
A Dynamic Trust Network for Autonomy-Oriented Partner Finding

Hongjun Qiu∗

Abstract

The problem of partner finding is to identify which en-
tities (agents) can provide requested services from a group
of entities. It can be found in open and distributed environ-
ments for such tasks as file sharing and resource allocation.
Previous studies have shown that entities can refine and
determine partners through measuring trust relationships,
i.e., the beliefs of entities that others will accomplish a re-
quest for assigned services at hand. Entities dynamically
change their beliefs through recalling their past experiences
to quickly identify partners for new requests. This paper
aims to observe whether those changes can enable entities
efficiently find partners and hence provide services. We pro-
pose a dynamic network, which contains trust relationships
as links among entities (nodes). Then, we investigate its
structure and efficiency in the moments with different trust
relationships. Autonomy-Oriented Computing (AOC) is ap-
plied to observe how the network dynamics emerge from
local behaviors. A notion of autonomy is embodied in defin-
ing how entities activate their partner finding behaviors,
whereas self-organization is realized to update the strength
of trust relationships. Experimental results explicitly dis-
play a dynamic process of this network, changing from con-
taining no link to having some stable links. Specially, in this
process, the efficiency gradually gets enhanced.

1 Introduction

In a multi-entity network, entities (e.g., companies) usu-
ally look for some others (i.e., finding partners) to provide
services beyond their own limited abilities. The problem of
partner finding appears widely in real-world applications.
Here, we take cloud computing as an example. In cloud
computing, vendors (e.g., Google, Amazon and Microsoft)
deploy numerous servers over the Internet, to store data or
run programs in real time as requested by users [3]. The
servers work together to deal with such requests from hun-
dreds or thousands of users per second [4]. Hence, it is quite
important for servers to immediately identify who can work

∗Prof. Jiming Liu is her corresponding supervisor

together to accomplish requests.
Currently, researchers have introduced a notion of trust

relationship as a measurement for identifying partners, to
solve real-world problems in open, distributed and dynamic
environments [2]. Trust relationships refer to entities’ be-
liefs that others will provide services as needed [11]. In
most cases, entities are inclined to choose partners from the
ones in which their beliefs are relatively strong. Entities
weaken their beliefs if the found partners cannot provide
services. Otherwise, they strengthen their beliefs. They dy-
namically change the strength values of their beliefs with
more and more such experiences. Thus, they can quickly
identify partners at any time.

Many studies have been done in applying trust relation-
ships to find partners. Golbeck [2] argues that trust relation-
ships can be used to identify who can produce trustworthy
online information. Sen et al. [1] compare three schemes of
computing trust relationships in reducing the cost of finding
partners from a small group of entities. Specially, they in-
troduce a nearest neighbor algorithm as a scheme through
recalling a fixed number of latest experiences of finding
partners. To get rid of malicious entities from the group
of potential partners, Kamvar et al. [6] build a matrix of
weighted trust relationships through aggregating and nor-
malizing based on a history of uploading files. They com-
pute the left principal eigenvector of this matrix as their
metric. More related work can be found in [5, 12, 13]. In
such work, entities either measure the probabilities that oth-
ers have successfully provided services before, or ask past
partners for their beliefs about third-party ones.

However, it remains to clarify why and how trust rela-
tionships can make entities efficiently find partners in dy-
namic, distributed, real-world networks. This paper aims to
solve this problem through proposing a dynamic trust net-
work based on the bottom-up methodology of Autonomy-
Oriented Computing (AOC). AOC can help us charac-
terize how network dynamics emerge from local interac-
tions through utilizing the ideas of autonomy and self-
organization [7, 9, 8]. Here, network dynamics refers to
the dynamics of network structure, network performances
in providing services and so forth. Zhang et al. [14] have
successfully characterized such dynamics of a distributed
network, in which entities work together to provide various



services. Their work shows the feasibility and rationality
for the work in this paper.

