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Abstract

The ability to learn is a potentially compelling and im-
portant quality for interactive 3D human avatars or virtual
humans. To that end, we describe a practical approach to
real-time learning for 3D virtual humans. Our implementa-
tion is grounded in the techniques of reinforcement learning
and informed by insights from avatar’s behavior training.
It simulates the learning task for characters by enabling
them to take advantage of predictable regularities in vir-
tual graphical world and allowing them to make maximal
use of any supervisory signals. We built an autonomous an-
imated virtual human that can be trained with a technique
used to train proper actions in the real world. Capabilities
demonstrated include being trained to recognize and use
shapes of 3D models’ patterns as cues for actions, as well
as to synthesize new actions from novel paths through its
motion space. A key contribution of this paper is to demon-
strate that by considering the three aspects on the problem
of state, action, and reaction space discovery at the same
time, by forming a value function on a manifold, the solu-
tion for each becomes easier. Finally, we articulate heuris-
tics and design principles that make learning practical for
synthetic animation human characters.

1 Introduction

We believe that interactive synthetic characters must
learn from experience if they are to be compelling over ex-
tended periods of time. Furthermore, they must adapt in
ways that are immediately understandable, important and
ultimately meaningful to the virtual environment interact-
ing with it. Computer system provides an excellent exam-
ple of systems that do just this: 3D graphical human-like
avatar[3][6].

Remarkably, virtual human do the actions with the ef-
fort of simulating our behavior, but little understanding of
context and legend beyond their use as cues in the graph-
ical environment. In addition, they are only able to learn
causality if the events, actions and consequences are proxi-

mate in space and time, and as long as the consequences are
motivationally significant[6].

Nonetheless, the learning avatars do allow them to be-
have human-like common sense and ultimately exploit the
highly adaptive ability to different kinds of 3D environ-
ments.

Our belief is that by embedding the kind of learning of
which avatars are capable into synthetic characters, we can
provide them with an equally robust mechanism for adapt-
ing in meaningful ways to act like people in the 3D virtual
environment which they are interacting.

In this paper, we describe a practical approach to real-
time learning for 3D avatar characters that allows them
to learn the kinds of things that people seem to learn so
easily[7].

We ground our work in the machine learning theory of
reinforcement learning, in which a creature learns to maxi-
mize reward in the absence of a teacher. Additionally, our
approach is informed by insights from robot training, where
a teacher is available. Robots and their trainers act as a cou-
pled system to guide the robots exploration of its state, ac-
tion, and state-action spaces . Therefore, we can simplify
the learning task for autonomous animation characters by
(a) enabling them to take advantage of predictable regulari-
ties in their world, (b) allowing them to make maximal use
of any supervisory signals, either explicit or implicit, that
the world offers, and (c) making them easy to train by in-
teracting with virtual environment. Using this method, we
implemented the autonomous animated avatar that can be
trained with a technique used to train and behave like hu-
man. The synthetic avatar thus mimics some of a real hu-
man’s ability to learn including:

• The best action to perform in a given context. What
form of a given action is most reliable in producing
reward;

• The relative reliability of its actions in producing a re-
ward and altering its choice of action accordingly;

• To recognize new and valuable contexts such as
shapes’ patterns[1];



• To synthesize new and reasonable actions the training.

In order to accomplish these learning tasks, the system
must address the three important problems of state, action
and state-action space discovery. A key contribution of this
paper is to show how these processes may be addressed
in an integrated approach that guides and simulating the
human-like processes. We emphasize that our behavioral
architecture is one in which learning can occur, rather than
an architecture that solely performs learning. As we will
see, learning has important implications for many aspects of
a general behavior architecture, from the design of the per-
ceptual mechanism to the design of the 3D animation graph-
ical system. Conversely, careful attention to the design of
these components can dramatically facilitate the learning
process. Hence, an important goal of this paper is to high-
light some of these key design considerations and to provide
useful insights apart from the approach that we have taken.
We begin by surveying the framework of the approach. We
then turn to a discussion of reinforcement learning. We in-
troduce the core concepts and terminology, discuss the ap-
plication of reinforcement learning to training avatar char-
acters, and take on insights into the trial and error process.
We then describe our approach, reviewing our key repre-
sentations and processes for state, action and state-action
space discovery. We present our experiment with different
terrains, our virtual human, and discuss limitations of our
approach. We conclude with a summary of what we see as
the key lessons from our work.

