
Optimize write performance for DBMS on Solid State Drive

Yu Li

Abstract

Solid State Drive (SSD) is believed to be the replace-
ment for magnetic disk in computer systems. SSD is a
complex storage device composed of flash chips, controller
hardware, and proprietary software that together provide a
block device interface via a standard interconnect. Com-
paring to its fast sequential read/write and random read
operations, the random write on SSD is generally believed
to be poor. DBMS applications such as online transac-
tion processing (OLTP) will suffer from it because of is-
suing random write stream to the storage. It is desirable
to improve random write performance for these DBMS ap-
plications on SSD. Being different from previous solution
in literature, we propose a solution which does not rely on
modifying the firmware or hardware of SSD, but tries to de-
composite the write streams of good write patterns from the
archived write requests in a temporary focused area called
StableBuffer. It is implemented as a software model called
StableBuffer manager extending DBMS buffer manager. We
discuss the motivation, design and implementation of Sta-
bleBuffer manager, and report preliminary evaluation re-
sults.

1 Introduction

Solid State Drive (SSD) is believed to be the replacement
for magnetic disk in computer systems. SSD is a complex
storage device composed of flash chips (i.e., NAND), con-
troller hardware, and proprietary software (i.e., firmware)
that together provide a block device interface via a standard
interconnect (e.g., USB, IDE, SATA) [1]. Though it is made
by assembling flash chips, the properties of SSD can not be
easily derived from properties of flash chips. Because SSD
read and write data in fixed sized blocks through a block in-
terface, and integrates layers of software that manage block
mapping(i.e.,, Flash Translation Layer, FTL), wear-leveling
and error correction. In terms of IO performance, SSD does
inherent characteristics of other flash storage media such as
USB Flash memory and CompactFlash card. In general, se-
quential read/write and random read are believed to be fast
on SSD, while random write on the other hand is believed

to be slow.
The performance of random write of SSD is vital to

DBMS applications such as online transaction processing
(OLTP) . As often observed in OLTP applications, the ac-
cess pattern to database is random and scattered with small
granularity insert/delete/update requests, which cause the
poor random write to be the bottleneck of whole system.
Therefore, improve the overall write performance on SSD,
especially when the write pattern trends to be random, is
highly desired. In literature, Lee and Moon [10] studied
this problem and proposed an in-page logging solution. The
basic idea of in-page logging is that only write update logs
inside the flash chip, and merge them with old data page
when enough logs are collected. The in-page logging so-
lution actually transfers random write stream to log ap-
pending stream which is naturally sequential. Even though
lately merging logs into old data page costs extra resources,
the transferred sequential logging appending stream actu-
ally save much more than random write stream. To imple-
ment the in-page logging mechanism, supporting from FTL,
which is usually inside the firmware of SSD, is needed.
However modifying the functions inside the firmware of
SSD is not always possible to current commercial SSD
products in market, which limits the in-page solution in
practice.

Our focus in this paper is also to improve the write per-
formance for DBMS applications. We try not to modify the
firmware of SSD, and only to utilize the characteristics that
SSD provides to developer. In the rest of this section, we
describe the basic idea of our research by first introducing
interesting characteristics of SSD as the motivation.

1.1 Good Write Patterns on SSD

Systematic performance studies [2, 6] show that the per-
formance of IO on SSD is complex. It does not only sen-
sitive to operation type (i.e., read/write), but also sensitive
to parameters such as access type (i.e., sequential/random),
granularity (i.e., page size) and locality (i.e., the distribution
of addresses of accessed data). Recently a research work
proposing a micro IO benchmark called uFlip for SSD by
L. Bouganim et al [2] shows that, even different kinds of
random write patterns perform different on SSD. They ac-



tually identified some good write patterns on SSD which
could be considered as random. We will review them one
by in following paragraphs.