In this study, the autonomy is embodied for entities
(nodes) to find partners while a process of self-organization
is realized to update trust relationships (links). Entities de-
cide to activate which behaviors for partner search or se-
lection through measuring their abilities and beliefs. They
also immediately update their beliefs, once they receive the
feedback from their latest partners. Specially, a positive
feedback mechanism is emphasized, i.e., the strong beliefs
become stronger while the weak become weaker. Experi-
mental results show that our network quickly converges to
be scale-free. With such a structure, entities quickly find
partners for any request. These results explain why dynamic
trust relationships are helpful for entities to find partners.

The reminder of this paper is organized as follows: Sec-
tion 2 gives a detailed problem statement. Section 3 formu-
lates a network on the basis of AOC. The network contains
autonomous entities as nodes and self-organized trust rela-
tionships as links. In Section 4, we observe the structural
emergence of this network and the dynamics of trust rela-
tionships. The efficiency in finding partners is also mea-
sured. Finally, the paper is concluded in Section 5.

2 Problem Statement

As mentioned above, the goal of this study is to examine
the effects of dynamic trust relationships on finding partners
in open, dynamic, and distributed networks, such as the In-
ternet. It requires us to answer the following questions:

• How do entities update their trust relationships? What
will they do if they never interact with their newly-
found partners before? Will entities memorize the in-
formation about all of their past partners?

• What are the mechanisms for entities search and select
partners? How do entities refine partners based on up-
dated beliefs? How do entities identify their partners
from their refinement results?

• Which parameters can we introduce to characterize the
change of trust relationships, besides the variation of
their strength? Is it enough to count the number of
entities’ trustees, associated by their beliefs?

• What is the efficiency in finding partners based on
dynamically-changing trust relationships?

Previous studies have confirmed two preliminary phe-
nomena. One is that entities prefer to interact with their
trustees rather than strangers. The other is that entities
strengthen their beliefs about another entity once it accom-
plishes a service request and vice versa. Based on the two

phenomena, we attempt to answer the above questions in
the following scenario.

Here, we assume that there exists a virtual network,
which contains trust relationships as links and entities as
nodes. In this network, entities are assigned with fixed abil-
ities of providing certain services. Each of them can find
a partner to satisfy a whole service request, which cannot
be finished by itself. The request has a cost limit, i.e., the
maximum number of times for finding partners. The partner
will honestly inform whether it can finish this request. Then
the finder can decide to strength or weaken its belief about
this partner. If this partner cannot finish, it will transfer the
request to the third entity, which is discovered as its partner.
In other words, this request propagates among entities until
it is accomplished or the number of finding times reaches
the given cost limit.

Accordingly, the above questions can be translated into
the following tasks:

1. Modeling a virtual network, in which distributed enti-
ties can find partners and update their beliefs.

2. Measuring structural characteristics at different mo-
ments to display the dynamics of the links among
entities. The characteristics include network inde-
gree (outdegree), the clustering coefficient and the har-
monic mean of average path length (APL−1).

3. Examining the efficiency in finding partners with two
parameters, i.e.,

• Accomplishment ratio: the ratio of the number
of accomplished requests to the total number of
requests;

• Average propagation step: the average times that
entities find partners for finishing requests.

3 Modeling a Dynamic Trust Network

3.1 Basic ideas

In this section, we will model a virtual network of dis-
tributed entities, i.e., a dynamic trust network. Then, we
can characterize the structural dynamics of this network, as
a reflection of dynamic trust relationships.

To meet the distributed, dynamic needs, we will de-
fine the network based on the methodology of AOC. AOC
aims to characterize complex networks (e.g., large-scale,
dynamic and distributed networks), through deploying a set
of autonomy-oriented entities and defining their behavioral
rules of self-organization [7, 10]. These entities activate dif-
ferent behaviors to finish a certain task or else, according to
their different states, e.g., the number of entities they inter-
acted before. Moreover, entities self-organize their coupling



relationships based on their received feedbacks, such as the
state of other entities.

In this work, entities continually find partners in an au-
tonomous manner, as well as self-organize trust relation-
ships based on the feedback from partners.

For finding partners, entities activate one of well-defined
search or selection behaviors in a probabilistic manner. The
probability of activating each behavior is adaptive to new
requests and entities’ states (e.g., their beliefs).

