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Abstract

When data is published to public, it is vastly preferable
to publish meaningful data and yet protect embedded sensi-
tive patterns. This process is often referred to as privacy
preserving data publishing (PPDP). In this paper, we in-
vestigate PPDP in the context of frequent itemsets mining –
one of the fundamental data-mining concepts – and emerg-
ing patterns (EPs) – patterns that have a high classification
power. More specifically, we want to hide all EPs embedded
in data while publishing the data with a minimal distortion
on its frequent itemsets. We propose a novel heuristic solu-
tion that captures the unique properties of hidding EPs and
incorporates with local recoding generalization. To guide
a bottom-up recoding generalization, a metric is derived
based on (i) frequent-itemset distortion that quantifies the
quality of published data and (ii) the degree of reduction in
emerging patterns in each recoding generalization. We have
implemented our proposed solution and experimentally ver-
ified its effectiveness using two benchmark datasets.

1 Introduction

Organizations often publish or share their data to support
subsequent data analysis for various reasons, for instance,
advancing medical research [27] or raising customer satis-
faction level [32]. In many cases, data may involve personal
information or company’s secrets which are not supposed to
be disclosed in normal circumstances. Protecting the pub-
lished data against privacy breaching is often of top priority.
Nonetheless, people may still choose to relinquish certain
privacy for a greater good, but only when they can be as-
sured that the published data will be properly sanitized.

Studies on data sanitization can be dated back to the
earlier work on statistical disclosure control [1]. For in-
stance, it is a common requirement to remove personal iden-
tifiers from published data using mechanisms like masking
(e.g., ID=“123456(7)” → ID=“123***(*)”) and substitu-
tion (e.g., name=“Donald” → name=“YxfG1L”) to ensure
anonymization. However, the privacy-breaching challenge
goes beyond that. It has been clear that combinations of
quasi-identifiers, e.g., the demographic attributes, can al-

low sensitive information such as personal identity, facts, or
forbidden patterns to be inferred, and thus disclosed [34].
Given that data publishing is still a must in many situations,
there has been a stream of work called privacy-preserving
data publishing (PPDP), emerged in recent years to flight
against the privacy-breaching challenge [13]. The partic-
ular type of PPDP considered in this paper tries to sanitize
the data to be published so that some specified sensitive pat-
terns could not be discovered and meanwhile, certain statis-
tical properties of the published data are preserved as far as
possible to support subsequent analysis.

In this paper, we argue that emerging patterns embedded
in data can carry important intelligence (e.g., newly emerg-
ing sales opportunities revealed in sales records) that data
owners may want to hide before they publish them for fur-
ther analysis. In particular, emerging patterns has known
to have a high classification power where EP-based classi-
fiers can often be more accurate than classifiers with C5.0,
naive Bayes and CAEP. At the meantime, frequent itemset
mining is a classical data mining technique and has already
been well-supported by commercial data mining software.
Published data may be evidently subjected to such an anal-
ysis. Therefore, we study a novel form of PPDP where the
sensitive information to be protected is emerging patterns in
datasets and the data analysis is frequent itemset mining.

More specifically, given two transactional datasets D1

and D2, a threshold of growth rate ρ and a threshold of
support σ, we want to determine a sanitization operation
G on both D1 and D2 such that the emerging patterns with
a growth rate higher than ρ are eliminated and the distor-
tion of σ-frequent itemsets is minimized. (The details of
the problem formulation shall be given in Section 3.)
Example 1.1: Let us consider an example from a demo-
graphic dataset [36], which contains some census informa-
tion of the United States. We divide the dataset into two:
(i) people who earned more than $50/year and (ii) people
who do not. When we set ρ to be 35, we find that there
are 8 emerging patterns. One emerging pattern in (ii) is
(never-married, own-child). In other words, in [36],
there are at least 35 times more people who have never mar-
ried and have their own child in (ii) than (i). We remark that
(never-married, own-child) is not a frequent itemset of
the entire dataset when σ = 0.4.



The example shows that emerging patterns may reveal
certain sensitive information from data. For applications
like publishing census reports, sanitizing data might not be
legitimate. But for applications related to business intelli-
gence, protecting customer data and cooperations’ interests
become a necessity. We speculate that in many other sce-
narios, one may prefer to sanitize such sensitive information
embedded in data before publishing.

Different data sanitization approaches have been pro-
posed in the literature for PPDP [12] (as well as other pri-
vacy preservation related fields), which could be roughly
categorized into recoding generalization [20, 5, 15, 19, 34,
28, 40, 35, 31] and perturbation [2, 8, 10, 18]. In this
paper, recoding generalization is adopted. Recoding gen-
eralization has been extensively used in the context of k-
anonymization which was originally proposed in [34]. Re-
coding generalization is (intuitively) a value-grouping pro-
cess according to a given attribute generalization hierarchy.
Since the attribute hierarchy is always published with the
data, data recipients can correctly interpret every general-
ized values that appear in the sanitized data. Therefore, the
sanitized data can be “blurred” but is not lost. This work
focuses on exploring the possibilities of adopting recoding
generalization in the context of hiding emerging patterns.

A sanitization is obviously unacceptable if a data min-
ing technique would either (i) reveal sensitive information
or (ii) produce a highly distorted result from the sanitized
data. These two competing objectives make the problem
technically intriguing.

We remark that hiding emerging patterns is more tech-
nically challenging than some related works on hiding fre-
quent itemsets [30, 2]. The reason is that the apriori anti-
monotone property of frequent itemsets does not hold for
emerging patterns. Thus, the search space of emerging pat-
terns cannot be pruned as effectively as that of frequent
itemsets. Furthermore, recoding generalization may hide
an emerging pattern as well as generating new emerging
patterns. To the best of our knowledge, there has not
been work on adopting recoding generalization techniques
to hide emerging patterns.

