Introduction to Data Mining

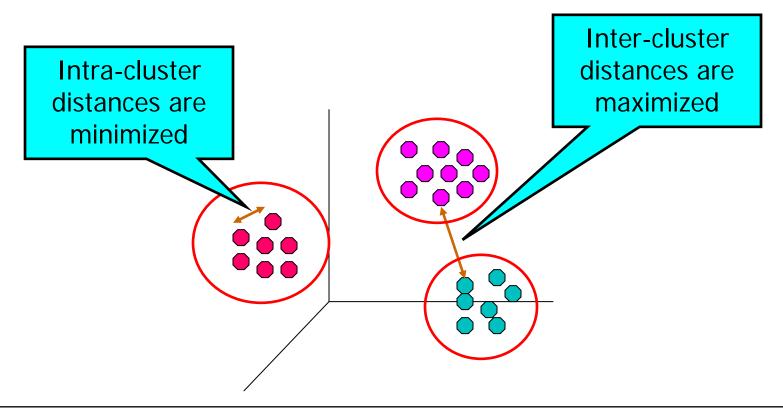
An Introduction to Clustering and Cluster Analysis

Overview

- 1. Definition and Motivation
- 2. Types of clusters and clustering methods
- 3. K-means
- 4. Self-Organizing Maps
- 5. Hierarchical Clustering
- 6. Cluster Validation
- 7. Conclusions

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



Applications of Cluster Analysis

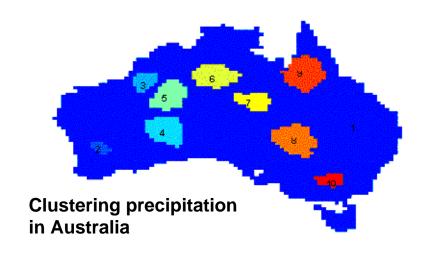
Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Summarization

Reduce the size of large data sets



What is not Cluster Analysis?

Supervised classification

Have class label information

Simple segmentation

 Dividing students into different registration groups alphabetically, by last name

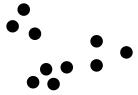
Results of a query

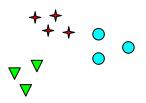
Groupings are a result of an external specification

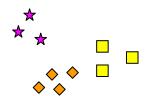
Graph partitioning

Some mutual relevance and synergy, but areas are not identical

Notion of a Cluster can be Ambiguous

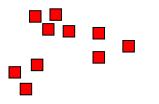


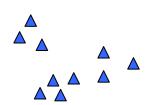


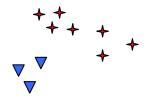


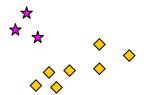
How many clusters?

Six Clusters









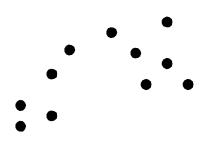
Two Clusters

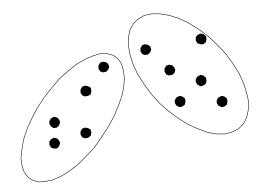
Four Clusters

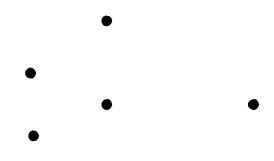
Types of Clustering

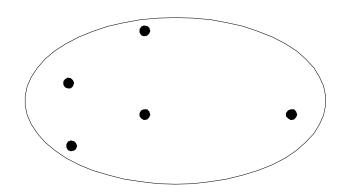
- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering





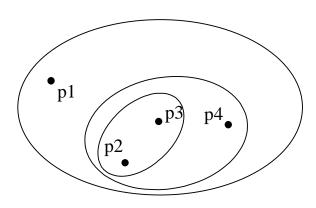




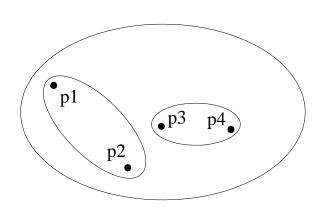
Original Points

A Partitional Clustering

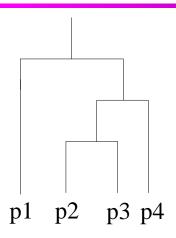
Hierarchical Clustering



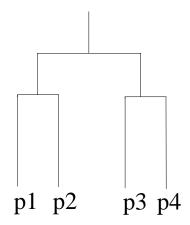
Traditional Hierarchical Clustering



Non-traditional Hierarchical Clustering



Traditional Dendrogram



Non-traditional Dendrogram

Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive

- In non-exclusive clustering, points may belong to multiple clusters.
- Can represent multiple classes or 'border' points

Fuzzy versus non-fuzzy

- In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
- Weights must sum to 1
- Probabilistic clustering has similar characteristics

Partial versus complete

In some cases, we only want to cluster some of the data

Heterogeneous versus homogeneous

Cluster of widely different sizes, shapes, and densities

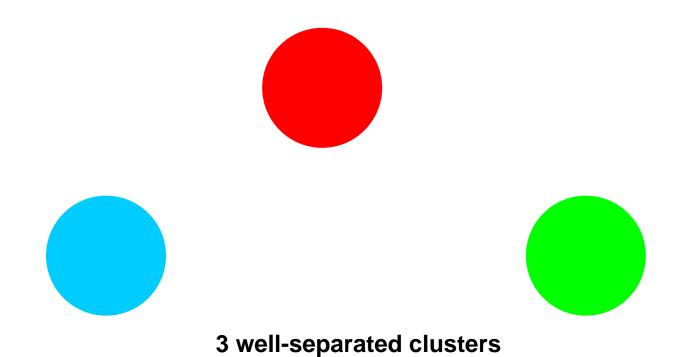
Types of Clusters

- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or Conceptual
- Described by an Objective Function

Types of Clusters: Well-Separated

Well-Separated Clusters:

 A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.



COMP7650 12

Types of Clusters: Center-Based

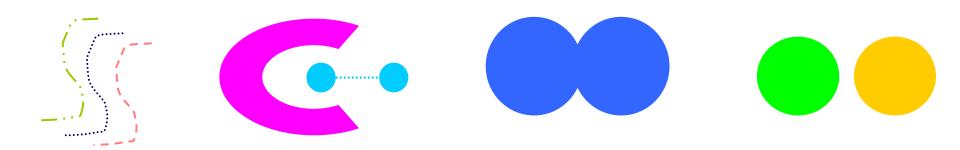
Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster. In general, those points are called prototypes.

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

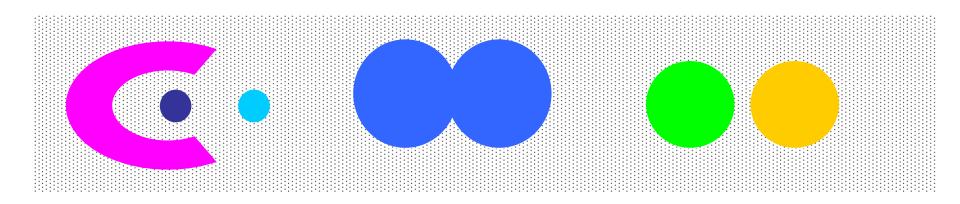


8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present. This is typical for clusters which are not well separated.

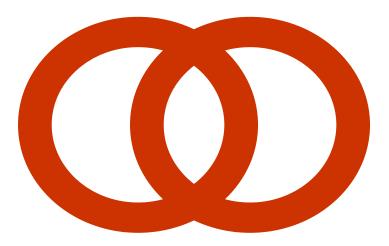


6 density-based clusters

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.

.



2 Overlapping Circles

Types of Clusters: Objective Function

Clusters Defined by an Objective Function

- Finds clusters that minimize or maximize an objective function.
- Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
- Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives
- A variation of the global objective function approach is to fit the data to a parameterized model.
 - Parameters for the model are determined from the data.
 - Mixture models assume that the data is a 'mixture' of a number of statistical distributions.

Types of Clusters: Objective Function ...

- Map the clustering problem to a different domain and solve a related problem in that domain
 - Proximity matrix defines a weighted graph, where the nodes are the points being clustered, and the weighted edges represent the proximities between points.
 - Clustering is equivalent to breaking the graph into connected components, one for each cluster.
 - Want to minimize the edge weight between clusters and maximize the edge weight within clusters.

Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - This is a derived measure, but central to clustering
- Sparseness
 - Dictates type of similarity
 - Adds to efficiency
- Attribute type
 - Dictates type of similarity
- Type of Data
 - Dictates type of similarity
 - Other characteristics, e.g., autocorrelation
- Dimensionality
- Noise and Outliers
- Type of Distribution

Clustering Algorithms

- K-means and its variants
 - Similar to LVQ but works unsupervised.
 - Very fast and simple algorithm.
- Self Organizing Maps
 - Topology preserving mapping.
 - Linear computational complexity.
 - Can be seen as an extension to K-means
- Hierarchical clustering
- Density-based clustering

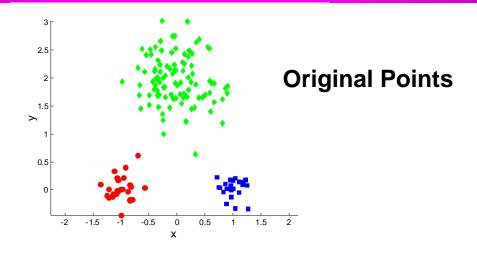
K-means Clustering

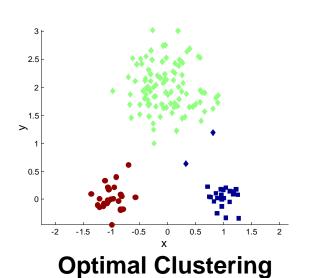
- Is a machine learning algorithm
- Partitional clustering approach
- Each cluster is associated with a centroid (prototype)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

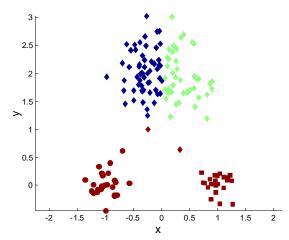
K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