A process of self-organization is realized to update trust
relationships. At first, there is no trust relationship in the
network. After a period of continually finding partners, en-
tities maintain several trust relationships. The realization
of this process lies in two aspects. On one side, entities’
behaviors are defined to be exploratory or even stochastic.
They may find strangers as their partners and create their
beliefs about the newly-found partners. However, with pos-
itive feedback mechanisms, the newly-created beliefs may
be weakened or even eliminated later. Therefore, only a part
of generated relationships can remain. The remaining rela-
tionships can help entities effectively find partners to finish
new requests. So, any request can be accomplished with a
higher probability.

The network, entities and service requests are defined as
follows:

Definition 1 Let G
′
(t)=< E,L

′
(t) > denote a dynamic

network of trust-based entities on the basis of AOC. For
brevity, we call it a dynamic trust network. E =
{e1, · · · , eNe

} denotes the set of entities and Ne is the num-
ber of entities in the network. L

′
(t) = {l′ij(t)|ei, ej ∈ E}

is the set of trust relationships at time t.

Definition 2 Let ei =< ID, ability, rules > denote an
entity where ID is its identifier, i.e., ei.ID = i, i ∈ [1, Ne].
It can provide some services with different performances,
i.e., ei.ability =< cw1, · · · , cwNservice

>, where cwj de-
notes the performance on the jth type of service tj . Nservice

is the number of service types. The rules define when and
how entities activate their behaviors.

Definition 3 A request can be formulated as rm=<
rw1, · · · , rwNservice , Tmax > where rwj denotes the per-
formance requirement of the type of service tj . Tmax is the
maximum number of times that entities are allowed to find
partners.

The two ideas from AOC are illustrated through describing
the process of finding partners for finishing a request, which
is specified in Section 3.5. Once a new request rm is sub-
mitted to an entity ei, this entity will perform the following:

1. Evaluating. Firstly, the entity will determine whether
it can solely accomplish the new request by means of

matching its ability with this request using a cosine-
based similarity function ei.simRE(rm). The request
can be considered as accomplished once the value of
ei.simRE(rm) is larger than a threshold. The evalua-
tion functions are specified in Section 3.4.

2. Partner Search and Selection. If the request cannot
be accomplished and its Tmax is not reached, the en-
tity ei will start finding partners. Firstly, it will search
some candidates by means of activating one of search
behaviors in a probabilistic manner. Then, it will se-
lect a candidate as its partner through activating one
of selection behaviors also probabilistically. The prob-
abilities are adaptive to the request and the states of
the entity, e.g., its trust relationships. So, trust rela-
tionships will explicitly affect entities’ partner finding.
The detailed behaviors are given in Section 3.2.

3. Updating. The entity ei will change its states once
a partner is found. Firstly, it will deliver the whole
request to its partner. Then, the partner ej will hon-
estly feedback its evaluating results ej .simRE(rm).
Finally, this entity will generate the trust relationship
l
′
ij if l

′
ij(t) is not in the network. Otherwise, it will

strengthen the relationship if the ability of this partner
is relatively closer to this request, or weaken the trust
relationship if not. The mechanisms of trust relation-
ships are specified in Section 3.3.

3.2 The Local Autonomy of Entities

Three search behaviors and two selection behaviors are
defined in this section. They will be probabilistically acti-
vated to realize the autonomy of entities. The probability
of activating each behavior is determined with the degree
of similarity between requests and entities’ abilities, i.e.,
ei.simRE(rm). When the degree is high, entities’ neigh-
bors will be discovered as partners with a high probability.
Stochastic behaviors are given for entities to avoid being
trapped in local-optima and for newcomers to join this net-
work.

The detailed operations of search and selection behaviors
are specified in below:

• Neighbor-based search neighborSearch(). An en-
tity ei will find some neighbors, which are not in-
volved in the current request rm, with the probability
of ei.simRE(rm). The probability will be adaptive to
requests accordingly. Neighbors refer to its trustees.
i.e., there are trust relationships from this entity to
them.

