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Abstract

The dynamical (or ode) systems approach for optimization

problems has existed for two decades. The main feature of this

approach is that a continuous path starting from the initial point

can be generated and eventually the path will converge to the so-

lution. This approach is quite different from conventional opti-

mization methods where a sequence of points, or a discrete path,

is generated. An advantage of the dynamical systems approach

is that it is more suitable for large scale problems. Common ex-

amples of this approach are ode’s based on the steepest descent

direction or the Newton’s direction. In this research we apply

the L-BFGS scheme to the ode model, hopefully to improve on

the rate of convergence over the steepest descent direction, but

not to suffer from the large amount of computational work in

the Newton’s direction.

1 Problem background and in-
troduction

This paper studies computational methods for a
local or the global minimizer of an unconstrained op-
timization problem. Optimization problems are clas-
sified into:
(a) Unconstrained Problem:

min
x∈Rn

f(x) f : Rn → R1 (UP )

(b) Equality Constrained Problem:

min
x∈Rn

f(x)

h(x) = 0 h : Rn → Rp

(c) Inequality Constrained Problem:

min
x∈Rn

f(x)

g(x) ≤ 0 h : Rn → Rp

(d) General Constrained Problem:

min
x∈Rn

f(x)

g(x) ≤ 0
h(x) = 0

The motivation of unconstrained methods is to
generate a sequence of points {xk} (x0 given) such
that (1) f(xk) > f(xk+1);(2) {xk} is convergent, and
(3) the limit point of the sequence is a stationary
point of (UP). Different methods advance from xk

to xk+1 differently. Well-known methods include
the steepest descent method, Newton’s method and
quasi-Newton method. A common theme behind all
these methods is to find a direction p ∈ Rn so that
there exists an ε > 0 such that

f(x + εp) < f(x) ∀ε ∈ (0, ε)

This direction is called a descent direction of f(x)
at x. Once we have found a descent direction, we may
go along this direction to approach one more step to-
ward the optimum solution.

The following paragraphs summarize the advan-
tages and disadvantages of these methods.

1.1 Steepest descent method

Using directional derivative in multivariable calcu-
lus, it is clear that for (UP), p is a descent direction



at x⇔ ∇f(x)T p < 0. Hence p = −∇f(x), or equiva-
lently, p = −∇f(x)/‖∇f(x)‖2 is obviously a descent
direction for f(x). This direction is called the steep-
est descent direction.
Method of Steepest Descent: At each iteration k:
find the lowest point of f in the direction −∇f(xk)
from xk, i.e., find λk that solves

min
λ>0

f(xk − λ∇f(xk))

Then xk+1 = xk − λ∇f(xk).
Unfortunately, the steepest descent method con-

verges only linearly, and sometimes very slowly lin-
early. In fact, if {xk}, which is generated by the
steepest descent method, converges to a local min-
imizer x∗ where ∇2f(x∗) is positive definite (p.d.),
and λmax and λmin are the largest and smallest eigen-
values of ∇2f(x∗), then one can show that {xk} sat-
isfies

lim
k→∞

sup
‖xk+1 − x∗‖
‖xk − x∗‖

≤ c, c =
λmax − λmin

λmax + λmin
,

in a particular weighted l2 norm, and the bound on
c is tight for some starting x0. This property indi-
cates that the steepest descent method is q-linearly
convergent. When λmax and λmin are far apart, then
c is close to 1, and the convergence will be slow.

1.2 Newton’s method

At point xk, if ∇2f(xk) is p.d., the function f(x)
can be approximated by a quadratic function based
on the Taylor expansion:

f(x) ∼= f(xk) +∇f(xk)T (x− xk)

+
1
2
(x− xk)T∇2f(xk)(x− xk) (1)

Then the minimizer of (1) is given by

∇f(x) = 0
⇒ ∇f(xk) +∇2f(xk)(x− xk) = 0
⇒ x = xk − [∇2f(xk)]−1∇f(xk),

where −[∇2f(xk)]−1∇f(xk), is called the Newton’s
direction. Then we define

xk+1 = xk − [∇2f(xk)]−1∇f(xk),

and the resulting method of computing xk is called
the Newton’s method.
Newton’s method
Given x0, compute

xk+1 = xk − [∇2f(xk)]−1∇f(xk), k ← k + 1.

A key requirement for Newton’s method is the p.d.
of ∇2f(xk). Descent directions guarantee that
f(x) can be further reduced and therefore they
form the basis of some global methods. However,
in some real applications, if the starting point is
far away from the optimal solution, or the Hessian
is not positive definite, Newton’s direction is not
adopted. Although Newton’s method converges
very fast ({xk} converges to x∗ q-quadratically),
the Hessian matrix is difficult to compute. So we
would like to find more feasible methods with (A) no
second-order information, i.e., no Hessian; and (B)
fast convergence. A rule of thumb is that first-order
information normally gives slow (linear) convergence,
while second-order information normally gives fast
(quadratic) convergence. Let us discuss several
practical considerations. In general, the convergence
is quadratic: the error is essentially squared at each
step (that is, the number of accurate digits doubles
in each step). There are some caveats, however.
Firstly, Newton’s method requires that the derivative
be calculated directly. (If the derivative is approxi-
mated by the slope of a line through two points on
the function, the secant method results; this can
be more efficient depending on how one measures
computational effort.) Secondly, if the initial value
is too far from the true zero, Newton’s method can
fail to converge. Because of this, most practical
implementations of Newton’s method put an upper
limit on the number of iterations and perhaps on the
size of the iterates. Thirdly, if the root being sought
has multiplicity greater than one, the convergence
rate is merely linear (errors reduced by a constant
factor at each step) unless special procedures are
taken. Finding the inverse of the Hessian is an
expensive operation. Therefore the descent direction
−[∇2f(x)]−1∇f(x) is often solved approximately
(but to great accuracy) using methods such as the
conjugate gradient method. There also exist various
quasi-Newton methods, where an approximation for



the Hessian is used instead.
Table 1 compares the advantages and disadvan-

tages between the steepest descent method and the
Newton’s method.

