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What is Cluster Analysis?

e Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster

Intra-cluster distances are
distances are maximized
minimized
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Applications of Cluster Analysis

e Understanding

— Group related documents
for browsing, group genes

and proteins that have
similar functionality, or

group stocks with similar

price fluctuations

e Summarization

— Reduce the size of large

data sets

Discovered Clusters

Industry Group

= W

Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,
Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down,
Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,
Sun-DOWN
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,
ADV-Micro-Device-DOWN,Andrew-Corp-DOWN,
Computer-Assoc-DOWN, Circuit-City-DOWN,
Compag-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,
Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN

Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
MBNA-Corp-DOWN,Morgan-Stanley-DOWN

Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,
Schlumberger-UP

Technologyl-DOWN

Technology2-DOWN

Financial-DOWN

Oil-UP

Clustering precipitation
in Australia
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What is not Cluster Analysis?

e Supervised classification

— Have class label information

e Simple segmentation

— Dividing students into different registration groups
alphabetically, by last name

e Results of a query

— Groupings are a result of an external specification

e Graph partitioning

— Some mutual relevance and synergy, but areas are not
identical
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Notion of a Cluster can be Ambiguous
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Types of Clustering

e A clustering is a set of clusters

e Important distinction between hierarchical and
partitional sets of clusters

e Partitional Clustering

— A division data objects into non-overlapping subsets (clusters)
such that each data object is in exactly one subset

e Hierarchical clustering
— A set of nested clusters organized as a hierarchical tree
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Partitional Clustering
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Hierarchical Clustering
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Traditional Hierarchical Clustering Traditional Dendrogram

pl p2  p3 p4

Non-traditional Hierarchical Clustering Non-traditional Dendrogram
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Other Distinctions Between Sets of Clusters

e EXxclusive versus non-exclusive

— In non-exclusive clustering, points may belong to multiple
clusters.

— Can represent multiple classes or ‘border’ points

e Fuzzy versus non-fuzzy

— In fuzzy clustering, a point belongs to every cluster with some
weight between 0 and 1

— Weights must sum to 1
— Probabilistic clustering has similar characteristics

e Partial versus complete
— In some cases, we only want to cluster some of the data

o Heterogeneous Versus hOmOQEI’IEOUS
— Cluster of widely different sizes, shapes, and densities
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Types of Clusters

e Well-separated clusters

e Center-based clusters

e Contiguous clusters

e Density-based clusters

e Property or Conceptual

e Described by an Objective Function

COMP7650
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Types of Clusters: Well-Separated

e Well-Separated Clusters:

— A cluster is a set of points such that any point in a cluster is
closer (or more similar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters
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Types of Clusters: Center-Based

e Center-based

— A cluster is a set of objects such that an object in a cluster is
closer (more similar) to the “center” of a cluster, than to the

center of any other cluster

— The center of a cluster is often a centroid, the average of all
the points in the cluster, or a medoid, the most
“representative” point of a cluster. In general, those points are

called prototypes.

4 center-based clusters
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Types of Clusters: Contiguity-Based

e Contiguous Cluster (Nearest neighbor or
Transitive)

— A cluster is a set of points such that a point in a cluster is
closer (or more similar) to one or more other points in the
cluster than to any point not in the cluster.

.......

.........

8 contiguous clusters
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Types of Clusters: Density-Based

e Density-based

— A cluster is a dense region of points, which is separated by
low-density regions, from other regions of high density.

— Used when the clusters are irregular or intertwined, and when

noise and outliers are present. This is typical for clusters which
are not well separated.

6 density-based clusters
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Types of Clusters: Conceptual Clusters

e Shared Property or Conceptual Clusters

— Finds clusters that share some common property or represent
a particular concept.

2 Overlapping Circles
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Types of Clusters: Objective Function

e Clusters Defined by an Objective Function

Finds clusters that minimize or maximize an objective function.

Enumerate all possible ways of dividing the points into clusters and
evaluate the ‘goodness' of each potential set of clusters by using
the given objective function. (NP Hard)

Can have global or local objectives.

# Hierarchical clustering algorithms typically have local objectives

¢ Partitional algorithms typically have global objectives
A variation of the global objective function approach is to fit the
data to a parameterized model.

