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Abstract

The Hilbert-Huang transform (HHT) is a novel sig-
nal processing method which can efficiently handle non-
stationary and nonlinear signals. It firstly decomposes sig-
nals into a series of Intrinsic Mode Functions (IMFs) adap-
tively by the Empirical Mode Decomposition (EMD), then
applies the Hilbert transform on the IMFs afterward. Based
on the analytical signals obtained, the local analysis of the
IMFs are conducted. This paper contains two main works.
First, we proposed a new two-dimensional EMD (2DEMD)
method, which is faster, better-performed than the current
2DEMD methods. Second, the Riesz transform are utilized
on the 2DIMFs to get the 2D analytical signals. The lo-
cal features (amplitude, phase orientation, phase angle, etc)
are evaluated. The performances are demonstrated on both
texture images and natural images.

1 Introduction

Texture [1] is ubiquitous and provides powerful charac-
teristics for many image analysis applications such as seg-
mentation, edge detection, and image retrieval. Among
various texture analysis methods, signal processing meth-
ods are promising, which include Gabor filters [2], wavelet
transforms [3], Wigner distributions and so forth. They
characterize textures through filter responses directly.

Hilbert-Huang transform is a new signal processing
method proposed by Huang et al [8, 10, 9]. It contains two
kernel parts: Empirical Mode Decomposition (EMD) and
Hilbert transform. First, it decomposes signals into a se-
ries of Intrinsic Mode Functions (IMFs) adaptively by the
Empirical Mode Decomposition (EMD), then applies the
Hilbert transform on the IMFs afterward. Based on the an-
alytical signals obtained, the local analysis of the IMFs are
conducted. Though Fourier spectral analysis and wavelet
transform have provided some general methods for analyz-
ing signals and data, they are still weak at non-stationary
and nonlinear data processing. However, due to the fully
data-driven process, the HHT is more efficient in this situa-
tion. It provides an efficient way for the local analysis.

As the kernel part of HHT, EMD works as a filter bank.
It has a wide application in signal analysis including ocean
waves, rogue water waves, sound analysis, earthquake time
records as well as image analysis [19, 18, 16, 21, 20, 22, 23].
The EMD has been extended to 2DEMD. However, it coun-
tered a lot of difficulties such as inaccuracy of surface in-
terpolation, high computational complexity and so forth
[27, 29, 25, 26, 28, 31]. Finding a powerful 2DEMD is
still a challenge. In this paper, we implemented a modi-
fied 2DEMD and study the local properties of the 2DIMFs
by Riesz transform [4, 5]. The image after its Riesz trans-
form, we can get the 2D analytical signal. The estimation
of the local features is crucial in image processing. Gener-
ally, structures such as lines and edges can be distinguised
by the local phase, the local amplitude can be used for edge
detection.

This paper is organized as follows: Section 2 presents an
introduction to HHT. In Section 3, the details of the modi-
fied 2DEMD are shown firstly, then we reviewed the Riesz
transform. The simulation results are demonstrated in Sec-
tion 4. Finally, the conclusions are given.

2 Hilbert-Huang transform

Hilbert-Huang transform was proposed by N.E.Huang in
1998. It contains two parts in terms of Empirical Mode
Decomposition (EMD) and Hilbert transform. The signals
are decomposed into a series of Intrinsic Mode Functions
(IMFs), then Hilbert transform are applied on these IMFs to
get analytic signals. Since this method is local, data-driven,
it is capable of handling nonlinear and non-stationary sig-
nals.

