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Abstract

This paper addresses the security issues of the face bio-
metric templates stored in a database. In order to improve
the security level of the stored face templates, cryptographic
techniques are commonly employed. Since most of such
techniques require a binary input, thresholding is usually
employed to binarize the real valued face features. While
binary templates are obtained, the discriminability of the
original templates may be affected and so is the recognition
performance. In order to overcome this limitation, this pa-
per proposes a new approach to discriminative extract bi-
nary templates from original face templates. A projection
is applied before thresholding such that the thresholding
can fit the projected data distribution better, which makes
the extracted binary templates more discriminative. A dis-
criminability index is constructed to measure the discrim-
inability of the extracted binary templates and the projec-
tion matrix is optimized. The proposed method is evaluated
on three public domain databases, namely FERET, CMU-
PIE and FRGC. Experimental results show that, in compar-
ison to the existing thresholding-based methods, the pro-
posed method improves the GAR by around11% − 13% at
a FAR of 1%.

1 Introduction

Biometrics is a reliable, robust and convenient way for
person authentication [9, 10, 6]. With the success of the
biometrics research in the last two decades, several large
scale recognition systems have been successfully deployed.
With the growing use of biometrics, there is a rising con-
cern about the security and privacy of the stored biometric
templates (which refer to a set of features extracted from
raw biometric data) stored in a database or a smartcard. Re-
cent studies [11] show that simple attacks on a biometric
system, such as hill climbing, are able to recover the raw
biometric data from a stolen biometric template. Moreover,
the attacker may be able to make use of the stolen template
to access the system or cross-match across databases. A
comprehensive analysis of eight types of attacks [6] on a
biometric system has been reported. Therefore, biometric

template security [9, 10, 6, 18] has been an important issue
in deploying a biometric system.

In order to overcome the security and privacy prob-
lems [6, 7, 9], a number of biometric template protec-
tion algorithms have been reported in the last few years.
These methods can be broadly categorized into two ap-
proaches, namely biometric cryptosystem approach and
transformation-based approach. The basic idea of both the
approaches is that instead of storing the original biometric
template, the transformed/encrypted template is stored. In
case the transformed/encrypted biometric template is stolen
or lost, it is computationally hard to reconstruct the bio-
metric template and the original raw biometric data from
the transformed/encrypted template. Generally speaking,
the transform-based approach suffer from a trade-off be-
tween dicriminability and security of the transformed tem-
plates while biometric cryptosystems may provide both en-
hanced security and acceptable discriminability. Crypto-
graphic technique is employed in the last step in the cryp-
tosystems approach to enhance the security of the tem-
plates. Error-correcting schemes are applied to deal with
the intra-class variance thus the discriminability of the en-
crypted templates will not degrade too much. However,
most of the protection algorithms in biometric cryptosystem
approach require a binary template or integer data (most for
the fuzzy vault scheme [5]) for encryption. That means,
the input template has to be converted into a binary or in-
teger template before encryption. The fuzzy vault scheme
is mostly applied to fingerprint. The minutiae of fingerprint
are unordered set of points, which the fuzzy vault scheme
is just able to encrypt. For face recognition algorithms like
PCA or LDA schemes, the situation is much different be-
cause the extracted templates are ordered real value vec-
tors with large range, which causes a problem to apply the
fuzzy vault scheme. On the other hand, there are schemes
to transform the original face templates into binary strings
for protection. In order to satisfy the input requirements,
thresholding is a typically employed in existing algorithms
[12, 13, 14, 15, 16, 17]. While the binary template can be
obtained, some useful and discriminative information in the
original (real valued) template may be lost after threshold-
ing leading to degraded matching accuracy (discriminabil-
ity) [12, 13]. And existing approaches lack of discriminabil-



ity evaluation of the thresholding process.
In view of the limitations on existing thresholding-based

algorithms, this paper provide a discriminability optimized
thresholding scheme. Directly optimize the thresholds may
have some problems. For security issues, the information
content of the quantized binary templates should be maxi-
mized such that a brute-force attack will be most expensive
to break the system. To maximize the information content
of the bits, the thresholds should be set to make half of the
corresponding bits in the binary templates to be “0” and half
to be “1”. Which implies the thresholds should be set as
the mean value of the corresponding elements of the orig-
inal templates (called max-entropy rule). It means that the
thresholds are already determined. And binary templates
with maximum information content imply that they already
get certain discriminability, which are shown clearly in ex-
periments. So thresholds optimization makes little sense.
Here we choose another approach. Before thresholding, an
orthonormal projection process is applied to rotate the data
position such that the thresholding fits the data distribution
better. And the projection matrix is optimized such that the
output binary templates after thresholding will have max-
imum discriminability. And we turn the whole threshold-
ing process including the projection into an approximation
process. The output binary templates is approximated by a
linear function of original templates such that we can avoid
the non-linear thresholding function while constructing the
objective function.