The paper is organized as follows. In Section 2, we give a
brief summary on the research on PPDP. In Section 3, we
present the background and notations used and give the for-
mal problem statement of this paper. In Section 4, we dis-
cuss the recoding generalization technique adopted to solve
this problem. Section 5 gives an overview of our algorithm.
Section 6 derives the heuristics that quantifies the quality
of a recoding generalization. Section 7 discusses a number
of optimizations related to solving this PPDP problem. In
Section 8, we present an experimental evaluation that veri-
fies the effectiveness of our proposed algorithm. Section 9
concludes this work and discusses future works.

2 Related Work

There have been recent research efforts on various as-
pects of PPDP. In this section, we highlight some relevant,
admittedly non-exhaustive PPDP techniques.

Anonymity measure and recoding generalization. In an
analysis of a demographic dataset with external informa-
tion [35], it has been shown that personal identity can be re-
covered from a published dataset, even the identifiers have
been removed. The notion of k-anonymity [35] was thus
introduced. A published data is said to be k-anonymized if
at least k individuals are linked with a particular record in
the published data even if the data may be cross-referenced
with external information. Each group of items with indis-
tinguishable attribute values is called an equivalence class.
To further improve k-anonymity, `-diversity [25] was pro-
posed to require also each sensitive value in each equiva-
lence class to appear at most 1/` times.

Given a particular measure, recoding generalization [34,
40, 23] is commonly adopted to achieve anonymization.
Recoding generalization has two advantages over the per-
turbation approach for data sanitization,. First, the dataset
sanitized by recoding generalization is still semantically
consistent with the original one. The information conveyed
by a generalized dataset always contains the truth, even
though it is “blurred”. In contrast, perturbation techniques
may generate fake information. These may not be accept-
able in many real applications, e.g., a database with pa-
tient information. Second, since the attribute hierarchy is
often published with the dataset, the generalized values in
the published dataset can be always interpreted. We adopt
recoding generalization, to protect emerging patterns.

The notion of information preservation. There has been
a stream of work on k-anonymity which also makes an
attempt to preserve as much information of the original
dataset as possible [5, 16, 14]. For example, [5, 16] con-
siders the preservation of classification accuracy during the
sanitization process. [14] investigates the preservation of
cluster structures of the data. In addition, there has been
some recent work studying the trade-off effect between pri-
vacy and utility [24] in the context of PPDP. However, they
are not designed to tackle some particular patterns.

Frequent itemset hiding. There has been previous work
[30, 33, 29] on hiding frequent itemsets for PPDP. In par-
ticular, users specify a subset of frequent itemsets, namely
sensitive frequent itemsets, that are not supposed to be dis-
closed to public. The main objective of this related work
is to sanitize the data such that the sensitive frequent item-
sets are removed from the sanitized data while non-sensitive
frequent itemsets are retained as many as possible. In our
study, we focus on hiding emerging patterns, which makes
a different contribution to PPDP.



We remark that the previous work on frequent-itemset
hiding used techniques like removing sensitive data, intro-
ducing random and unknown data. Recoding generalization
has not been adopted in this stream of work.

Emerging patterns. Intuitively, EPs are some distinctive
features from one class to the others. Much previous effort
[17, 38, 11, 7] has been spent on using EPs for building clas-
sifiers. The results of these efforts have shown that the accu-
racy of EP-based classifiers can often be higher than those of
traditional classifiers, such as, C5.0 and naive Bayes. Due
to the high classification power, EP-based classifiers have
been used for predicting the likelihood of diseases such as
acute lymphoblastic leukemia [21] and discovering knowl-
edge in gene expression data [22].

Although EPs have been found useful in classification,
there have not been studies on EPs with PPDP. Previous
work on EPs focuses on the mining efficiency. Mining EPs
has been technically intriguing. First, the total number of
EPs in large datasets can be huge. In the worst case, the
total number of EPs is exponential to the total number of
attributes in transactions. Second, there has not been a cor-
responding notion of the apriori anti-monotone property of
frequent itemsets in EPs. As such, the search space pruning
strategies of frequent-itemset mining cannot be adopted to
EP mining. There have been a border-based approach [4],
constraint-based approach [41] and jumping emerging pat-
terns [3] to improve the efficiency of EP mining.

3 Background and Problem Statement

In the following, we present the definitions, notations
used and the problem statement of the paper.

Let D be a transactional dataset and I := {i1, i2, ..., in}
be a finite set of distinct items in D. A transaction t
may have a set of nominal attributes A and each attribute
takes values from a set Vi ⊆ I , where the domain D is
V1 × V2 × ... × V|A|. We make two simple remarks about
these notations. (i) While we assume transactional data
with nominal attributes, data of a continuous domain can
be casted into nominal data, e.g., by defining ranges. (ii)
One may consider a relation as a set of transactions of a
fixed arity.

SuppD(X) denotes the support of an itemset X ⊆ I

in a dataset D, which can be computed as |{t | X∈t∧t∈D}|
|D| .

Given a support threshold σ, X is said to be a σ-frequent
itemset if SuppD(X) ≥ σ. The growth rate of an itemset is
the ratio of its support in one dataset to that in the other.