1. Random write limited to a focused area is fast. A fo-
cused area is a small logical area of access addresses.
For example, the space inside a pre-allocated small file
smaller than 8MB can be viewed as a focused area.
The size of a focus area is usually not bigger than the
size of RAM in the controller of SSD. We name this
kind of write pattern focused random write. According
to result reported in uFlip paper, the response time of
focused random write is only 1x∼2x of the response
time of sequential write, which is far better than the
response time (17x∼30x) of general random write to
large area.

2. Partitioned sequential write is fast. As an example,
write sequence “11,50,2,51,3,52,...” is an in-
stance of partitioned sequential write pattern. It is sim-
ilar to random write in global, but actually is mixture of
two sequential write streams (i.e., “1,2,3,...” and
“50,51,52,...”). There are two sequential write
streams, corresponding to two partitions. The response
time of partitioned sequential write can be just 1x∼2x
of response time of sequential write, as long as there is
not too many partitions (8∼16).

3. Ordered sequential write is fast. As an example, the
write sequence “1,3,5,7,9,11,...” is an in-
stance of ordered sequential write pattern. The dis-
tance between addresses is +2. The distance could
also be negative number, such as−2, such as the exam-
ple “111,109,107,105,103,101...”. The re-
sponse time of ordered sequential write can be 1x∼4x
of response time of sequential write.

1.2 StableBuffer Idea

It is natural to thinkd about utilizing good write patterns
(i.e., sequential write, partitioned sequential write, ordered
sequential write and clustered write patterns) to improve the
write performance of SSD for DBMS applications. Suppose
that we have several transactions concurrently committing
pages to be written on SSD in an OLTP application. By
only observing the combined write stream, it is generally
random. So if we write pages one by one in their submis-
sion orders, the performance could be very poor. But actu-
ally some transactions may originally issue pages in good
write pattern, or several write streams from different trans-
actions may be combined to form instances of good write
patterns. For instance, clustering pages by destination ad-
dresses may form focused random write stream. Then if we

1We use simple number to denote the logical address of a page.

have the chance to delay each write request a little time, and
collect enough write requests, we may either decomposite
instances of good write patterns, or rearrange the write re-
quests to follow good write patterns. Therefore we can only
issue write requests to SSD by following good write pat-
terns and the performance is improved.

However as the write requests are issued by online trans-
actions, we usually have to flush them immediately to disk.
Therefore we think about to write the pages temporarily first
to a well managed place. In particular, we write them first
to StableBuffer. StableBuffer is a temporary pre-allocated
storage on SSD, and we limit it to be a focused area. In im-
plementation, it can be implemented as small pre-allocated
temporary file. Now with StableBuffer, the detailed process
of writing a page will be

1. Page will be temporarily written to StableBuffer when
it is issued. Since StableBuffer is a focused area, the
temporarily write follows the focused random write
pattern. And we keep some in memory data structures
to record the temporarily write.

2. After we collect enough pages (usually when the Sta-
bleBuffer is full), we decomposite some instance of
good write pattern from StableBuffer. Pages of this in-
stance will be read from StableBuffer and write again
to their real destinations. The involved read request is a
random read. The involved write request follows good
write pattern.

We can roughly estimate the cost of write one page
through StableBuffer. We denote the cost of sequentially
writing one page as C. To flush one page to its destination
through StableBuffer, there are two writes following good
write patterns on SSD. According to the uFlip result, the
cost is at most 4 × C × 2 = 8C. There is another random
read. But random read is even faster than sequential write
on SSD. We at most add C cost to the total most, which is
C +8C +C = 9C. Now consider that we directly flush the
page to SSD. Since it could follow a random write pattern,
the cost could be as big as 13C ∼ 30C according to the
result of uFlip paper. We can easily notice that, although it
writes same page twice, the StableBuffer idea is still able to
improve the overall performance.

It is remarkable that the StableBuffer idea does not re-
quire modification on firmware and hardware of SSD. We
can implement it as a software model inside the buffer man-
ager of DBMS, which is the focus of our current research.
In the rest of this paper, we discuss the design of Stable-
Buffer manager in section 2 and 3. After that, we present
some preliminary evaluation result in section 4 and list the
related work in section 5. Finally, we conclude the paper in
section 6.