Table 1: Comparison of the methods

Advantage Disadvantage
Steepest Simple and Slow
descent inexpensive, convergence
method guarantees

descent
Newton’s Very fast Expensive,
method convergence if second-order

applicable information
matrix inversion

1.3 Quasi-Newton method—BFGS

Instead of using the Hessian matrix, the quasi-
Newton methods approximate it.

Quasi-Newton methods are based on Newton’s
method to find the stationary point of f(x), where
the gradient ∇f(x) is 0. In Quasi-Newton methods
the Hessian matrices of second derivatives of f(x) do
not need to be computed. The Hessian is updated
by analyzing successive gradient vectors instead.
Quasi-Newton methods are a generalization of the
secant method to find the root of the first derivative
for multidimensional problems. In multi-dimensions
the secant equation is under-determined, and quasi-
Newton methods differ in how they constrain the
solution, typically by adding a simple low-rank
update to the current estimate of the Hessian.

In quasi-Newton methods, the inverse of the
Hessian matrix is approximated in each iteration
by a p.d. matrix, say Hk, where k is the iteration
index. Thus, the k th iteration has the following
basic structure:
(a) set pk = −Hkgk, (gk = ∇f(xk)),
(b) line search along pk giving xk+1 = xk + λkpk,
(c) update Hk giving Hk+1.

The initial matrix H0 can be any positive definite
symmetric matrix, although in the absence of any
better estimate, the choice H0 = I often suffices.

Potential advantages of the method are:
(1) only first-order information is required;
(2) Hk being symmetric and p.d. implies the descent
property; and
(3) O(n2) multiplications per iteration.

The most important quasi-Newton formula was
suggested by Broyden, Fletcher, Goldfarb, and
Shanno independently in 1970, and is subsequently
known as the BFGS formula. It is used to solve an
unconstrained nonlinear optimization problem.

HBFGS
k+1 = Hk +

(
1 +

yT
k Hkyk

sT
k yk

)
sksT

k

sT
k yk

−
(

skyT
k Hk + HkyksT

k

sT
k yk

)
(2)

where sk = xk+1 − xk,
yk = ∇f(xk+1)−∇f(xk) = gk+1 − gk.

We have the following theorem.

Theorem 1.1 If HBFGS
k is a p.d. matrix, and

sT
k yk > 0, then HBFGS

k+1 in (2) is also positive
definite.

Proof: For any z 6= 0, it is sufficient to prove that

zT

[
Hk+

(
1 +

yT
k Hkyk

sT
k yk

)
sksT

k

sT
k yk

−
(

skyT
k Hk + HkyksT

k

sT
k yk

)]
z > 0,

In the rest of the proof, the subscript k will be
omitted. Since H is p.d., we can write H = LLT ,
and let
a = LT z and b = LT y, then



zT Hk+1z = zT

[
Hk +

(
1 +

yT
k Hkyk

sT
k yk

)
sksT

k

sT
k yk

−
(

skyT
k Hk + HkyksT

k

sT
k yk

)]
z

= zT

[
H +

(
1 +

yT Hy

sT y

)
ssT

sT y
−

(
syT H + HysT

sT y

)]
z

= aT a +
zT bT bssT z

(sT y)2
+

(zT s)2

sT y
− zT sbT a

sT y
− aT bsT z

sT y

=
(

a− zT sb

sT y

)T (
a− zT sb

sT y

)
+

(zT s)2

sT y

=
∥∥∥∥a− zT sb

sT y

∥∥∥∥2

+
(zT s)2

sT y

≥ 0

If the norm above equals zero, i.e.,∥∥∥∥a− zT sb

sT y

∥∥∥∥ = 0,

then we have

a =
zT sb

sT y
, or LT z =

zT sLT y

sT y
,

which means that y ∝ z.
However, since sT y > 0,

(zT s)2

sT y
> 0,

as y ∝ z. Thus the theorem is proved. 2

1.4 Limited-Memory Quasi-Newton
Methods—L-BFGS

Limited-memory quasi-Newton methods are useful
for solving large problems whose Hessian matrices
cannot be computed at a reasonable cost or are not
sparse. These methods maintain simple and com-
pact approximations of Hessian matrices: instead
of storing fully dense n × n approximations, they
save only a few vectors of length n that represent
the approximations implicitly. Despite these modest

storage requirements, they often yield an accept-
able rate of convergence. Various limited-memory
methods have been proposed; we focus mainly on
an algorithm known as L-BFGS, which, as its name
suggests, is based on the BFGS updating formula.
The main idea of this method is to use curvature
information from only the most recent iterations to
construct the Hessian approximation. Curvature
information from earlier iterations, which is less
likely to be relevant to the actual behavior of the
Hessian at the current iteration, is discarded in the
interest of saving storage.