Two different K-means Clusterings

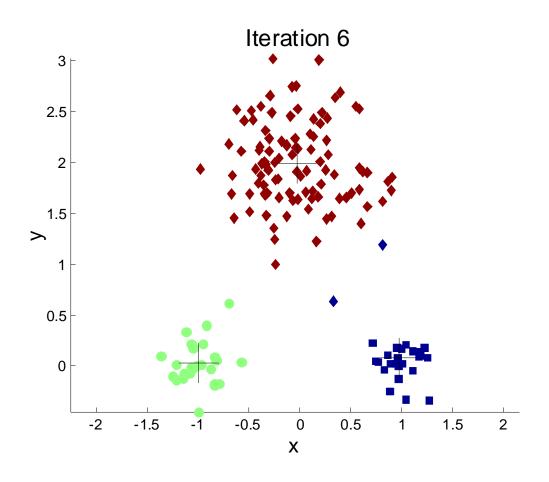






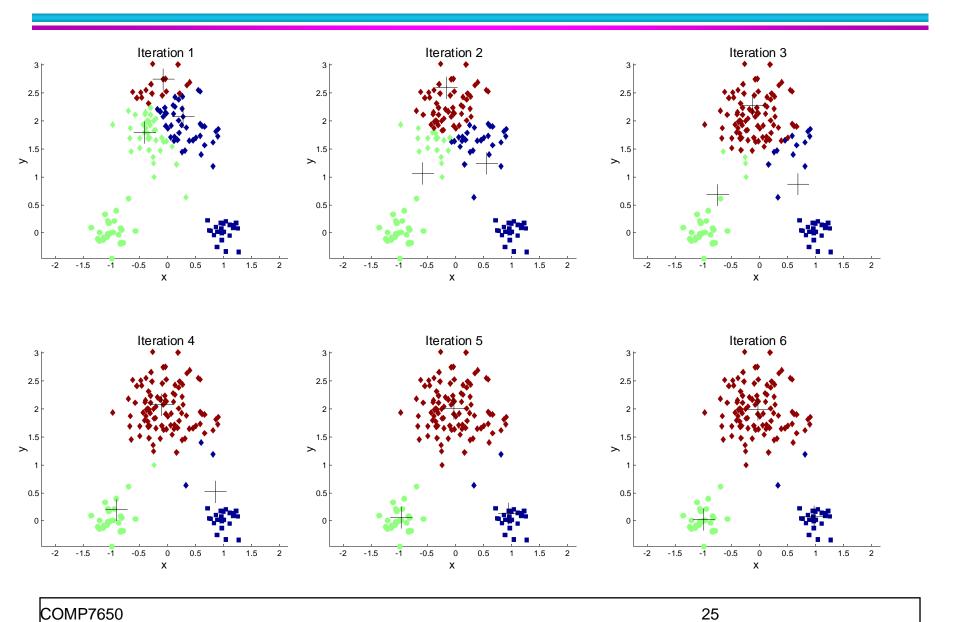
Sub-optimal Clustering

Importance of Choosing Initial Centroids



COMP7650 24

Importance of Choosing Initial Centroids



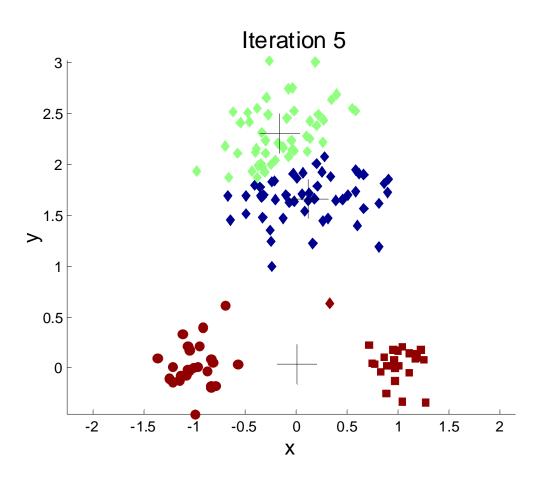
Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

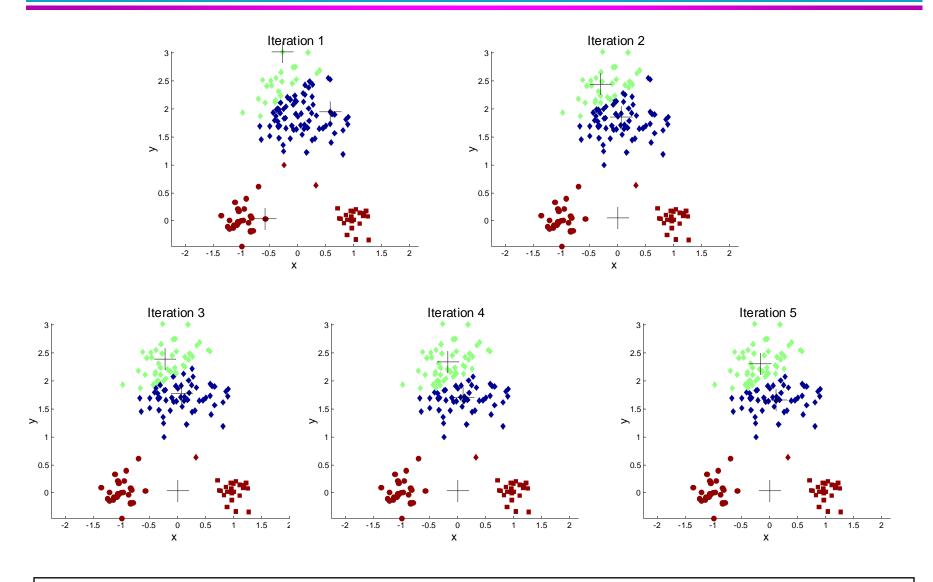
$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i
 - can show that m_i corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
 - ◆ A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

Importance of Choosing Initial Centroids ...



Importance of Choosing Initial Centroids ...

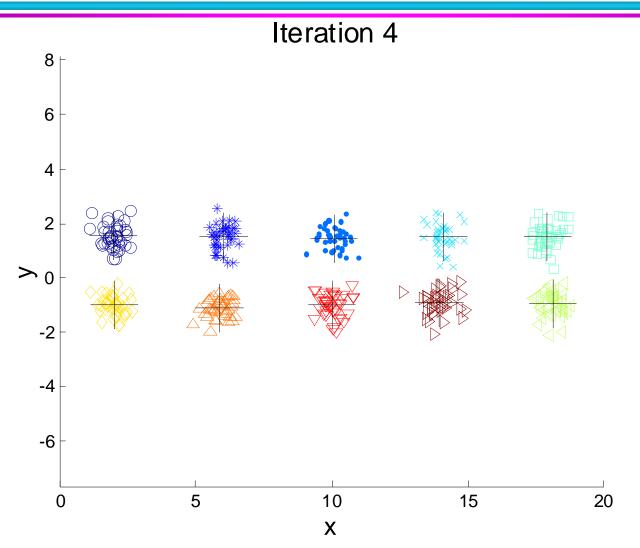


Problems with Selecting Initial Points

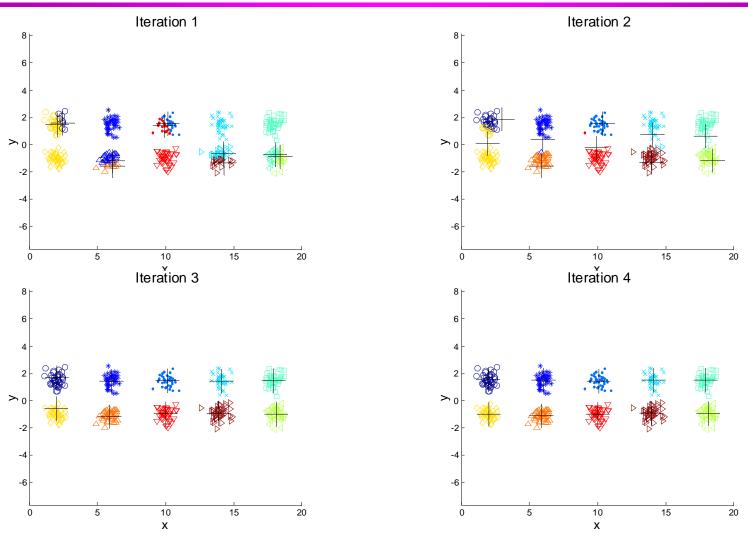
- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when K is large
 - If clusters are the same size, n, then

$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$

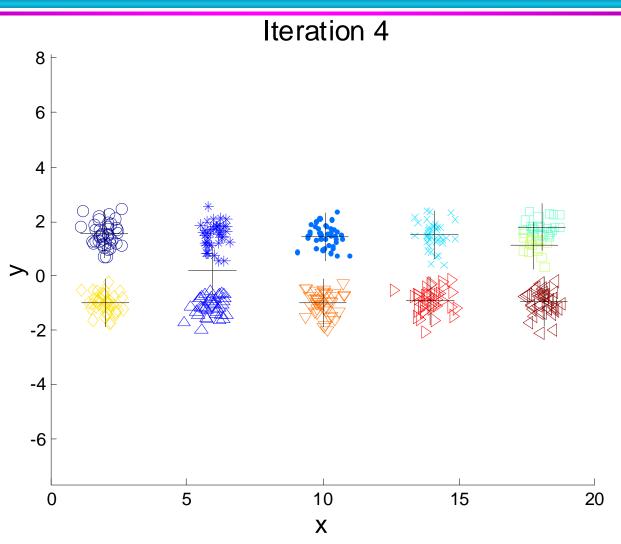
- For example, if K = 10, then probability = $10!/10^{10} = 0.00036$
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't
- Consider an example of five pairs of clusters



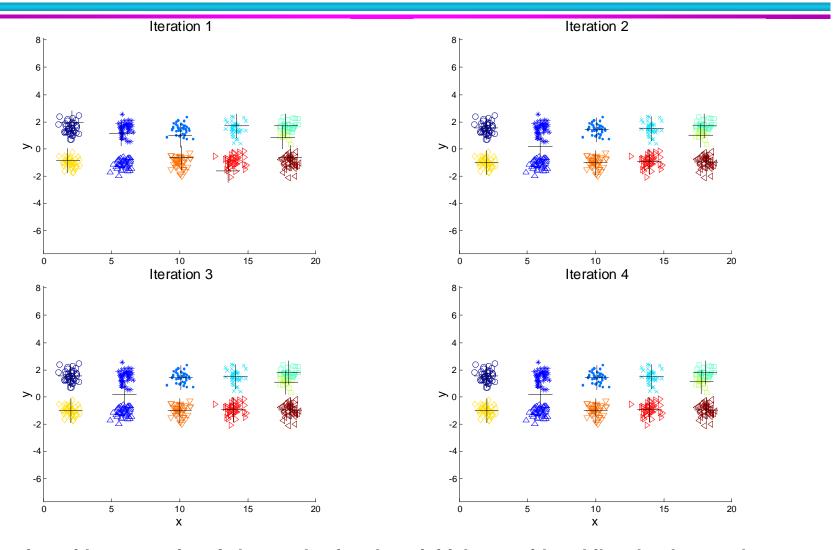
Starting with two initial centroids in one cluster of each pair of clusters



Starting with two initial centroids in one cluster of each pair of clusters



Starting with some pairs of clusters having three initial centroids, while other have only one.