2 System Overview

Fig. 1 gives an overview of the StableBuffer manager. It
is an extension of traditional DBMS buffer manager. New
components such as StableBuffer, StableBuffer Translation
Table and Write Stream Decompositors are added.

StableBuffer

DBMS Buffer 
ManagerDBMS 

Transactions

StableBuffer
Translation Table

Write

Write Stream 
Decompositors

Main Memory SSD

Write

Read

Figure 1: The System Overview of StableBuffer Manager

1. StableBuffer is an pre-allocated focused area on SSD.
It is usually implemented as small pre-allocated tem-
porary file. The size of the StableBuffer should not ex-
ceeds the size of the RAM in the controller of SSD. For
example, in a 16GB MTron MSD-SATA-3525 SSD,
the size should be less than 8MB. The StableBuffer
will be accessed in the granularity of pages, which has
the same size as pages in buffer manager of DBMS.

2. StableBuffer Translation Table is a data structure main-
taining the mapping between the offset of page in-
side the StableBuffer and the destination address.
For example, if a page is issued to write to ad-
dress 12345678AB but now temporarily written
to the 32th slot of StableBuffer, a mapping en-
try “<12345678AB, 32>” is inserted into Stable-
Buffer Translation Table. In order to facility fast
lookup, insert and delete, StableBuffer Translation Ta-
ble can be implemented as a hash table.

3. Write Stream Decompositors are programs finding in-
stances of good write patterns. They run in concur-
rent threads, scan the entries of StableBuffer Transla-
tion Table and try to decomposite instances of good
write patterns. When StableBuffer runs out of slots,
some instance of good write patterns will be selected
to be read its pages from StableBuffer and then written
to their destinations. Thus some of the slots of Stable-
Buffer will be freed for new coming pages.

Now we elaborate how a page is written through Stable-
Buffer manager. Consider that a dirty page is issued by a
transaction (as you can see in up left corner of Fig. 1). First
it goes through a traditional DBMS buffer manager and may
result as a random write to SSD. When we get the write re-
quest, we try to write the page to StableBuffer (shown in up
center of Fig. 1). If we find a free slot in StableBuffer, the
page is written and a new mapping entry will be inserted
into StableBuffer Translation Table. Otherwise, we have
to free some slots of StableBuffer first. The Write Stream
Decompositors will be examined one by one to select an in-
stance of good write patterns (the details will be discussed
in section 3). With an instance, we read its pages from Sta-
bleBuffer, write them to their destinations according to the
mapping entries in StableBuffer Translation Table. After
that we delete these entries from StableBuffer Translation
Table. Now we have free slots of StableBuffer and can write
the issued page to it. In either case, we only write pages
to StableBuffer, which is a focused area, or write pages in
good write patterns. Though we pay extra IO and computa-
tion cost in managing StableBuffer, it is still could be better
than directly write pages in the order they are issued.

Notice that when write a page into StableBuffer, besides
inserting mapping entry to StableBuffer Translation Table,
its destination address and a timestamp should also be em-
bedded into the metadata of the page. This is to serve the
recovery of StableBuffer Translation Table after the system
crush. For a page at offset O whose destination address is
D, by comparing its timestamp T to the latest update time
T0 of page at destination D, we know whether the page is
swapped out from StableBuffer. In detail, if T > T0, the
page is not swapped out yet. Therefore we can insert a
mapping entry “<D,O>” to StableBuffer Translation Ta-
ble. Otherwise (i.e., T ≤ T0), since the page is already
swapped out, we can mark the Oth slot of StableBuffer as
free.

Because pages could be temporary stored in Stable-
Buffer, we have to query StableBuffer when answer the
request of retrieving page by transaction through DBMS
buffer manager. In detail, when get a request of retrieving
some page at D, first we need to check whether there is an
entry “<D,O>” in StableBuffer Translation Table. If there
is, we read page at Oth slot in StableBuffer and return it.
Otherwise we issue a read request to SSD for the page at D.
By implementing StableBuffer Translation Table as a hash
table on D, this query to StableBuffer is efficient and will
not harm overall performance.