• Recommendation-based search recommendSear
−ch(). An entity ei will discover candidates within
a distance maxD around itself with a probability of



1 − ei.simRE(rm) when the receiving request is rel-
atively near the entity’s ability. That is, the entity will
enlarge its search area from its neighbors to the area
within a given distance. This behavior is inspired by
two observations: 1) besides direct experiences, in-
direct experiences are also important for entities to
make decisions; 2) communities have been discovered
in many real-world networks, i.e., agents with similar
interests cluster together. Here, the request far beyond
the ability of an entity is likely out of its neighbors’
abilities.

• Random search randomSearch(). An entity ei will
search in the whole network when it is a newcomer or
its neighbors are all involved in the current request.

• Trust-based select trustSelect(). The entity ei will
select an entity ej with the maximal degree of trust,
ei.trust(ej , t), from its candidates as its partner with
a probability of ei.simRE(rm). Entities are supposed
to be more confident in selecting partners for requests
which are relatively closer to its abilities.

• Random select randomSelect(). The entity ei will
stochastically select an entity from the candidate set
ei.cand(rm) as its partner with a probability of 1 −
ei.simRE(rm).

3.3 The Mechanisms of Trust Relationships

We have introduced how trust relationships are applied in
activating entities’ behaviors for finding partners in the pre-
vious section. Now, we will introduce how they are changed
based on the feedback from partners. Trust relationships are
defined as follows:

Definition 4 A link l
′
ij={< ei, ej , ei.succ(ej , t),

ei.fail(ej , t), ei.latestT ime(ej), ei.trust(ej , t) >|1 ≤
i, j ≤ Ne} reflects a trust relationship from ei to ej where

• ei.succ(ej , t) and ei.fail(ej , t) denote the numbers of
successful and failed interactions, respectively;

• ei.latestT ime(ej) is the time of their latest interac-
tion;

• ei.trust(ej , t) is the degree of trust at time t, quanti-
fying the belief that ej will accomplish a new request
from ei. It is a numeric value in [ε, 1.0], where the
threshold ε will be described below.

Once an entity ei receives the feedback of its partner
ej .simRE(rm), a new relationship lij(t) will be generated
if it is not in the network. Otherwise, the existing relation-
ship will be updated. The parameters of this relationship
will be assigned as introduced below.

Firstly, the time of their latest interaction is set as the
current time. Then, ei will evaluate whether the partner is
more suitable for the current request with Eq. 1 where λ is
a threshold, λ ∈ (0, 1).

ei.QoI(ej , rm) =

{
true

ej .simRE(rm)
ei.simRE(rm) > (1 + λ);

false otherwise

(1)
Other parameters will be assigned according to the result
of ei.QoI(ej). When the partner is more suitable for this
request, i.e., ei.QoI(ej , rm) = true, this interaction is re-
garded as successful and the number of their successful in-
teractions increases. Otherwise, the number of failed inter-
actions increases. Then, the degree of trust ei.trust(ej , t)
can be set with updated ei.succ(ej , t) and ei.fail(ej , t) as
follows:

ei.trust(ej , t) =
ei.succ(ej , t)

ei.succ(ej , t) + ei.fail(ej , t)
(2)

Trust relationships may be removed since the degree of
trust is supposed to decay over time as follows:

ei.trust(ej , t) = ei.trust(ej , ei.latestT ime(ej))
− η ∗ (t− ei.latestT ime(ej)) (3)

where η is the decay factor, η ∈ (0.0, 1.0). Once the de-
gree of trust is less than a small negative numeric value ε,
i.e., ei.trust(ej , t) < ε, the neighbor is interpreted as being
no longer able to accomplish new requests from this entity,
and the corresponding relationship will be eliminated. The
threshold ε is empirically set, ε ∈ (−0.05, 0).

