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Introduction to Data Mining

An Introduction to
Clustering and Cluster Analysis
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Overview

1. Definition and Motivation
2. Types of clusters and clustering methods
3. K-means
4. Self-Organizing Maps
5. Hierarchical Clustering
6. Cluster Validation
7. Conclusions
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What is Cluster Analysis?

Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different 
from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



COMP7650 4

Applications of Cluster Analysis

Understanding
– Group related documents 

for browsing, group genes 
and proteins that have 
similar functionality, or 
group stocks with similar 
price fluctuations

Summarization
– Reduce the size of large 

data sets

 Discovered Clusters Industry Group 

1 Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 
Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 
Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 
Sun-DOWN 

 
 

Technology1-DOWN 

2 Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 
ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 
Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 
 

Technology2-DOWN 

3 Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 
MBNA-Corp-DOWN,Morgan-Stanley-DOWN 

 
Financial-DOWN 

4 Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 
Oil-UP 

 

 

Clustering precipitation 
in Australia



COMP7650 5

What is not Cluster Analysis?

Supervised classification
– Have class label information

Simple segmentation
– Dividing students into different registration groups 

alphabetically, by last name

Results of a query
– Groupings are a result of an external specification

Graph partitioning
– Some mutual relevance and synergy, but areas are not 

identical
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Notion of a Cluster can be Ambiguous

How many clusters?

Four Clusters Two Clusters 

Six Clusters 
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Types of Clustering

A clustering is a set of clusters

Important distinction between hierarchical and 
partitional sets of clusters 

Partitional Clustering
– A division data objects into non-overlapping subsets (clusters) 

such that each data object is in exactly one subset

Hierarchical clustering
– A set of nested clusters organized as a hierarchical tree 
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Partitional Clustering

Original Points A Partitional  Clustering
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Hierarchical Clustering

p4
p1

p3

p2

p4
p1 

p3

p2 
p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering Non-traditional Dendrogram

Traditional Dendrogram
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Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive
– In non-exclusive clustering, points may belong to multiple 

clusters.
– Can represent multiple classes or ‘border’ points

Fuzzy versus non-fuzzy
– In fuzzy clustering, a point belongs to every cluster with some 

weight between 0 and 1
– Weights must sum to 1
– Probabilistic clustering has similar characteristics

Partial versus complete
– In some cases, we only want to cluster some of the data

Heterogeneous versus homogeneous
– Cluster of widely different sizes, shapes, and densities
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Types of Clusters

Well-separated clusters

Center-based clusters

Contiguous clusters

Density-based clusters

Property or Conceptual

Described by an Objective Function
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Types of Clusters: Well-Separated

Well-Separated Clusters: 
– A cluster is a set of points such that any point in a cluster is 

closer (or more similar) to every other point in the cluster than 
to any point not in the cluster. 

3 well-separated clusters
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Types of Clusters: Center-Based

Center-based
– A cluster is a set of objects such that an object in a cluster is 

closer (more similar) to the “center” of a cluster, than to the 
center of any other cluster  

– The center of a cluster is often a centroid, the average of all 
the points in the cluster, or a medoid, the most 
“representative” point of a cluster. In general, those points are 
called prototypes. 

4 center-based clusters
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Types of Clusters: Contiguity-Based

Contiguous Cluster (Nearest neighbor or 
Transitive)
– A cluster is a set of points such that a point in a cluster is 

closer (or more similar) to one or more other points in the 
cluster than to any point not in the cluster.

8 contiguous clusters
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Types of Clusters: Density-Based

Density-based
– A cluster is a dense region of points, which is separated by 

low-density regions, from other regions of high density. 
– Used when the clusters are irregular or intertwined, and when 

noise and outliers are present. This is typical for clusters which 
are not well separated.

6 density-based clusters
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Types of Clusters: Conceptual Clusters

Shared Property or Conceptual Clusters
– Finds clusters that share some common property or represent 

a particular concept. 
. 