2 Overview of The Framework

Motion action context is extensively used in computer
animation, because it is able to describe all the subtleties of
real human motion. By piecing together many some differ-
ent type of short motion clips, we can further create novel
but realistic motions. Consequently,the way of arranging
the clips of motions to achieve specific goals is an impor-
tant research topic[12].

A number of algorithms have been developed to repre-
sent plausible transitions between motion clips with graph
structures. With these techniques, novel motions can be
generated simply by building walks on the graph. For
off-line applications, where the full motion specification is
known in advance, a global sub-optimal or close-to-optimal
solution that minimizes an objective function, such as a cer-
tain energy, can be found. In interactive applications, new
input is continuously arriving and the decision for selecting
the next clip needs to be made in a very short amount of
time.

Therefore, only local search can be performed to gener-
ate motions in response to the dynamic 3D environments.
The challenge for local search methods is to synthesize mo-
tions that require planning. Motion planning is important

to achieve realistic results in many scenarios. For example,
one may need to prepare well in advance to grasp an object
at a particular location. Hence, first of all is to plan a to-
tal strategy of the action, then instead of trying to search
a point-to-point path on the graph, we are going to face
a dynamic changing 3D environment. Thus reinforcement
learning techniques is used to train a motion controller off-
line, which can make on-line decision quickly in any given
situation. Some methods have been proposed in computer
animation to utilize reinforcement learning to obtain poli-
cies for choosing actions that will increase long term ex-
pected rewards.

Thus, the whole motion can be separate into different
clips. i.e. if the avatar want to go through a terrain full of
obstacles, its motion can be constructed as Figure1shows.
The state space and use dynamic programming to construct

Figure 1. The framework of the the whole pro-
cedure of a virtual human’s action in the 3D
graphical environment.

a sample-based value function for actions.

Figure 2. Every motion of a virtual human in
the 3D graphical environment can be treated
as a Semi-Markov Decision Process.

We will consider the action as a general class of ran-
dom processes with trajectories in a metric space which are



DynamicProgramAlgorithm
1 Q.Insert(Gx) and mark Gx as visited
2 while Q not empty do
3 x ← Q.GetFirst() //Get the priori queue
4 return SUCCESS
5 forall u-1 ∈ U-1(x)
6 x ← f-1(x’, u-1)
7 if x not visited
8 Mark x as visited
9 Q.Insert(x)
10 else
11 Resolve duplicate x
12 return FAILURE

Table 1. The dynamic programming algorithm
to update the value of action’s policy.

continuous from the right and have limits from the left at
any point of the half-line. These processes were continuous
semi-Markov processes in according to the property of their
first exit streams. The structure of the these processes of ac-
tions are showed on Figure 2 Thus, it is necessary to develop
methods or to modernize traditional methods of investiga-
tion, which do not use the simple Markov property[12].

We can support value functions with to evaluate the ac-
tions’ policy. Moreover, the above methods suffer from the
limitation that the space of available motions is discrete.
The parametric space is an abstract space defined by kine-
matic or physical attributes of motions. By parameterizing
all motion samples in the space, and by blending among
multiple motions, motion interpolation can create novel mo-
tions that have specific kinematic or physical attributes. We
build a continuous parameterized motion space for similar
motions that provide efficient control for interpolation.

To improve the action’s policy π episode by episode, we
adopt a value function Q and dynamic programm algorithm
to achieve the goal Table 1[21].

To improve motion interpolation with the use of geomet-
ric statistics, treating interpolation as statistical prediction
of missing data in the parametric space. We analyze inter-
polated human motions for physical correctness and show
that the interpolated results are close to the physically cor-
rect motions. Cooper et al. proposed active learning to
adaptively sample the parametric space so that the space
can be well sampled with a reduced number of clips . Re-
cently, researchers have also combined motion graphs with
parametric synthesis to form richer, more complete motion
spaces. In order to provide proper control, we present a
way to learn parametric motion controllers, which can com-
pute near-optimal parameters for motion synthesis for the
3D graphical environment in real-time.

3 Learning Algorithm on Manifold

In this section we describe a reinforcement learning
framework to obtain motion controllers for interactive char-
acter animation. Using a database of atomic motion clips,
our goal is to generate natural character motion as a se-
quence of clips. At each time step, the motion controller
decides which motion clip best follows the user input and
respects constraints imposed by the environment. This de-
cision must be made quickly, since time lags are not allowed
in interactive environments. The controller should also be
able to achieve user objectives that require planning ahead
of time. In addition, both user input and the environment
should be represented using continuous parameters to allow
for proper control.