As we have discussed in section 1.3, each step of
the BFGS method has the form

xk+1 = xk − αkHk∇fk,

where αk is the step length and Hk is updated at
every iteration by means of the formula

Hk+1 = V T
k HkVk + ρksksT

k , (3)

where

ρk =
1

yT
k sk

, Vk = I − ρkyksT
k , (4)

and

sk = xk+1 − xk, yk = ∇fk+1 −∇fk. (5)

Since the inverse Hessian approximation Hk will
generally be dense, the cost of storing and manipu-
lating it is prohibitive when the number of variables is
large. To circumvent this problem, we store a mod-
ified version of Hk implicitly, by storing a certain
number (say, m) of the vector pairs {si, yi} used in
the formulas (3)-(5). The product Hk∇fk can be ob-
tained by performing a sequence of inner products
and vector summations involving ∇fk and the pairs
{si, yi}. After the new iterate is computed, the oldest
vector pair in the set of pairs {si, yi} is replaced by
the new pair {sk, yk} obtained from the current step
(5).

We now describe the updating process in a little
more detail. At iteration k, the current iterate is xk

and the set of vector pairs is given by {si, yi} for
i = k − m, . . . , k − 1. We first choose some initial



Hessian approximation H0 (in contrast to the stan-
dard BFGS iteration, this initial approximation is al-
lowed to vary from iteration to iteration) and find
by repeated application of the formula (3) that the
L-BFGS approximation Hk+1 satisfies the following
formula [12]:

In general, we have for k + 1 ≤ m the usual BFGS
updated

Hk+1 = V T
k V T

k−1 · · ·V T
0 H0V0 · · ·Vk−1Vk

+V T
k · · ·V T

1 ρ0s0s
T
0 V1 · · ·Vk

...
+V T

k V T
k−1ρk−2sk−2s

T
k−2Vk−1vk (6)

+Vkρk−1sk−1s
T
k−1Vk

+ρksksT
k .

For k + 1 > m we have the update

Hk+1 = V T
k V T

k−1 · · ·V T
k−m+1H0Vk−m+1 · · ·Vk−1Vk

+V T
k · · ·V T

k−m+2ρk−m+1sk−m+1s
T
k−m+1

·Vk−m+2 · · ·Vk

... (7)
+V T

k V T
k−1ρk−2sk−2s

T
k−2Vk−1Vk

+Vkρk−1sk−1s
T
k−1Vk

+ρksksT
k .

A method for choosing H0 that has proved effective
in practice is to set H0 = γkI, where

γk =
sT

k−1yk−1

yT
k−1yk−1

.

The strategy of keeping the m most recent cor-
rection pairs {si, yi} works well in practice; indeed
no other strategy has yet proved to be consistently
better. However, the main weakness of the L-BFGS
method is that it converges slowly on ill-conditioned
problems —– specifically, on problems where the Hes-
sian matrix contains a wide distribution of eigenval-
ues. On certain applications, the nonlinear conjugate
methods are competitive with limited-memory quasi-
Newton methods.
Algorithm (L-BFGS)

Choose starting point x0, integer m > 0;
k ← 0;
repeat

Choose H0

Compute pk ← −Hk∇fk

Compute xk+1 ← xk + αkpk where αk is chosen
to satisfy the Wolfe conditions;

if k > m
Discard the vector pair {sk−m, yk−m} from

storage;
Compute and save

sk ← xk+1 − xk, yk = ∇fk+1 −∇fk;
k ← k + 1;

until convergence.

2 Analysis for dynamical sys-
tems with time delay

2.1 Introduction of dynamical sys-
tems

For the easiness of reading, the (UP) problem is
reproduced here:

min
x∈Rn

f(x) f : Rn → R1 (8)

It is very important that the optimization problem
(8) itself is posted in the continuous form, i.e., x
can be changed continuously. In the literature,
the necessary and sufficient conditions of a local
optimum are also presented in the continuous form.
Furthermore, almost all the theoretical study for
problem (8) is in the continuous form. However,
it is very interesting to say that when it comes
down to the numerical solution of (8), most of
the conventional methods, such as the gradient/
steepest descent method, Newton’s method and
quasi-Newton’s method, are all addressed in the
discrete form. This interesting situation is mainly
due to the fact that the computer’s computation
can be only done discretely. However, is it possible
to study both the optimization problem and the
solution methods in its original form, i.e., continuous
form? In this sense, we may use the dynamical
system approach or neural network approach to



solve the original optimization problem.
• Dynamical system approach. The essence of this
approach is to convert problem (8) into a dynamical
system or an ordinary differential equation (ode) so
that the solution of problem (8) corresponds to a
stable equilibrium point of this dynamical system.
• Neural network approach. The mathematical
representation of neural network is an ordinary
differential equation which is asymptotically stable
at any isolated solution point. A companion of
this neural network is an energy function which
is a Lyapunov function. And as time evolves, the
solution of the ode will converge to the optimum,
and in this whole process, the energy function will
decrease monotonically in time.

The following discussion reviews the research
results in the dynamical system approach, and
identifies the merits of this approach.

Consider the following simple dynamical system
or ordinary differential equation

dx(t)
dt

= p(x). (9)

We first state some classical result on the existence
and uniqueness of the solution, and some stability
definitions for the dynamical system (9) [21,24].