2 Overlapping Circles
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Types of Clusters: Objective Function

Clusters Defined by an Objective Function
– Finds clusters that minimize or maximize an objective function. 
– Enumerate all possible ways of dividing the points into clusters and 

evaluate the `goodness' of each potential set of clusters by using 
the given objective function.  (NP Hard)

– Can have global or local objectives.
Hierarchical clustering algorithms typically have local objectives
Partitional algorithms typically have global objectives

– A variation of the global objective function approach is to fit the 
data to a parameterized model. 

Parameters for the model are determined from the data. 
Mixture models assume that the data is a ‘mixture' of a number of 

statistical distributions.  
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Types of Clusters: Objective Function …

Map the clustering problem to a different domain 
and solve a related problem in that domain
– Proximity matrix defines a weighted graph, where the 

nodes are the points being clustered, and the 
weighted edges represent the proximities between 
points.

– Clustering is equivalent to breaking the graph into 
connected components, one for each cluster.

– Want to minimize the edge weight between clusters 
and maximize the edge weight within clusters. 
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Characteristics of the Input Data Are Important

Type of proximity or density measure
– This is a derived measure, but central to clustering  

Sparseness
– Dictates type of similarity
– Adds to efficiency

Attribute type
– Dictates type of similarity

Type of Data
– Dictates type of similarity
– Other characteristics, e.g., autocorrelation

Dimensionality
Noise and Outliers
Type of Distribution
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Clustering Algorithms

K-means and its variants
– Similar to LVQ but works unsupervised.
– Very fast and simple algorithm.

Self Organizing Maps
– Topology preserving mapping.
– Linear computational complexity.
– Can be seen as an extension to K-means

Hierarchical clustering

Density-based clustering
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K-means Clustering

Is a machine learning algorithm
Partitional clustering approach 
Each cluster is associated with a centroid (prototype) 
Each point is assigned to the cluster with the closest 
centroid
Number of clusters, K, must be specified
The basic algorithm is very simple
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K-means Clustering – Details

Initial centroids are often chosen randomly.
– Clusters produced vary from one run to another.

The centroid is (typically) the mean of the points in the 
cluster.
‘Closeness’ is measured by Euclidean distance, cosine 
similarity, correlation, etc.
K-means will converge for common similarity measures 
mentioned above.
Most of the convergence happens in the first few 
iterations.

– Often the stopping condition is changed to ‘Until relatively few 
points change clusters’

Complexity is O( n * K * I * d )
– n = number of points, K = number of clusters, 

I = number of iterations, d = number of attributes
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Evaluating K-means Clusters

Most common measure is Sum of Squared Error (SSE)
– For each point, the error is the distance to the nearest cluster
– To get SSE, we square these errors and sum them.

– x is a data point in cluster Ci and mi is the representative point for 
cluster Ci

can show that mi corresponds to the center (mean) of the cluster
– Given two clusters, we can choose the one with the smallest 

error
– One easy way to reduce SSE is to increase K, the number of 

clusters
A good clustering with smaller K can have a lower SSE than a poor 

clustering with higher K

∑∑
= ∈

=
K

i Cx
i

i

xmdistSSE
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Importance of Choosing Initial Centroids …
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Importance of Choosing Initial Centroids …
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Problems with Selecting Initial Points

If there are K ‘real’ clusters then the chance of selecting 
one centroid from each cluster is small. 

– Chance is relatively small when K is large
– If clusters are the same size, n, then

– For example, if K = 10, then probability = 10!/1010 = 0.00036
– Sometimes the initial centroids will readjust themselves in 

‘right’ way, and sometimes they don’t
– Consider an example of five pairs of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 4



COMP7650 33

10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y
Iteration 1

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 2

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 3

0 5 10 15 20

-6

-4

-2

0

2

4

6

8

x

y

Iteration 4



COMP7650 34

Solutions to Initial Centroids Problem

Multiple runs
– Helps, but probability is not on your side

Sample and use hierarchical clustering to 
determine initial centroids
Select more than k initial centroids and then 
select among these initial centroids
– Select most widely separated

Postprocessing
Bisecting K-means
– Not as susceptible to initialization issues
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Handling Empty Clusters