Starting with some pairs of clusters having three initial centroids, while other have only one.

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- Postprocessing
- Bisecting K-means
 - Not as susceptible to initialization issues

Handling Empty Clusters

 Basic K-means algorithm can yield empty clusters

- Several strategies
 - Choose the point that contributes most to SSE
 - Choose a point from the cluster with the highest SSE
 - If there are several empty clusters, the above can be repeated several times.

Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
 - Each assignment updates zero or two centroids
 - More expensive
 - Introduces an order dependency
 - Never get an empty cluster
 - Can use "weights" to change the impact

Pre-processing and Post-processing

- Pre-processing
 - Normalize the data
 - Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE
 - Can use these steps during the clustering process.

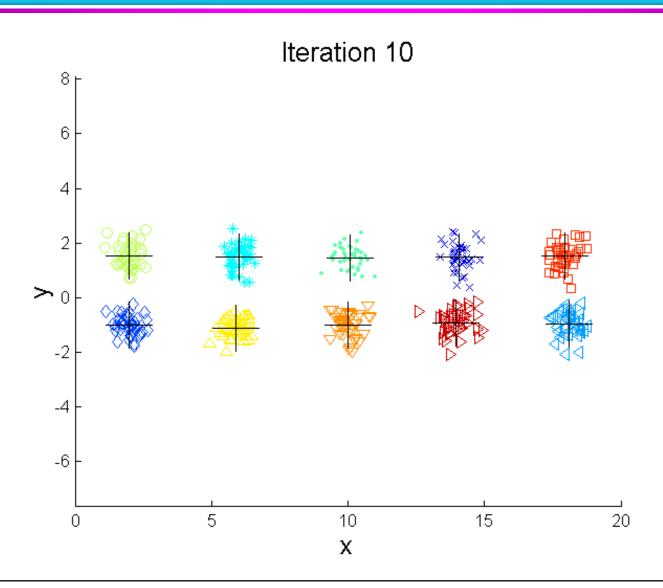
Bisecting K-means

Bisecting K-means algorithm

 Variant of K-means that can produce a partitional or a hierarchical clustering

- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
- 3: Select a cluster from the list of clusters
- 4: **for** i = 1 to $number_of_iterations$ **do**
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

Bisecting K-means Example

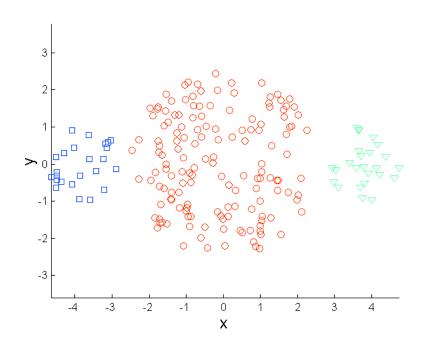


Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

 K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

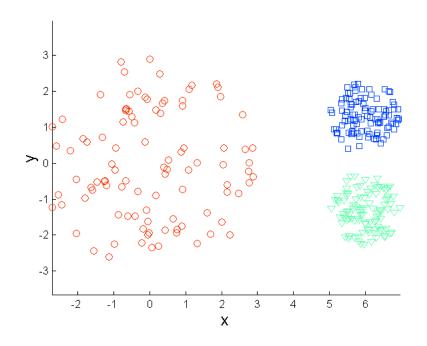


3 - 2 - 1 0 1 2 3 4 X

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

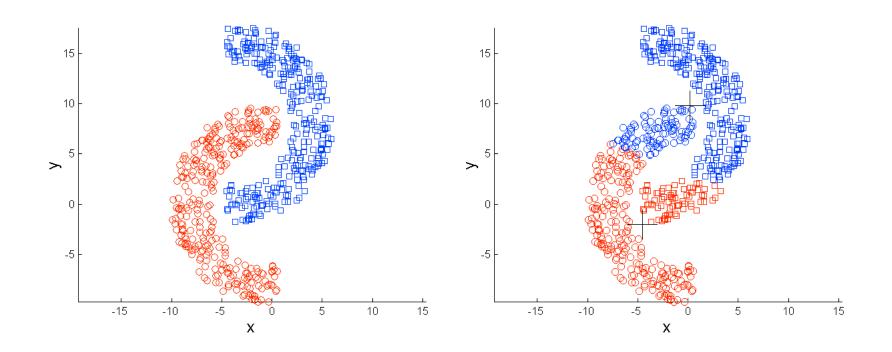


3 2 -1 -2 -1 0 1 2 -2 -1 0 1 2 3 -3 -1 2 3 4 5 6 X

Original Points

K-means (3 Clusters)

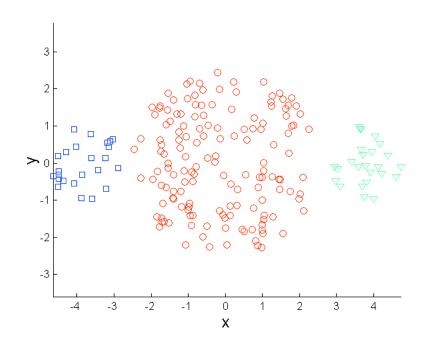
Limitations of K-means: Non-globular Shapes

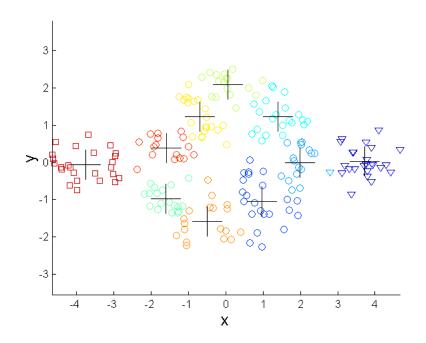


Original Points

K-means (2 Clusters)

Overcoming K-means Limitations



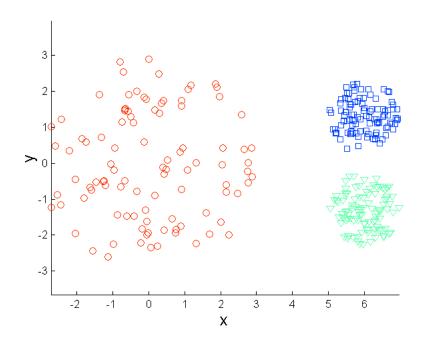


Original Points

K-means Clusters

One solution is to use many clusters. Find parts of clusters, but need to put together.