Theorem 2.1 [24] Assume that p(x) is a continuous
function from Rn to Rn. Then for arbitrary t0 ≥ 0
and x0 ∈ Rn there exists a local solution x(t) satis-
fying x(t0) = x0, t ∈ [t0, τ) to (9) for some τ > t0.
If furthermore p(x) is locally Lipschitz continuous at
x0, then the solution is unique, and if p(x) is Lips-
chitz continuous in Rn then τ can be extended to ∞.

Definition 2.2 (Equilibrium point) A point x∗ ∈ Rn

is called an equilibrium point of (9) if p(x∗) = 0.

Definition 2.3 (Stablility in the sense of Lyapunov)
Let x(t) be the solution of (9). An isolated equilibrium
point x∗ is Lyapunov stable if for any x0 = x(t0) and
any scalar ε > 0, there exists a δ > 0 such that if
‖x(t0)− x∗‖ < δ, then ‖x(t)− x∗‖ < ε for t ≥ t0.

Definition 2.4 (Convergence) Let x(t) be the solu-
tion of (9). An isolated equilibrium point x∗ is con-
vergent if there exists a δ > 0 such that if ‖x(t0) −
x∗‖ < δ, x(t)→ x∗ as t→∞.

A dynamical system or ode (9) arising from an opti-
mization problem needs to have p(x) being a descent
direction for the objective function f(x). Some well-
known versions are:

Dynamical system based on the steepest descent
direction:

dx(t)
dt

= −∇f(x(t))

Dynamical system based on the Newton direction:

dx(t)
dt

= −[∇2f(x(t))]−1∇f(x(t)) (10)

As in the discrete optimization methods in the pre-
vious chapter, the steepest descent direction has a
slow convergence rate - meaning that it takes a very
”large” value of t to approach the equilibrium point.
The Newton direction has a much faster convergence
rate, but the amount of work in evaluating the Jaco-
bian is much greater.

Some other dynamical systems in the literature are:

dx(t)
dt

= s(t) · p(x(t)), (11)

a(t) · d
2x(t)
dt2

+ b(t) ·B(x(t)) · dx(t)
dt

= p (x(t)) , (12)

where p(x)is a descent direction for f(x),
B(x) ∈ Rn×n is a positive definite matrix, a(t)
and b(t) are scalar functions in t, and s(t) is a
positive scalar function in t and bounded above.

A major advantage of the dynamical systems
approach is that very large problems can be solved
[13]. No matter whether we use any of (9)-(12),
existing ode methods are quite mature to tackle these
problems. Solving systems with tens or hundreds
of thousands of unknowns poses no problem to ode
solvers. The problem size handled can be much
larger than traditional methods described in Chapter
1, which are of order of magnitude in the thousands.
The research in the ode approach is to find a ”good”
p(x) in (9) that balances the convergence rate and
the amount of work.

The dynamical systems approach normally con-
sists of the following three steps:

(a) to establish an ode system;



(b) to study the convergence of the solution x(t)
of the ode as t→∞; and

(c) to solve the ode system numerically.
The convergence study of x(t) as t → ∞ and the

stability of the corresponding dynamical system have
mostly been addressed on a case by case base. No
standard theory and/or methodology are given. This
phenomenon certainly limits the systematic study of
the dynamical system approach and its application
potential as well. Two papers are worth mentioning,
one by Tanabe [18] which used the stability theory
of the dynamical system to study the ode system,
and the other one by Yamashita [24] which employed
Lyapunov’s direct method to study the ode system.

Even though the solutions of ode systems are con-
tinuous, yet the actual computation has to be done
discretely. In all the dynamical systems (10)-(12),
the numerical solutions were mainly solved by either
discrete optimization methods or finite difference
methods.

In summary, the main attractiveness of this ap-
proach is its simplicity and its originality in pursuing
the continuous form. Furthermore, there is not any
restriction on the form of the objective function f(x)
in (8).

2.2 Delayed dynamical systems ap-
proach

As stated above, the steepest descent direction and
the Newton direction of the dynamical systems ap-
proach both have their weakness. The main idea in
this paper is to apply the theme of the L-BFGS al-
gorithm in Chapter 1 to the dynamical systems ap-
proach, making it a bridge between the steepest de-
scent direction and the Newton direction. The result-
ing dynamical system is a delayed ode, thus we call
it the delayed dynamical systems approach.

The delayed dynamical systems approach solves
the delayed ode:

dx(t)
dt

= −H(x(t), x(t− τ1(t), . . . , x(t− τm(t))))

·∇f(x(t)), (13)

where H and t− τ1(t), . . . , t− τm(t) are to be defined
below.

As the delayed ode (13) is numerically solved, we
compute approximations x0, x1, . . . , xk, xk+1, . . . to
x(t) at time points t0, t1, . . . , tk, tk+1, . . . . We define
H = Hk to be a different function in the interval
(tk−1, tk] iteratively by:

Given t0, x(t0) = x0, and an initial H0, for t0 ≤ t,
we define

H(x(t), x(t0)) := H1(x(t), x(t0))
:= V0(t)T H0V0(t) + ρ0(t)s0(t)s0(t)T ,

where
s0(t) = x(t)− x0,

y0(t) = ∇f(x(t))−∇f(x0),

ρ0(t) = 1/y0(t)T s0(t),

V0(t) = I − ρ0(t)y0(t)s0(t)T ,

in the R.H.S. of (13) and determine a stepsize h1 =
(t1 − t0) to compute, using some numerical ode
method, an approximation x1 to x(t1) at t1. Then
for t1 ≤ t, we define

H(x(t), x(t1), x(t0))
:= H2(x(t), x(t1), x(t0))
:= V1(t)T V0(t1)T H0V0(t1)V1(t)

+V1(t)T ρ0(t1)s0(t1)s0(t1)T V1(t)
+ρ1(t)s1(t)s1(t)T

where

s1(t) = x(t)− x(t1),

y1(t) = ∇f(x(t))−∇f(x(t1)),

ρ1(t) = 1/y1(t)T s1(t),

V1(t) = I − ρ1(t)y1(t)s1(t)T ,

in the R.H.S. of (13) and determine a stepsize h2 =
(t2 − t1) to compute, using some numerical ode
method, an approximation x2 to x(t2) at t2. Of
course, computationally x1 is used instead of x(t1).