Definition 3.1: [6] Given two datasets, namely D1 and D2,
the growth rate of an itemset X , denoted as GR(X , D1,

D2), from D1 to D2 is defined as GR(X , D1, D2) =




0 , if SuppD1 = 0 and SuppD2 = 0

∞ , if SuppD1 = 0 and SuppD2 > 0
SuppD2 (X)

SuppD1 (X)
, otherwise.

Intuitively, given two datasets, emerging patterns
(EPs) [6] are the itemsets whose support increases signifi-
cantly from one dataset to another. The formal definition of
EPs can be given as follows.

Definition 3.2: [6] Given a growth rate threshold ρ and two
datasets D1and D2, an itemset X is said to be a ρ-emerging
pattern (ρ-EP) from D1 to D2 if GR(X , D1, D2) ≥ ρ .

An emerging pattern with a growth rate ∞ (i.e. item-
set that appears in one dataset but not the other) is called a
jumping emerging pattern.

For ease of presentation, we may skip σ, ρ, D1 and D2

of EPs when they are not essential to our discussions.
Example 3.1: Table 1 shows a hypothetical dataset D of
Adult dataset [36]. More description of the dataset can be
found in Section 8. We opt to present some nominal at-
tributes of Adult for discussions. Each record (or transac-
tion) represents a person. Let us consider two subsets of D:
D1 contains the people who are married and D2 contains
the people who never marry before. From Table 1, we find
the following patterns, among many others.
• The pattern (MSE, manager) has a support 75% in D1

and 20% in D2. Therefore, the growth rate of (MSE,
manager) from D1 to D2 is 3.75. When we set ρ to
3, (MSE, manager) is a ρ-emerging pattern in D2. Ob-
viously, when we set ρ to 4, (MSE, manager) is not a
ρ-emerging pattern.

• High-school graduate (HS) has a support 0% in D1 but
20% in D2. Hence, its grwoth rate from D2 to D1 is
infinite. (HS) is a jumping emerging pattern in D1.

• Suppose that the threshold support for frequent itemset
σ is set to 50%. Neither (MSE, manager) nor (HS) is a
σ-frequent itemset of D. In comparison, (manager) is
a σ-frequent itemset, whose support is 77.8%.

Using the above notations, we state the formal problem
statement of this paper below (visualized in Figure 3).
Problem statement. Given two datasets (D1, D2), σ and ρ,
we want to sanitize (D1, D2) to (D′

1, D′
2) such that no ρ-EPs

can be mined from (D′
1, D′

2) while the distortion between
σ-frequent itemsets of (D1, D2) and those of (D′

1, D′
2) is

minimized.

4 Global vs Local Recoding Generalization

Our proposed algorithm for hiding emerging pattern is
derived from local recoding generalization. In this section,



Table 1. A hypothetical subset of Adult
ID Edu. Martial Occup. Rel. Race Sex

1 BA married executive wife black F
2 MSE married manager husband black M
3 MSE married manager wife white F
4 MSE married manager husband black M
5 BA never manager NA white M
6 MSE never manager NA white F
7 HS never repair NA black M
8 BA never manager NA white M
9 BA never manager NA black F

Figure 1. The problem statement illustration

we give a brief overview on global and local recoding gen-
eralization, or recoding for simplicity, and its variations.
Recoding. In privacy-preserving data mining, recoding has
been a popular technique for sanitizing datasets in order
to achieve anonymization. The key idea of recoding is to
modify a value into a more general value such that more tu-
ples will share the same values and cannot be distinguished
individually. Thus, anonymization can be achieved. In
this work, we recode emerging patterns with some non-
emerging values. As a result, the corresponding patterns
become less emerging after recoding. Such a recoding pro-
cess is repeated until the desired anonymization is reached.
Variations of recoding. In the following, we describe the
there types of recoding. In this work, we adopt the last re-
coding technique.

1. Single-dimensional global recoding. Single-dimensional
global recoding has been studied in [5, 15, 19, 34]. It per-
forms recoding on the domain of an attribute in a dataset.
It recodes a value of the domain to another (generalized)
value. That is, if a particular value is recoded, the at-
tribute of all the tuples containing that particular value will
be recoded. It is evident that datasets are very often over-
generalized by this recoding.

2. Multidimensional global recoding. Multidimensional
global recoding was first proposed in [20]. It generalizes
data at “cell” level. This recoding relies on the notion of
equivalence classes. An equivalence class of attributes A
is a set of tuples T where πA(T ) is a singleton. That is,
the tuples in T has the same value in attributes A. In mul-
tidimensional global recoding, the tuples in an equivalence
class (of a set of attributes) are generalized together. By do-

ing so, both original and generalized values may exist in the
recoded dataset. When compared to the previous global re-
coding, multidimensional global recoding generalizes data
in a finer granularity. Hence, this recoding over-generalizes
data less often.

Example 4.1: Let us revisit the dataset in Table 1 and the
emerging pattern (MSE, manager). The pattern is related to
the attributes of education background (Edu.) and occupa-
tion (Occup.). Regarding (Edu., Occup.), the equivalence
classes in D2 are {{5, 8, 9}, {6}, {7}}, where the numbers
are the IDs. In multidimensional global recoding, we may
recode the Edu. attribute of {2, 3, 4} and {5, 8, 9}. For in-
stance, we may recode BA and MSE into degree holder Deg.
After such a recoding, all BA, MSE and Deg. appear in the
recoded dataset. We remark that (Deg., manager) is not an
emerging pattern since its growth rate is 75%/60% = 1.25.