The rest of this paper is organized as follows. Section
2 gives a brief review of the existing binarization schemes.
Our proposed algorithm is then reported in Section 3. Ex-
perimental results and analysis are given in Sections 4. Fi-
nally, Section 5 gives the conclusion.

2 Review on Existing Binarization Schemes

A comprehensive survey on biometric template protec-
tion has been reported in [9, 8]. This section mainly reviews
the existing binarization schemes in biometric template pro-
tection.

Monroseet al. [12, 13] first proposed a binarization
scheme, who described a cryptographic key generation
scheme from biometrics. The biometric data is transformed
into a binary string called ”feature descriptor” which has
relatively small intra-class variance and large between-class
variance. This binary string is generated by a thresholding
technique based on mean and standard deviation of the bio-
metric data.

Goh and Ngo [15] proposed a biohashing scheme. In
their scheme, the original templates are first transformed
using random mapping. Each element of the transformed
template is thresholded to either 0 or 1, thus converting the
template into binary form. Different versions of Biohashing
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Figure 1. The effect of adjusting thresholds:
The curves show performances in FERET
database of binary templates extracted by a
straightforward thresholding process. sym-
bol “Mean" means the thresholds are set as
the mean values of the original templates.
“Random" means thresholds are randomly
chosen with a Gaussian distribution, in which
the mean of the distribution is mean of the
original templates and variance of the distri-
bution is r times of the variance of the orig-
inal templates. The random thresholds are
generated 100 times for experiment and the
curves represent the average performance. It
shows clearly that when r is closer to 0 the
performance is higher, implying that thresh-
olds with mean value of original templates are
already close to optimal.

algorithms [14, 17] have been proposed in the last few years
but their binarization schemes are quite similar.

Chang and Roy [22] proposed a fingerprint binarization
scheme. It draws lines to the original fingerprint. The dif-
ference of numbers of minutiae lying in each side of the
lines are used to construct an integer number vector. PCA
is applied decorrelate the vector and the deccorelated vector
is then quantized to bits with threshold 0.

Nagaret al. [24, 23] proposed a scheme to generate bi-
nary helper data from fingerprint. It first extract a minutiae
descriptor from the minutiae of fingerprint with the orien-
tation and ridge frequency information, then quantizes each
element of the minutiae descriptor into25 or 24 integer val-
ues. These values are converted to bits with Gray codes (be-
cause the converted Gray codes from neighbor value differ
only 1 bit).

Kevenaaret al. [25] proposed a face template binariza-



tion scheme. It statistically estimates the means and vari-
ances of the enrolled original templates. The means are
used as thresholds for quantization which converts the origi-
nal templates into bits. The scheme also constructs an index
with the means and variances to measure the reliability of
the converted bits. Only bits with high reliability are se-
lected for recognition.

Linnartz and Tuyls [26] proposed a quantization scheme
with quantization step sizeq. It did not directly extract the
bit string from biometric data but link a binary secret to the
biometric data. A binary string secretS is selected. For
the original reference templateX, a helper dataW is con-
structed such that elements ofS +W are multiples ofq and
the quantized values ofX + W have the same parities of
corresponding bits inS. For a testing templateY , W + Y
is quantized to an integer number vector and then the parity
of the vector is checked to extract a bit stringS′. S andS′

is compared for decision.
Fenget al. [19, 20, 21] proposed a class-distribution-

preserving transform (CDP transform) for binarization.
Distinguishing points are determined. The distance be-
tween each distinguishing point and the face template is
calculated and thresholded. With optimal positioning of the
distinguishing points, the transform optimizes the discrim-
inability of the binary strings. Thus the discriminability-
preserving ability of this scheme is justified. But note that
it is still a thresholding-based approach.