Overcoming K-means Limitations

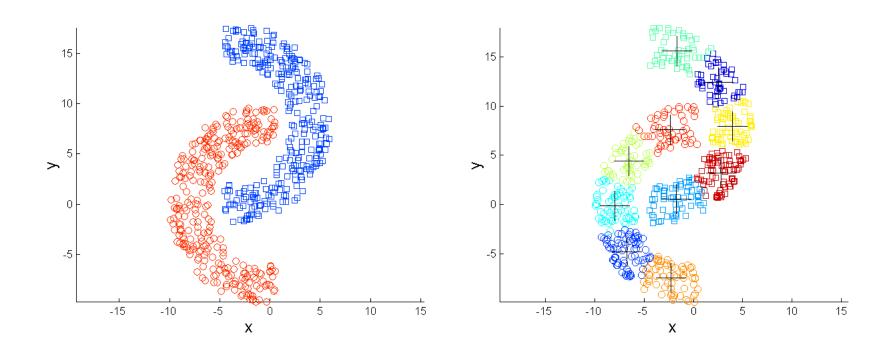


3 - 2 - 1 0 1 2 3 4 5 6 X

Original Points

K-means Clusters

Overcoming K-means Limitations



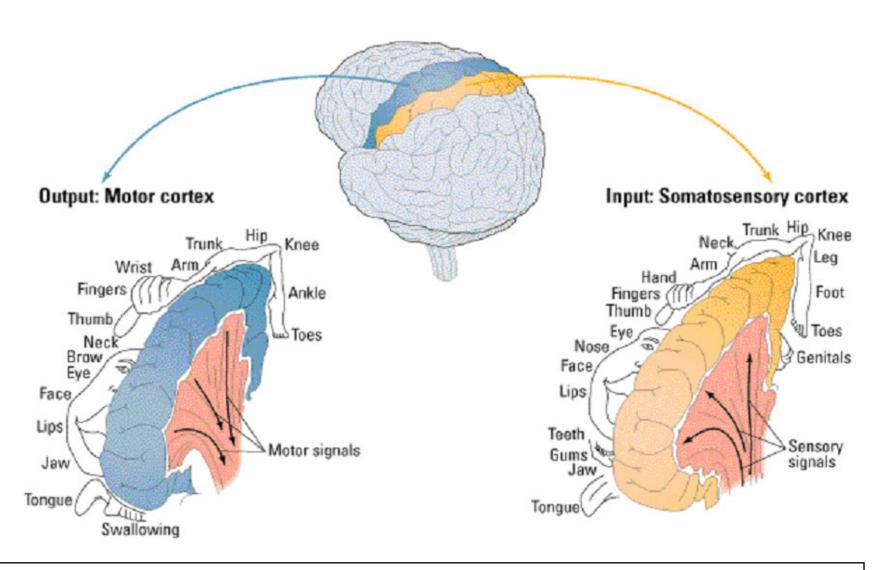
Original Points

K-means Clusters

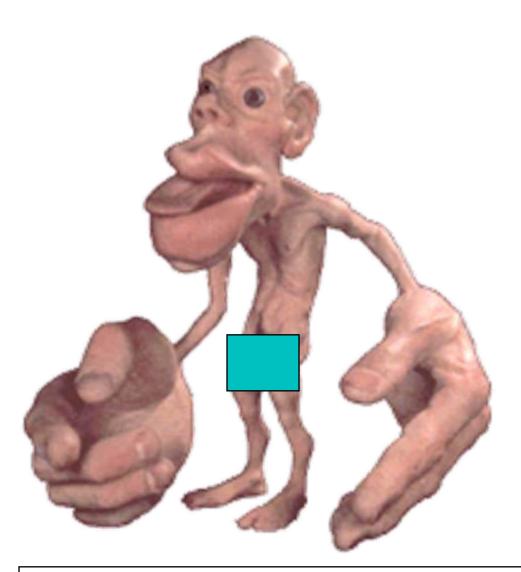
The Self-Organizing Map (SOM) is:

- Developed by T.Kohonen in '86
- An unsupervised machine learning method.
- Perform a topology preserving feature mapping.
- A neural network popularly used for clustering, dimension reduction, and visualization (of high dimensional data).
- The SOM algorithm is neurobiologically inspired, incorporating all the mechanisms that are basic to self-organization: competition, cooperation, and selfamplification.
- The Kohonen's SOM algorithm is very simple to implement, yet mathematically it is very difficult to analyze its properties in a general setting.

Feature mapping in biological systems



A side-note on feature mapping



A remarkable property of feature mapping:

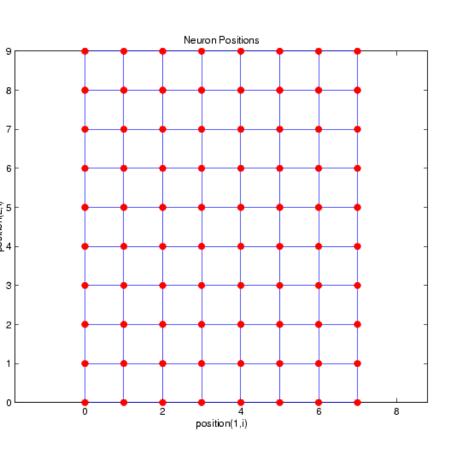
A pattern may be heavily distorted but the "brain" still recognizes the pattern by the underlying features.

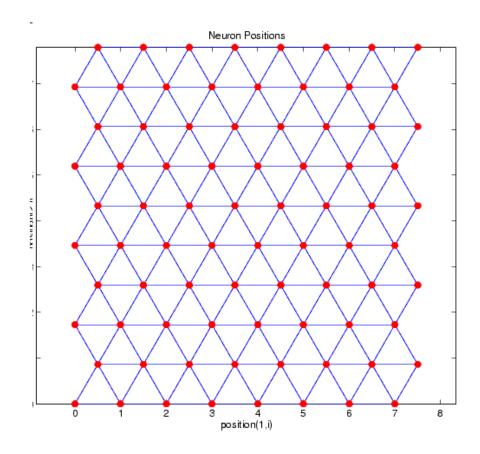
This is why animated cartoon characters are often accepted as living things. In fact, we (the brain) have to learn that cartoons are not real.

This implies that the brain does not asses the pattern as a whole. It assesses a pattern by its features.

- As with k-means, we specify the number of "clusters". SOM calls these the neurons.
- However, we also specify a topology a 2D grid that gives the geometric relationships between the prototypes. Common relationships are rectangular or hexagonal.
- Associated with each neuron is a codebook
 Vector (which is of the same dimension as the input space)
- The algorithm learns a mapping from the high dimensional input space of the data points onto the points of the 2D grid.

Example of grid topologies: Rectangular, and hexagonal.





Training Self-Organizing Maps

The training algorithm of the self-organizing map consists of two steps:

1. Competitive step

2. Cooperative step

These two steps are repeated for a number of iterations.

Competitive step:

Given $\mathbf{w}_j = [w_{j1}, w_{j2}, ..., w_{jm}]^{T_j}$ where j = 1, 2, ..., I (the total number of neurons in the network)

- Select one input vector from a dataset $\mathbf{x} = [x_1, x_2, \dots, x_m]^T$ where m is the dimension of \mathbf{x} .
- Find the best matching codebook $i = \arg\min_{j} ||\mathbf{x} \mathbf{w}_{j}||$
- i is the index of the best matching codebook, and is said to be the winner for x.

Cooperative step: The winner and all of its neighbours are updated:

$$\Delta w_{ij} = \eta \Lambda(i, i^*)(x_j - w_{ij})$$

, where

$$\Lambda(i,i^*) = \exp(-|r_i - r_{i^*}|^2 / 2\sigma^2)$$

, η is a learning rate, and σ is a neighborhood radius. η is a positive float value smaller than 1, whereas σ must is always larger than 1.

SOM example (1)

TABLE 9.3 Animal Names and Their Attributes																	
Animal		Dove	Hen	Duck	Goose	Owl	Hawk	Eagle	Fox	Dog	Wolf	Cat	Tiger	Lion	Horse	Zebra	Cow
is	small medium big	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	0 1 0	0 1 0	0 1 0	0 1 0	1 0 0	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1
has	2 legs 4 legs hair hooves mane feathers	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0 1	0 1 1 0 0	0 1 1 0 0 0	0 1 1 0 1 0	0 1 1 0 0 0	0 1 1 0 0	0 1 1 0 1 0	0 1 1 1 1 0	0 1 1 1 1 0	0 1 1 1 0 0
likes to	hunt run fly swim	0 0 1 0	0 0 0 0	0 0 0 1	0 0 1 1	1 0 1 0	1 0 1 0	1 0 1 0	1 0 0 0	0 1 0 0	1 1 0 0	1 0 0 0	1 1 0 0	1 1 0 0	0 1 0 0	0 1 0 0	0 0 0 0

SOM example (2)

Thus, the input domain consists of 16 animals which are described by a 13-dimensional feature vector.

- ⇒The codebook vectors will be of the same dimension.
- ⇒Assume we are training a SOM of size 10 x 10 whose neurons have a hexagonal relationship, then the result may look as follows:

SOM example (3)

dog	•	•	fox	•	•	cat	•	•	eagle
•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•		•	owl
•	•	•	•	•	•	tiger	•	•	•
wolf	•	•	•	•	•	•	•		hawk
•	•	•	lion	•	•	•	•	•	•
•	•	•	•	•	•	•			dove
horse	•	•			•	•	hen	•	•
•	•			cow	•	•	•	•	goose
zebra	•	•	•	•	•	٠	duck	-	٠

FIGURE 9.17 Feature map containing labeled neurons with strongest responses to their respective inputs.

SOM example (4)

dog	dog	fox	fox	fox	cat	cat	cat	eagle	eagle
dog	dog	fox	fox	fox	cat	cat	cat	eagle	eagle
wolf	wolf	wolf	fox	cat	tiger	tiger	tiger	owl	owl
wolf	wolf	lion	lion	lion	tiger	tiger	tiger	hawk	hawk
wolf	wolf	lion	lion	lion	tiger	tiger	tiger	hawk	hawk
wolf	wolf	lion	lion	lion	owl	dove	hawk	dove	dove
horse	horse	lion	lion	lion	dove	hen	hen	dove	dove
horse	horse	zebra	cow	cow	cow	hen	hen	dove	dove
zebra	zebra	zebra	cow	cow	cow	hen	hen	duck	goose
zebra	zebra	zebra	cow	cow	cow	duck	duck	duck	goose

FIGURE 9.18 Semantic map obtained through the use of simulated electrode penetration mapping. The map is divided into three regions representing: birds, peaceful species, and hunters.

- SOMs are a massive parallel systems which can (once trained) map data in constant time!
- Hence, SOMs are very popular in many data mining exercises.
- High dimensional input data is mapped onto a 2dimensional grid (dimension reduction)
- Since SOMs perform a topology preserving mapping, and hence, SOMs are also a useful tool for knowledge discovery tasks.

- We have seen that SOMs map data which are similar to each other in the input space to nearby areas in the display space.
- Thus, the goal of the SOM (and in fact of all clustering methods) is to group together "similar" data – but what does this mean?
- No single answer it depends on what we want to find or emphasize in the data; this is one reason why clustering is an "art"
- The similarity measure is often more important than the clustering algorithm used – don't overlook this choice!

The most commonly used similarity function is the Euclidean

$$d_{euc}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

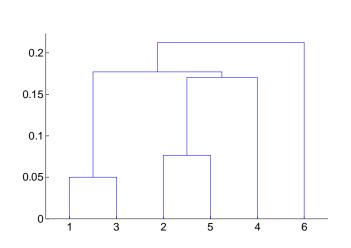
But there are many more: For example:

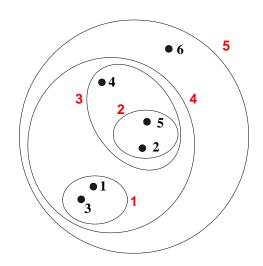
Hamming distance, Manhatten distance, L1 norm, Pearson Linear Correlation,, just to mention a few.

A good similarity measure depends on the learning problem. For example, when mapping genes, the Pearson Linear Correlation is more appropriate.