3. Multidimensional local recoding. Local recoding has
been studied in [9, 28, 40, 23] in the context of k-anonymity.
It performs generalization at cell level as well. It also relies
on equivalence classes. Its difference between the multidi-
mensional global recoding is that it does not require the en-
tire equivalence class to be recoded, as long as anonymity
has been achieved. For instance, we may recode {8, 9},
as opposed to {5, 8, 9}, with {2, 3, 4} in Example 4.1.
The growth rate of (Deg., manager) in the recoded dataset
is 75%/40% = 1.875. Hence, (Deg., manager) is not ρ-
emerging when ρ = 3.

In this paper, we focus on this recoding. In the subsequent
discussions, we use the term local recoding to refer to mul-
tidimensional local recoding.

5 Overview on hiding emerging patterns

In this section, we present an overall algorithm
hide-eps (shown in Figure 2) to hide emerging patterns
with a minimal distortion in frequent itemsets. Its details
shall be discussed shortly. Then, we provide some details
of the heuristics in hide-epse in Section 6.
Overall algorithm. We give the main ideas of Figure 2.
First, we find the frequent itemsets to be preserved (Line 03)
and the emerging patterns to be hidden (Line 04). In
Line 05, we select an emerging pattern to hide. Next, we
carry out a local recoding local-recoding (Line 06).
This process is repeated until there is no more emerging
pattern to hide (Lines 07-08).

The main tasks of the local recoding local-recoding

are to compute (i) the equivalence classes of an emerging
pattern e to generalize (Line 03) and (ii) the corresponding
utility gain (details in Section 6) to guide us to choose an
equivalence class for local recoding (Line 06). To avoid be-



Procedure hide-eps
Input: two datasets, Di and Dj , the threshold of

the growth rate and frequent itemsets ρ and σ,
the heuristic parameters p and q,
a temperature t0 and the cooling parameter α

Output: transformed datasets (Di, Dj)

01 initialize a hashtable H to optimize
computing equiv. classes; t = t0

02 do
03 F := mine-fis(Di ∪Dj , σ)
04 E := mine-eps(Di, Dj , ρ)
05 e := next-overlapping-ep(E)
06 if e is not null

(Di, Dj) := local-recoding(Di, Dj , e, F , t, α)
07 if t > 0.01 then t = α × t
08 while E 6= ∅
09 return (Di, Dj)

Procedure local-recoding
Input: two datasets, Di and Dj , an emerging pattern e

a frequent itemset F , a temperature t0
Output: transformed datasets (Di, Dj)

01 let Di be the dataset where e has a higher support
02 t := t0; u = 0 //initialization
03 compute equiv. classes C of Dj of the attr. of e
04 //compute the heuristic function of local recoding
05 denote ce be the equiv. class of e in Di

06 for each ck in C
H[ce][ck] := util gain(G(ce,ck), E) //heap

r[ck] = exp
H[ce][ck]

t

sum = sum + r[ck]
07 find k s.t. r[ck]/sum < rand(1)< r[ck+1]/sum

Di := recode(Di, ce, ck)
Dj := recode(Dj , ce, ck)

08 return (Di, Dj)

Figure 2. Overall algorithm

ing trapped at some local sub-optima, we present our algo-
rithm in a simulated-annealing style search (Lines 06-08).

Next, we provide the details of the overall algorithm.
The effect of local recoding on frequent itemsets. We
first remark that global recoding may only merge some fre-
quent itemsets, shown in Figure 3 (a). Hence, the change in
frequent itemsets due to global recoding can be determined
easily. However, local recoding may lead to a non-trivial
change in frequent itemsets, shown in Figure 3 (b). The
reason is that by the definition of local recoding, two tuples,
even in the same equivalence class, are not always recoded
together. This leads to a few possible effects on the frequent
itemsets. First, since some of the values of the attributes A
have been recoded to a generalized value, a frequent itemset
may not be frequent after a local recoding. Second, multi-
ple frequent itemsets may be recoded into one generalized
frequent itemset. Third, a frequent itemset may not be af-
fected by a local recoding. The first case is only possible

Figure 3. The relationship between F and F ′

in (a) global recoding (b) local recoding

with local recoding whereas the second and third cases may
appear correspondingly in global recoding as well.

The above complication leads to Line 04 of hide-eps,
which mines the current frequent itemsets in each iteration
of local recoding.
The selection of emerging patterns for hiding. In the
worst case, there are O(|E| × (|D1| + |D2|) × D × H)
possible local recodings on a set of emerging patterns E,
where D is the total size of the domains of the attributes
of E and H is the total height of the hierarchy of the at-
tributes of E. In the worst case, local recoding allows
tuple-wise recoding, which leads to the term |D1| + |D2|.
While there may be search algorithms to explore an opti-
mal local recoding on E, we employ a simple and efficient
solution to avoid exploring a large search space – we hide
an emerging pattern, one-at-a-time (Line 05 of hide-eps,
next-overlapping-ep), based on equivalence classes.

The pseudocode of next-overlapping-ep has been
omitted, since it is straightforward but tedious. Here, we
present its intuitions. Given a set of emerging patterns E,
next-overlapping-ep determines the emerging pattern
e in E such that it overlaps with the remaining emerging
patterns the most. The intuition is that reducing the growth
rate of e may indirectly reduce the growth rate of the over-
lapping emerging patterns as well. We verify this with some
preliminary experiments that this approach consistently out-
performs generalizing the most independent, the longest or
the shortest emerging patterns first.
The search algorithm. The algorithm is presented in a sim-
ulated anneanling style in Figure 2. We have implemented
a deterministic search to analyze our heuristics (Section 6).