We begin to introduce the Markov decision process
(MDP) model for the control of the virtual human’s action,
and describe methods for approximately solving MDPs.
This section is principally about choosing a basis for ap-
proximation of real-valued functions called value functions,
which are central to solving Markov decision processes
[13]. For in the most cases, previous work has modeled
value functions as vectors in a Euclidean space to evaluate
the action’s policy π. One of the novel ideas is the approach
to treat value functions as elements of a vector space on a
graph or manifold [12]. This approach enables construct-
ing basis functions that capture the large-scale (irregular)
topology of the graph, and approximating (value) functions
on these graphs by projecting them onto the space spanned
by these bases.

A discrete Markov decision process (MDP) M =
(S,A, P a

s,s′ , R
a
s,s′) is defined by a finite set of discrete states

S, a finite set of actions A, a transition model P a
s,s′ specify-

ing the distribution over future states s′ when an action a
is performed in state s, and a corresponding reward model
Ra

s,s′ specifying a scalar cost or reward [13].
Any optimal policy π defines the same unique optimal

value function V which satisfies the nonlinear constraints:

V (s) = max
a

(Ra
s,s′ + γ

∑

s′∈S

P a
s,s′V (s′))

where Rsa =
∑

s′∈S P a
s,s′R

a
s,s′ is the expected immediate

reward.
The Bellman operator Tπ on the space of value function

which is used to evaluate the policy π can be written as

Tπ(V ) = Rsπ(s) + γ
∑

s′
P

π(s)
ss′ V (s′)

Thus, the value function Vp associated with following a
(deterministic) policy p can be defined as

V π(s) = T (V π(s)) = Rsπ(s) + γ
∑

s′∈S

P
π(s)
ss′ V π(s′).



As it will be explained in the following part,in order to
find the best policy π, we pose an optimization problem
where the discrete values of temporal states are the vari-
ables. The goal of the optimization problem is to maximize
the value function which requires determined by the states
and actions, while enforcing the user’s constraints.

Therefore, the question can be treated as a learning
problem on a Riemannian manifold. There is a rich and
well-developed theory of the Laplace operator on mani-
folds, which we can only briefly summarize here. The
Laplace-Beltrami operator has been extensively studied in
the general setting of Riemannian manifolds [16]. Rieman-
nian manifolds have been actively studied recently in ma-
chine learning in several contexts, namely in the context
of designing new types of kernels for supervised machine
learning[17] and faster policy gradient methods using the
natural Riemannian gradient on a space of parametric poli-
cies [18][19][20].

Although a full discussion of these perspectives is be-
yond this paper, they are worth noting in order to gain
deeper insight into the many remarkable properties of the
Laplacian.

The Laplacian is defined as

∆ = divgrad =
1√

det g

∑

i,j

∂i(
√

det gij∂j)

where div and grad are the Riemannian divergence and gra-
dient operators.

constraints in our optimization process. Detail vs. vol-
ume preservation. It is well known that the details of a shape
at a point in space are preserved during a deformation if the
local transformation that point undergoes is close to rigid.

To test our reinforcement learning algorithm’s efficiency,
we used a simulating environment in Matlab software.

This environment is based on Sutton and Barto’s
(1998)[21] Mountain Car Task as described in ”Reinforce-
ment Learning: An Introduction”. This simulation program
is running on the Matlab 7.02b as Figure 3 shows.

Consider a task where an agent must drive an underpow-
ered car up a steep mountain road. Since gravity is stronger
than the cars engine, even at full throttle the car cannot sim-
ply accelerate up the steep slope. The cars movement is
described by two continuous output variables, position and
velocity, and one discrete input representing the accelera-
tion of the car.

In this application the state space S is naturally embed-
ded in Rd as a sub-manifold, or some other type of geo-
metrically structured subset. The shape of the manifold is
showed in Figure 4.

The training used Q-learning algorithm in which the ε−
greedy policy should be used. We will randomly choose a
100 episode table to test the algorithm. The episodes will
be truncated at 1000 time steps.
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Figure 3. The clips of episodes of reinforce-
ment learning training for the Mountain Car
on the simulating software of Matlab. The up
axes are representing the episode and steps
and the down one is the animation clip of the
simulation.

We used a Laplacian matrix as a window-based mask,
ı.e. it relies on a convolution mask to perform temporal
filtering. We subtracted off all low frequency components
from the original proto-value Qtable. Then we used high
frequency edge descriptions to enhance the Qtable and com-
pute a improved Qtable.

At the beginning, the Q table is all zero. After 100
episode training, we record a table. This table will be used
in the two branches. One just keep on training without any
change, the other will be transformed by laplace operator
to improve the performances. The later’s manifold shape
shows in Figure 5.