3 Proposed Algorithm: Optimized Thresh-
olding with Projection

3.1 Basic Idea

To binarize a biometric feature vector (template), the
most straightforward and common way is to apply a
quantization/thresholding algorithm, which is applied in
most of the existing schemes. However, lack of discrim-
inability analysis is still a problem for the binarization ap-
proach. Do the transformed binary templates have enough
discriminability or not? In this paper we do a primary re-
search to propose a new thresholding approach which pro-
vides a discriminability index, and optimize such index to
extract binary templates having optimal discriminability.
As we mentioned before, directly optimizing the thresholds
is not effective. Here we choose a different approach (illus-
trated in Figure 2) to solve the optimization problem. Be-
fore thresholding, an orthonormal projection is applied to
transform the input original templates into a new domain.
The projection matrix is optimized such that the output
binary templates after thresholding have optimal discrim-
inability. The thresholds in the thresholding is fixed with
the max-entropy rule.

Projection ThresholdingOriginal

Template

Binary

Template

Figure 2. The proposed thresholding scheme
with projection.

An orthonormal projection will not change the relative
positions of the original templates in the feature space, thus
after the projection the discriminability of the original tem-
plates will be completely preserved. This is quite impor-
tant because if the projection cause discriminability lost, it
will contradict our purpose to maximize the discriminabil-
ity. And an orthonormal projection can rotate the original
templates in feature space to new positions, such that the
thresholding can fit the data distribution better. The two-
dimensional case is illustrated in Figure 3. The thresholding
in each dimension (abscissa and ordinate) can be treated as
a line that divides the feature space into two halves. Given
two classes of points as Figure 3 illustrated, directly ad-
just the abscissa and ordinate thresholds would not com-
pletely separate the two classes (illustrated in sub-figure
(a)). However, after projection, thresholding in abscissa can
completely separate the two classes (illustrated in sub-figure
(b)). So, when the thresholds are fixed, we can optimize the
projection matrix such that the thresholding well separates
different classes of rotated templates, therefore provide high
discriminability to the quantized binary templates. Since
thresholding will cause rather complicated formulation to
construct the discriminability index, the whole thresholding
(including projection) process is converted to an approxi-
mation process in latter steps.

3.2 Optimize Thresholding through Approxima-
tion

To measure the discriminability of the binary templates,
we adopt the concept of within-class variance and between-
class variance. The within-class variance and the between-
class variance are defined for each class respectively, there-
fore different optimized projection matrices can be chosen
for different classes such that they can fit the distribution of
each class better than a matrix for all classes. The within-
class variance and between-class variance are defined as
Equation (1) and (2):

DW (Ω) =

∑
p∈Ω ||w(p)− wΩ||2∑

p∈Ω 1
(1)

DB(Ω) =

∑
p6∈Ω ||w(p)− wΩ||2∑

p6∈Ω 1
(2)
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Figure 3. The effort of projection to threshold-
ing (a) scenario of the original thresholding,
thresholds are directly optimized; (b) thresh-
olding with projection. The solid an hollow
points represent templates in two different
classes (illustrated with ellipses). It shows
clearly that the thresholding in (b) separates
two classes.

whereDW (Ω) andDB(Ω) represents the within-class vari-
ance and between-class variance of classΩ. wΩ denotes
the reference binary template that representsΩ and w(p)
represents the binary template transformed from original
templatep. With the defined within-class variance and
between-class variance, the discriminability is defined as
DB(Ω)−DW (Ω). HerewΩ needs to be determined and we
do not directly generatewΩ from the training data, but find
it through optimization together with the projection matrix
such that the discriminability is maximized. Assume the
projection matrix isM . DB(Ω) andDW (Ω) are subject to
M andwΩ. Then the objective function is constructed as
Equation (3):

(Mopt, wopt) = argmin
M,wΩ

(DB(Ω)−DW (Ω)) (3)

As we mentioned before, directly optimize such an ob-
jective function is unconvenient because of the thresholding
function. So before optimization, we first turn the thresh-
olding function to an approximation process.