6 Heuristics for Guiding Local Recoding

In this section, we present the formulation of the utility
gain (util gain) adopted to guide the local recoding pro-
cess local-recoding, discussed in Figure 2. The main
idea is that we consider a local recoding perferrable if it re-
sults in a small distortion in the frequent itemsets and at the
same time it reduces the growth rate of an emerging pattern
significantly. In the following two subsections 6.1 and 6.2,
we present the details of the metrics for measuring (i) the
distortion of frequent itemsets and (ii) the reduction in the
growth rate of emerging patterns, respectively.



6.1 Metric for the distortion on frequent itemsets

Recoding is a process of grouping existing values to
some new generalized values. After a recoding, some σ-
frequent itemsets may not be frequent anymore and some
may contain generalized values.
Example 6.1: Let us reconsider the recoding in Exam-
ple 4.1. We set σ to be 4. Recoding BA and MSE into
Deg. leads to a new frequent itemset (Deg., manager),
which contains both non-generalized and generalized val-
ues. (MSE, manager) is not frequent after the recoding.

Therefore, we need a metric for measuring the distortion
in the σ-frequent itemsets of D and D′. For presentation
clarity, we will present our proposed metric for global re-
coding followed by its adaption for local recoding.

Distortion metric for single-dimensional global recod-
ing. In global recoding, no frequent itemsets “disappear”
after in a recoding (recall Figure 3 (a)). However, some fre-
quent itemsets may appear in a generalized form. That is, a
particular frequent itemset f in D will always have a corre-
sponding itemset in the generalized frequent itemsets in D′,
in either the original or generalized form.

Inspired by the distortion metric proposed in [23], we
propose a metric for measuring the recoding distance
(RDist) between the original and generalized form of a tu-
ple. Then, we define a metric called value distance (V D)
which measures the distance between the original and gen-
eralized form of a single attribute value. We will use V D as
a building block for the definition of distortion (RD). Since
a recoding always assumes an attribute hierarchy, we may
skip the hierarchy H when it is clear from the context.

Definition 6.1: Recoding Distance (RDist): Consider a re-
coding G which generalizes a set of attribute values V to a
single generalized value vg . The recoding distance of G is:

RDist(G) = |V |,

where |V | is the number of leave nodes (non-generalized
values) under vg in the attribute hierarchy.

Definition 6.2: Value Distance (V D): Let h be the height
of the hierarchy of an attribute H , where level h is the most
generalized level and level 0 is the most specific level. Con-
sider a value v at level p is generalized to a value v′ at level
q. Let Gi denote the recoding which generalizes an attribute
from level i− 1 to i, where 0 < i ≤ h. The value distance
between v and v′ is:

V D(v, v′) =

q∑
i=p

i ·RDist(Gi)

h
.

Value distance is mainly unfavorable to recoding (i)
many values together into one single generalized value and
(ii) a value into a generalized value that is close to the top

All

Deg

BA MSE PHD HS

Figure 4. An attribute hierarchy of Edu.

of the hierarchy. This gives us a measure on the distortion
of a value affected by a recoding.

Next, we extend V D to measure the distortion of a tuple
due to recoding.

Definition 6.3: Tuple Distance (TD): Suppose a tuple f =
(v1, v2, . . . , vn) is generalized to f ′ = (v′1, v

′
2, . . . , v

′
n). The

tuple distance between f and f ′ is defined as:

TD(f, f ′) =

n∑
i=1

V D(vi, v
′
i).

Finally, the distortion of between frequent itemsets due
to a recoding is defined.

Definition 6.4: Recoding Distortion (RD): Let F = {f1, f2

. . . fn} be a set of σ-frequent itemsets in D and F ′ = {f ′1,
f ′2 . . . f ′m} be the set of σ-frequent itemsets in D′, where
m ≤ n. The corresponding frequent itemset of fi due to
global recoding is denoted to be f ′j = G(fi). The recoding
distance between F and F ′ is defined as:

RD(F, F ′) =

n∑
i=1

TD(fi, G(fi)).

Example 6.2: Following up Example 4.1, we com-
pute the (global) recoding distortion of generalizing (MSE,
manager) to (Deg., manager). Figure 6.1 shows the
attribute hierarchy of Edu. The recoding distortion
RD({(MSE, manager)}, {(Deg., manager)}), RD, can be
computed as follows.

RD = TD((MSE, manager), (Deg., manager))

= V D(MSE, Deg.) + V D(manager, manager)

=

2∑
i=0

i ·RDist(Gi)

h
=

1× 3

2
+

2× 0

2
= 1.5

Distortion metric for local recoding. As discussed in Sec-
tion 4, single-dimensional global recoding may often lead
to over-generalization. Since we have adopted local re-
coding, we extend the recoding distortion to local recod-
ing. Regarding local recoding, we remark that there are two
unique challenges in calculating the recoding distance (see
Figure 3 (b)).
(1) An itemset in F having no correspondence in F ′. Lo-
cal recoding allows part of the tuples that share the same
attribute values to be generalized. Such recoding may gen-
eralize some supporting tuples of a frequent itemset which
makes the itemset (in the original or generalized form) not
frequent anymore. To address this, we measure the distor-
tion of the disappeared frequent itemset to the most general



form. The reason behind this is that the frequent itemset can
be trivially recovered when the entire dataset is generalized
to the most general form.

Specifically, given a frequent itemset f in F , if we can-
not find a corresponding frequent itemset in F ′, we may first
create an artificial itemset, fmax, which generalizes each
value in f to it most general form. Then, we can calculate
the recoding distance (RD) between f and fmax.
Example 6.3: Reconsider the dataset in Table 1. Suppose
we recode the Edu. attribute of Records 1 and 2 to Deg.
When σ is 40%, {BA} and {MSE} were frequent itemsets
(not minimal for illustration purpose) before recoding and
there is no frequent itemset after recoding.

