh the vote according to distance
+ weight factor, w = 1/d?
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Nearest Neighbor Classification...

e Choosing the value of k:
— If k iIs too small, sensitive to noise points

— If kis too large, neighborhood may include points from
other classes

- + _
+ _' __ : ‘\+
+
L +Fy —
-. +7e
+ = T -
- +

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 7




Nearest Neighbor Classification...

e Scaling issues

— Attributes may have to be scaled to prevent
distance measures from being dominated by
one of the attributes

— Example:
+ height of a person may vary from 1.5m to 1.8m

+ weight of a person may vary from 90lb to 300Ib
¢ income of a person may vary from $10K to $1M
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Nearest Neighbor Classification...

e Problem with Euclidean measure:

— High dimensional data
¢ curse of dimensionality

— Can produce counter-intuitive results

111111111110

011111111111

d =1.4142

VS

100000000000

000000000001

d =1.4142

¢ Solution: Normalize the vectors to unit length
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Nearest neighbor Classification...

e k-NN classifiers are lazy learners
— It does not build models explicitly
— Classifying unknown records are relatively

expensive (weakness)

Demo: http://lwww.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html
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http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

Bayes Classifier (Bayesian Decision Theory)

e A probabilistic framework for solving classification
problems

e Bayesian decision theory:

likelihood x prior

posterior = :
evidence
e Bayes theorem:
NP(w.
Plw;|z) = p(x|w;) (w3)7
p(x)
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Naive Bayes Classifier

e Assume independence among attributes x; when class is
given:

— P(Xq, X5y «vy X4 | Wj) = P(x4]| C) P(x;| C))... P(x;| w))
— Can estimate P(xj] wj) for all x; and W;.

— Nevv_ point is classified to W it P(w) ITP(A[C) Is
maximal.
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How to Estimate Probabilities from Data?

e All model parameters (i.e., class priors and
feature probability distributions) can be
approximated with relative frequencies from the
training set.

e These are maximum likelihood estimates of the
probabilities.

e Non-discrete features need to be discretized first.
Discretization can be unsupervised (ad-hoc
selection of bins) or supervised (binning guided
by information in training data).
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How to Estimate Probabilities from Data?

e |If one of the conditional probability is zero, then
the entire expression becomes zero

e Probability estimation:

- N.
Original: P(x; | ®;) :N_J

J
c: number of classes

N; +1 _ N
Laplace:P(x; |w;) = p: prior probability
N;+cC
m: parameter
_ N; +mp
m-estimate:P(x; | @;) =
+m

j

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 14




How to Estimate Probabilities from Data?

e Class: P(C) = N/N

— e.g., P(No) =7/10,
P(Yes) = 3/10

Tid Refund Marital Taxable
Status Income Evade

1 Yes Single 125K No
2 |No Married 100Kk No e For discrete attributes:
3 No Single 70K No
4 |Yes Married |120K No I:)('A\I | Ck) - |Alk|/ |\ICk
5 N Di d |95K Y .

° o = — where |A,| is number of
6 No Married |60K No . . .

o ook I Instances having attribute

fo|Yes  (DNOree ° A, and belongs to class C,
8 No Single 85K Yes E | _
9 No Married |75K No a Xamp €s.
10 |No Single  |90K Yes P(Status=Married|No) = 4/7

P(Refund=Yes|Yes)=0
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How to Estimate Probabilities from Data?

Tid Refund Marital

Yes
No
No
Yes
No
No
Yes
No
No
No

© 00 N oo g A~ wWw N P

=
o

Status

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married

Single

Taxable
Income

125K
100K
70K
120K
95K
60K
220K
85K
75K
90K

e Normal distribution:

Evade

No P(AI |CJ): ze 20
No 27O

No !