In our proposed thresholding process, the original tem-
platep is first projected with an orthonormal matrixM to
u = MT p, and then thresholded with Equation (4):

bj =
{

1 : hj ≥ tj
−1 : hj < tj

(j = 1, 2 . . . k) (4)

wherehj are components inu. Because of the max-entropy
rule, tj should be the mean value ofhj . A normalization
process with Equation (5) can turn the equation to be sim-
pler with all thresholds 0:

q =
p− p

||p− p|| (5)

wherep denotes the mean vector of all the original tem-
plates. With such a normalization, Equation (4) turns to
Equation (6):

bj =
{

1 : aj ≥ 0
−1 : aj < 0 (j = 1, 2 . . . k) (6)

whereaj are the elements inv = MT q.

Equation (6) can be further turned into an approximation
process (Equation (7)):

Given an unit vectorv = (a1, a2 . . . ak), it is trans-
formed to a binary stringw′(v) = (b1, b2 . . . bk) ∈
{1,−1}k with the following equation:

w′(v) = argmin
ω

||v − ω√
k
|| (7)

where w′(v) represents the binary template transformed
from v.

It can be shown that

||v − ω√
k
||2 =

k∑

j=1

(aj − bj√
k

)2

is minimum if and only ifbj satisfies Equation (6). So Equa-
tion (7) is equivalent to Equation (6), thusw′(v) = w(p).

Substitutev = MT q into Equation (7), we have

w′′(q) = w′(v) = argmin
ω

||MT q − ω√
k
|| (8)

So our binarization schemew(p) can be turned into an
approximation processw′′(q) as Equation (8) describes.
Denotee = MwΩ√

k
. Therefore,

||wΩ − w′′(q)||
=

√
k||wΩ√

k
−MT q + MT q − w′′(q)√

k
||

≤
√

k(||wΩ√
k
−MT q||+ ||MT q − w′′(q)√

k
||)

≤ 2
√

k||wΩ√
k
−MT q||

= 2
√

k||MwΩ√
k

−MMT q||

= 2
√

k||e− q||

(9)

Notice here||wΩ√
k
−MT q|| is no less than||w′′(q)√

k
−MT q||

becausew
′′(q)√

k
is closet toMT q (Equation (8)).



On the other side,

||wΩ − w′′(q)||
=

√
k||wΩ√

k
−MT q + MT q − w′′(q)√

k
||

≤
√

k||wΩ√
k
−MT q||+

√
k||MT q − w′′(q)√

k
||

=
√

k||q − e||+
√

k||MT q − w′′(q)√
k
||

implies

|(||wΩ − w′′(q)|| −
√

k||q − e||)|
≤

√
k||MT q − w′′(q)√

k
|| (10)

Here||MT q− w′′(q)√
k
|| is minimized with optimalw′′(q).

To let the approximation error as small as possible, Equa-
tion (5) makesMT q an unit vector and scalar

√
k is used

such thatw
′′(q)√

k
is a normalized vector too. Without

√
k,

||MT q − w′′(q)|| ≥ ||w′′(q)|| − ||MT q|| =
√

k − 1

causing large approximation error. With
√

k, w′′(q)√
k

is a unit

vector thus the norms ofMT q and w′′(q)√
k

provide no con-
tribution to the approximation error, resulting in small ap-
proximation error. Then Equation (10) implies that

||wΩ − w′′(q)|| ≈
√

k||wΩ√
k
−MT q|| (11)

Denotem =
∑

p6∈Ω 1 and n =
∑

p∈Ω 1. Substitute
Equation (9) into Equation (1) and (11) into (2). Since
w′′(q) = w′(v) = w(p), we have

DW (Ω) =

∑
p∈Ω

||w(p)− wΩ||2

n
≤ 4k

∑
q∈Ω

||q − e||2

n
(12)

and

DB(Ω) =

∑
p6∈Ω

||w(p)− wΩ||2

m
≈ k

∑
q 6∈Ω

||q − e||2

m
(13)

Equation (13) implies that a largeD′
B(Ω) leads to large

DB(Ω). Equation (12) indicates that a smallD′
W (Ω) leads

to a smallDW (Ω). So the objective function is changed to

(Mopt, wopt) = argmin
M,wΩ

(D′
B(Ω)−D′

W (Ω)) (14)

where

D′
B(Ω) =

∑
q 6∈Ω

||q − e||2

m

and

D′
W (Ω) =

∑
q∈Ω

||q − e||2

n
.