(2) An itemset in F having more than one corresponding
itemsets in F ′. As discussed, local recoding may generalize
a frequent itemset f in F into more than one correspon-
dences in F ′, denoted as Ff . In this case, we calculate the
tuple distance of each of the corresponding itemsets in Ff

and take the minimum tuple distance as the tuple distance
of f . This is because the itemset with the minimum tuple
distortion has been revealed in F ′ even there may be some
other more distorted itemsets.
With the above considerations, we have the following re-
coding distance for local recoding:

Definition 6.5: Recoding Distance for Local Recoding
(RDlocal): Let F = {f1, f2 . . . fn} be a set of σ-frequent
itemsets in D and F ′ = {f ′1, f ′2 . . . f ′m} be the set of σ-
frequent itemsets in D′. The corresponding frequent item-
set(s) of fi due to local recoding is denoted as Ff = G(fi).
The recoding distance between F and F ′ is defined as:

RDlocal(F, F ′) =

n∑
i=1

TDlocal(fi, G(fi))

TDlocal(fi, fmax)

where TDlocal(fi, G(fi)) =



θq × TD(fi, G(fi)), if f has 1 correspondent in F ′

(1− θq)× TD(fi, fmax), if f has no correspondent in F ′

θq ×min(TD(fi, fj)),

where fj ∈ G(fi), otherwise,

θq is a parameter that specifies the importance between the
itemsets that are distorted and those disappeared due to G
and TDlocal(fi, fmax) at the denominator is used to nor-
malized RDlocal.

Example 6.4: Following up the local recoding in Exam-
ple 6.1, when σ is 30%, the frequent itemset {(BA)} corre-
sponds to the frequent itemsets {(BA), (Deg)} in the recoded
datasets.

6.2 Metric for the change in growth rate

The second component in our heuristics concerns the
growth rate of the emerging patterns. Intuitively, we aim at

a recoding that significantly reduces the growth rate of the
emerging patterns, in order to hide them. Given an emerg-
ing pattern e and the result of a local recoding e′, the reduc-
tion in growth rate due to the recoding can be easily defined
as the growth rate of e minus the growth rate of e′. Then,
the growth rate reduction of E due to a local recoding G,
denoted as RGlocal(G, E), can be defined as the total re-
duction in growth rate of e in E divided by the total growth
rate of e in E.

Putting all these together. Based on the derivations from
Section 6.1 and Section 6.2, the utility gain due to a local
recoding G on a set of emerging patterns E is defined as:

util gain(G, E) = θpRGlocal(G, E)−(1−θp)RDlocal(F, F ′)

This utility gain is used in our heuristic algorithm, pre-
sented in Figure 2. There are two parameters θp and θq

specified by users.
It is worth mentioning that jumping emerging patterns

are a special case in measuring the reduction in growth
rate. Recall that jumping emerging patterns have an infi-
nite growth rate. Hence, whenever a recoding that either
hides jumping emerging patterns or converts them into non-
jumping emerging patterns would yield an infinite reduction
in growth rate. Our heuristic algorithm will tend to hide the
jumping emerging patterns prior to the non-jumping ones.

7 Implementation Optimization

In this section, we discuss some implementation issues
for optimizing the computation of the proposed algorithm.
1. The maintenance of the equivalence classes. Local re-
coding relies on equivalence classes (Lines 03, 06 and 07
in local-recoding in Figure 3). A local recoding would
change the equivalence classes in the datasets slightly. We
used a hashtable to keep track of the update of the classes
caused by a recoding (Line 07). Since an emerging pattern
may not be hidden by simply one recoding, we note that
we may compute the equivalence class of attributes multi-
ple times (Line 03). With the hashtable, Line 03 does not
recompute existing equivalence classes.
2. An index for checking correspondents of F in F ′. Given
two sets of frequent itemsets F and F ′, we check the cor-
respondents of an itemset in F to measure distortion be-
tween F and F ′ (util gain). The core of this is to check
whether a value v is a generalized version of another value
in an attribute hierarchy. While an attribute hierarchy is
often a small tree, these checks occur in every iteration
of hide-eps. We apply an index [39] for computing the
ancestor-descendant relationship of nodes in a tree. This
significantly reduces the runtime of our algorithm.
3. A data structure for checking correspondents of E in
E′. The other task of in computing util gain is to keep



track of the change of emerging patterns during local recod-
ing, which is neccessary to measure the reduction in growth
rate. Hence, we associate an emerging pattern of e to its
records. By comparing the records of e and e′, we obtain
the correspondence between e and e′.

8 Experimental Evaluation

To verify the effectiveness of our proposed algorithms,
we have conducted an experimental study of our algorithm
on two benchmark datasets.

We have implemented both our algorithm in simulated
annealing style in Figure 2 and a greedy-search version of
this algorithm, denoted as SA and Greedy, respectively.
The implementation is written in JAVA SDK 1.6. We have
run our experiment on a desktop PC with a Quad CPU at
2.4GHz and 3.25GB RAM. The desktop PC runs a Windows
XP operating system. We have used system calls to in-
voke the implementations from [41] and [26] to determine
emerging patterns and frequent itemsets, respectively.