In addition, entities will derive new trust relationships
from the relationships already in the network. If the short-
est distance from entity ei to entity ej is larger than a given
threshold maxD, i.e., ei.shortestDis(ej , t) > maxD, ei

has no idea about the ability of ej and the degree of trust
ei.trust(ej , t) is set as 0. Otherwise, the following func-
tions can be used to compute the degree of trust for the de-
rived relationships:

ei.trust(ej , t) =

nij(t)∑
k=1

ek
i .trustPath(ej , t)

nij(t)

ek
i .trustPath(ej , t) =

∑

l
′
mj

(t)∈L′ (t)

(ek
i .trustPath(em, t)

×em.trust(ej , t)) (4)

where nij(t) is the number of the shortest paths from ei to
ej and the function ek

i .trustPath(ej , t) denotes the degree
of trust derived from the kth shortest path. If ej is a neigh-
bor of ei, ek

i .trustPath(ej , t) will be computed with Eq. 3.



3.4 Evaluation Functions

We define two functions, ei.simRE(rm) and
ei.match(rm), for entities to evaluate whether they
can accomplish received requests in this section. A cosine-
based function is given to compute the degree of similarity
between request rm and the ability of entity ei, i.e.,

ei.simRE(rm) =

Nservice∑
k=1

(rm.rwk ∗ ei.cwk)

2

√
Nservice∑

k=1

rm.rw2
k ∗

Nservice∑
k=1

ei.cw2
k

(5)
When the value of ei.simRE(rm) is larger than a threshold
δ, δ ∈ (0, 1), the request rm is assumed to be accomplished
by the entity ei, i.e.,

ei.match(rm) =
{

true simRE(rm) > δ;
false otherwise

(6)

3.5 The Algorithm

The trust network will evolve through continually find-
ing partners based on the above-defined behaviors and trust
relationships. Algorithm 1 describes how entities find
partners once a new request is stochastically submitted.
search() and select() represent entities activate a behav-
ior of search and selection, respectively. updateState()
denotes that entities update their trust relationships. As
defined before, G′(t) represents the trust network at time
t, i.e., t requests have been submitted to the network. If
no request has ever been submitted, the network G′(t)
only contains Ne independent entities, i.e., G′(0) =<
{e1, · · · , eNe}, ∅ >.

4 Experiments

In the above, we have presented a dynamic trust net-
work, which contains autonomous entities as nodes and
self-organized trust relationships as links. This section
gives some experiments toward the following objectives:

1. to characterize the dynamics of trust relationships by
means of measuring network structural characteristics;

2. to measure the efficiency of the network in finding
partners to accomplish requests.

4.1 Experimental Setting

Experimental parameters are listed in Table 1. The simu-
lated network contains 1000 entities and can provide 5 types

Algorithm 1: The Autonomy-Oriented Partner Finding

Input: A new request rm, the dynamic trust network
G
′
(t)

Output: The evolved network G
′
(t + 1)

begin
// initialization phase
stochastically select an entity ei as the receiver of
new request rm;
current entity ← ei; next entity ← null;
flag ← true;
// self-organized computing phase
while rm.Tmax > 0 do

matchResult ← current entity.match(rm)
based on Eq. 6;
if matchResult 6= true then

current entity.search();
next entity ← current entity.select();
// update based on feedback
flag ←
current entity.QoI(next entity, rm)
based on Eq. 1;
current entity.updateState(flag)
based on Eq. 2;
current entity ← next entity;
rm.Tmax = rm.Tmax − 1;

else
rm.Tmax = 0;

end
end

end

of services. Entities’ abilities on providing each type of ser-
vice are supposed to follow a power-law distribution and
the power falls in the range of [1, 2]. That is, most enti-
ties provide certain type of service with a low performance,
e.g., a low quality of service. A cycle denotes the time enti-
ties spent on finishing a request and updating corresponding
trust relationships among them. The performance require-
ment and Tmax of all requests are stochastically initialized.
For each request, its requirement on each type of service is
set to be in the field of [0.0, 1.0] while its Tmax is assigned
with a random integer value in (0, 999]. The number of en-
tities determines the upper limit of Tmax since each entity is
allowed to be found once for the same request. For fairness,
we submit the same set of 100 requests after each cycle and
test the efficiency of entities in finishing such requests.