From Equation (14) we can see that with the approxi-
mation process, the terms including binary templates in the
objective functions are replaced by terms with original tem-
plates. Therefore, there is no need to consider the correla-
tion between bits and the thresholding process, thus solves
the problems mentioned before. In Equation (14)M and
wΩ are only related toe. So we can first optimizee and
then chooseM andwΩ to fit the optimizede:

eopt = argmax
e

(

∑
q 6∈Ω

||q − e||2

m
−

∑
q∈Ω

||q − e||2

n
) (15)

with constraint
||e|| = 1 (16)

.
The constraint is becausee = M wΩ√

k
is an unit vector.

After eopt is found,wopt is randomly generated andMopt is
constructed such thatMoptwopt√

k
= eopt.

However, we should notice that the objective function
can only ensureD′

B(Ω) is large, but can not ensure that
D′

W (Ω) is small. So the following constraint

e · qΩ ≥ θ (17)

is required. HereqΩ is the normalized mean vector ofΩ and
θ is a threshold smaller than 1. This constraint ensure that
D′

W (Ω) is relatively small.

3.3 Solve the Objective Function

The objective function is first expanded as follows:
∑

q 6∈Ω

(||q − e||2)/m−
∑

q∈Ω

(||q − e||2)/n

= (
∑

q 6∈Ω

||q||2 − 2
∑

q 6∈Ω

q · e)/m + ||e||2

−(
∑

q∈Ω

||q||2 − 2
∑

q∈Ω

q · e)/n− ||e||2

= (
∑

q 6∈Ω

||q||2/m−
∑

q∈Ω

||q||2/n)

+2(
∑

q∈Ω

q/n−
∑

q 6∈Ω

q/m) · e

where· denotes inner product. Assumer is the normalized
vector of

∑
q∈Ω q/n−∑

q 6∈Ω q/m. According to the above
equation, to maximize the objective function is equivalent
to maximizer · e.



Apply the Gram-Schmidt algorithm to randomly gener-
ate an orthonormal basis{s1, s2 . . . sk} wheres1 = qΩ.
DenoteQ to be the orthonormal matrix usings1, s2 . . . sk

as columns. Then From Equation (17), we have

eT QQT qΩ ≥ θ (18)

Denotez = QT e = (x1, x2 . . . xk). According to Equation
(16), z is an unit vector. Because of the construction of
Q, QT qΩ = (1, 0, . . . 0). Substitute these two terms into
Equation (18), we have

x1 ≥ θ (19)

Denotel = QT r = (y1, y2 . . . yk). Sincer is an unit vector,
l is an unit vector. Therefore,

r · e = rT QQT e = lT z =
k∑

j=1

xjyj

And

k∑

j=1

xjyj = x1y1 +
k∑

j=2

xjyj

≤ x1y1 + (
k∑

j=2

x2
j ·

k∑

j=2

y2
j )

1
2

= x1y1 +
√

1− x2
1

√
1− y2

1

∑k
j=1 xjyj will achieve its maximum if and only if

xj =

√
1− x2

1√
1− y2

1

yj j = 2 . . . k

Denoteφ = arccos x1, ϕ = arccos y1. Then,

k∑

j=1

xjyj = x1y1 +
√

1− x2
1

√
1− y2

1

= cos φ cos ϕ + sinφ sinϕ

= cos(ϕ− φ)

From Equation (19), we have the restriction forφ:

0 ≤ φ ≤ arccos θ

If ϕ ≤ arccos θ (that is, y1 ≥ θ), setφ = ϕ, r · e can
achieve the maximum value 1. Ifϕ > arccos θ, Then0 <
ϕ − φ < π. cos(ϕ − φ) will be maximum whenϕ − φ
is minimum. Soφ should bearccos θ. That is,r · e will
achieve its maximum when

x1 =
{

y1 : y1 ≥ θ
θ : y1 < θ

and

xj =

√
1− x2

1√
1− y2

1

yj j = 2 . . . k.

Then,eopt = Qz = Q[x1, x2 . . . xk]T .
After eopt is found,wΩ is randomly generated andMopt

is constructed such thatMoptwΩ/
√

k = eopt.