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits





Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

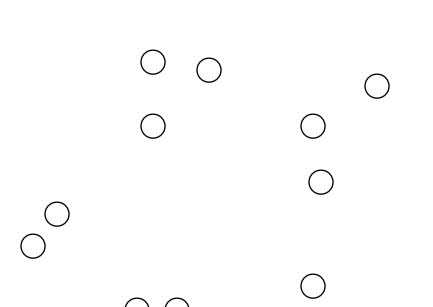
- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

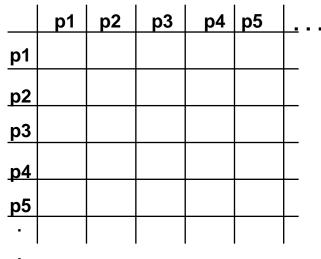
Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix





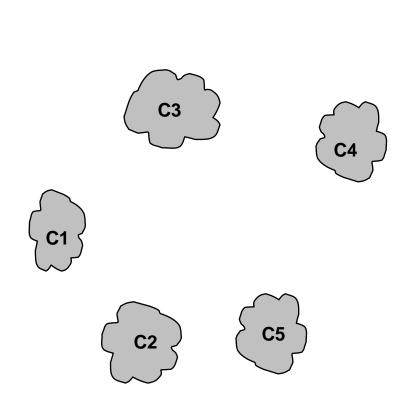
Proximity Matrix

COMP7650

66

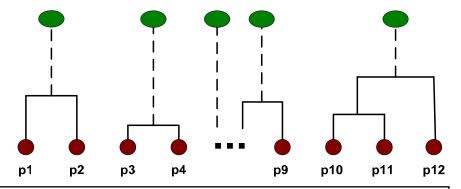
Intermediate Situation

After some merging steps, we have some clusters



	C1	C2	С3	C4	C 5
C 1					
C2					
C 3					
C4					
C 5					

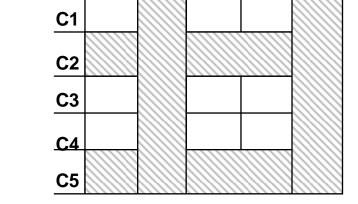
Proximity Matrix



Intermediate Situation

• We want to merge the two closest clusters (C2 and C5) and

update the proximity matrix.

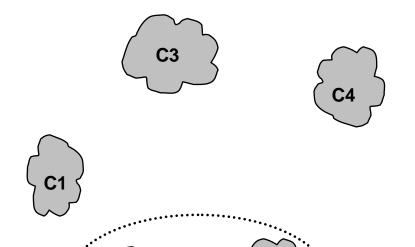


C2

C1

C4

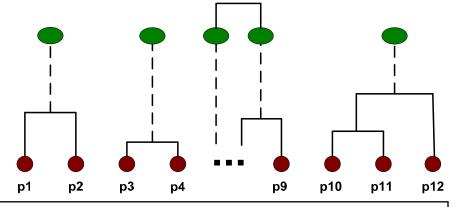
C3



C₂

C5

Proximity Matrix

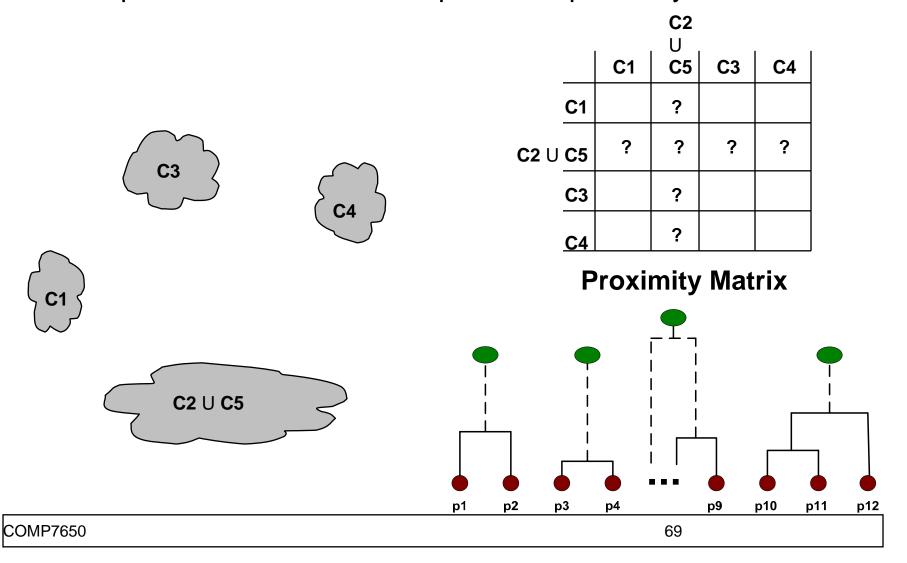


COMP7650

68

After Merging

The question is "How do we update the proximity matrix?"



How to Define Inter-Cluster Similarity

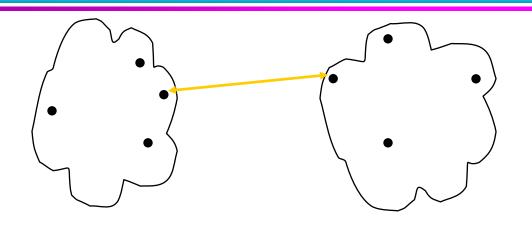


	p 1	p2	рЗ	p4	p5	<u> </u>
p1						
p2						
р3						
p4						
p4 p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

How to Define Inter-Cluster Similarity

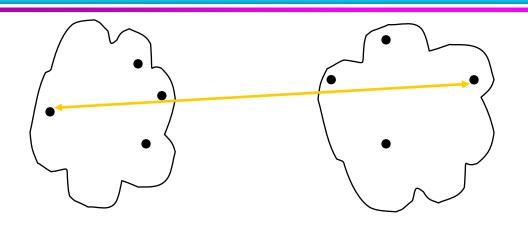


	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
р3						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

How to Define Inter-Cluster Similarity

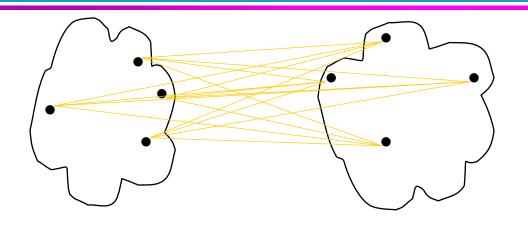


	p 1	p2	рЗ	p4	p 5	<u> </u>
p1						
p2						
р3						
p 4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

How to Define Inter-Cluster Similarity

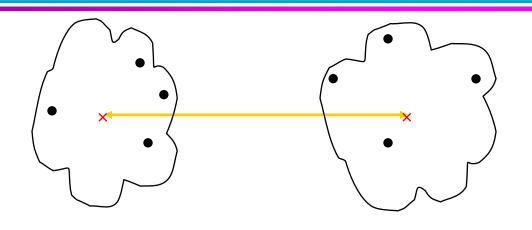


	p1	p2	р3	p4	р5	<u> </u>
p 1						
p2						
р3						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

How to Define Inter-Cluster Similarity



	p1	p2	рЗ	p4	p5	<u> </u>
p1						
p2						
р3						
p4						
р5						

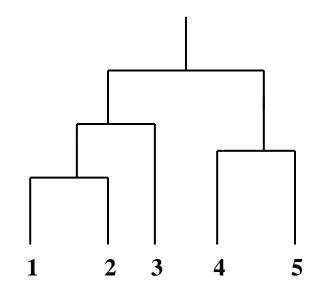
- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

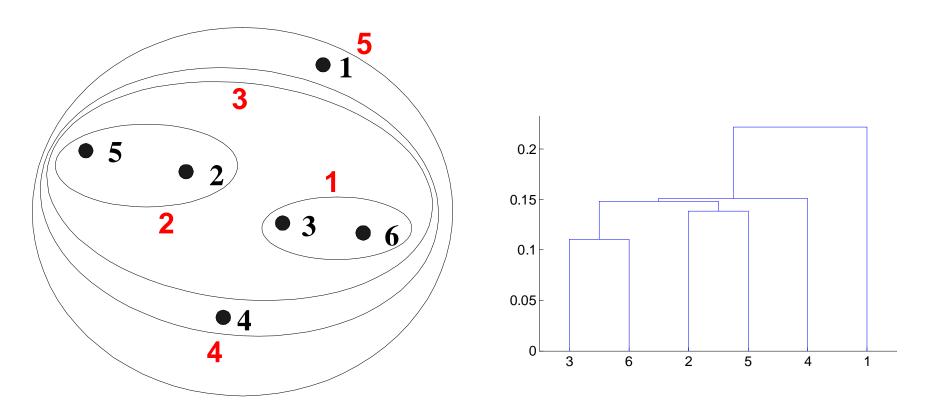
Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

<u>I1</u>		12	13	14	15	
11	1.00	0.90	0.10	0.65	0.20	
12	0.90	1.00	0.70	0.60	0.50	
13	0.10	0.70	1.00	0.40	0.30	
14	0.65	0.60	0.40	1.00	0.80	
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00	



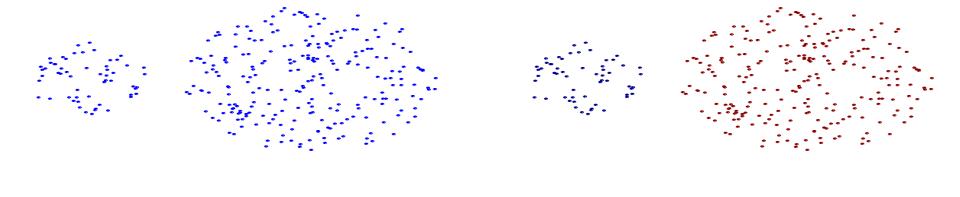
Hierarchical Clustering: MIN



Nested Clusters

Dendrogram

Strength of MIN

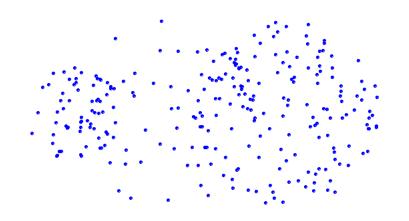


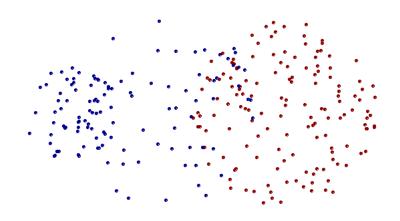
Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN





Original Points

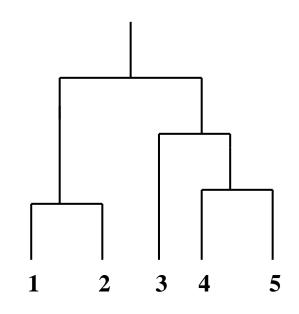
Two Clusters

Sensitive to noise and outliers

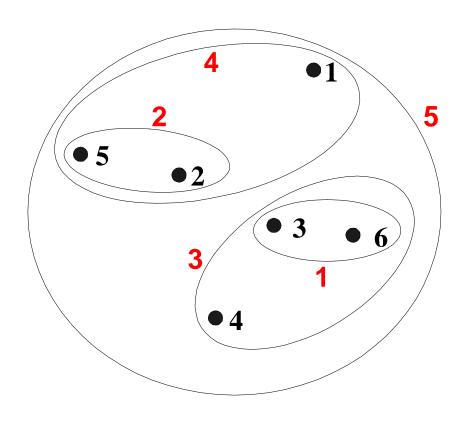
Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

<u>I1</u>		12	13	 4	<u> 15</u>	
11	1.00	0.90	0.10	0.65	0.20	
12	0.90	1.00	0.70	0.60	0.50	
13	0.10	0.70	1.00	0.40	0.30	
14	0.65	0.60	0.40	1.00	0.80	
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00	



Hierarchical Clustering: MAX

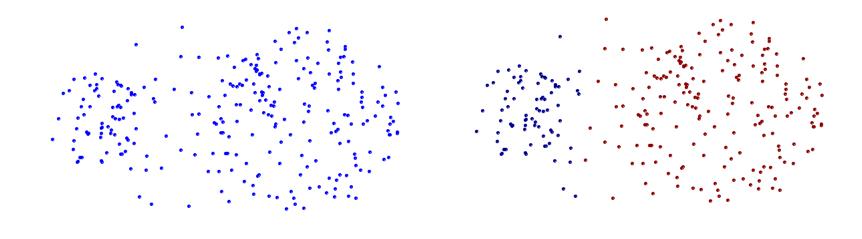


0.4 0.35 0.3 0.25 0.15 0.1 0.05 0 3 6 4 1 2 5

Nested Clusters

Dendrogram

Strength of MAX

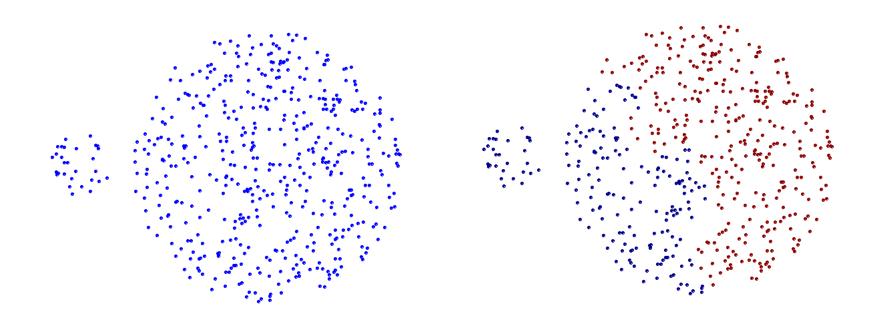


Original Points

Two Clusters

• Less susceptible to noise and outliers

Limitations of MAX



Original Points

Two Clusters

- •Tends to break large clusters
- •Biased towards globular clusters

Cluster Similarity: Group Average

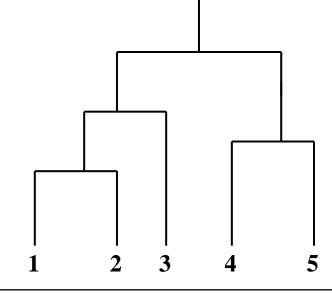
 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{p_{i} \in Cluster_{i}} proximity(p_{i}, p_{j})}{|Cluster_{i}| * |Cluster_{i}|}$$

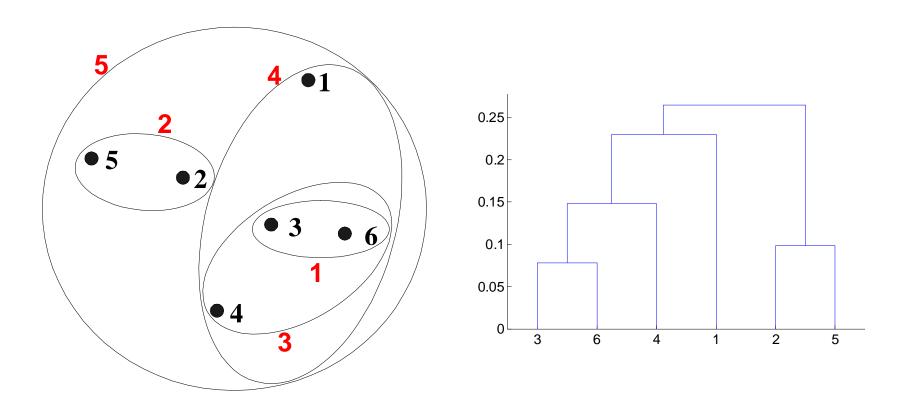
Need to use average connectivity for scalability since total

proximity favors large clusters

		l 2				
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00	
12	0.90	1.00	0.70	0.60	0.50	
13	0.10	0.70	1.00	0.40	0.30	
14	0.65	0.60	0.40	1.00	0.80	
15	0.20	0.50	0.30	0.80	1.00	



Hierarchical Clustering: Group Average



Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

 Compromise between Single and Complete Link

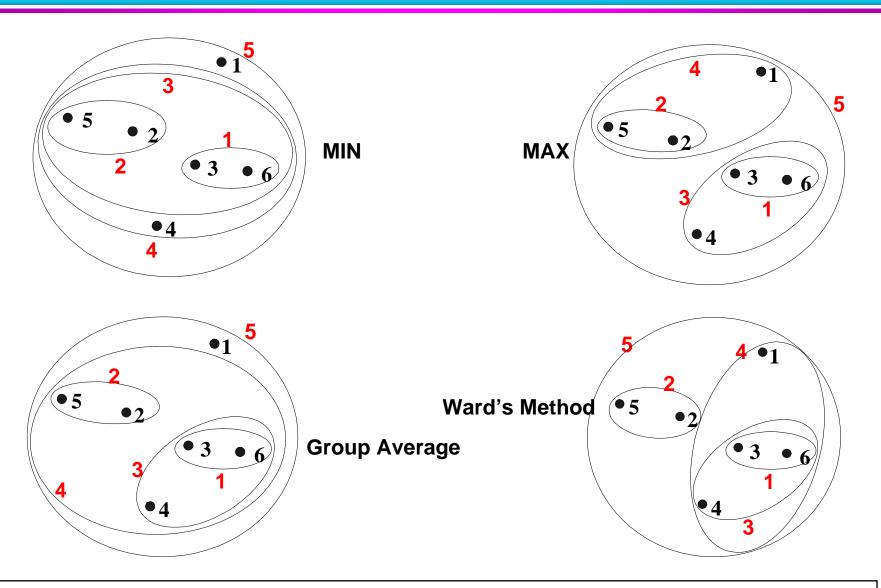
- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison



Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

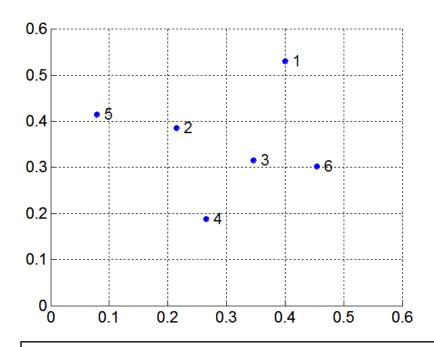
Hierarchical Clustering: Problems and Limitations

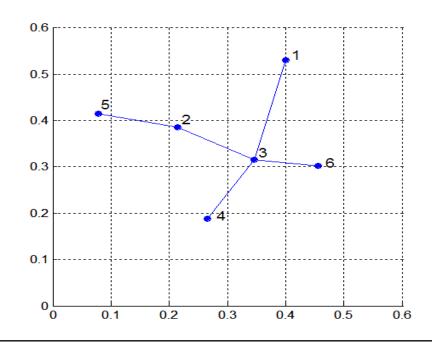
- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

MST: Divisive Hierarchical Clustering

Build MST (Minimum Spanning Tree)

- Start with a tree that consists of any point
- In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
- Add q to the tree and put an edge between p and q





MST: Divisive Hierarchical Clustering

Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

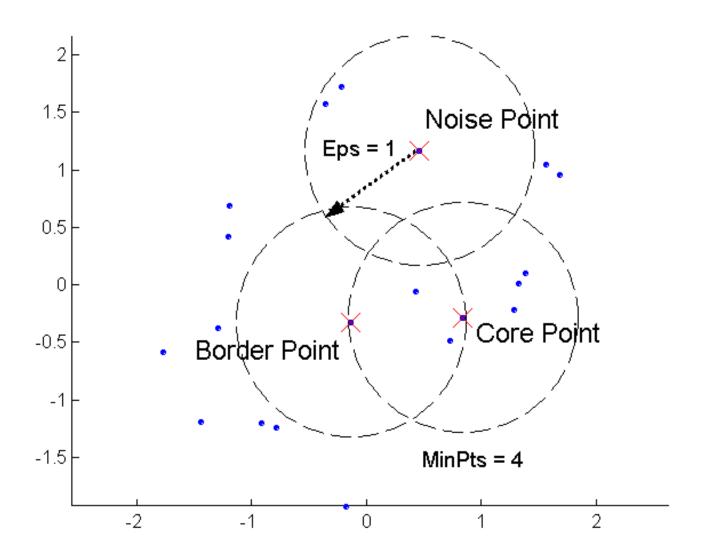
- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