Basic K-means algorithm can yield empty 
clusters

Several strategies
– Choose the point that contributes most to SSE
– Choose a point from the cluster with the highest SSE
– If there are several empty clusters, the above can be 

repeated several times.
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Updating Centers Incrementally

In the basic K-means algorithm, centroids are 
updated after all points are assigned to a centroid

An alternative is to update the centroids after 
each assignment (incremental approach)
– Each assignment updates zero or two centroids
– More expensive
– Introduces an order dependency
– Never get an empty cluster
– Can use “weights” to change the impact
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Pre-processing and Post-processing

Pre-processing
– Normalize the data
– Eliminate outliers

Post-processing
– Eliminate small clusters that may represent outliers
– Split ‘loose’ clusters, i.e., clusters with relatively high 

SSE
– Merge clusters that are ‘close’ and that have relatively 

low SSE
– Can use these steps during the clustering process.
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Bisecting K-means

Bisecting K-means algorithm
– Variant of K-means that can produce a partitional or a 

hierarchical clustering
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Bisecting K-means Example
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Limitations of K-means

K-means has problems when clusters are of 
differing 
– Sizes
– Densities
– Non-globular shapes

K-means has problems when the data contains 
outliers.
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Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)
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Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)



COMP7650 43

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Overcoming K-means Limitations

Original Points K-means Clusters
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Overcoming K-means Limitations

Original Points K-means Clusters
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Self-Organizing Maps

The Self-Organizing Map (SOM) is:
Developed by T.Kohonen in ‘86
An unsupervised machine learning method.
Perform a topology preserving feature mapping.
A neural network popularly used for clustering, 
dimension reduction, and visualization (of high 
dimensional data).
The SOM algorithm is neurobiologically inspired, 
incorporating all the mechanisms that are basic to 
self-organization: competition, cooperation, and self-
amplification.
The Kohonen’s SOM algorithm is very simple to 
implement, yet mathematically it is very difficult to 
analyze its properties in a general setting.
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Feature mapping in biological systems
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A side-note on feature mapping

A remarkable property of 
feature mapping:

A pattern may be heavily 
distorted but the “brain” still 
recognizes the pattern by the 
underlying features.

This is why animated cartoon 
characters are often accepted 
as living things. In fact, we (the 
brain) have to learn that 
cartoons are not real.

This implies that the brain does 
not asses the pattern as a 
whole. It assesses a pattern by 
its features.
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Self-Organizing Maps

As with k-means, we specify the number of 
“clusters”. SOM calls these the neurons.
However, we also specify a topology – a 2D grid 
that gives the geometric relationships between 
the prototypes. Common relationships are 
rectangular or hexagonal.
Associated with each neuron is a codebook 
vector (which is of the same dimension as the input space)

The algorithm learns a mapping from the high 
dimensional input space of the data points onto 
the points of the 2D grid.
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Self-Organizing Maps

Example of grid topologies: Rectangular, and hexagonal.
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Training Self-Organizing Maps

The training algorithm of  the self-organizing map 
consists of two steps:

1. Competitive step

2. Cooperative step

These two steps are repeated for a number of 
iterations.
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Self-Organizing Maps

Competitive step:
Given wj = [wj1 ,wj2 , ... ,wjm ]T, where j = 1,2,...,l (the 

total number of neurons in the network)
Select one input vector from a dataset x = [x1 , 
x2 , ... ,xm ]T where m is the dimension of x.
Find the best matching codebook

i = arg minj ||x – wj ||
i is the index of the best matching codebook, 
and is said to be the winner for x. 
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Self-Organizing Maps

Cooperative step: The winner and all of its neighbours are 
updated:

))(,( *
ijjij wxiiw −Λ=Δ η

)2/||exp(),( 22*
* σii rrii −−=Λ

, where

,     is a learning rate, and     is a neighborhood radius.      is 
a positive float value smaller than 1, whereas        must is 
always larger than 1.

η σ η
σ
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SOM example (1)



COMP7650 56

SOM example (2)

Thus, the input domain consists of 16 animals 
which are described by a 13-dimensional feature 
vector.

