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Abstract 
 

As human is the host of disease infection, its social 
interactions and vaccinating behaviors influence the 
dynamics of disease spreading. Previous disease 
diffusion models are mainly based on the homogeneous 
mixing assumption, which assumes that individuals in 
population are identical to each other in terms of disease 
infection. This assumption ignores inherent 
heterogeneities in both human contact patterns and 
individuals’ possible behavioral choices. By comparison, 
we design a disease diffusion model, in which a SIV 
disease model transmits on a social contact network with 
scale free topology. We assume that each individual in 
population will make their self-interest decisions, 
vaccinating or not, according to the perceived payoff of 
different choice. Under the AOC modeling framework 
we incorporate human decision making features, e.g. 
self-interest choice, following neighbors, panic 
irrationality, etc, into individual’s behavioral sets, and 
observe how the individual-level decision making 
behaviors can directly determinate the global-level 
disease diffusion dynamics and inversely how the disease 
spreading influence individuals’ vaccinating choices.  
 

1. Introduction 
 

In recent years, several serious epidemic outbreaks 
show that disease diffusion is no longer confined within 
a local region but involved every corner of the world. 
These epidemic outbreaks share some common complex 
characteristics, such as quick spreading through 
continents, intense outbreak in a certain population 
communities, unexpected lower new infection case or 
even sudden disappearance [1][2]. How to characterize 
or even predict these complex disease diffusion patterns 
is critical important and urgent, for we do not know 
when and where a new epidemic attack will happen.    
 

However, even armed with the most progressive 
biochemistry theories and brilliant innovations of 
modern biotechnology, it is still hard to trace the 
expansion of disease spreading.  
 

Based on the analysis of epidemic spreading datas, these 
complexities should be blamed to the combination of 
disease infections and human social contact behaviors. 
Human long range travels facilitate the disease spreading 
cross nations or even continents; individuals’ vaccination 
attitude or self-interest behaviors will greatly influence 
the potential disease diffusion. Interactions between 
individuals are both the infection mediums and the 
information exchange channel. Hence, the problems of 
epidemic spreading are involved both the macro disease 
diffusion dynamics and micro human behavioral patterns.  
 

How to understand the relationship between 
heterogeneities of human social interactions and disease 
diffusion dynamics is one of the most prominent 
challenges in epidemic spreading research. The previous 
analysis of disease diffusion is mainly based on 
statistical model and differential equations, e.g. 
homogenous mixing assumption, assuming that 
individuals in a population have the same probability to 
contact with each other and thus have the equal chance to 
be infected by infectious ones [3][4].  These assumptions 
failed to reveal the complexity in both diffusion 
dynamics and individual behavioral heterogeneities and 
thus obscure the veiled correlation between local human 
individual behaviors and global epidemic spreading 
dynamics, which we can call it local-global relationship 
for short. 

 
To analyze the local-global relationship, a 

methodology called Autonomy-Oriented Computing 
(AOC) provides a fundamental framework to investigate 
the emergent complex patterns in epidemic spreading 
system. AOC emphasize the modeling of autonomy in 
the entity of a complex system and designing the self-
organization mechanism of them to achieve a global 
level emergent dynamics. In this study, we will build a 
multi-agent system model following the modeling 
framework of AOC. In our model, we present the disease 
infection system as an autonomy agent system which is 
located on a social contact network with a scale free 
topology. For the artificial behavior construction, we 
specify the individuals’ vaccinating decision making 
mechanisms and individual interaction rules. Thus, based 
on the performance measurement, we can investigate the 



relationship between the agents’ local behaviors and the 
global dynamics of disease diffusion process.   

 
The reminder of this paper is organized as follows: 

section 2 gives a basic formulation structure of our 
simulation model. Section 3 formulates a social contact 
network with a scale free topology. In Section 4, we 
introduce the SIV disease diffusion model to represent 
close contact disease transmission. Section 5 designs a 
behavior mechanism for individual decision making. 
Finally, the paper is concluded in Section 6. 
 

2. Basic Formulation Structure 
 

As mentioned above, the goal of this study is to 
design a simulation model which can examine the 
relationship between individuals’ local behaviors and 
global disease diffusion dynamics.  

 
The basic formulation structure includes the 

following parts, as shown in Figure 1: 
 
1. Social contact network. This network, in which 

nodes stand for autonomy agents and edges 
characterize contact, represents the heterogeneity 
in individuals’ neighborhood interactions. 

2. Local decision making mechanism. In each time 
unit, individual will make a vaccination decision 
based on three concerns: (1) respective payoff of 
vaccinating or not, (2) history records of 
vaccination decisions, (3) environmental 
evaluations.  