COMP7650 92

DBSCAN: Core, Border, and Noise Points



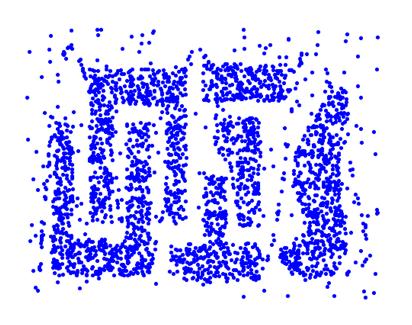
DBSCAN Algorithm

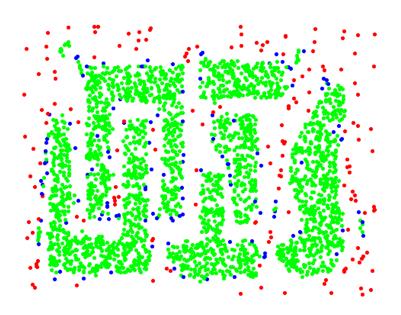
- Eliminate noise points
- Perform clustering on the remaining points

```
current\_cluster\_label \leftarrow 1
for all core points do
  if the core point has no cluster label then
    current\_cluster\_label \leftarrow current\_cluster\_label + 1
    Label the current core point with cluster label current_cluster_label
  end if
  for all points in the Eps-neighborhood, except i^{th} the point itself do
    if the point does not have a cluster label then
       Label the point with cluster label current_cluster_label
    end if
  end for
end for
```

COMP7650 94

DBSCAN: Core, Border and Noise Points



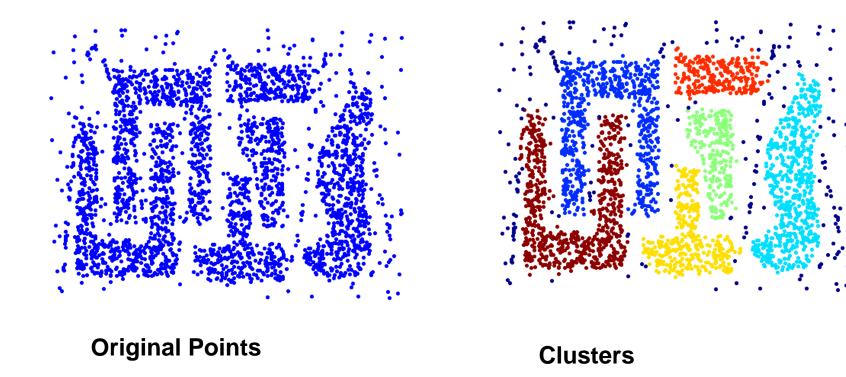


Original Points

Point types: core, border and noise

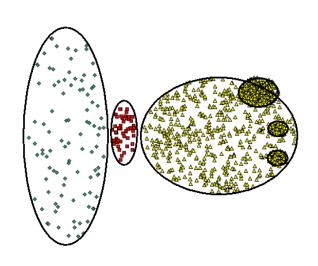
Eps = 10, MinPts = 4

When DBSCAN Works Well



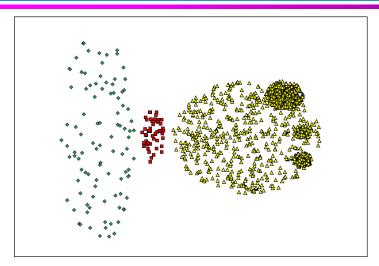
- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

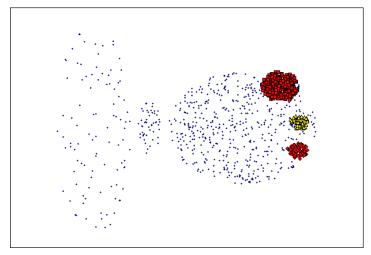


Original Points

- Varying densities
- High-dimensional data



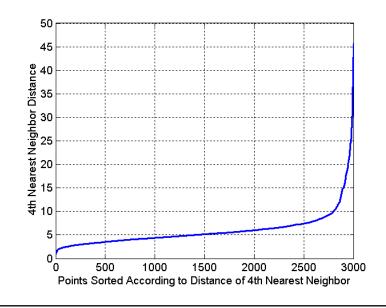
(MinPts=4, Eps=9.75).



(MinPts=4, Eps=9.92)

DBSCAN: Determining EPS and MinPts

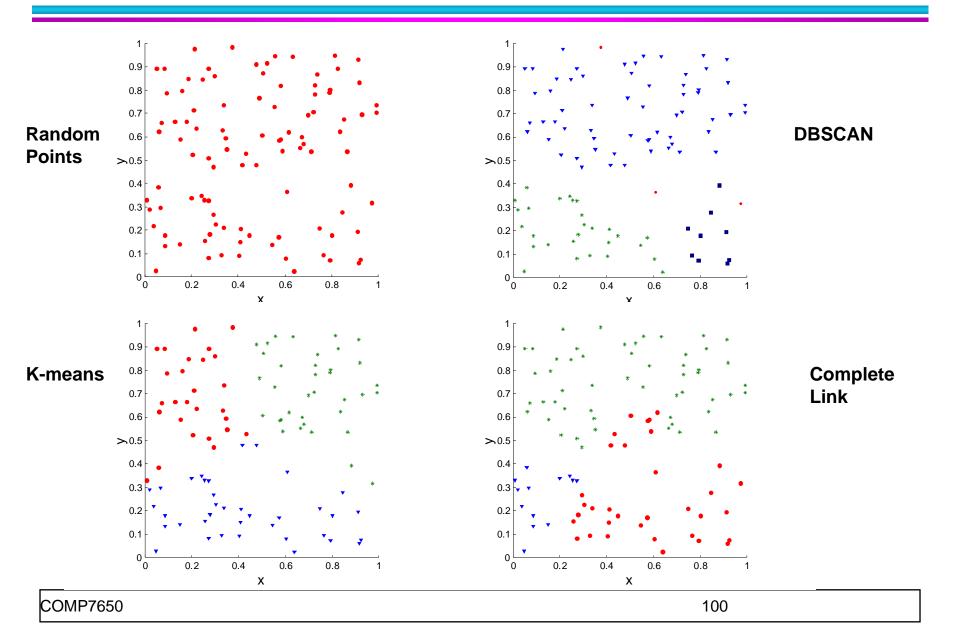
- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor



Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

Clusters found in Random Data



Different Aspects of Cluster Validation

- Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random structure actually exists in the data.
- 2. Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.
- 3. Evaluating how well the results of a cluster analysis fit the data without reference to external information.
 - Use only the data
- 4. Comparing the results of two different sets of cluster analyses to determine which is better.
- 5. Determining the 'correct' number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to evaluate the entire clustering or just individual clusters.

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following three types.
 - External Index: Used to measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
 - Internal Index: Used to measure the goodness of a clustering structure without respect to external information.
 - Sum of Squared Error (SSE)
 - Relative Index: Used to compare two different clusterings or clusters.
 - Often an external or internal index is used for this function, e.g., SSE or entropy
- Sometimes these are referred to as criteria instead of indices
 - However, sometimes criterion is the general strategy and index is the numerical measure that implements the criterion.

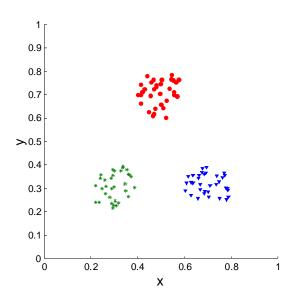
Measuring Cluster Validity Via Correlation

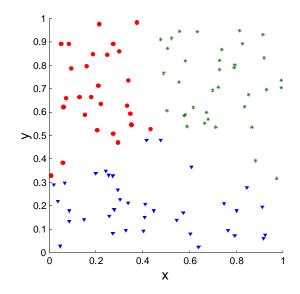
Two matrices

- Proximity Matrix
- "Incidence" Matrix
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster
 - An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation indicates that points that belong to the same cluster are close to each other.
- Not a good measure for some density or contiguity based clusters.

Measuring Cluster Validity Via Correlation

 Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.

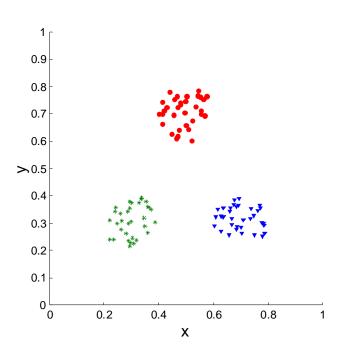


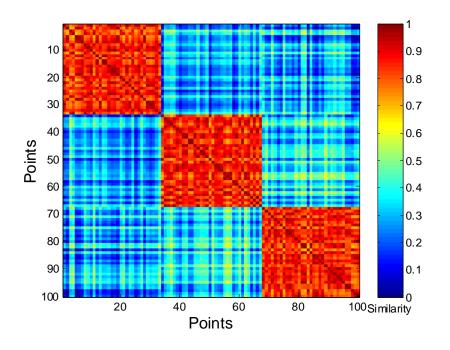


Corr = -0.9235

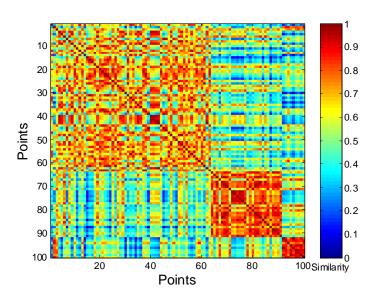
Corr = -0.5810

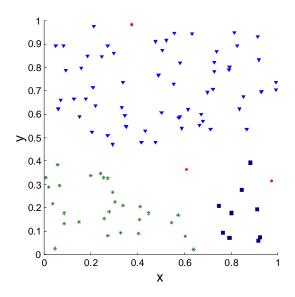
 Order the similarity matrix with respect to cluster labels and inspect visually.