¢ Parameters for the model are determined from the data.

¢ Mixture models assume that the data is a ‘mixture' of a number of
statistical distributions.

COMP7650
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Types of Clusters: Objective Function ...

e Map the clustering problem to a different domain
and solve a related problem in that domain

— Proximity matrix defines a weighted graph, where the
nodes are the points being clustered, and the
weighted edges represent the proximities between
points.

— Clustering is equivalent to breaking the graph into
connected components, one for each cluster.

— Want to minimize the edge weight between clusters
and maximize the edge weight within clusters.
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Characteristics of the Input Data Are Important

e Type of proximity or density measure
— This is a derived measure, but central to clustering

e Sparseness
— Dictates type of similarity
— Adds to efficiency

e Attribute type

— Dictates type of similarity

e Type of Data

— Dictates type of similarity
— Other characteristics, e.g., autocorrelation

e Dimensionality
e Noise and Outliers
e Type of Distribution
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Clustering Algorithms

e K-means and its variants
— Similar to LVQ but works unsupervised.
— Very fast and simple algorithm.
e Self Organizing Maps
— Topology preserving mapping.
— Linear computational complexity.
— Can be seen as an extension to K-means

e Hierarchical clustering

e Density-based clustering

COMP7650 20




K-means Clustering

Is a machine learning algorithm
Partitional clustering approach
Each cluster is associated with a centroid (prototype)

Each point is assigned to the cluster with the closest
centroid

Number of clusters, K, must be specified
e The basic algorithm is very simple

. Select K points as the initial centroids.
repeat
Form K clusters by assigning all points to the closest centroid.

Recompute the centroid of each cluster.

until The centroids don’t change
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K-means Clustering — Detalls

e Initial centroids are often chosen randomly.
—  Clusters produced vary from one run to another.

e The centroid is (typically) the mean of the points in the
cluster.

e ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

e K-means will converge for common similarity measures
mentioned above.

e Most of the convergence happens in the first few
iterations.

—  Often the stopping condition is changed to ‘Until relatively few
points change clusters’

e ComplexityisO(n*K=*1*d)

—  n =number of points, K = number of clusters,
| = number of iterations, d = number of attributes
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Evaluating K-means Clusters

e Most common measure is Sum of Squared Error (SSE)

For each point, the error is the distance to the nearest cluster
To get SSE, we square these errors and sum them.

SSE = ZK: > dist?(m;, x)

i:]. XECi
X Is a data point in cluster C,and m, is the representative point for
cluster C,
# can show that m, corresponds to the center (mean) of the cluster

Given two clusters, we can choose the one with the smallest
error

One easy way to reduce SSE is to increase K, the number of
clusters

¢ A good clustering with smaller K can have a lower SSE than a poor
clustering with higher K

COMP7650
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...

Iteration 1 Iteration 2
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Problems with Selecting Initial Points

e Ifthere are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

—  Chance is relatively small when K is large
—  If clusters are the same size, n, then

number of ways to select one centroid from each cluster KIn¥ K

P = Kf;'

number of ways to select K centroids - (Kn)K

—  For example, if K = 10, then probability = 10!/101° = 0.00036

—  Sometimes the initial centroids will readjust themselves in
‘right’ way, and sometimes they don't

—  Consider an example of five pairs of clusters
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10 Clusters Example

lteration 4
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X

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

lteration 4

0 5 10 15 20
X
Starting with some pairs of clusters having three initial centroids, while other have only one.
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10 Clusters Example
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

e Multiple runs
— Helps, but probability is not on your side

e Sample and use hierarchical clustering to
determine initial centroids

e Select more than k initial centroids and then
select among these initial centroids