⇒The codebook vectors will be of the same 
dimension.

⇒Assume we are training a SOM of size 10 x 10 
whose neurons have a hexagonal relationship, 
then the result may look as follows:
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SOM example (3)
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SOM example (4)
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Self-Organizing Maps

SOMs are a massive parallel systems which can 
(once trained) map data in constant time!

Hence, SOMs are very popular in many data 
mining exercises.

High dimensional input data is mapped onto a 2- 
dimensional grid (dimension reduction)

Since SOMs perform a topology preserving 
mapping, and hence, SOMs are also a useful tool 
for knowledge discovery tasks.
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Self-Organizing Maps

We have seen that SOMs map data which are 
similar to each other in the input space to nearby 
areas in the display space.
Thus, the goal of the SOM (and in fact of all 
clustering methods) is to group together “similar”
data – but what does this mean?
No single answer – it depends on what we want 
to find or emphasize in the data; this is one 
reason why clustering is an “art”
The similarity measure is often more important 
than the clustering algorithm used – don’t 
overlook this choice!
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Self-Organizing Maps

The most commonly used similarity function is the Euclidean

∑
=

−=
n

i
iieuc yxd

1

2)(),( yx

But there are many more: For example:
Hamming distance, Manhatten distance, L1 norm, Pearson 

Linear Correlation, ...., just to mention a few.
A good similarity measure depends on the learning problem. 

For example, when mapping genes, the Pearson Linear 
Correlation is more appropriate.
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Hierarchical Clustering 

Produces a set of nested clusters organized as a 
hierarchical tree
Can be visualized as a dendrogram
– A tree like diagram that records the sequences of 

merges or splits
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Strengths of Hierarchical Clustering

Do not have to assume any particular number of 
clusters
– Any desired number of clusters can be obtained by 

‘cutting’ the dendogram at the proper level

They may correspond to meaningful taxonomies
– Example in biological sciences (e.g., animal kingdom, 

phylogeny reconstruction, …)
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Hierarchical Clustering

Two main types of hierarchical clustering
– Agglomerative:  

Start with the points as individual clusters
At each step, merge the closest pair of clusters until only one cluster 

(or k clusters) left

– Divisive:  
Start with one, all-inclusive cluster 
At each step, split a cluster until each cluster contains a point (or 

there are k clusters)

Traditional hierarchical algorithms use a similarity or 
distance matrix

– Merge or split one cluster at a time
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Agglomerative Clustering Algorithm

More popular hierarchical clustering technique

Basic algorithm is straightforward
1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains

Key operation is the computation of the proximity of 
two clusters

– Different approaches to defining the distance between 
clusters distinguish the different algorithms
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Starting Situation 

Start with clusters of individual points and a 
proximity matrix

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix
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Intermediate Situation

After some merging steps, we have some clusters 
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Intermediate Situation

We want to merge the two closest clusters (C2 and C5)  and 
update the proximity matrix. 
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C2 C5
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After Merging

The question is “How do we update the proximity matrix?”

C1

C4

C2 U C5

C3
?        ?        ?        ?    

?

?

?
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U 
C5C1
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

MIN
MAX
Group Average
Distance Between Centroids
Other methods driven by an objective 
function
– Ward’s Method uses squared error

Proximity Matrix
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How to Define Inter-Cluster Similarity
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– Ward’s Method uses squared error
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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– Ward’s Method uses squared error

× ×
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Cluster Similarity: MIN or Single Link 

Similarity of two clusters is based on the two 
most similar (closest) points in the different 
clusters
– Determined by one pair of points, i.e., by one link in 

the proximity graph.

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Strength of MIN

Original Points Two Clusters

• Can handle non-elliptical shapes
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Limitations of MIN

Original Points Two Clusters

• Sensitive to noise and outliers
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Cluster Similarity: MAX or Complete Linkage

Similarity of two clusters is based on the two least 
similar (most distant) points in the different 
clusters
– Determined by all pairs of points in the two clusters

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers
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Limitations of MAX

Original Points Two Clusters

•Tends to break large clusters

•Biased towards globular clusters
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Cluster Similarity: Group Average

Proximity of two clusters is the average of pairwise proximity 
between points in the two clusters.