This process is repeated until we have accepted xm−1

at tm−1. Then for tm−1 ≤ t, we use

H(x(t), x(tm−1), . . . , x(t1), x(t0))
:= Hm(x(t), x(tm−1), . . . , x(t1), x(t0))
:= Vm−1(t)T Vm−2(tm−1)T . . . V1(t2)T V0(t1)T

·H0V0(t1)V1(t2) . . . Vm−2(tm−1)Vm−1(t)
+Vm−1(t)T Vm−2(tm−1)T . . . V1(t2)T

·ρ0(t1)s0(t1)s0(t1)T V1(t2) . . . Vm−2(tm−1)
·Vm−1(t)

+ . . .

+Vm−1(t)T ρm−2(tm−1)sm−2(tm−1)
·sm−2(tm−1)T Vm−1(t)

+ρm−1(t)sm−1(t)sm−1(t)T (13A)

where

sm−1(t) = x(t)− x(tm−1),

ym−1(t) = ∇f(x(t))−∇f(x(tm−1)),

ρm−1(t) = 1/ym−1(t)T sm−1(t),

Vm−1(t) = I − ρm−1(t)ym−1(t)sm−1(t)T .

to compute xm at tm. Beyond this point we save only
m previous values of x. The definition of H is now,
for m ≤ k,
for tk ≤ t,

H(x(t), x(tk), . . . , x(tk−m+2), x(tk−m+1))
:= Hk+1(x(t), x(tk), . . . , x(tk−m+2), x(tk−m+1))
:= Vk(t)T Vk−1(tk)T . . . Vk−m+2(tk−m+3)T

·Vk−m+1(tk−m+2)T H0Vk−m+1(tk−m+2)
·Vk−m+2(tk−m+3) . . . Vk−1(tk)Vk(t)

+Vk(t)T Vk−1(tk)T . . . Vk−m+2(tk−m+3)T

·ρk−m+1(tk−m+2)sk−m+1(tk−m+2)
·sk−m+1(tk−m+2)T Vk−m+2(tk−m+3) . . .

·Vk−1(tk)Vk(t)
+ . . .

+Vk(t)T ρk−1(tk)sk−1(tk)
·sk−1(tk)T Vk(t)

+ρk(t)sk(t)sk(t)T (13B)

where

sk(t) = x(t)− x(tk),

yk(t) = ∇f(x(t))−∇f(x(tk)),

ρk(t) = 1/yk(t)T sk(t),

Vk(t) = I − ρk(t)yk(t)sk(t)T .

It is obvious that the delayed ode (13) is a contin-
uous version of the L-BFGS scheme. The H = Hk in
(13) attempts to approximate the inverse of the Jaco-
bian in the Newton method. It is worth mentioning
that the matrix Hk is never computed explicitly. We
only need to compute the R.H.S. of (13), i.e., the
product of Hk and a vector.

2.3 Uniqueness property of dynamical
systems

The positive definite property of the dynamical
system (13) is proved in Appendix I, hence we
conclude that the solution exists. The next step is to
show the Lipschitz continuity of this system, which
implies that the solution is also unique.

2.3.1 Definition of Lipschitz continuity

Let F : Rn → Rm be a function, we say that
F is Lipschitz continuous with Lipschitz con-
stant L if there is a nonnegative constant L such that

‖F (x1)− F (x2)‖ ≤ L‖x1 − x2‖

for all x1 and x2 in Rm.

2.3.2 Lipschitz continuity of method (13)

By Theorem 2.1, the solution of our new uncon-
strained optimization method (13) is unique if the
right-handed-side of (13) is Lipschitz continuous. We
firstly rewrite (13) as

dx(t)
dt

= −H(x(t), x(t− τ))∇f(x(t)) .

Let u = x(t) and w = x(t− τ), then our aim is to
prove that −H(u, w)∇f(u) is Lipschitz continuous



with respect to u and w. In other words, we want to
prove that

‖H(u, w)∇f(u)−H(ū, w)∇f(ū)‖ ≤ L1‖u−ū‖, (14)

‖H(u, w)∇f(u)−H(u, w̄)∇f(u)‖ ≤ L2‖w − w̄‖.
(15)

This problem is a difficult one and the following
theorem may give some hint to our goal:

Theorem 2.5 (Kurdyka, subanalytic, semi-
algebraic) Let F : X ⊂ Rn → R be a definable
C1-function such that∣∣∂F/∂xi

∣∣ < M

for some M and each i.
Then there exist a finite partition of X and C > 0
such that on each piece, the restriction of F to this
piece is C-Lipschitz.
Moreover, this finite partition only depends on X and
not on F . (And C only depends on M and n.)