— Select most widely separated
e Postprocessing

e Bisecting K-means
— Not as susceptible to initialization issues
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Handling Empty Clusters

e Basic K-means algorithm can yield empty
clusters

e Several strategies
— Choose the point that contributes most to SSE

— Choose a point from the cluster with the highest SSE

— If there are several empty clusters, the above can be
repeated several times.
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Updating Centers Incrementally

e In the basic K-means algorithm, centroids are
updated after all points are assigned to a centroid

e An alternative is to update the centroids after
each assignment (incremental approach)
— Each assignment updates zero or two centroids
— More expensive
— Introduces an order dependency
— Never get an empty cluster
— Can use “weights” to change the impact
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Pre-processing and Post-processing

e Pre-processing
— Normalize the data
— Eliminate outliers

e Post-processing
— Eliminate small clusters that may represent outliers

— Split ‘loose’ clusters, I.e., clusters with relatively high
SSE

— Merge clusters that are ‘close’ and that have relatively
low SSE

— Can use these steps during the clustering process.
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Bisecting K-means

e Bisecting K-means algorithm

—  Variant of K-means that can produce a partitional or a
hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat
3.  Select a cluster from the list of clusters
for : = 1 to number_of _iterations do
Bisect the selected cluster using basic K-means
end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

until Until the list of clusters contains K clusters
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Bisecting K-means Example

lteration 10
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Limitations of K-means

e K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

e K-means has problems when the data contains
outliers.
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Limitations of K-means: Differing Density
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.

COMP7650 44




Overcoming K-means Limitations
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Overcoming K-means Limitations

Original Points K-means Clusters
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Self-Organizing Maps

The Self-Organizing Map (SOM) Is:

Developed by T.Kohonen in ‘86
An unsupervised machine learning method.
Perform a topology preserving feature mapping.

A neural network popularly used for clustering,
dimension reduction, and visualization (of high
dimensional data).

The SOM algorithm is neurobiologically inspired,
Incorporating all the mechanisms that are basic to
self-organization: competition, cooperation, and self-
amplification.

The Kohonen’s SOM algorithm is very simple to
implement, yet mathematically it is very difficult to
analyze its properties in a general setting.
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Feature mapping in biological systems

Motor signals

’:

L
Swallowing
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A side-note on feature mapping

A remarkable property of
feature mapping:

A pattern may be heavily
distorted but the “brain” still
recognizes the pattern by the
underlying features.

This is why animated cartoon
characters are often accepted
as living things. In fact, we (the
brain) have to learn that
cartoons are not real.

This implies that the brain does
not asses the pattern as a
whole. It assesses a pattern by
its features.

COMP7650
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Self-Organizing Maps

e As with k-means, we specify the number of
“clusters”. SOM calls these the neurons.

e However, we also specify a topology — a 2D grid
that gives the geometric relationships between
the prototypes. Common relationships are
rectangular or hexagonal.

e Associated with each neuron is a codebook
VecCtor (which is of the same dimension as the input space)

e The algorithm learns a mapping from the high
dimensional input space of the data points onto
the points of the 2D grid.
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Self-Organizing Maps

Example of grid topologies: Rectangular, and hexagonal.
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Training Self-Organizing Maps

The training algorithm of the self-organizing map
consists of two steps:

1. Competitive step

2. Cooperative step

These two steps are repeated for a number of
iterations.
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Self-Organizing Maps

Competitive step:

Given w; = [wj;,W,, ... W ]"where j=1,2,...,| (the
total number of neurons in the network)

e Select one input vector from a dataset x = [X,
X5 , ... Xy ]T Where m is the dimension of x.

e Find the best matching codebook
| = arg min;|[x —w; |
e 1|Is the index of the best matching codebook,
and Is said to be the winner for Xx.
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Self-Organizing Maps

Cooperative step: The winner and all of its neighbours are
updated:

Aw; =nA(,1)(X; —w;)
, Where

A7) =exp(=|r —r. " /207

¥y, is a learning rate, and g'is a neighborhood radius. 7] is
a positive float value smaller than 1, whereas ¢ mustis
always larger than 1.
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SOM example (1)

TABLE 9.3 Animal Names and Their Attributes
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SOM example (2)

Thus, the input domain consists of 16 animals
which are described by a 13-dimensional feature
vector.

— The codebook vectors will be of the same
dimension.