3 Write Stream Decompositors

Fig. 2 illustrates how write stream decompositors work
in StableBuffer manager. Write Stream Decompositors are
programs which scan the entries of StableBuffer Transla-



index

Sequential Write 
Stream

Partitioned 
Sequential Write 
Stream

Focused Write 
Stream

StableBuffer
Translation Table

Decomposite
Sequential Write 
Decompositor

Petitioned 
Sequential Write 
Decompositor

Focused Write 
Decompositor

Decompositors

Share

Ordered 
Sequential Write 
Stream

Ordered 
Sequential Write 
Decompositor

Share

index

index

index

Figure 2: The Framework of Decompositors

tion Table for instances of good write patterns. They are
designed to work concurrently, and may identify different
instances of different good write patterns sharing same set
of entries. They may require local data structures to track
on relevant information of entries in StableBuffer Transla-
tion Table. For example, a sequential write decompositor
may build a search tree index on destination addresses of
mapping entries to facility the searching process. These
data structures can be viewed as an index on entries of Sta-
bleBuffer Translation Table. Some decompositor can share
other’s index to save the system recourses. E.g., partitioned
sequential write can reuse the index of sequential write de-
compositor to search sequential write instances. As ev-
ery index should be updated whenever insert/delete entry
to/from StableBuffer Translation Table, sharing index be-
tween decompositors can save both computation resource
and memory.

With multiple instances of good write patterns, selecting
which instance to swap out from StableBuffer becomes a
non-trivial problem. Intuitively, we trend to select the in-
stance of write pattern which performs the best on SSD. For
example, if there are instances of sequential write and fo-
cused random write pattern, we should select the instance
of sequential write, because the performance of sequen-
tial write is usually better than focused random write. On
the other hand, how many slots the instance can free from
StableBuffer is also important. The reasons are: First the
write sequence of local short instances of good write pat-
terns could be random in global. For example, consider the
write sequence “1,2,56,57,6,7,42,43,3,4,...”.
It is random in global, but actually could be generated by
every time selecting instance of sequential write with two
pages, i.e., “1,2”, “56,57”, “6,7”, “42,43”, “3,4” and
so on. Second selecting short instances may cause frequent
demands on freeing slots for new write requests because
each time few slots can be freed. Since updating Stable-
Buffer Translation Table and indices does consume system
resources, these frequent demands could cause a degener-

ation on overall performance. Therefore, in our solution,
we select the instances {Ii} of different write patterns {Pi}
based on formula 1,

min{Ti

Li
} (1)

where Ti is average time needed to write single page of
the write pattern Pi and Li is the size of Ii. In particular, we
will select the instance with fastest write speed and biggest
size.

In our system, we propose four write stream decomposi-
tors, corresponding to four good write patterns described in
section 1. Following we will discuss the function, design
and implementation of them one by one.

Sequential Write Decompositor
This decompositor maintains a search tree index on the

destination addresses of mapping entries. The decompos-
itor scans the index in the ascending order of destination
addresses to find continuous subsequences on destination
address. Each continuous subsequence is corresponding to
an instance of sequential write. Finally the largest continu-
ous subsequence will be return as the decomposition result.

Partitioned Write Decompositor
Partitioned write stream is a group of instances of se-

quential write with same length, so it can share the search
tree index of Sequential Write Decompositor. When to de-
composite, the Partitioned Write Decompositor first finds
continuous subsequences similar to Sequential Write De-
compositor. After that, it groups continuous subsequences
according to their lengths. Any group with two or more
continuous subsequences is then an instance of partitioned
write. The largest group will be return as the decomposition
result.