Need to use average connectivity for scalability since total 
proximity favors large clusters

||Cluster||Cluster

)p,pproximity(

)Cluster,Clusterproximity(
ji

Clusterp
Clusterp

ji

ji
jj
ii

∗
=

∑
∈
∈

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5



COMP7650 84

Hierarchical Clustering: Group Average

Nested Clusters Dendrogram
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Hierarchical Clustering: Group Average

Compromise between Single and Complete 
Link

Strengths
– Less susceptible to noise and outliers

Limitations
– Biased towards globular clusters
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Cluster Similarity: Ward’s Method

Similarity of two clusters is based on the increase 
in squared error when two clusters are merged
– Similar to group average if distance between points is 

distance squared

Less susceptible to noise and outliers

Biased towards globular clusters

Hierarchical analogue of K-means
– Can be used to initialize K-means
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Hierarchical Clustering: Comparison

Group Average

Ward’s Method
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Hierarchical Clustering:  Time and Space requirements

O(N2) space since it uses the proximity matrix.  
– N is the number of points.

O(N3) time in many cases
– There are N steps and at each step the size, N2, 

proximity matrix must be updated and searched
– Complexity can be reduced to O(N2 log(N) ) time for 

some approaches
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Hierarchical Clustering:  Problems and Limitations

Once a decision is made to combine two clusters, 
it cannot be undone

No objective function is directly minimized

Different schemes have problems with one or 
more of the following:
– Sensitivity to noise and outliers
– Difficulty handling different sized clusters and convex 

shapes
– Breaking large clusters
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MST: Divisive Hierarchical Clustering

Build MST (Minimum Spanning Tree)
– Start with a tree that consists of any point
– In successive steps, look for the closest pair of points (p, q) such 

that one point (p) is in the current tree but the other (q) is not
– Add q to the tree and put an edge between p and q
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MST: Divisive Hierarchical Clustering

Use MST for constructing hierarchy of clusters
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DBSCAN

DBSCAN is a density-based algorithm.
– Density = number of points within a specified radius (Eps)

– A point is a core point if it has more than a specified number 
of points (MinPts) within Eps

These are points that are at the interior of a cluster

– A border point has fewer than MinPts within Eps, but is in 
the neighborhood of a core point

– A noise point is any point that is not a core point or a border 
point. 
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DBSCAN: Core, Border, and Noise Points
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DBSCAN Algorithm

Eliminate noise points
Perform clustering on the remaining points
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DBSCAN: Core, Border and Noise Points

Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4
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When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes
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When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data
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DBSCAN: Determining EPS and MinPts

Idea is that for points in a cluster, their kth nearest 
neighbors are at roughly the same distance
Noise points have the kth nearest neighbor at farther 
distance
So, plot sorted distance of every point to its kth

nearest neighbor
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Cluster Validity 

For supervised classification we have a variety of 
measures to evaluate how good our model is

– Accuracy, precision, recall

For cluster analysis, the analogous question is how to 
evaluate the “goodness” of the resulting clusters?

But “clusters are in the eye of the beholder”! 

Then why do we want to evaluate them?
– To avoid finding patterns in noise
– To compare clustering algorithms
– To compare two sets of clusters
– To compare two clusters
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Clusters found in Random Data
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1. Determining the clustering tendency of a set of data, i.e., 
distinguishing whether non-random structure actually exists in the 
data. 

2. Comparing the results of a cluster analysis to externally known 
results, e.g., to externally given class labels.

3. Evaluating how well the results of a cluster analysis fit the data 
without reference to external information. 

- Use only the data

4. Comparing the results of two different sets of cluster analyses to 
determine which is better.

5. Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to 
evaluate the entire clustering or just individual clusters. 

Different Aspects of Cluster Validation
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Numerical measures that are applied to judge various aspects 
of cluster validity, are classified into the following three types.
– External Index: Used to measure the extent to which cluster labels 

match externally supplied class labels.
Entropy 

– Internal Index: Used to measure the goodness of a clustering 
structure without respect to external information. 