—Assume we are training a SOM of size 10 x 10
whose neurons have a hexagonal relationship,
then the result may look as follows:

COMP7650 56




SOM example (3)

dog : : fox - - cat : : eagle
owl
tiger
wolf - : - - : : : : hawk
lion

dove

horse : : : - - - hen
COW : - - - g00se

zebra : : : : : - duck

FIGURE 9.17 Feature map containing labeled neurons with
strongest responses to their respective inputs.
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SOM example (4)

dog dog fox fox fox cat cat cat | eagle eagle
dog dog fox fox fox cat cat cat | eagle eagle
wolf  wolf wolf  fox cat tiger tiger tiger | owl owl

wolf wolf lion lion lion tiger tiger tiger | hawk hawk
wolf wolf lion lion lion tiger tiger tiger ) hawk hawk
wolf wolf lion lion lion owl dove hawk dove dove
horse horse\ lion lion lion (dove hen hen dove dove
horse horse zebra cow cow  cOwW hen hen dove dove
zebra zebra zebra cow cow  cow hen hen duck goose
zebra zebra zebra cow cow cow | duck duck duck goose

FIGURE 9.18 Semantic map obtained through the use of
simulated electrode penetration mapping. The map is divided into
three regions representing: birds, peaceful species, and hunters.

COMP7650 58




Self-Organizing Maps

SOMs are a massive parallel systems which can
(once trained) map data in constant time!

Hence, SOMs are very popular in many data
mining exercises.

High dimensional input data is mapped onto a 2-
dimensional grid (dimension reduction)

Since SOMs perform a topology preserving
mapping, and hence, SOMs are also a useful tool
for knowledge discovery tasks.
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Self-Organizing Maps

We have seen that SOMs map data which are
similar to each other in the input space to nearby
areas in the display space.

e Thus, the goal of the SOM (and in fact of all
clustering methods) is to group together “similar”
data — but what does this mean?

e NoO single answer — it depends on what we want
to find or emphasize in the data; this is one
reason why clustering is an “art”

e The similarity measure Is often more important
than the clustering algorithm used — don't
overlook this choice!
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Self-Organizing Maps

The most commonly used similarity function is the Euclidean

n

deuc (X1y) — Z(Xi o yi)2

=1

But there are many more: For example:

Hamming distance, Manhatten distance, L1 norm, Pearson
Linear Correlation, ...., just to mention a few.

A good similarity measure depends on the learning problem.
For example, when mapping genes, the Pearson Linear
Correlation is more appropriate.
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Hierarchical Clustering

e Produces a set of nested clusters organized as a
hierarchical tree
e Can be visualized as a dendrogram

— A tree like diagram that records the sequences of
merges or splits
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Strengths of Hierarchical Clustering

e Do not have to assume any particular number of
clusters

— Any desired number of clusters can be obtained by
‘cutting’ the dendogram at the proper level

e They may correspond to meaningful taxonomies

— Example in biological sciences (e.g., animal kingdom,
phylogeny reconstruction, ...)
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Hierarchical Clustering

e Two main types of hierarchical clustering
— Agglomerative:

< Start with the points as individual clusters

¢ At each step, merge the closest pair of clusters until only one cluster
(or k clusters) left

— Divisive:
¢ Start with one, all-inclusive cluster

¢ At each step, split a cluster until each cluster contains a point (or
there are k clusters)

e Traditional hierarchical algorithms use a similarity or
distance matrix

— Merge or split one cluster at a time
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Agglomerative Clustering Algorithm

e More popular hierarchical clustering technique

e Basic algorithm is straightforward

1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters
5 Update the proximity matrix

6. Until only a single cluster remains

e Key operation is the computation of the proximity of
two clusters

—  Different approaches to defining the distance between
clusters distinguish the different algorithms
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Starting Situation

e Start with clusters of individual points and a

proximity matrix
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Intermediate Situation

e After some merging steps, we have some clusters
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Intermediate Situation

e We want to merge the two closest clusters (C2 and C5) and

update the proximity matrix.

ci|ce| c3| calcs

Proximity Matrix
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After Merging

e The question is “How do we update the proximity matrix?”
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How to Define Inter-Cluster Similarity
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Similarity?
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Other methods driven by an objective
function
— Ward’s Method uses squared error

Proximity Matrix
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity

pl

p2

p3

MIN

MAX
Group Average
Distance Between Centroids

Other methods driven by an objective
function
— Ward’s Method uses squared error

Proximity Matrix

COMP7650

74




Cluster Similarity: MIN or Single Link

e Similarity of two clusters is based on the two
most similar (closest) points in the different
clusters

— Determined by one pair of points, i.e., by one link in
the proximity graph.