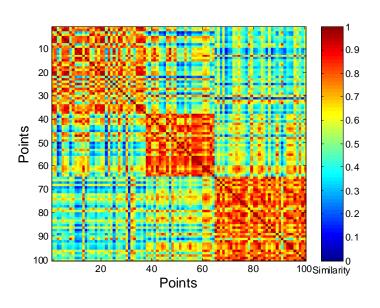
Clusters in random data are not so crisp

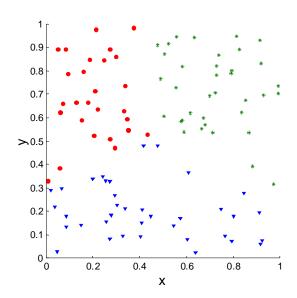




DBSCAN

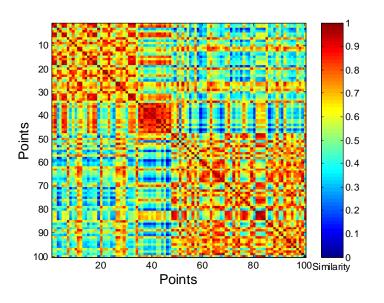
Clusters in random data are not so crisp

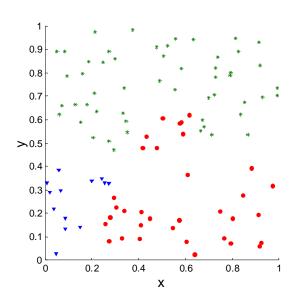




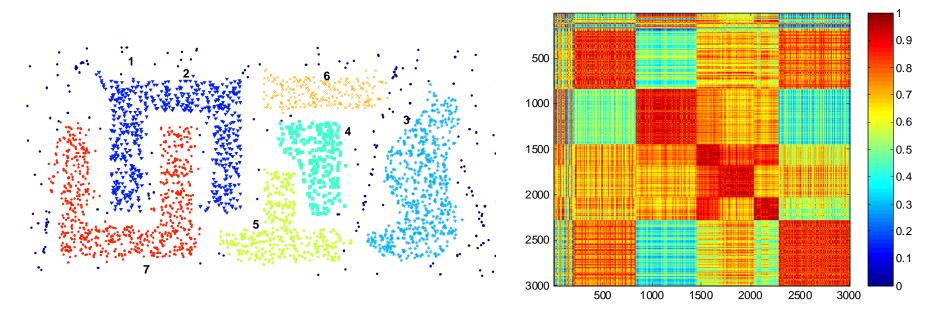
K-means

Clusters in random data are not so crisp





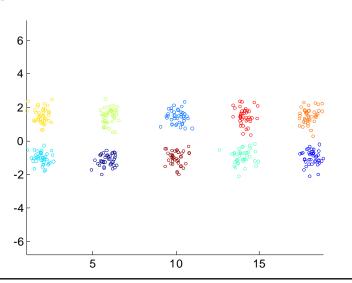
Complete Link

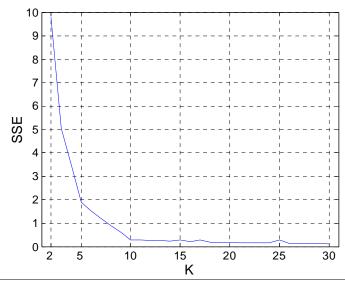


DBSCAN

Internal Measures: SSE

- Clusters in more complicated figures aren't well separated
- Internal Index: Used to measure the goodness of a clustering structure without respect to external information
 - SSE
- SSE is good for comparing two clusterings or two clusters (average SSE).
- Can also be used to estimate the number of clusters



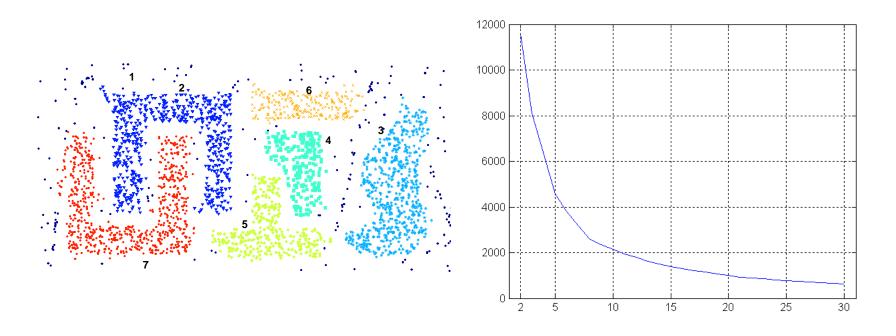


COMP7650

110

Internal Measures: SSE

SSE curve for a more complicated data set



SSE of clusters found using K-means

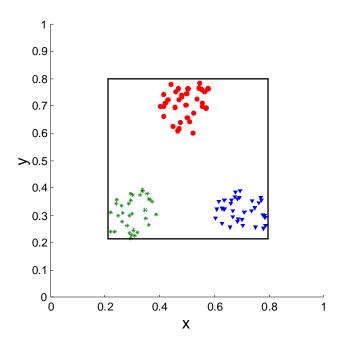
Framework for Cluster Validity

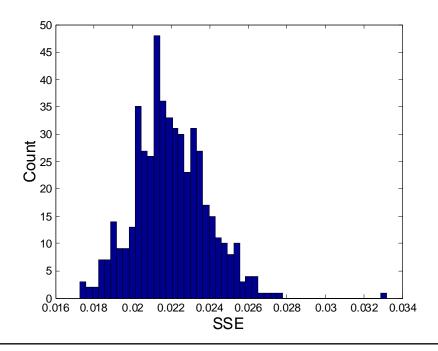
- Need a framework to interpret any measure.
 - For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?
- Statistics provide a framework for cluster validity
 - The more "atypical" a clustering result is, the more likely it represents valid structure in the data
 - Can compare the values of an index that result from random data or clusterings to those of a clustering result.
 - If the value of the index is unlikely, then the cluster results are valid
 - These approaches are more complicated and harder to understand.
- For comparing the results of two different sets of cluster analyses, a framework is less necessary.
 - However, there is the question of whether the difference between two index values is significant

Statistical Framework for SSE

Example

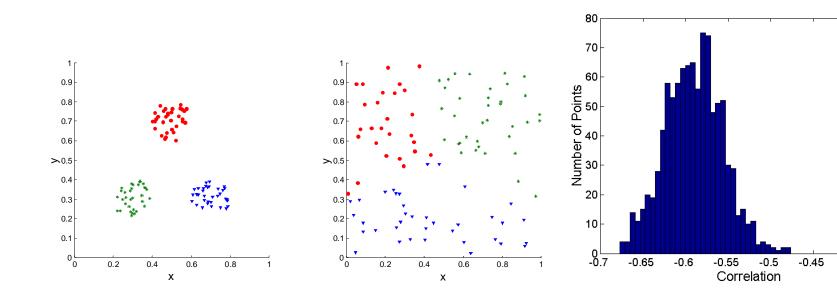
- Compare SSE of 0.005 against three clusters in random data
- Histogram shows SSE of three clusters in 500 sets of random data points of size 100 distributed over the range 0.2 – 0.8 for x and y values





Statistical Framework for Correlation

 Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.



Corr = -0.9235

Corr = -0.5810

-0.4

-0.35

Internal Measures: Cohesion and Separation

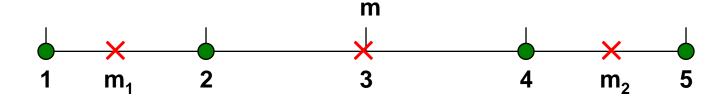
- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE) $WSS = \sum_{i} \sum_{x \in C_i} (x m_i)^2$
 - Separation is measured by the between cluster sum of squares

$$BSS = \sum |C_i| (m - m_i)^2$$

- Where $|C_i|$ is the size of cluster i

Internal Measures: Cohesion and Separation

- Example: SSE
 - BSS + WSS = constant



$$WSS = (1-3)^{2} + (2-3)^{2} + (4-3)^{2} + (5-3)^{2} = 10$$

$$BSS = 4 \times (3-3)^{2} = 0$$

$$Total = 10 + 0 = 10$$

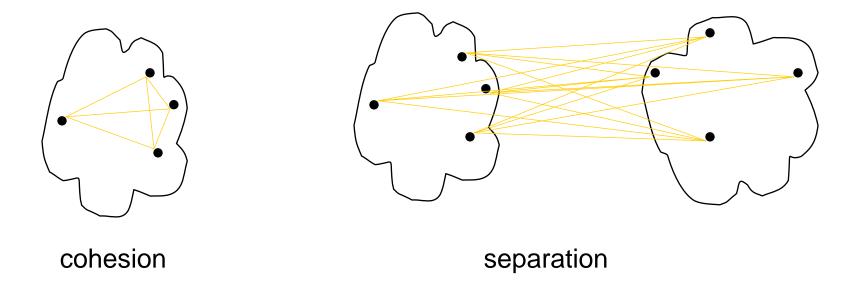
$$WSS = (1-1.5)^{2} + (2-1.5)^{2} + (4-4.5)^{2} + (5-4.5)^{2} = 1$$

$$BSS = 2 \times (3-1.5)^{2} + 2 \times (4.5-3)^{2} = 9$$

$$Total = 1 + 9 = 10$$

Internal Measures: Cohesion and Separation

- A proximity graph based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.



External Measures of Cluster Validity: Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j we compute p_{ij} , the 'probability' that a member of cluster j belongs to class i as follows: $p_{ij} = m_{ij}/m_j$, where m_j is the number of values in cluster j and m_{ij} is the number of values of class i in cluster j. Then using this class distribution, the entropy of each cluster j is calculated using the standard formula $e_j = \sum_{i=1}^L p_{ij} \log_2 p_{ij}$, where the L is the number of classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each cluster weighted by the size of each cluster, i.e., $e = \sum_{i=1}^K \frac{m_i}{m} e_j$, where m_j is the size of cluster j, K is the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given by $purity_j = \max p_{ij}$ and the overall purity of a clustering by $purity = \sum_{i=1}^{K} \frac{m_i}{m} purity_j$.

Final Comment on Cluster Validity

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes

COMP7650 119