It is obvious that H(u, w)∇f(u) is a column vector.
In order to transform a vector into a scalar we can
use eT

i H(u, w)∇f(u) and problem (14) and (15) can
be converted to∣∣ ∂

∂u
[eT

i H(u, w)∇f(u)]
∣∣ < M1,

∣∣ ∂

∂w
[eT

i H(u, w)∇f(u)]
∣∣ < M2

Equation (13B) shows that H(u, w) depends in a
complicated way on

y(u, w) = ∇f(u)−∇f(w) ,

s(u, w) = u− w .

The resulting partial derivatives ∂
∂w [eT

i H∇f(u)] con-
tain so many fractions whose denominators all have
terms yT s that the bound must be controlled prop-
erly because the denominators tend to 0. The main
problem is therefore to make the numerators and de-
nominators have the same order so that they canceled
out each other.

The following lemma seems to play a critical role
in this cancellation:

Lemma 2.6 Let F : Rn → Rm be continuously dif-
ferentiable in the open convex set D ⊂ Rn, x ∈ D,
and let J = ∂F

∂x be Lipschitz continuous at x in the
neighborhood D, using a vector norm and the induced
matrix operator norm and the Liptschitz constant γ.
Then, for any x + p ∈ D,

‖F (x + p)− F (x)− J(x)p‖ ≤ γ

2
‖p‖2.

If we define x = w, p = u − w = s, F (x) = ∇f(x),
then the lemma converts to

‖∇f(u)−∇f(w)−∇2f(w)(u− w)‖ ≤ γ

2
‖u− w‖

Substituting y and s into the above inequality yields

‖y −∇2f(w)s‖ ≤ γ

2
‖s‖.

3 Numerical testing

Based on the analysis in the previous sections, we
hope to conclude that the continuous-time Limited
Memory BFGS method has a better performance
than other traditional methods. In this section
we will show the computational results of several
examples.

3.1 The test problems

We have tested method (13) on the following un-
constrained optimization problems:
Problem 1: Extended Rosenbrock function

f(x) =
n∑

i=1

[100(x2i − x2
2i−1)

2 + (1− x2i−1)2],

[x0]2i−1 = −1.2, [x0]2i = 1, [x∗]i = 1, f(x∗) = 0.

Problem 2: Penalty function I

f(x) =
n∑

i=1

10−5(xi − 1)2 + [(
n∑

i=1

x2
i )−

1
4
]2,

[x0]i = i.



Problem 3: Variable dimensioned function

f(x) =
n∑

i=1

(xi − 1)2 + [
n∑

i=1

i(xi − 1)]2,

+[
n∑

i=1

i(xi − 1)]4,

[x0]i = 1− i/n, [x∗]i = 1, f(x∗) = 0.

Problem 4: Linear function-rank 1

f(x) =
m∑

i=1

[i(
n∑

j=1

jxj)− 1]2, (m ≥ n)

[x0]i =
1
i
, f(x∗) =

m(m− 1)
2(2m + 1)

at any point

where
n∑

j=1

jxj =
3

2m + 1
.

3.2 Comparison between continuous-
time L-BFGS and continuous-
time steepest descent

Our main platform of numerical computation is
Matlab. The Matlab library contains nonstiff ode
solvers ode113, ode23, and ode45, and stiff ode
solvers ode15s, ode23s, and ode23tb. There is also
a nonstiff delayed differential solver ddesd. Nons-
tiff solvers are efficient for ode problems without a
wide-spread spectrum of eigenvalues, whereas stiff
solvers are good for problems with both large and
small eigenvalues.

The difficulty with solving (13) is the time delay.
In order to get familiar with the ode solvers, and
eventually to take into account the delayed equation,
we first test ode (and not dde) solvers on the above
test problems.

In the first phase we start with solving a modified
form of Problem 1:
Modified Extended Rosenbrock function:

f(x) =
n∑

i=1

[100(x2i − x2i−1)2 + (1− x2i−1)2],

[x0]2i−1 = −1.2, [x0]2i = 1, [x∗]i = 1, f(x∗) = 0.

The difference between the original Rosenbrock and
the modified one is the square of x2i−1 in the first

part of the right-handed-side.
We use the nonstiff ode solver ode113 on this prob-

lem with dimension n = 100 and tolerance = 10−4.
The result is given in the following table, where t de-
notes the iteration time, value denotes the computed
optimal solution value, and step denotes the number
of iterations.

Table 2: Modified Rosenbrock Problem using
ode113

t value step
L-BFGS 2 0 497

Steepest descent 23.2813 0.0006 53557

We can see that the continuous-time L-BFGS is
obviously faster than the continuous-time steepest
descent method in the value of t and number of
integration steps.

Based on the performance in phase 1, we then
move on to the second phase, where the delayed
equation solver ddesd is used. This time we focus on
all the test problems mentioned above and also use
the original Extended Rosenbrock. However, the nu-
merical results are not so good as we have expected
– the continuous-time steepest descent method
shows better performance than the continuous-time
L-BFGS. After an analysis on the problems, it is
found that many of them have a wide spectrum of
eigenvalues. In other words, the problems are stiff.

In the third phase, the Matlab stiff ode solver
ode15s is being used on the above four problems.
Matlab does not have a stiff solver, and hence we
are unable to take into account the effect of time
delay. In the following tables, P denotes the problem
number, N the dimension of variables. Table 4 to
Table 6 give the performance on function value when
the solution reach to the optimum value.