1 12 13 14 |5 ‘
11| 1.00 0.90 0.10 0.65 0.20
12| 0.90 1.00 0.70 0.60 0.50
13| 0.10 0.70 1.00 0.40 0.30
14| 0.65 0.60 0.40 1.00 0.80 r“

15[ 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical Clustering: MIN
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Strength of MIN
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Limitations of MIN
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Cluster Similarity: MAX or Complete Linkage

e Similarity of two clusters is based on the two least
similar (most distant) points in the different
clusters

— Determined by all pairs of points in the two clusters

11 12 13 14 15
11| 1.00 0.90 0.10 0.65 0.20
121 0.90 1.00 0.70 0.60 0.50

3/ 0.10 0.70 1.00 0.40 0.30
14 0.65 0.60 0.40 1.00 0.80 r_‘ r_‘

15/ 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical Clustering: MAX

Nested Clusters
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Strength of MAX
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Limitations of MAX

L
. . 0.e e .. .... e ®
L G e e
G e o * L . - p° -~
. LY ® - » .: LI ®
- e..ee . ® LA - . b LM
» Qﬂ LY " - s -« o - .: o
' ., -y ., L) e = eg® eo ° emoeqg
. ey L) % oop . - L o ' ety :05
- e ety P-4 ° . e 2" .
° e 0" LAY L - ' . ® . o
N s $ : et * .t oy ° :° ¢ * : :
. LS e LI, ° - % * <3 ° 0%.
e < ” '; i $ * e ® e ® e . L
e » e H IR - * b, e,
o 0, Mo, =70 [ b % * ° . ® J
e ® ¥ L] e _®
- .e ..° e L] .‘.e. e: *
- H . I " b °* * e
. IR w . el "
o 3.‘,.. . ‘e L :.:.
il -
° : .°: .; & - - .e. . o P
- L]
£ ..° we * o« T, e...e '..
- € o o . " % % =t . P
. - ] L.
% u.. % & .°$0 * o.‘
(] -
. - ..e . .
L L
L

Original Points Two Clusters

*Tends to break large clusters

*Biased towards globular clusters

COMP7650 82




Cluster Similarity: Group Average

e Proximity of two clusters is the average of pairwise proximity
between points in the two clusters.

Y proximity(p;,p;)
p;eCluster;
pjeCluster;

proximity(Cluster;, Cluster;) =
| Cluster, | <] Cluster; |

e Need to use average connectivity for scalability since total
proximity favors large clusters ‘

11 12 13 14 15
11/ 1.00 0.90 0.10 0.65 0.20

12/ 0.90 1.00 0.7/0 0.60 0.50

13/ 0.10 0.70 1.00 0.40 0.30

14/ 0.65 0.60 0.40 1.00 0.80 r“

15/ 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

e Compromise between Single and Complete
Link

e Strengths
— Less susceptible to noise and outliers

e Limitations
— Biased towards globular clusters
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Cluster Similarity: Ward’s Method

e Similarity of two clusters is based on the increase
In squared error when two clusters are merged

— Similar to group average if distance between points is
distance squared

e Less susceptible to noise and outliers
e Biased towards globular clusters

e Hierarchical analogue of K-means
— Can be used to Iinitialize K-means
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Hierarchical Clustering: Comparison

Ward’'s Method

Group Average
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Hierarchical Clustering: Time and Space requirements

e O(N?) space since it uses the proximity matrix.
— N is the number of points.

e O(N3) time in many cases

— There are N steps and at each step the size, N2,
proximity matrix must be updated and searched

— Complexity can be reduced to O(N<4 log(N) ) time for
some approaches
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Hierarchical Clustering: Problems and Limitations

e Once a decision Is made to combine two clusters,
It cannot be undone

e No objective function Is directly minimized

e Different schemes have problems with one or
more of the following:

— Sensitivity to noise and outliers

— Difficulty handling different sized clusters and convex
shapes

— Breaking large clusters
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MST: Divisive Hierarchical Clustering

e Build MST (Minimum Spanning Tree)

— Start with a tree that consists of any point

— In successive steps, look for the closest pair of points (p, q) such
that one point (p) is in the current tree but the other (q) is not

— Add g to the tree and put an edge between p and q
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MST: Divisive Hierarchical Clustering

e Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

1: Compute a minimum spanning tree for the proximity graph.

b

repeat
3:  Create a new cluster by breaking the link corresponding to the largest distance
(smallest similarity).