3.4 Algorithm Implementation

In enrollment,

• Normalize the original feature vectors with Equation
(5).

• ConstructM andwΩ for classΩ.

• wΩ is used as the reference template and encrypted
with the fuzzy commitment scheme for protection.

• The encryptedwΩ andM are stored in database.

In authentication,

• when input a queryp, the correspondingM is released.

• Normalizep to q with Equation (5). And thenq is
projected tov = MT q.

• Thresholdq to w′′(q) = (b1, b2 . . . bk) with Equation
(6).

• Comparew(p) with wΩ to make a decision.

4 Experimental Results

In the experiments, three public databases namely CMU
PIE, FERET and FRGC are applied to evaluate the perfor-
mance of our proposed thresholding with orthonormnal pro-
jection (TOP) algorithm. The Fisherface [1] scheme is used
for feature extraction. The detailed parameters settings are
shown in Table 1, wherenc is the number of individuals
in the database,np denotes the total number of images from
each individual,nt is the number of images used for training
from each individual. In our TOP algorithm, the paramterθ
is chosen 0.8.

Table 1. The experiment settings
Database nc np nt

CMU PIE 68 105 10
FERET 250 4 2
FRGC 350 40 5

Our proposed TOP algorithm is also compared with
the recent developed Random Multi-space Quantization
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Figure 4. Experimental results on the CMU PIE
database.

Table 2. The GARs(%) of the experiments with
fixed FAR=0.01

Database Original RMQ TOP
CMU PIE 59.26 73.53 85.99
FERET 45.47 74.01 85.09
FRGC 26.28 67.40 78.35

(RMQ) algorithm. The RMQ algorithm, as a binarization
scheme, is also used for face recognition and has similar
procedure with our scheme. It also does a projection before
thresholding, though the purpose of the projection is much
different from ours. For fair comparison, we use a randomly
generated orthonormal matrix in the projection step of the
RMQ algorithm, therefore the projection step does not re-
duce the dimension of the face template and will not cause
information lost. So it will get higher performance than a
normal RMQ algorithm.

The experimental results are shown in Figure 4-6. Sym-
bol “Original” represents the original Fisherface algorithm
without protection. The figures show clearly that our al-
gorithm outperforms the RMQ algorithm. Following the
popular setting, we fix the FAR at 0.01 and compare the
GAR. The results are shown in Table 2. We also measure
the equal error rate (EER) and the results are shown in Ta-
ble 3. In all three databases, our proposed method gives the
highest GAR and lowest EER.

The security of the proposed scheme depends on the
security of the extracted binary templates, which are pro-
tected by cryptosystems scheme like the fuzzy commitment
scheme. Since this part is not our main concern, we as-
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Figure 5. Experimental results on the FERET
database.

Table 3. The EERs(%) of the experiments
Database Original RMQ TOP
CMU PIE 17.32 10.37 6.30
FERET 21.66 11.29 7.44
FRGC 31.75 13.38 10.05

sume the protecting scheme provides enough security thus
it is very computationally expensive for attackers to extract
the binary templates from the protected data. Then attackers
would have to guess the binary template with what they got.
It should be mentioned that the projection matrixMopt is
unprotected and may be exposed to attackers. However, this
would not help the attackers because the only relationship
betweenMopt and wΩ is equationMoptwΩ/

√
k = eopt,

whereeopt is kept secret to attackers. And as we know,wΩ

is randomly generated. So the entropy ofwΩ is the length
of it, that is,k bits. And this is also the security level of our
proposed algorithm.

5 Conclusions

This paper has proposed a new method to generate a bi-
nary face template from a real valued face template. The
original face templates are first projected with an orthonor-
mal matrix, and then thresholded to binary templates. The
orthonormal matrix is optimized such that the extracted bi-
nary templates can get highest discriminability. Three pub-
lic domain available face databases have been used to eval-
uate the proposed method. The experimental results show
that the proposed method has good performance and outper-
forms the RMQ algorithm for comparison. The security of



0 0.1 0.2 0.3 0.4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

False accept rate

G
en

ui
ne

 a
cc

ep
t r

at
e

Original
RMQ
TOP

Figure 6. Experimental results on the FRGC
database.

the proposed algorithm is just the lengthk of the extracted
binary template, which is quite sufficient whenk is large
(say 40).
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