Experimental results and comparisons with state-of-the-
art methods are presented in Figure6 and Figure7. We will
conclude all the result with a discussion and some future re-
search directions in Section 5. In this section, we can make
a conclusion that with the transformation for improving the
Qtable, the improved one has a more stable and less steps
training than original one. Moreover, the improved one’s
rewards are also better than original one.

4 Experimental Result

Our 3D graphical platform is the open source software :
Delta3D.

Delta3D is an Open Source engine which can be used
for games, simulations, or other graphical applications. Its
modular design integrates other well-known Open Source
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Figure 4. Qtable - The left one is the value
function or Q function’s manifold after 100
episode training, and the right one is it after
300 episode training.

projects such as Open Scene Graph(OSG), Open Dynam-
ics Engine(ODE), Character Animation Library (CAL3D),
and OpenAL. Rather than bury the underlying modules,
Delta3D just integrates them together in an easy-to-use API
– always allowing access to the important underlying com-
ponents. This provides a high-level API while still allowing
the end user the optional, low-level functionality. Delta3D
renders using OpenGL and imports a whole list of diverse
file formats (.flt, .3ds, .obj, etc.).

Delta3D is released under the GNU Lesser General Pub-
lic License (LGPL). The underlying modules may have
their own licensing, but are at the minimum, considered
Open Source and are freely distributable.

We used two virtual humans : ”Cally” and ”Paladin”.
Where they have a different ability and will behave differ-
ently to interact with the environments.

The task of the both avatars is to access the object (ı.e. a
beast), then interacts with it (ı.e. shot a arrow to it).

The Cally and Paladin has different acting abilities and
different absorb states which has been showed in Figure8,
Figure9,Figure10 and Figure11.

The task of Cally and Paladin in a town is to access dif-
ferent kind of point to get reward. Cally can walk or jog to
the object which show in the Figure12, and has two absorb-
ing states which show in the Figure13. Paladin can walk,
jog or sneak to the object which show in the Figure14, and
has one absorbing state which shows in the Figure15.
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Figure 5. The Qtable Laplacian - The left one
is the value function or Q function’s manifold
after 100 episodes training and laplacian im-
provement, and the right one is it after 300
episode training.

0 50 100 150 200
100

200

300

400

500

600

700

800

900

1000

Figure 6. The steps (maximum is 1000) of
training the Mountain Car. The green line is
represented the Q function without any en-
hancement. And the red one is represented
the Q table has been filtered by laplacian op-
erator.



5 Conclusion and Discussion

This article presents a method for creating virtual human
in the 3D graphical environment with learning ability on 3D
animation. The example takes different 3D avatars which
have different abilities to show different performance as the
environment is dynamically changing. The result of blend-
ing actions animation presents that the virtual human has a
more human-like behavior ,moreover intelligent ability to
adapt the environment by learning ability.

We constructed a framework of controlling the motion
of 3D human-like avatar by treating it as a Semi-Markov
Decision Process.

By researching the reinforcement learning, we are able
to choose the appropriate method to control the action of
3D human-like avatar. Besides, to treat the value function
as a manifold which depends on the states and actions is
proved to be a effective way to improve the Q function in
the training process.

There are many opportunities to improve the techniques
presented here. First, according to the shapes of manifold,
there will be many powerful method to improve the perfor-
mance of the learning algorithm. Second, if the virtual hu-
man can independently recognizes or classifies the objects
and behaves in different way according to them, the system
will be much better.

In this case, instead of making the animations frame by
frame, the intelligent 3D avatar would be a powerful tools
to achieve the work. Moreover, a more effective machine
learning algorithm is one the key part of this area.
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Figure 8. Cally has abilities of walk and jog
to access the object. She has two different
kinds of actions.



Figure 9. Cally has abilities of shotting an ar-
row and kicking the object. She has two dif-
ferent absorbing states.

Figure 10. Paladin has abilities of walk, jog
and sneak to access the object. He has Three
different actions.



Figure 11. Paladin has a ability of shotting the
object. He has one absorbing state.

Figure 12. Cally ’s typical action to access the
object point in the town.

Figure 13. Cally chooses the action when
reach the object point, if it is far, then she
shot, otherwise, she will kick.



Figure 14. Paladin’s typical action to access
the object point in the town. Where the object
is far, he walks, then he jogs, after that, he
sneaks

Figure 15. Paladin reaches the proper posi-
tion, then begin to shot.