Table 3: Comparison of the two methods for
m = 2 on function value

P N Steepest descent Limited-Memory BFGS

1 103 0 5.8852× 103

2 103 1.2030× 105 9.7257× 10−3

3 103 5.2945× 10−4 42.307

4 103 6.0317 1.3153× 1023



Table 4: Comparison of the two methods for
m = 4 on function value

P N Steepest descent Limited-Memory BFGS

1 103 0 4.2692× 103

2 103 1.5114× 105 9.7304× 103

3 103 0 2.9868× 10−1

4 103 6.0317 32.595

Table 5: Comparison of the two methods for
m = 6 on function value

P N Steepest descent Limited-Memory BFGS

1 103 0 1.1273× 103

2 103 1.5068× 105 9.7296× 10−3

3 103 7.1928× 10−8 1.0795× 10−5

4 103 6.0317 6.0317

Table 7 to Table 9 focus on the comparison for the
norm of gradient as solution tends to the optimum
value.

Table 6: Comparison of the norm of gradient
of the two methods for m = 2

P N Steepest descent Limited-Memory BFGS
1 1000 0 57.060

2 1000 1.4146× 103 6.9366× 10−5

3 1000 4.6056× 10 3.1173

4 1000 8.5570× 10−7 2.8544× 1015

Table 7: Comparison of the norm of gradient
of the two methods for m = 4

P N Steepest descent Limited-Memory BFGS
1 1000 0 6.5250

2 1000 1.6787× 103 1.8992× 10−4

3 1000 0 8.1280× 10

4 1000 2.1221× 10−7 1.9531× 102

Table 8: Comparison of the norm of gradient
of the two methods for m = 6

P N Steepest descent Limited-Memory BFGS
1 1000 0 3.1648

2 1000 1.6749× 103 1.7542× 10−4

3 1000 5.3639× 10−1 1.5238

4 1000 3.7336× 10−7 3.7253× 10−5

By comparing these tables one may find that the
continuous-time L-BFGS performs better in Problem
2, while the continuous-time steepest descent method
performs better in Problem 4. In Problems 1 and 3,

there is not much difference.
In order to show the full potential of the

continuous-time L-BFGS, it is our next goal to use a
stiff dde solver, which will be performed in the next
phase of this research.

3.3 A new code using Radar5

For stiff problems, including differential-algebraic
and neutral delay equations with constant or state-
dependent (eventually vanishing) delays, the code
RADAR5 written by Ernest Hairer is more appro-
priate. This code uses collocation methods based on
Radau nodes and solves dde’s of the type

My′(t) = f (t, y(t), y(t− α1(t, y(t))), . . . , y(t− αm(t, y(t))))

y(t0) = y0, y(t) = g(t) for t < t0,

where M is a constant d×d matrix and αi(t, y(t)) < t
for all t ≥ t0 and for all i. The value g(t0) may
be different from y0, allowing for a discontinuity at
t0. (Collocation methods have been proved to have
excellent stability properties for delay equations.)

The code RADAR5 is written in ANSI Fortran-90
and is made up of several routines. Because our main
test programs are written in MATLAB, we need to
call FORTRAN from MATLAB. This is not an easy
task and will be tackled in the next phase of our
research.

4 Main stages of this research

(A) Prove that the function H in (13) is positive
definite. (Done and shown in Appendix I).

(B) Prove that H is Lipschitz continuous. (Still
ongoing)

(C) Show that the solution to (13) is asymptoti-
cally stable. (A simple consequence of (B).)

(D) Show that (13) has a better rate of con-
vergence than the dynamical system based
on the steepest descent direction.

(E) Perform numerical testing.
(F) Apply this new optimization method to pr-

actical problems.



APPENDIX I: To show that H in (13) is
positive definite.

Without loss of ambiguity, in the subsequent
proof, we drop the t, t0, t1, . . . , tk, tk+1, ect. in
sk(t), yk(t), Vk(t), and so on below.
Property 1 If H0 is positive definite, the matrix
H defined by (13) is positive definite (provided that
yT

i si > 0 for all i).
Proof: We prove the result by induction. From the
above discussion we know that (13), the continuous
analog of the L-BFGS formula, has two cases. Hence
our proof needs to cater for each of them.

For the first case k+1 > m, note that when m = 1

Hk+1 = V T
k H0Vk + ρksksT

k

= H0 −
H0yksT

k

yT
k sk

− skyT
k H0

yT
k sk

+
skyT

k H0yksT
k

(yT
k sk)2

+
sksT

k

yT
k sk

It is obvious that the proof of p.d. of this matrix is
the same as that of Theorem 1 in section 1.3. There-
fore, Hk+1 is p.d. when m = 1.

Now suppose they are true for m = l, we show that
they are true for m = l + 1.

When m = l, we have (denoting Hk+1 by H l
k+1 to

emphasize m = l)

H l
k+1 = V T

k V T
k−1 · · ·V T

k−l+1H0Vk−l+1 · · ·Vk−1Vk

+{V T
k · · ·V T

k−l+2ρk−l+1sk−l+1s
T
k−l+1

·Vk−l+2 · · ·Vk

+V T
k · · ·V T

k−l+3ρk−l+2sk−l+2s
T
k−l+2

·Vk−l+3 · · ·Vk

...
+V T

k V T
k−1ρk−2sk−2s

T
k−2Vk−1Vk

+Vkρk−1sk−1s
T
k−1Vk

+ρksksT
k }.

being positive definite. (There are l + 1 terms in
H l

k+1)
If m = l + 1, from (13B)

H l+1
k+1 = V T

k V T
k−1 · · ·V T

k−lH0Vk−l · · ·Vk−1Vk

+V T
k · · ·V T

k−l+1ρk−lsk−ls
T
k−l

·Vk−l+1 · · ·Vk

+{V T
k · · ·V T

k−l+2ρk−l+1sk−l+1s
T
k−l+1

·Vk−l+2 · · ·Vk

+V T
k · · ·V T

k−l+3ρk−l+2sk−l+2s
T
k−l+2

·Vk−l+3 · · ·Vk

...
+V T

k V T
k−1ρk−2sk−2s

T
k−2Vk−1Vk

+Vkρk−1sk−1s
T
k−1Vk

+ρksksT
k }.