We have applied our implementation on two datasets,
namely Adult [36] and Mushroom [37]. Adult is a cen-
sus dataset which is used to predict whether a person’s in-
come exceeds $50k/year. Each record in Adult contains
eight attributes. We removed the records that contain miss-
ing values. Adult has two classes of people – people who
earn more than $50k/year (7508 records) and people who
do not (22654 records). We used the attribute hierarchy
presented in [15] for local recoding. Mushroom describes
physical characteristics, classification and poisonous/edible
properties of mushrooms. Our discussions will mainly fo-
cus on Adult as its results demonstrate the properties of our
proposed algorithm better.
The effect of the parameters θp and θq. We performed a
set of experiments to verify the effects on the parameters θp

and θq on the heuristic algorithm. The performance met-
ric used was given in distortion on the frequent itemsets /
the number of missing frequent itemsets, unless otherwise
specified. We used the Adult dataset and Greedy in this
experiment. σ and ρ were set to 40% and 5, respectively.
The frequent itemsets are:

(Husband, Married-civ-spouse, Male)
(Married-civ-spouse, White)
(Married-civ-spouse, United-States)
(Male, Private, White)
(Male, Private, United-States)
(Male, White, United-States)

(Private, White, United-States).

When we recode all attributes to All in the frequent
itemsets, we obtain the maximum distortion of the frequent
itemsets of Adult 623.1.

To illustrate the possible recoding in the frequent item-
sets, we list the frequent itemsets after applying Greedy,
where θp and θq were both set to 0.8:

Table 2. The effect of the parameters in
util gain on Greedy’s performance on Adult
θp\θq 0.0 0.2 0.4 0.6 0.8 1.0

0 0/0 50/1 50/1 50/1 50/1 NA
0.2 46.7/1 73.3/1 21.5/1 21.5/1 21.5/1 7.5/3
0.4 46.7/1 73.3/1 21.5/1 21.5/1 21.5/1 7.5/3
0.6 46.7/1 73.3/1 42.5/1 42.5/1 21.5/1 7.5/3
0.8 46.7/1 73.3/1 21.5/1 42.5/1 42.5/1 7.5/4
1.0 7.5/4 7.5/4 7.5/4 7.5/4 7.5/4 7.5/4

(Relationship, United-States)
(Married, White, United-States)
(Male, Private, White)
(Male, Private, United-States)
(Male, White, United-States)

(Private, White, United-States).

The distortion obtained is 21.5 (out of 623.1).
Next, we varied θp and θq and measured the distortion of

frequent itemsets and runtime of our algorithm. The results
are shown in Table 2 and Table 3.

We make a few observations from Table 2 and Table 3.
Firstly, when θp is set to 0, the algorithm only concerns dis-
tortion (regardless of the corresponding reduction in growth
rate) during local recodings. In such a case, the distortion
in frequent itemsets of various θq’s is in general large. We
note that the corresponding runtime in Table 3 is also rela-
tively high. We used DNF to denote “did not finish in 360
mins”. The reason is that when θp is 0, the heuristics do not
effectively reduce the growth rate and the search takes more
recodings that are not relevant to hiding emerging patterns.
This results in a relatively large distortion and runtime.

Secondly, when θp is 1, util gain concerns only the
reduction in growth rate. Table 3 shows that util gain fin-
ished quickly. However, four frequent itemsets disappeared.

Thirdly, when we set θq to 1 and varied θp, we do not
consider the frequent itemsets that disappear. Hence, such
recodings lose relatively more frequent itemsets. Similarly,
when we set θq to 0, we consider only the distortion of those
that do not disappear. Since there is in fact one frequent
itemset that disappears during recodings, overlooking this
frequent itemset would lead to more distortion.

Fourthly, we obtained no distortion with no missing fre-
quent itemset when θp was 1 and θq was 0. We speculate
that this is an outlier (although a good outlier), as we bench-
marked our the algorithm with a real dataset.

In all, we found that on the Adult dataset, Greedy may
yield frequent itemsets with a distortion of 21.5 (out of
623.1) and one (out of seven) missing frequent itemset when
θp is moderate (0.2 - 0.6) and θq is large (0.8).
Simulated annealing search. After verifying the effect
of the parameters θp and θq on Greedy, we applied SA to
Adult. We set the temperature of SA to be low with a high
cooling rate (T = 10 and α = 0.4). Hence, SA initially has
some chance to avoid local sub-optimas and then converges
to Greedy quickly. SA is allowed to restart five times and



Table 3. The effect of the parameters in
util gain on Greedy’s runtime (min) on Adult

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0
0 54 311 305 214 319 DNF

0.2 107 128 120 102 116 123
0.4 135 109 120 111 117 108
0.6 121 137 139 128 122 109
0.8 101 122 103 130 139 131
1.0 66 62 66 59 66 59

Table 4. The effect of the parameters in
util gain on SA’s performance on Adult,
where α = 0.4 and T = 10

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0
0 23.3/2 61.6/1 61.6/1 35/1 50/1 42.5/1

0.2 61.6/1/1 23.3/0 21.5/1 35/4 61.6/1 0/3
0.4 21.5/1 26.6/1 0/3 23.3/1 28.5/1 61.6/2
0.6 61.6/1 21.5/1 0/0 0/3 77/1 0/3
0.8 61.6/1 33.3/1 23.3/1 50/1 0/1 61.6/3
1.0 0/0 0/0 50/1 50/1 50/2 50/3

we report the best of the five runs. The results are shown in
Table 4 and 5.

As expected, Table 4 shows that SA introduced a certain
randomness in our results. SA also often performs well at
a moderate θp and a large θq. Under many combinations
of θp and θq, SA produces comparable or better results, for
example when (p, q) are (0.6, 0.4) and (0.8, 0.8). SA may
sometimes lose more frequent itemsets when compared to
Greedy, for example (0.4, 0.4) and (0.6, 0.6).