4.2 The Dynamics of Trust Relationships

We examine the dynamics of trust relationships by mea-
suring the structure characteristics, including the network



Table 1: The experimental parameters

Nservice = 5 Ncycles = 1500 NtestRequest = 100
Ne = 1000 λ = 0.2 maxD = 4
δ = 0.95 η = 0.0003 ε = −0.02

indegree (outdegree), the clustering coefficient, the har-
monic mean of average path length APL−1 and the dis-
tributions of entities’ indegree and outdegree. The results
are shown in Fig. 1 and Fig. 2.

In Fig. 1, the values of three characteristics fluctuate rel-
atively slightly after changing rapidly in the first 250 cycles.
That means that entities dramatically generate and remove
trust relationships at the beginning. Then, they find and
maintain the relationships to their stable partners for any
request later.

In Fig. 2, entities’ indegree or outdegree approximately
follow power-law distribution in the 100th, 500th, 1000th,
1500th cycles. Specially, we have observed that the phe-
nomenon of a power-law distribution appears firstly at the
16th cycle. The power dynamically changes in the follow-
ing cycles, as a result of more and more entities involve in
finishing requests and then update their trust relationships.
The result is quite interesting. It can be inferred that entities
can more efficiently find their partners in such a structure,
as to be discussed in the following section.

4.3 The Dynamics of Efficiency

In this section, we will examine the efficiency of our net-
work in finding partners to finish the fixed 100 requests in
different cycles. The measurements include:

• the accomplishment ratio accompRatio: the propor-
tion of the number of accomplished requests to 100;

• the average steps avgStep: the average times entities
find partners for finishing these requests;

• the standard deviation of propagation steps
stDevOfStep.

As to be described later, the accomplishment ratio gradually
increases, while the average steps and the standard devia-
tion decrease. The efficiency gets enhanced with the change
of trust relationships.

Table 2: The efficiency at different cycles

cycle accompRatio avgStep stDevOfStep
0 0.937 52.242 61.603

1500 0.958 43.702 49.838

Fig.3 presents the dynamics of efficiency. Each point
in curves is computed over 10 cycles. Entities may only

0 500 1000 1500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

n
e

tw
o

rk
 i
n

d
e

g
re

e
/o

u
td

e
g

re
e

cycle

(a) the network indegree (outdegree)

0 500 1000 1500

0.000

0.005

0.010

0.015

c
lu

s
te

ri
n

g
 c

o
e

ff
ic

ie
n

t

cycle

(b) the clustering coefficient

0 500 1000 1500

0.00

0.05

0.10

0.15

0.20

H
M

A
P

L

cycle

(c) the APL−1

Figure 1: The dynamics of trust relationships with the mea-
surement of (a) network indegree (outdegree), (b) cluster-
ing coefficient and (c) the harmonic mean of average path
length.



10
0

10
1

10
2

10
0

10
1

10
2

10
3

 cycle=1

 cycle=100

 cycle=500

 cycle=1000

 cycle=1500

e
n

ti
ty

 n
u

m
b

e
r

indegree

(a) the distribution of indegree

10
0

10
1

10
2

10
0

10
1

10
2

10
3

 cycle=1

 cycle=100

 cycle=500

 cycle=1000

 cycle=1500

e
n

ti
ty

 n
u

m
b

e
r

outdegree

(b) the distribution of outdegree

Figure 2: The distributions of (a) entities’ indegree and (b)
outdegree at different cycles. Entities’ indegree and out-
degree approximately follow power-law distributions since
the 16th cycle.

0 50 100 150

0.94

0.95

0.96

0.97

a
c
c
o

m
p

lis
h

e
m

e
n

t 
ra

ti
o

10*cycles

(a) the accomplishment ratio

0 50 100 150

35

40

45

50

55

a
v
e

ra
g

e
 p

ro
p

a
g

a
ti
o

n
 s

te
p

s

10*cycles

(b) the average steps

0 50 100 150

40

45

50

55

60

65

th
e

 s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f 
p

ro
p

a
g

a
ti
o

n
 s

te
p

s

10*cycles

(c) the standard deviation of propagation steps

Figure 3: The dynamics of the efficiency with the three
measurements: (a) the accomplishment ratio of 100 re-
quests, (b) the average number of the times entities find
partners for finishing the requests, (c) the standard devia-
tion of the times spent on finding partners.



update 2 or 3 relationships in a cycle of updating, which
hardly affects the efficiency. We can find that the upward
or downward tendency in each sub-graph is quite clear. Ta-
ble 2 gives the efficiency at the beginning cycle and ending
cycle. The average steps decrease about 17.653%. It po-
tently shows that the change of trust relationships leads to
the high efficiency of finding partners.