(There are l + 2 terms in H l+1
k+1.)

Comparing these two equations we find that the
terms in curly braces are the same, and let

(∗) = V T
k · · ·V T

k−l+2ρk−l+1sk−l+1s
T
k−l+1

·Vk−l+2 · · ·Vk

+V T
k · · ·V T

k−l+3ρk−l+2sk−l+2s
T
k−l+2

·Vk−l+3 · · ·Vk

...
+V T

k V T
k−1ρk−2sk−2s

T
k−2Vk−1Vk

+Vkρk−1sk−1s
T
k−1Vk

+ρksksT
k

Thus,

H l
k+1 = V T

k V T
k−1 · · ·V T

k−l+1H0Vk−l+1 · · ·Vk−1Vk

+(∗)

H l+1
k+1 = V T

k V T
k−1 · · ·V T

k−lH0Vk−l · · ·Vk−1Vk

+V T
k · · ·V T

k−l+1ρk−lsk−ls
T
k−l

·Vk−l+1 · · ·Vk + (∗)
= V T

k V T
k−1 · · ·V T

k−l+1(V
T
k−lH0Vk−l + ρk−l

·sk−ls
T
k−l)Vk−l+1 · · ·Vk−1Vk + (∗)

Since we have assumed that H l
k+1 is p.d., if we try

to prove that H l+1
k+1 is also p.d., we should prove that



V T
k−lH0Vk−l + ρk−lsk−ls

T
k−l and H0 have the same

property, i.e., V T
k−lH0Vk−l +ρk−lsk−ls

T
k−l is also p.d..

Now we move forward to prove that V T
k−lH0Vk−l +

ρk−lsk−ls
T
k−l is p.d..

From the proof before, we have the following con-
clusion:

Consider the formula

B = V T
k AVk + ρksksT

k k = 0, 1, · · ·

(The definition of Vk, ρk, sk are the same as in the
L-BFGS formula.) If we know A is a p.d. matrix,
then B is also p.d..

In this sense, it is easy to know that V T
k−lH0Vk−l +

ρk−lsk−ls
T
k−l is p.d.. As we have assumed that H l

k+1

is p.d. when H0 is p.d., we conclude that H l+1
k+1 is

p.d..
For the second case k + 1 ≤ m,

Hk+1 = V T
k V T

k−1 · · ·V T
0 H0V0 · · ·Vk−1Vk

+V T
k · · ·V T

1 ρ0s0s
T
0 V1 · · ·Vk

...
+V T

k V T
k−1ρk−2sk−2s

T
k−2Vk−1vk

+Vkρk−1sk−1s
T
k−1Vk

+ρksksT
k .

We also use induction to prove Hk+1 is p.d..
Firstly, H1 = V T

0 H0V0 + ρ0s0s
T
0 from above, so it

is clearly that H1 is p.d..
Secondly, assumed that Hk is p.d.. We are going

to prove that Hk+1 is also p.d.. We have assumed

Hk = V T
k−1V

T
k−2 · · ·V T

0 H0V0 · · ·Vk−2Vk−1

+V T
k−1 · · ·V T

1 ρ0s0s
T
0 V1 · · ·Vk−1

+V T
k−1 · · ·V T

2 ρ1s1s
T
1 V2 · · ·Vk−1

...
+Vk−1ρk−2sk−2s

T
k−2Vk−1

+ρk−1sk−1s
T
k−1.

is p.d.. Hence,

Hk+1 = V T
k V T

k−1 · · ·V T
0 H0V0 · · ·Vk−1Vk

+V T
k · · ·V T

1 ρ0s0s
T
0 V1 · · ·Vk

...
+V T

k V T
k−1ρk−2sk−2s

T
k−2Vk−1vk

+Vkρk−1sk−1s
T
k−1Vk

+ρksksT
k

= V T
k (V T

k−1V
T
k−2 · · ·V T

0 H0V0 · · ·Vk−2Vk−1

+V T
k−1 · · ·V T

1 ρ0s0s
T
0 V1 · · ·Vk−1

+V T
k−1 · · ·V T

2 ρ1s1s
T
1 V2 · · ·Vk−1

+ · · ·+ Vk−1ρk−2sk−2s
T
k−2Vk−1

+ρk−1sk−1s
T
k−1)Vk + ρksksT

k

= V T
k HkVk + ρksksT

k .

Therefore, we have proved that Hk+1 is p.d. when
k + 1 ≤ m.

So we have proved the property for both cases
k + 1 ≤ m and k + 1 > m. 2

The proof of the property above is part of our
work on the delayed dynamical systems approach
for unconstrained optimization. The requirement
that yT

i si > 0 for all i in Property 1 is not a major
issue, because we work with a continuous ode and
the numerical method can always be restarted.
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