3. Disease infection model. Infectious disease can 
stochastically spread along edges of connected 
individual pairs in terms of interaction quality 
and vaccination decisions. 

4. Global characteristics of disease diffusion 
process.   These Global features include (1) 
Population immunization patterns, which 
characterizes individuals’ decisions of 
vaccination in population level, (2) Epidemics 
spreading dynamics, which reflect the 
individuals’ infection state on the population 
communities. 

 
Thus, we can investigate the coupling relationship 

between local individuals’ behaviors and global 
epidemics spreading dynamics.  
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       Figure 1, Basic formulation structure of epidemic 
spreading model        

 

3. Social Contact Network 
 

Many epidemics spreading through human 
populations are mainly based on individuals’ physical 
interactions. These individual level interactions can be 
thought to form a network with nodes, standing for hosts, 
and links, representing interactions. During an epidemic 
outbreak, the spreading of individuals’ infection can be 
viewed as disease diffusion along network links. So the 
features of human contact pattern can be interpreted as 
the structural complexity of social contact network.  
 

To build a contact network model, the statistical data 
are needed to exploit the properties of real human 
interaction patterns. Many progresses have been 
achieved, such as tracing all infected individuals and 
their contacts during or following an outbreak [10], 
surveying individuals in populations [11] and using 
census [12], and social characteristic [13] and so on. 
Among all these properties of real human contact 
patterns in epidemic spreading process, scale free 
network draws more and more concerns. Scale-free 
network is characterized by degree distributions which 
follow a power law distribution meaning that a small 
fraction of nodes have highly connected edges [14] 



(Figure2.b).  Scale-free properties have been found in 
many fields, such as information technology (e.g. the 
Internet, the World Wide Web) [15][16] and biological 
systems (e.g. metabolic, protein interactions, 
transcription regulation and protein domain)[17~21].   
 

 
 

(a) Random Network 
 

 
 

(b) Scale Free Network 
 
Figure 2, In the random network, the five nodes with the most 
links (red) are connected to only 27% of all nodes (green). In 
the scale-free network, the five most connected nodes (red) are 
connected to 60% of all nodes (green). (Source Link: Scale-
Free Networks) 
 

In this study, a social contact network explicitly 
represents individual host interactions which are the 
medium for epidemic spreading. In this network, a node 
represents an individual host which might be infected by 
neighbors or infect its neighbors; an edge between two 
nodes represents an interaction relationship that is a 
disease transmission path; the weight value of an edge 
can be interpreted as the quality of individual interaction. 
A node’s degree is the number of edges attached to it and 
the degree distribution of a network is the frequency 
distribution of degrees throughout the entire population, 
which is a reflection of the heterogeneity of individuals 
contact patterns.  

 

This social contact network is medium for disease 
diffusion and with a scale free topology to characterize 
the individuals’ contact pattern. It will focus exclusively 
on the epidemiological impact of the heterogeneity of 
contact pattern, although other structural characteristics 
of network, such as node clustering, community structure, 
or degree correlation, are also important factors to 
influence the disease diffusion process. For another 
aspect, the network model is also assumed to be a static 
network, which means the contact pattern is supposed to 
be fixed in the epidemic spreading process.    

4. SIV Disease Infection Model 
 

In the research of epidemic spreading process, many 
sophisticated models are proposed to simulate the disease 
diffusion mechanism, such as SIS/SIR model [22], 
spatial metapopulation models [23][24]. However these 
traditional models are mainly based on mixing 
assumption and differential equations, which 
characterize the statistical features of disease infection.   
 

In this section, we will describe a SIV disease 
infection model on the social contact network. A scale 
free social contact network with N nodes and average 
neighbor size v can be generated under the preferential 
attachment rule [14]. We assume that individual nodes 
have three possible states in disease infection process, 
susceptible state (S), infected state (I) and vaccinated 
state (V) (Figure 3). The disease infections are only 
transmitted through neighborhood links that the 
susceptible individual can be infected by its direct 
infectious neighbors and infected nodes can transmit 
infection to its direct neighbors. If the individual is 
vaccinated, so it is safe from disease infection until 
expiration of vaccination efficacy.      
 
4.1. Disease Percolation  
 

In this study, we suppose the disease transmission is 
a percolation process through the contact network. In 
each time unit, the infected node will randomly select a 
direct neighbor to spread disease infection. The 
probability of a neighbor node being selected is 
proportional to its edge weight value in terms of that of 
the whole neighbors.  
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Figure 3, SIV Disease Model 
 
In each time units, if the selected neighbor is in 
susceptible state, disease infection is successful and the 
state of the selected one will be changed into infected 
state; if the selected neighbor is in infected state or 
vaccinated state, disease infection is failed.    
 