EMD captures information about local trends in the sig-
nal by measuring oscillations, which can be quantized by a
local high frequency or a local low frequency, correspond-
ing to finest detail and coarsest content. Here we briefly
review the sifting process of EMD. Four main steps are con-
tained, S1, S2, S3 and S4 are abbreviation for Step 1 to Step
4. Given a signal x(t),

S1. Identify all the local minima and maxima of the input
signals x(t);



S2. Interpolate between all minima and maxima to yield
two corresponding envelopes Emax(t) and Emin(t).
Calculate the mean envelope m(t) = (Emax(t) +
Emin(t))/2;

S3. Compute the residue h(t) = x(t) −m(t). If it is less
than the threshold predefined then it becomes the first
IMF, go to Step 4. Otherwise, repeat Step 1 and Step 2 using
the residue h(t), until the latest residue meets the threshold
and turns to be an IMF;

S4. Input the residue r(t) to the loop from Step 1 to Step 3 to
get the next remained IMFs until it can not be decomposed
further.

The analytical signal provides a way to compute the 1D
signal’s local amplitude and phase, which is obtained by the
Hilbert transform on a real signal. The Hilbert transform
fH(x) of a real 1D signal f is given by:

fH(x) = f(x) ∗ 1
πx

,

where ∗ is convolution. fH(x) is the imaginary part of the
signal. The analytical signal can be written as

fA = f(x) + ifH(x) = a(t)eiθ(t),

in which, a(t) is the amplitude, θ(t) is the phase.
Applying Hilbert transform on each IMF can evaluate

the local properties such as amplitude and phase.

3 Local Analysis of 2DIMFs

3.1 The improved 2DEMD

Here we propose an alternative algorithm for EMD. In-
stead of using the envelopes generated by splines we use a
low pass filter to generate a “moving average” to replace the
mean of the envelopes. The essence of the sifting algorithm
remains.

The moving average is the most common filter in dig-
ital signal processing. It operates by averaging a number
of points from the input signal to produce each point in the
output signal, it is written:

y[i] =
1
M

M−1∑

j=0

x[i + j],

where x[] is the input signal, y[] is the output signal, and
M is the number of points used in the moving average. It is
actually a convolution using a simple filter [ai]Mi=1, ai = 1

M ,
and [Ai,j ]

M,N
i=1,j=1, Ai,j = 1

M×N for the 2-dimensional case.
Detection of local extrema means finding the local max-

ima and minima points from the given data. No matter for

1D signal or 2D array, neighboring window method is em-
ployed to find local maxima and local minima points. The
data point/pixel is considered as a local maximum (mini-
mum) if its value is strictly higher (lower) than all of its
neighbors.

We illustrated 1-dimensional case and 2-dimensional
case separately.

• 1-dimensional case:
For each extrema map, the distance between the two
neighborhood local maxima (minima, extrema, zero-
crossing) has been calculated called as adjacent max-
ima (minima, extrema, zero-crossing) distance vector
Adj max (Adj min,Adj ext,Adj zer). Four types
of window size:

– Window-size I: max(Adj max);

– Window-size II: max(Adj min);

– Window-size III: max(Adj zer);

– Window-size IV: max(Adj ext).

• 2-dimensional case:
The window size for average filters is determined
based on the maxima and minima maps obtained from
a source image. For each local maximum (minimum)
point, the Euclidean distance to the nearest local max-
imum (minimum) point is calculated, denoted as ad-
jacent maxima (minimum) distance array Adj max
(Adj min).

– Window-size I: max(Adj max);

– Window-size II: max(Adj min);

3.2 Monogenic signal

The analytic signal is the basis for all kinds of ap-
proaches which makes use of the local phase. The combi-
nation of a 1D signal and its Hilbert transform is called the
analytic signal. Similarly, the combination of a image and
its Riesz transform, which is the generalization of Hilbert
transform, is called the monogenic signal [4, 5].

The monogenic signal is often identified as a local quan-
titative or qualitative measure of an image. Different ap-
proaches to an nD analytic or complex signal have been
proposed in the past:

• Total Hilbert Transform, The Hilbert transform is per-
formed with respect to both axes:

HT (−→v ) = jsign(v1)sign(v2)

This transform is not a valid generalization of the
Hilbert transform since it does not perform a phase
shift of π/2.It can’t meet orthogonality.



Original signal

Figure 1. The 2DIMFs obtained by the im-
proved 2DEMD.

Noisy image

Figure 2. The 2DIMFs obtained by the im-
proved 2DEMD on the noisy image.