4: until Only singleton clusters remain

COMP7650 91




DBSCAN

e DBSCAN is a density-based algorithm.

—  Density = number of points within a specified radius (Eps)

— A point is a core point if it has more than a specified number
of points (MinPts) within Eps

¢ These are points that are at the interior of a cluster

— A border point has fewer than MinPts within Eps, but is in
the neighborhood of a core point

— A noise point is any point that is not a core point or a border
point.
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DBSCAN: Core, Border, and Noise Points
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DBSCAN Algorithm

e Eliminate noise points
e Perform clustering on the remaining points

current_cluster_label «— 1
for all core points do
if the core point has no cluster label then
current_cluster_label «— current_cluster_label + 1
Label the current core point with cluster label current_cluster_label
end if
for all points in the Eps-neighborhood, except i*" the point itself do
if the point does not have a cluster label then
Label the point with cluster label current_cluster_label
end if
end for

end for
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DBSCAN: Core, Border and Noise Points

Point types: core,

Original Points

border and noise

=4

Eps = 10, MinPts

95
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When DBSCAN Works Well

Clusters

Original Points

* Resistant to Noise

e Can handle clusters of different shapes and sizes

96
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When DBSCAN Does NOT Work Well

Original Points

» Varying densities

e High-dimensional data
(MinPts=4, Eps=9.92)
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DBSCAN: Determining EPS and MinPts

e Idea is that for points in a cluster, their k! nearest
neighbors are at roughly the same distance

e Noise points have the ki nearest neighbor at farther
distance

e So, plot sorted distance of every point to its kt
nearest neighbor
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Cluster Validity

e For supervised classification we have a variety of
measures to evaluate how good our model is

— Accuracy, precision, recall

e For cluster analysis, the analogous question is how to
evaluate the “goodness” of the resulting clusters?

e But “clusters are in the eye of the beholder”!

e Then why do we want to evaluate them?
— To avoid finding patterns in noise
— To compare clustering algorithms
— To compare two sets of clusters
— To compare two clusters
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Clusters found in Random Data
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Different Aspects of Cluster Validation

1. Determining the clustering tendency of a set of data, i.e.,
distinguishing whether non-random structure actually exists in the
data.

2. Comparing the results of a cluster analysis to externally known
results, e.g., to externally given class labels.

3. Evaluating how well the results of a cluster analysis fit the data
without reference to external information.

- Use only the data

4. Comparing the results of two different sets of cluster analyses to
determine which is better.

5. Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to
evaluate the entire clustering or just individual clusters.
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Measures of Cluster Validity

e Numerical measures that are applied to judge various aspects
of cluster validity, are classified into the following three types.

— External Index: Used to measure the extent to which cluster labels
match externally supplied class labels.
¢ Entropy

— Internal Index: Used to measure the goodness of a clustering
structure without respect to external information.
¢ Sum of Squared Error (SSE)

— Relative Index: Used to compare two different clusterings or

clusters.

+ Often an external or internal index is used for this function, e.g., SSE or
entropy

e Sometimes these are referred to as criteria instead of indices

— However, sometimes criterion is the general strategy and index is the
numerical measure that implements the criterion.
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Measuring Cluster Validity Via Correlation

e Two matrices
—  Proximity Matrix
—  “Incidence” Matrix
¢ One row and one column for each data point

¢ Anentryis 1 if the associated pair of points belong to the same cluster
¢ Anentryis 0 if the associated pair of points belongs to different clusters

e Compute the correlation between the two matrices

—  Since the matrices are symmetric, only the correlation between
n(n-1) / 2 entries needs to be calculated.

e High correlation indicates that points that belong to the
same cluster are close to each other.

e Not a good measure for some density or contiguity based
clusters.
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Measuring Cluster Validity Via Correlation

e Correlation of incidence and proximity matrices
for the K-means clusterings of the following two
data sets.
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Using Similarity Matrix for Cluster Validation

e Order the similarity matrix with respect to cluster
labels and inspect visually.
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Using Similarity Matrix for Cluster Validation

e Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

e Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

e Clusters in random data are not so crisp
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Internal Measures: SSE

e Clusters in more complicated figures aren’t well separated

e Internal Index: Used to measure the goodness of a clustering
structure without respect to external information