4.2. Individual Infection  
 

If a susceptible node is not vaccinated, it will face 
the risk of being infected by its infectious neighbors. As 
we have mentioned the probability of infectious 
individual to infect its susceptible neighbor 

is . Thus, a susceptible node with 
infectious neighbors will have a total 

probability

ie

( , )i j

inf

je

infn
TransP je

λ that node becomes infected in the 
current time unit. 
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If a node is infected, the duration of infection can be 

drawn from a gamma probability distribution function 
with a mean of 1

γ
 and a variance of Vγ

time units, 

which simulate the difference among population on the 
demography characteristics. After this infection duration, 
the infected node can be either died with a probability 

as a cost of disease infection, or recovered with a 
probability  to susceptible state without any 
residual immunity.  

infd

inf1 d−

 
Here must points out that the dead infected 

individual does not means to erase the node from the 
network. It just represents a possible severe punishment 
for individual’s infection, which is an important factor 
for individuals’ decision making. 
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Figure 4, Individual state transition without vaccination 

  
 
4.3. Individual Vaccination 
 

If the node adopts vaccination choice, it will face 
death risk caused by the side effect of vaccination. We 
assume that the death possibility caused by vaccination 
is , and the efficacy of the vaccine to provide 
successful protection from disease infection is

vacd
ε . If the 

vaccination do not have any side-effects but still fail to 
immunize the node, the current node will keep in the 
susceptible state faced with the risk of disease infection. 
 

vacd 1 vacd−

1 ε− ε

percλ 1 percλ−

infdinf1 d−

 
Figure 5, Individual state transition with vaccination 

 

5. Individual Vaccinating Decision Making  
 

In the disease infection and vaccination model, each 
individual face with two kinds of risk, risk of disease 
infection, and risk of vaccination’s side-effect or failure. 
As the vaccination coverage increase, the infection risk is 
decreased relatively due to the herd immunity. Hence, 
the incentive for individual to vaccination is also reduced, 
which in turn will accelerate the disease transmission. 
This effect of individuals’ behavior on disease diffusion 



dynamics can be treated in game theoretical analyses of 
infection dynamics and vaccination choice.  
 

In this section, we will incorporate individuals’ 
vaccinating behaviors into disease infection model. And 
the following four aspects will influence individuals’ 
decision making: 

1. Perceived payoff value of vaccination and non-
vaccination on current status. 

2. Individuals’ history decision making experience. 
3. Environment Evaluation for global disease 

diffusion dynamics and local neighbors’ 
statuses. 

4. Individuals’ biased preferential choice based on 
the above three criteria.  

 
By incorporating individual behaviors into disease 

infection model, we can observe the correlation between 
local individual actions to the global epidemic dynamics.    
 
5.1. Perceived Payoff Functions 
 

In a given time unit, a susceptible individual can 
choose either vaccination or non-vaccination based on 
payoff value  (vaccination) and  (non-vaccination) 
relatively. Individuals will weigh the benefits of 
vaccinating, such as immunization protection from 
neighborhood infection but with small vaccine death 
risks and some probability vaccine failure, against the 
benefits of non-vaccinating, such as eliminating risk of 
vaccine but with possibly infection risk.  

vP NP

 
Payoff value  for non-vaccinating 

NP
If the individual does not vaccinate, it can be either 

infected with perceived infection probability 
infλ  or not 

with probability
inf1 λ− . If the susceptible individual 

escapes the neighbor infections the payoff value will 
be

susL . If the current susceptible individual is infected, 
and after its infection duration it is died with 
probability , leaving the payoff value in this step zero. 
If the individual survives from infection with 
probability , the payoff value for this circumstance 
is

infd

1 d− inf

infL . Hence, the overall payoff value of non-vaccinating 
individual choice is  
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Payoff value  for vaccinating 
vP

If a person chooses to vaccinate, then either the vaccine 
has vital side-effect with probability , or not with the 
relative probability1 . We also suppose that the 
vaccine without side-effect will be truly efficacious to 

provide immunization with probability

vacd

vacd−

ε , or fail to 
protect individuals just leaving it still in the susceptible 
state. If the individual successful vaccinate itself, the 
payoff value in this step is

vacL . If the individual choose 
vaccination but the vaccine has neither side-effect to 
death nor efficacy to immunization, the relative payoff in 
this circumstance is the same the non-vaccinating 
individuals. Thus, the overall payoff value for 
vaccinating individuals is  
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In summary, there are four payoffs for individuals’ 

decision. 
1. If individual is died either for the disease 

infection or for side-effect of vaccination, the 
payoff is zero. 