• Partial Hilbert Transform, The Hilbert transform is
performed with respect to a half-space that is chosen
by introducing a preference direction:

HT (−→v ) = jsign(−→v ,
−→
d ),

where −→v = (v1, v2) is one 2D vector,
−→
d is one pref-

erence direction. This transform missed the isotropy.

• Total Complex Signal,

• Hypercomplex Signal.

The Riesz transform [4, 5] is a multidimensional gener-
alization of the Hilbert transform. The expression of Riesz
transformed signal in the frequency domain:

FR(−→v ) =
i−→v
−→v F (−→v ) = H2(−→v )F (−→v ),

where the transfer function H2 of the Riesz transform is the
generalization of the Hilbert transform, the corresponding
space representation of Riesz transform is:

fR(−→x ) = −
−→x

2π|−→x |3 ∗ f(−→x ) = h2(−→x ) ∗ f(−→x ).

The Riesz transformed signal and the original signal consti-
tutes the 2D analytical signal, this is the monogenic signal.

fM (−→x ) = f(−→x )− (i, j)fR(−→x ).

From this formulation, we see the 2D analytical signal is 3D
vector and we can get the local features of the monogenic
signal.

• Phase: Phase as we all know the polar represen-
tation of the complex z = x + iy is (r, ϕ) =
(
√

zz, arg(z)). Where z is the conjugate of z, arg(z)
is the phase of the complex: arg(z) = a tan 2(y, x) =
sign(y)a tan(|y|/x), sign(y) represents the direction
of rotation. The phase of the 2D analytical signal is:

a tan 3(y, x) =
−→x D

|−→x D|a tan(
|−→x D|

< (0, 0, 1)T ,−→x >
),

where −→x D = (0, 0, 1)T × −→x yields the direction of
the rotation vector. The phase of the monogenic signal
is:

ϕ(−→x ) = a tan 3(fM (−→x )) = arg(fM (−→x )).

• Amplitude: The local amplitude of fM (−→x ) is:

|fM (−→x )| =
√

fM (−→x )fM (−→x ) =
√

f2(−→x ) + |fR(−→x )|2,
given the local phase ϕ(−→x ) and the local amplitude
|fM (−→x | of a monogenic signal, it can be reconstructed
by

fM (−→x = |fM (−→x | exp((−j, i, 0)ϕ(x)).



2DEMD permits extracting multiscale components. The
monogenic signal of each IMF permits to compute local am-
plitude, local phase and the local direction. We have shown
this feature through experiment results for both natural tex-
tures and synthetic textures.

4 Experimental Results

Figure 3. left-up: 1st IMF, right-up: am-
plitude, left-down: phase orientation, right-
down: phase angle.

In all our numerical experiments we determine the win-
dow size in each decomposition with Window-size I. Unless
otherwise specified we use α = 0.5 for our stopping crite-
rion.

We show the local features amplitude, phase orientation,
phase angle extracted by SMV of the 1st IMF.

By having access to these representations of scenes or
objects, we can concentrate on only one or several modes
(one individual or several spatial frequency components)
rather than the image entirety. The improved 2DEMD and
Riesz local analysis offer a new and more promising way to
analyze texture images.

5 Conclusions

This paper contains two main works. First, we proposed
a new two-dimensional EMD (2DEMD) method, which is
faster, better-performed than the current 2DEMD methods.
Second, the Riesz transform are utilized on the 2DIMFs to

Figure 4. left-up: 1st IMF, right-up: am-
plitude, left-down: phase orientation, right-
down: phase angle.

Figure 5. left-up: 1st IMF, right-up: am-
plitude, left-down: phase orientation, right-
down: phase angle.



Figure 6. left-up: 1st IMF, right-up: am-
plitude, left-down: phase orientation, right-
down: phase angle.

get the 2D analytical signals. The local features (ampli-
tude, phase orientation, phase angle, etc) are evaluated. The
performances are demonstrated on both texture images and
natural images.
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