No — One for each (A,c) pair
Yes

No e For (Income, Class=No):

Ne — If Class=No

Yes

No ¢ sample mean =110

Yes + sample variance = 2975

P(Income =120 |

1 (120-110)’
No) = e " =0.0072
) 27 (54.54)

© Tan,Steinbach, Kumar

Introduction to Data Mining 4/18/2004 16




Example of Naive Bayes Classifier

Name Give Birth CanFly |Livein Water| Have Legs Class
human yes no no yes mammals
python no no no no non-mammals
salmon no no yes no non-mammals
whale yes no yes no mammals
frog no no sometimes |yes non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
cat yes no no yes mammals
leopard shark [yes no yes no non-mammals
turtle no no sometimes |yes non-mammals
penguin no no sometimes |yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals
salamander no no sometimes |yes non-mammals
gila monster |no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals
eagle no yes no yes non-mammals

Give Birth Can Fly |Live in Water| Have Legs Class
yes no yes no ?

A: attributes
M: mammals

N: non-mammals

P(x|w1)_6x6x2x3_006
77777
P(X|@,) = —x 0w 3 & _0.0042
13713713713
7

P(x|@,)P(e,) =0.06 X% =0.021

P(x| @,)P(w,) = 0. oom% ~0.0027

P(x|w1)P(w1) > P(x|w2)P(w2)

=> Mammals
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Gaussian Mixture Models (GMMSs)

e Motivation: traditional Guassian models are

unimodal, but real data distributions are often
multimodal. ol o EEEES
e Solution: using |
mixture models ol
to approach the
multimodal 1 1

distribution In p(a)
real-world data.
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Gaussian Mixture Models (GMMSs)

e Multivariate Gaussian Distribution:

1
)R

N(x; 1, %) =

—

e Gaussian mixture models (GMMSs):

M
p(X|"’L‘1) — Z u’ﬁmﬂ'r(}{; #‘mv Eﬂl)?

m=1

M
where the mixing weight, > w, =1 w, >0.
m=1

exp [—é(x — )BT (x — .u-J] ?
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Generative vs Discriminative Models

e Classifiers broadly fall into two categories: discriminative
models and generative models.

e In staltistics, a generative model is a model for randomly
generating observable data, typically given some hidden
parameters. It specifies a joint probability distribution over
observation and label sequences.

e Discriminative models differ from generative models in
that they do not allow one to generate observations from
joint probability distributions.

e More details:
— http://len.wikipedia.org/wiki/Generative model
— http://en.wikipedia.org/wiki/Discriminative model
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Examples

e Generative models include:

Gaussian distribution
Gaussian mixture model
Multinomial distribution
Hidden Markov model

Naive Bayes

Latent Dirichlet allocation

e Discriminative models include:

Linear discriminant analysis

Support vector machines

Boosting

Conditional random fields

Loqistic regression

Neural Networks

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

21



http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Gaussian_mixture_model
http://en.wikipedia.org/wiki/Multinomial_distribution
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Naive_Bayes
http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
http://en.wikipedia.org/wiki/Linear_discriminant_analysis
http://en.wikipedia.org/wiki/Support_vector_machines
http://en.wikipedia.org/wiki/Boosting
http://en.wikipedia.org/wiki/Conditional_random_field
http://en.wikipedia.org/wiki/Logistic_regression
http://en.wikipedia.org/wiki/Neural_Network

GMMs: Parameter Estimation

e Maximume-likelihood estimation (MLE)
— Suppose that training data D contains n samples, x,,

Xoyeney X

P(D10)=[P(x.10)=F(0)

P(D | 0) is called the likelihood of 8 w.r.t. the set of samples)

— MLE of parameter 0 is, by definition the value that
maximizes P(D | 0)

— “It 1s the value of 0 that best agrees with the actually
observed training sample”.
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Expectation-maximization (EM) Algorithm

e EM Is an optimization algorithm that can find the
parameter 6 that maximizes P(D | 6) according to
the MLE.
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Two Steps

e Initialize the means u, covariances £ and mixing
coefficients w, and evaluate the initial value of the
log likelihood.

e E-step: evaluate the responsibilities using the
current parameter values.