Table 5 shows that SA did not finished more often. The
randomness in simulated annealing may lead the search to
a place where there are few effective recodings. We tackle
this by restarting SA when it did not finish in 360 minutes.
Experiments with Mushroom. In addition to Adult, we
tested Greedy on the Mushroom dataset. We divided
Mushroom into two datasets: (i) edible mushrooms (3488
records) and (ii) poisonous mushrooms (2156 records). We
considered the nominal attributes only. For nominal at-
tributes, we derived our own attribute hierarchies. The at-
tributes of a mushroom concern mostly color and smell. We
show the hierarchies of these attributes in Figure 5. We have
tested Greedy with various combinations of p and q. We set
σ and ρ to be 40% and 5, respectively. We omitted the dis-
cussion of the runtime of Greedy on Mushroom since it is
approximately 10 mins. The results are shown in Table 6.

Table 5. The effect of the parameters in
util gain on SA’s runtime (min) on Adult,
where α = 0.4 and T = 10

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0
0 713 472 366 629 738 417

0.2 953 644 935 DNF 523 1074
0.4 652 557 820 1012 871 893
0.6 611 DNF 881 849 638 954
0.8 408 677 1214 664 894 703
1.0 576 1084 781 940 DNF DNF
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Figure 5. Attribute hierarchies of Mushroom

Table 6. Greedy’s performance on Mushroom
θp\θq 0.0 0.2 0.4 0.6 0.8 1.0

0 92.7/0 92.7/0 92.7/0 92.7/0 92.7/0 92.7/0
0.2 92.7/0 74.7/0 74.7/0 74.7/0 74.7/0 74.7/0
0.4 92.7/0 74.7/0 74.7/0 74.7/0 74.7/0 74.7/0
0.6 92.7/0 74.7/0 74.7/0 74.7/0 74.7/0 55.3/1
0.8 92.7/0 74.7/0 92.7/0 53.3/1 0/1 55.3/1
1.0 92.7/0 92.7/0 92.7/0 NA NA 74/0

Table 6 shows that our algorithm can often hide emerg-
ing patterns without losing any frequent itemsets. However,
the distortion is often relatively severe. For example, we
often obtained a distortion of 74.7 out of a maximum
distortion of 116 in various combinations θp and θq. And
the frequent itemsets in Mushroom are {(odor-none,
veil-white), (stalk-color-above-ring-white,
stalk-color-below-ring-white, veil-white)}.
This may be due to the properties of the Mushroom dataset.
(i) We found that the height of our attribute hierarchy
of color and smell is rather small. When we recode
attributes to hide emerging patterns, the recoded values
often reach All. (ii) The attribute hierarchies carry certain
semantics of the class, for example edible mushrooms often
have a pale color. In order to hide emerging patterns, All
is often used. For instance, recoding purple, and red into
brightred may not notably reduce the growth rate of eps.

Similarly, we applied SA to Mushroom. The results are
shown in Table 7. The results show that it is still possible to
use SA to avoid some local sub-optimas. The best recoding
leads to a distortion of 18 and no missing frequent itemsets.

9 Conclusions and Future Work

In this paper, we studied a particular case of PPDP where
we hide emerging patterns of a dataset and at the same time
preserve its frequent itemsets as far as possible. We have
presented a heuristic local-recoding algorithm for this prob-
lem, where some metrics carefully derived for measuring
the reduction of the growth rate of emerging patterns and
the distortion of frequent itemsets are used to guide the re-

Table 7. SA’s performance on Mushroom, where
α = 0.4 and T = 10
θp\θq 0.0 0.2 0.4 0.6 0.8 1.0

0 55.3/0 55.3/0 55.3/0 55.3/0 55.3/0 55.3/0
0.2 55.3/0 55.3/0 55.3/0 36.7/0 55.3/0 92.7/0
0.4 55.3/1 55.3/0 55.3/0 55.3/0 92.7/0 92.7/0
0.6 55.3/0 55.3/0 55.3/0 55.3/0 55.3/0 92.7/0
0.8 55.3/0 18/0 18/0 36.7/0 55.3/0 55.3/0
1.0 55.3/0 55.3/0 92.7/0 55.3/0 74/0 55.3/0



coding process. We have implemented the proposed algo-
rithm and tested it with two benchmark datasets. Our exper-
imental results show that the algorithm is effective in hid-
ing emerging patterns while minimizing the distortion on
the frequent itemsets. To the best of our knowledge, this is
the first work on hiding emerging patterns in a transactional
dataset using recoding generalization.
Future work. While the proposed algorithm has shown
to be effective in emerging pattern hiding, there remains a
number of open research issues worth future research effort.
Firstly, the heuristic algorithm hides emerging patterns in a
greedy manner and one by one (next-overlapping-ep).
It will be interesting to investigate if more advanced search
strategies could be adopted to explore more effectively the
generalization space to further minimize the frequent item-
set distortion. Possible ideas include hiding a group of
emerging patterns instead of hiding them one-at-a-time,
and guiding the recoding process to avoid generating new
emerging patterns as far as possible. Secondly, our algo-
rithm invokes some existing implementations of frequent
itemset and emerging pattern mining. It may be possible
to further optimize our algorithm by incorporating our al-
gorithm into the native implementations of those data min-
ing techniques. Thirdly, since recoding approaches require
attribute hierarchies, the frequent itemset distortion could
be better measured by considering multilevel frequent item-
sets. The corresponding change will be replacing Line 03
in hide-eps. The computational complexity for multilevel
frequent itemset mining is high though.
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