Sum of Squared Error (SSE)

– Relative Index: Used to compare two different clusterings or 
clusters. 

Often an external or internal index is used for this function, e.g., SSE or 
entropy

Sometimes these are referred to as criteria instead of indices
– However, sometimes criterion is the general strategy and index is the 

numerical measure that implements the criterion.

Measures of Cluster Validity
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Two matrices 
– Proximity Matrix
– “Incidence” Matrix

One row and one column for each data point
An entry is 1 if the associated pair of points belong to the same cluster
An entry is 0 if the associated pair of points belongs to different clusters

Compute the correlation between the two matrices
– Since the matrices are symmetric, only the correlation between 

n(n-1) / 2 entries needs to be calculated.

High correlation indicates that points that belong to the 
same cluster are close to each other. 
Not a good measure for some density or contiguity based 
clusters.

Measuring Cluster Validity Via Correlation
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Measuring Cluster Validity Via Correlation

Correlation of incidence and proximity matrices 
for the K-means clusterings of the following two 
data sets. 
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Order the similarity matrix with respect to cluster 
labels and inspect visually. 

Using Similarity Matrix for Cluster Validation
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Using Similarity Matrix for Cluster Validation

Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

Clusters in random data are not so crisp

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Points

Po
in

ts

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Complete Link



COMP7650 109

Using Similarity Matrix for Cluster Validation
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Clusters in more complicated figures aren’t well separated
Internal Index:  Used to measure the goodness of a clustering 
structure without respect to external information
– SSE

SSE is good for comparing two clusterings or two clusters 
(average SSE).
Can also be used to estimate the number of clusters

Internal Measures: SSE
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Internal Measures: SSE

SSE curve for a more complicated data set
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Need a framework to interpret any measure. 
– For example, if our measure of evaluation has the value, 10, is that 

good, fair, or poor?

Statistics provide a framework for cluster validity
– The more “atypical” a clustering result is, the more likely it represents 

valid structure in the data
– Can compare the values of an index that result from random data or 

clusterings to those of a clustering result.
If the value of the index is unlikely, then the cluster results are valid

– These approaches are more complicated and harder to understand.

For comparing the results of two different sets of cluster 
analyses, a framework is less necessary.

– However, there is the question of whether the difference between two 
index values is significant

Framework for Cluster Validity
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Example
– Compare SSE of 0.005 against three clusters in random data
– Histogram shows SSE of three clusters in 500 sets of random data 

points of size 100 distributed over the range 0.2 – 0.8 for x and y 
values

Statistical Framework for SSE
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Correlation of incidence and proximity matrices for the 
K-means clusterings of the following two data sets. 

Statistical Framework for Correlation
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Cluster Cohesion: Measures how closely related 
are objects in a cluster
– Example: SSE

Cluster Separation: Measure how distinct or well-
separated a cluster is from other clusters
Example: Squared Error
– Cohesion is measured by the within cluster sum of squares (SSE)

– Separation is measured by the between cluster sum of squares

– Where |Ci | is the size of cluster i 

Internal Measures: Cohesion and Separation

∑ ∑
∈

−=
i Cx

i
i

mxWSS 2)(

∑ −=
i

ii mmCBSS 2)(



COMP7650 116

Internal Measures: Cohesion and Separation

Example: SSE
– BSS + WSS = constant
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A proximity graph based approach can also be used for 
cohesion and separation.
– Cluster cohesion is the sum of the weight of all links within a cluster.
– Cluster separation is the sum of the weights between nodes in the cluster 

and nodes outside the cluster.

Internal Measures: Cohesion and Separation

cohesion separation
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External Measures of Cluster Validity: Entropy and Purity
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“The validation of clustering structures is the most 
difficult and frustrating part of cluster analysis. 

Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only to 
those true believers who have experience and 
great courage.”

Algorithms for Clustering Data, Jain and Dubes

Final Comment on Cluster Validity
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