-EU‘ITE. "'Nlr (Xﬂ. ‘ # e E i )

e M-step: Re-estimate the parameters using the
Current resoon3|b|I|t|es

m — E Lﬂ 1 'n nmX
n=1 n=1 v
j\‘rnl - J- — \ . - T
w,,, = = Em — N E Ln:rn (Xrl o au'mJ(Xn - au'm)
:\1‘ 1Vm

n=1
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Hidden Markov Models (HMMSs)

e Top ten cited papers in IEEE:

— Lawrence R. Rabiner (February 1989). "A tutorial on Hidden Markov
Models and selected applications in speech recognition". Proceedings of
the IEEE 77 (2): 257-286.

e Markov Chains

e Goal: make a sequence of decisions

— Processes that unfold in time, states at time t are influenced by a state
at time t-1

— Applications: speech recognition, gesture recognition, parts of speech
tagging and DNA sequencing,

— Any temporal process without memory
o' ={n(1), o(2), ®(3), ..., o(T)} sequence of states
We might have o® = {01, 04, ®2, 2, ©vl, w4}

— The system can revisit a state at different steps and not every state
need to be visited
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First-order Markov models

e Our productions of any sequence Is described by
the transition probabillities

P(oj(t + 1) | o; (1)) = gy

FIGURE 3.8. The discrete states, e, in a basic Markov model are represented by nodes,

and the transition probabilities, a;, are represented by links. In a first-order discrete-time

Markov madel, at any step ¢ the full system is in a particular state w(t). The state at step
t+ 1 is a random function that depends solely on the state at step t and the transi-
tion probabilities, From: Richard O. Duda, Peter E. Harl, and David G. Stork, Fattern
Classification. Copyright @ 2001 by John Wiley & Sons, Inc.
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Example

0 = (aij1 ®')

P(@"|0) =ay,.a .8. 8 .24, . P(o(l) = o)

Example: speech recognition

“production of spoken words”

Production of the word: “pattern” represented by
phonemes

Ipl [al 1t/ lerl In/ [ (1 = silent state)

Transitions from /p/ to /a/, /a/ to /tt/, /tt/ to er/, /er/ to In/
and /n/ to a silent state
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HMMs
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e Three problems are associated with this model
— The evaluation problem
— The decoding problem

— The learning problem
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The evaluation problem

It is the probability that the model produces a sequence
VT of visible states. It is:

rm aX

PVT)= PV @] )P(@)])

r=1

where each r indexes a particular sequence
o; ={w(),»(2),...,o(T)} of T hidden states.

® PV =[[POO]00)

@ P =[[P@Oot-1)
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The evaluation problem...

Using equations (1) and (2), we can write:
Fmax t=T
T
PVT) =2 [ Pv® (1) P(o®) | ot 1)
r=1 t=1
Interpretation: The probability that we observe the particular sequence of T
visible states VT is equal to the sum over all r ., possible sequences of

hidden states of the conditional probability that the system has made a
particular transition multiplied by the probability that it then emitted the

visible symbol in our target sequence.

Example: Let w,, w,, w; be the hidden states; v,, v,, v; be the visible states
and V3={v,, v,, v;} is the sequence of visible states

PV, Vo, V3}) = P(@y).P(vy | @).P(@, | @,).P(v, | @,).P(a; | @,).P(v; | a)
+...+ (possible terms in the sum= all possible (33= 27) cases !)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
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The evaluation problem...

First possibility: ﬁ v, ﬁ v, ﬁ Vs
T B

2] , @3
(t=1) (=2 (t=3)

Second Possibility: ﬁvl ﬁ ﬁ v,
ANV WA\

@, @, @,
(t=1) (t=2) (t=3)

P({Vvy, Vo, V3}) = P(@,).P(vy | @,).P(w; | @,).P(v, | @3).P(e, |
@3).P(Vy | @) + ...+

P{v,v,, v,h= > ]ti[P(v(t)|a)(t))_p(a)(t)| o(t—1)
Thel’efore: possible sequence t=1

of hidden states
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The Forward-backward Algorithm

e This is a belief propagation (BP) algorithm, that
passes messages to neighboring states.