5 Concluding Remarks

In this study, we are interested in characterizing
dynamically-changing trust relationships in real-world ap-
plications. We attempt to understand why trust relationships
can enable distributed entities quickly find partners to pro-
vide their requested services.

Specifically, we have proposed a dynamic trust net-
work by means of utilizing the ideas of autonomy and
self-organization from AOC. These ideas can help us un-
derstand how network-level phenomena emerge from enti-
ties’ local behaviors. In this study, the notion of autonomy
means that distributed entities (nodes) activate different be-
haviors based on their abilities and trust relationships. Self-
organization refers to the process that entities change their
relationships (links) with positive feedback mechanisms,
according to the feedback from their partners.

Experimental results have shown that the network
quickly converges to be scale-free. In other words, parts of
dynamically-generated trust relationships remain relatively
stable while others are eliminated. That is, the process of
self-organization makes trust relationships emerge quickly.
Meanwhile, the accomplishment ratio gradually rises while
the average steps and the standard deviation of propagation
steps gradually decrease. It can be inferred that, the con-
vergence process of this network is accomplished with the
enhancement of its efficiency in successfully finding part-
ners.

References

[1] L. Erete, E. Ferguson, and S. Sen. Learning task-specific
trust decisions. In Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multi-Agent Sys-
tems, 1477–1480, 2008.

[2] J. Golbeck. Weaving a web of trust. Science,
321(5896):1640–1641, 2008.

[3] M. Greeger. CTO roundtable: Cloud computing. Communi-
cations of the ACM, 52(8):50–56, 2009.

[4] B. Hayes. Cloud computing. Communications of the ACM,
51(7):9–11, 2008.

[5] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and
reputation systems for online service provision. Decision
Support Systems, 43:618–644, 2007.

[6] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
eigentrust algorithm for reputation management in P2P net-
works. In Proceedings of the 12th International World Wide
Web Conference, 640–651, 2003.

[7] J. Liu. Autonomy-oriented computing (AOC): The nature
and implications of a paradigm for self-organized computing
(keynote talk). In Proceedings of the 4th International Con-
ference on Natural Computation and the 5th International
Conference on Fuzzy Systems and Knowledge Discovery, 3–
11, 2008.

[8] J. Liu, X. Jin, and K. C. Tsui. Autonomy-oriented com-
puting (AOC): Formulating computational systems with
autonomous components. IEEE Transactions on Sys-
tems, Man, and Cybernetics-Part A: Systems and Humans,
35(6):879–902, 2005.

[9] J. Liu, X. Jin, and K. C. Tsui. Autonomy Oriented Comput-
ing: From Problem Solving to Complex Systems Modeling.
Springer, 2005.

[10] J. Liu and K. Tsui. Toward nature-inspired computing. Com-
munications of the ACM, 49(10):59–64, 2006.

[11] S. P. Marsh. Formalising Trust as a Computational Concept.
PhD thesis, University of Stirling, 1994.

[12] S. D. Ramchurn, T. D. Huynh, and N. R. Jennings. Trust in
multi-agent systems. The Knowledge Engineering Review,
19(1):1–25, 2004.

[13] J. Sabater and C. Sierra. Review on computational trust and
reputation models. Artificial Intelligence Review, 24:33–60,
2005.

[14] S. Zhang and J. Liu. Autonomy-oriented social networks
modeling: Discovering the dynamics of emergent structure
and performance. International Journal of Pattern Recogni-
tion and Artificial Intelligence, 21(4):611–638, 2007.