— SSE

e SSE is good for comparing two clusterings or two clusters
(average SSE).

e Can also be used to estimate the number of clusters
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SSE

Internal Measures

e SSE curve for a more complicated data set
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Framework for Cluster Validity

e Need a framework to interpret any measure.
—  For example, if our measure of evaluation has the value, 10, is that
good, fair, or poor?
e Statistics provide a framework for cluster validity

—  The more “atypical” a clustering result is, the more likely it represents
valid structure in the data

—  Can compare the values of an index that result from random data or
clusterings to those of a clustering result.

¢ If the value of the index is unlikely, then the cluster results are valid
—  These approaches are more complicated and harder to understand.

e For comparing the results of two different sets of cluster
analyses, a framework Is less necessary.

—  However, there is the question of whether the difference between two
index values is significant
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Statistical Framework for SSE

e Example

Compare SSE of 0.005 against three clusters in random data

Histogram shows SSE of three clusters in 500 sets of random data
points of size 100 distributed over the range 0.2 — 0.8 for x and y
values
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Statistical Framework for Correlation

e Correlation of incidence and proximity matrices for the
K-means clusterings of the following two data sets.
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Internal Measures: Cohesion and Separation

e Cluster Cohesion: Measures how closely related
are objects In a cluster
— Example: SSE

e Cluster Separation: Measure how distinct or well-
separated a cluster is from other clusters

e Example: Squared Error
— Cohesion is measured by the within cluster sum of squares (SSE)

WSS=3 ¥(x-m)?

| xeC.

— Separation is measured by the between cluster sum of squares

BSS =) |Ci|(m-m,)?

— Where |'Ci| IS the size of cluster |
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Internal Measures: Cohesion and Separation

e Example: SSE
— BSS + WSS = constant

m
o X ¢ sk P NV S
1 m, 2 3 4 m, S
K=1 cluster: WSS= (1-3)*+(2-3)°+(4-3)*+(5-3)* =10

BSS= 4><(3—3)2 =0
Total =10+0=10

K=2 clusters: WSS= (1—1.5)2 +(2 —1.5)2 + (4 —4.5)2 + (5—4.5)2 =1
BSS= 2 x (3—1.5)2 +2x(4.5- 3)2 =9
Total =1+9=10
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Internal Measures: Cohesion and Separation

e A proximity graph based approach can also be used for
cohesion and separation.
— Cluster cohesion is the sum of the weight of all links within a cluster.

— Cluster separation is the sum of the weights between nodes in the cluster
and nodes outside the cluster.

cohesion separation
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External Measures of Cluster Validity: Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity
1 3 5 40 506 96 27 1.2270 | 0.7474
2 4 7 280 29 39 2 1.1472 | 0.7756
3 1 1 1 7 4 671 0.1813 | 0.9796
4 10 162 3 119 73 2 1.7487 | 0.4390
5 331 22 5 70 13 23 1.3976 | 0.7134
6 5 358 12 212 48 13 1.5523 | 0.5525
Total 354 555 341 943 273 738 1.1450 | 0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j

purit

we compute p;;, the ‘probability’ that a member of cluster 7 belongs to class ¢ as follows:
pi; = m;;/m;, where m; is the number of values in cluster j and m,; is the number of values
of class ¢ in cluster 7. Then using this class distribution, the entropy of each cluster j is
calculated using the standard formula e; = Zf:ﬂ%‘j logs pij, where the L is the number of
classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each
cluster weighted by the size of each cluster, i.e., e = Zfil Zie;, where m; is the size of cluster

47, K is the number of clusters, and m is the total number of data points.

y Using the terminology derived for entropy, the purity of cluster 7, is given by purity; =

max p;; and the overall purity of a clustering by purity = Zfil T purity;.
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Final Comment on Cluster Validity

“The validation of clustering structures is the most
difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster
analysis will remain a black art accessible only to
those true believers who have experience and
great courage.”

Algorithms for Clustering Data, Jain and Dubes
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