1 initialize w(1),t =0, a;;, b;i, visible sequence VT a(0)=1
2 fort—1t+1

3 ij[f::l — El E.Ti:[f.' — 1::'15.'?;th|;;;
j until t =T a
5 return P(VT) — ag(T)

& end

1 initialize w(T1'),t =T, a;;,bj;., visible sequence VT

e fort—t—1 o
i

4 Bi(t) « > Bilt + L)aibjpv(t +1) N
=1

5 untilt=1
v return P(VT) — 3,(0) for the known initial state
s end

- @ 9 @ @ 'f
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Left-right HMMs

e Simple structure with wide applications

Figure 3.12: A left-to-right HMM commonly used in speech recognition. For instance,
such a model could describe the utterance “viterbi,” where w; represents the phoneme
/v/, wo represents /i/, ..., and wp a final silent state. Such a left-to-right model is

more restrictive than the general HMM in Fig. 3.10, and precludes transitions “back”
in time.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
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The decoding problem

e Given a sequence of visible states VT, the decoding
problem is to find the most probable sequence of hidden

states.

e This problem can be expressed mathematically as: find
the single “best” state sequence (hidden states).

1), &(2),...,&(T) such that:
o), 3(2),...a(T)= argmax P[o(0),®(2),... o(T),v(1),V(2),...V (T)| 1]

w(1),w(2),....0(T)

e Note that the summation disappeared, since we want to
find Only one unique best case !
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The decoding problem

Where: A=][xA,B]
7= P(o(1) = w) (Initial state probabillity)
A=a;=Pla(t+l) = | | o(t) =)
B = by =P(v(t) = k| a(t) =)

In the preceding example, this computation corresponds to
the selection of the best path amongst:

{o)(t = 1),0,(t = 2),w5(t = 3)}, {o,(t = 1), 05(t = 2),0,(t = 3)}
{o5(t=1),0,(t = 2),0,(t = 3)}, {5t = 1),05(t = 2),0,(t = 3)}
{w,(t = 1),0,(t = 2),w5(t = 3)}
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The Viterbi Algorithm

e This is a dynamic programming algorithm for
finding the most likely sequence of hidden states.

1 begin initialize Path={},t =10
2 for t —t+4+1
4 E=0a,=70
5 for k—k+1
7 ay(t) «— bjpv(t) El ai(t —1)a;;
8 until £ = ¢ - Vs Vi Vs M Vo
10 j' +— arg max oy (t) © @ @ @
J
11 AppendT'o Path w;
12 until t =7 N o @ @
13 return Path 1
14 end
o () O,
Pass the best messages to neighbors! 03 @ @
t= 1 2 3 4 5

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 36



http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Likelihood_function

The learning problem

e This third problem consists of determining a method to
adjust the model parameters A = [7,A,B] to satisfy a
certain optimization criterion. We need to find the best

model ~ ~
4 =[# A B]

Such that to maximize the probability of the observation
sequence:

Max PV'|A)

We use an iterative procedure such as Baum-Welch (EM
algorithm) or Gradient to find this local optimum
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GMMs as the hidden states!
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Learning: Parameter Estimation

Transition:

H Y P
r=1 Tr 2ot af(t)ay Pt ) . \ . r=1p% i(T)5]
S A i al(taghs (ol )3 (t + 1) 1 &1 rETD) ey > af(T)57(T)
a-:—E—a-- 3 iN = : -
IRIE D DHH O () VTR R Yt 7 Lty 0 (D5 (1)

&i_;i =
Updating weights: Li(t) = lﬂj(f)ﬁ-(t)j

R
Update mean vector, > t " jm[tjot
covariance matrix and mixir Hjim

weights: Z-;-:l Zt ;m (t)
f: o Z?_l Z?r L;m [t) (DT o lj:rn)[c':i. o Jﬂ'jmy
gm — T, 3
Z'ﬂ'=1 Zt jﬂl(tj

R Ty
N Z'ﬂ'=1 Z j:rn [t)
TN LYL L
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Summary

e K-nearest-neighbor (non-parametric method)
e Naive Bayes classifier (density modeling)
e Gaussian mixture models (density modeling)
e Hidden Markov models (sequential data)
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