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Linear separability

How does a (trained) MLP perform classification?
Lets consider a simple MLP consisting of a single layer. In this

 case (i.e. no hidden layers)
 

, the network produces an output 
as follows:

The MLP is a realization of a parameterized function f(x). In case 
of a one layer MLP, this function produces k

 
hyperplanes

 
of 

dimension n-1, where k
 

is the number of output neurons.
Example: In case of k=1; n=2, then we have

f(x) = w11

 

x1

 

+w12

 

x2
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Linear separability
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Linear separability

Note that the function 
learned may not be 
unique (to a given 
learning problem) as 
several planes may 
separate the classes in 
a training set equally 
well.
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Linear separability

Problem: The hyperplanes
 

always pass through zero. For 
example, the line defined by:

f(x) = w11

 

x1

 

+w12

 

x2

Passes through zero. It would be unable to separate two classes 
which are both located on on

 
one side of the coordinate 

system.
Solution: Every neuron in an MLP receives an additional 

weighted input called bias. The bias provides a constant 
input which is weighted. The bias allows us to “move”

 
the 

hyperplane
 

freely across the output space. Thus: 
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Linear separability

, where b is the bias, and xi

 

,yi

 

refer to the i-th
 

input/output pair.
There are many problems which are not linearly separable. For 

example, the XOR problem can not be solved since only one 
hyperplane

 
per unit can be produced to the separate two classes

 
.

MLPs
 

with two or more hidden layers can solve such problems 
because the function (the MLP) can realize non-linear decision 
surfaces. 

ε>+><⋅ ),( bxwy ii

Thus, a single layer MLP can only solve problems which are linearly 
separable. Formally, a single layer MLP can solve problems for 
which there exists an ε

 
such that:
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Computational power
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Computational power

Online simulations of MLP are available which demonstrate the ability 
of a MLP:

http://www.nullpointer.ch/machine-learning/supervised-learning/MLP/

http://freeisms.com/MLPAppletItself.html

Also supported in WEKA:

http://www.cs.waikato.ac.nz/ml/weka/

Example: The Iris data set: onsists
 

of 50 samples from each of three 
species of Iris

 
flowers (the target classes). Four features

 
were measured from 

each sample, they are the length and the width of sepal
 

and petal.
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Computational power

We have seen that the MLP learns a parameterized function, and 
that the number of parameters affect the capability of the MLP.
In general, the more parameters we have, the better the (training) 
performance of the MLP at the cost of more computation time.
However, there is a limit to how many parameters an MLP can have. 
The limit is caused by the problem domain. 
For example, an MLP capable of solving the XOR problem is limited 
to having a 2-dimensional input, and a 1-dimensional output. This 
causes a 2-layer MLP to have at most 8 weights/parameters (plus 
the biases). While this suffices to solve the XOR problem, there

 
are 

learning problems where this restriction causes a limitation in the 
computational abilities.
Solution: Add more hidden layers, add direct forward links, or 
binarization

 
of targets.
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MLP, alternate notation

For the following, it is more convenient to use a matrix notation 
as follows:

o = Fp

 

(Cy)
y = Fn

 

(Ax),

where x is an input vector, y is the output of the hidden layer, o
is the output of the network, A is a matrix of weights connecting
the input with the hidden layer, C is a matrix of weights
connecting the hidden with the output layer, and Fn

 

is an
n-dimensional vector with all elements set to f (・).
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Elman Network

An MLP can only deal with fixed sized vectors. But there are
many problem domains for which the input vectors are not fix in
size. For example, time series information such as in speech
processing, financial forecasting, text processing, and many
more.
Simply put, an Elman Network is an extension of the MLP
which is trained by using a shifting (fixed sized) window over
the input sequence. This window serves as an input to the
network. In addition, the output of the hidden layer is forwarded
to the input layer when processing the next time window.
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Elman Network

Formally, an Elman Network can be expressed as follows:

o = Fp

 

(Cy)
y = Fn

 

(Ax + Bq−1y),

where y−1

 
is a shift operator such that q−1y denotes the

availability of the hidden layer output y from the previous
iteration. In other words, it denotes the relationship of the
current input with the previous input.
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Elman Network

The Elman Network processes an input sequence iteratively.
The same gradient error descent method can be applied to
train the system. A difference is that the gradient needs to be
propagated back iteratively. The longer the sequence, the
longer the path for which the gradient needs to be propagated
back. Frasconi, Baldi

 
proved that this can lead to long term

dependency problems. This remains a largely unsolved
problem.
The learning algorithm is gradient based as for MLP. But since 
the gradient needs to be passed back through the sequence, 
and hence, the algorithm is also known as BPTT.
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Elman Network

q−1y was the network’s internal response to the processing of
the previous time window. In other words, q−1y refers to the
state of the network from a previous time instance. Hence, we
will refer to this simply as state.
The Elman Network can only deal with directed sequences.
There are problem domains which deal with more complex
structures such as in document processing and document 
parsing, robot navigation, chinese

 
character recognition, etc. In 

these cases, the data is represented as a tree data structure.

Observation: A tree data structure with a maximum out-degree 
of 1 is equivalent to a directed sequence. Hence, directed 
sequences are a special case of trees.
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Back Propagation Through Structure

A subsequent extension of Elman’s idea to tree structured data is 
possible if the maximum out-degree c

 
is known. In this case

Formally, BPTS can be described as follows:
o = Fp

 

(Cy)
y = Fn

 

(Ax + Bq−1z),
Where x refers to the numeric label attached to a node in a tree Bq−1z is a

 shorthand notation of the following:

Frasconi
 

et.al. proposed this approach. It was later named after its learning 
algorithm BPTS.
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Back Propagation Through Structure

Thus, BPTS processes nodes in a tree, one at a time, and
takes as input the networks’

 
state for all of the nodes’

 
children.

It can be seen clearly that if c = 1 then BPTS will be an
equivalent to an Elman Network.

Since the state of all children needs to be computed first when
processing a given node, this dictates the processing of nodes
in the inverse topological order (from leaf-to-root nodes). This is
a recursive procedure, and hence, this class of networks is
referred to as Recursive Neural Networks.
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Training the BPTS

The principle of minimizing the cost function by following the 
gradient descent method remains unchanged. However, the 
gradient needs to be propagated back recursively through the 
same network again and again. This lead to the formation of 
the term unfolding architecture.
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BPTS

There are several variants of BPTS. For example:
The output MLP architecture
The state MLP architecture
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The state MLP architecture
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The output MLP architecture
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Some Limitations of the BPTS

•Can only encode causal relationships.

•Can “only”
 

deal with tree data structures. But what about 
problems involving chemical molecules, image processing 
applications, the world wide web, etc. are a few examples of 
problem domains which are represented by cyclic directed or 
undirected graphs.

•The BPTS can not deal with cyclic dependencies between
•nodes in a graph.
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Summary

Supervised learning can be used for Data Mining tasks
If the problem requires the classification of data
If the problem can be described by a function.
If some ground truth information is available
If an extraction of rules is not required

A main advantage of machine learning is that expert 
knowledge is normally not required.

MLP provides a generic (one-size-fits-all) algorithm to 
classification.

Note that an MLP is hardware which is almost always 
simulated by software realizations.
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