2. If the susceptible individual escapes from 
disease infection, the payoff is susL , 

3. If the infected individual recovers from disease 
infection, the payoff is 

infL , 
4. If the susceptible individual is successful 

vaccinated, the payoff is
vacL . 

Based on the common sense, it is reasonable to expect 
that inf sus vacL L L< < , for individual benefit of successful 
vaccination is the biggest, and that of recovered 
individual is the least, the benefit of susceptible 
individual is in the middle.  
 
5.2. History Experience 
 

Each individual in the social contact network has a 
record of its past experience of vaccination decision 
making.  Individual will evaluate the necessary of 
vaccination based on the real efficacy of past vaccination 
memory. 
 

There are four kinds of records for each individual’s 
to vaccination adoption. 

1. Individual is vaccinated, and successfully 
defend infection attacks at least once. 

2. Individual is vaccinated, but no infection attack 
happens in the duration of vaccine. 

3. Individual is non-vaccinating, and successfully 
escapes from infection attacks. 

4. Individual is non-vaccinating, but infected by its 
infectious neighbors. 

 
We assume each of the records above have a payoff 

value vach+ ,
vach− ,

nonh+ ,
nonh−  respectively. We also suppose 

that
vac vach h+ −= − ,

non nonhh+ −= − , which are the decision 
judgment based on the disease diffusion result. Hence, in 



time unit k the historical evaluation of vaccinating 
behaviors ( )vacH k  (vaccination history) and ( )nonH k

( )

 (non 
vaccination history) can be updated as following: 
 

( ) ( 1)decay vac vacvacH k H kλ= −i h k+

( )

             (5) 
 ( ) ( 1)decay non nonnonH k H kλ= −i h k+              (6) 

 
decayλ is decay ratio, meaning that the most recent records 

have a bigger influence on individuals’ decision making. 
 

 
5.3. Environment Evaluation 
  

We assume that each individual has a full ability to 
communicate with its direct neighbors, but a confined 
global information achievement. For local interaction, 
the individual can detect its neighbor’s state and 
vaccination choice of last time. For global information, 
we suppose that individuals can get the global infection 
rate as a severity estimation criterion. Thus these 
environment evaluation parameters will influence 
individuals’ vaccination decision making process.  
 

vacr is the proportion of the vaccinated neighbors to all 
neighbors. 

vac
vac

neigb

nr
n

=                                  (7) 

infr is the proportion of the infected neighbors to all 
neighbors. 
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vac

neigb

ir
n

=                                  (8) 

infR is the infection rate in the global network. 

inf
IR
N

=                                   (9) 

 
 
5.4. Individual Biased Preference Rules 
 

In each time unit, individuals’ vaccination decision 
making is based on three parts (Figure 5):  
(1) Payoff function and ; VP NP
(2) History records 

vacH and
nonH ; 

(3) Environment estimation , and . 
vacr infr infR
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Figure 6, Individual Biased Preference Rules 
 
 
We assume some biased preference rules to simulate 
human’s irrational decision making behaviors.  

 Individuals are more incline to rely on their 
history experience. 

 Individuals are likely to simulate its neighbor’s 
behaviors. 

 Pandemic scare is based on individuals’ 
irrational estimation. 

Thus, based on the above biased preference assumptions, 
we can design the decision making functions as 
following:   
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If ( ) ( )vac nonE k E k> , the current individual will adopt 

the vaccination choice, or vice versa. 1
iξ

1
iζ are 

parameters to modify the influence of history experience 
for vaccination and non-vaccination. 2

iξ
2
iζ are variables 

to control the impact of environment estimations.  
 

Function (
2 vactg r )π i  is designed to simulate 

individual’s neighbor following feature. If the proportion 
of vaccinated neighbors is increased the current will 
more inclined to adopt vaccination. Function 

inf(
2

tg R )π i tries to describe the potential epidemic scare. 

If the global infection rate is near 100%, each individual 
will irrationally adopt vaccination instead of balancing 
payoff gains.   

 
 



6. Conclusions  
 
It is now well recognized notion that human’s 

behaviors will influence the epidemic spreading. What 
kinds of relationship coupling the local individual 
behavioral patterns to the global disease diffusion 
dynamics is still obscure. Aimed to investigate this core 
problem in epidemic control, we design a SIV infection 
model incorporated with complex human behaviors 
under AOC modeling framework. In this model, we try 
to investigate what kinds of impact the human behavior 
will impose on the disease diffusion process, such as 
self-interest choice, following neighbors, panic 
irrationality, etc, and inversely what kind of influence 
will the epidemic dynamics have on individuals’ decision 
making, e.g. mass infection case or scare infection rate. 
Based on this model, we expect a clear picture to portray 
the skeleton about the local global relationship in 
epidemic spreading process.    
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