Ordered Write Decompositor
Ordered write differs from sequential write in that there

is fix distance between destination addresses. But it can also
reuse the search tree index of Sequential Write Decomposi-
tor. When scan the entries, we try to find not the continuous
subsequence, but subsequence with even distance between
destination addresses. Finally the largest subsequence will
be returned as the decomposition result.

Focused Write Decompositor
Focused Write Decompositor searches for clusters of en-

tries whose destination addresses are focused in small area.
It maintains a hash index of entries of StableBuffer Transla-
tion Table. In detial, given an entry “< D, O >”, it will be
hashed into bucket bD/Mc, where M is the upper bound of
size of focused area of the SSD. It is clear that either a page
cluster is inside a bucket, or at most expands to two sibling
buckets. When to decomposite, we can efficiently find the



biggest cluster by scanning the buckets in ascending order.
The biggest cluster will be returned as the decomposition
result.

4 Preliminary Performance Evaluation

We have implemented a prototype StableBuffer manager
on top of a Windows desktop PC equipped a 16GB MTron
MSD-SATA-3525 SSD. In the prototype, StableBuffer is
implemented as a pre-allocated temporary file with the size
not exceeding 8MB, and it is accessed with a page oriented
interface. The prototype can read write stream from write
trace file. All four kinds of decompositors described in sec-
tion 3 are implemented.

In our preliminary performance evaluation, we use the
write trace from Oracle 11g DBMS running TPC-C bench-
mark. The benchmark simulates an enterprise OLTP retail-
ing application, which processes transactions keeping in-
sert/delete/update records from a 8GB database. Therefore
the write addresses in write trace expand from 0 to 8GB. In
total there are 488623 write requests in our write trace for
testing. The page size is set to be 4KB, and the StableBuffer
is configured to be 8MB, corresponding to 2048 pages.

We compare the performance of StableBuffer with the
Direct method, which processes write requests one by one
in their appearing order in the trace file. Fig. 3 shows the
evaluation result. We can see that there is a 1.5x perfor-
mance gain with StableBuffer against Direct.

0

0.5

1

1.5

2

2.5

3

Direct StableBuffer

Ba
nd

wi
dth

 (M
B/s

)

Figure 3: Evaluation result on Oracle 11g TPC-C Trace

5 Related Work

Database management on flash-based storage media has
attracted increasing research attention in recent years. Early
work focused on assembling flash chips to simulate tradi-
tional hard disk [8, 4, 9] and guaranteeing long life span of
data [3, 5, 9]. Recent research work starts to tune DBMSs

to meet the characteristics of flash disks for a better per-
formance. In view of the asymmetric read/write speed and
the erase-before-write limitation, Wu et al. [14] proposed
log-based indexing scheme for flash memory. Observing
that the log-based indexing scheme is not suitable for read-
intensive workload on some flash devices, Nath and Kansal
[12] developed an adaptive indexing method that adapts to
the workload and storage device. Lee and Moon [10] pre-
sented a novel storage design called in-page logging (IPL)
for DBMS in order to overcome the possible write issues.
S. Chen [7] investigated exploiting flash devices to improve
the synchronous logging performance of DBMS.

More recently there are more and more research works
focus on improving DBMS performance on Solid State
Drive. Agrawal et al. [1] first published a paper on re-
vealing the internal architecture showing that the SSD is in-
deed very different devices comparing to simple flash-based
disks, such as USB flash memory, Compact Flash card and
Secure Disk card. uFLIP by Bouganim et al. [2] proposes
a microbench mark to help researchers systematically un-
derstanding flash IO pattern on SSD. It also provides sev-
eral interesting hints on the best practices when write pages
on SSD in the conclusion part. In parallel, Feng et al. [6]
did a similar work to Bouganim. In their work they also
point out that fragmentation can cause unignorable perfor-
mance degeneration. [11] investigated how the performance
of standard DBMS algorithm is affected when the conven-
tional magnetic disk is replaced by SSD. [13] presented fast
scanning and joining method for relational DBMS on SSD.

6 Conclusion

We focus our study on overcoming poor random write
performance of SSD for DBMS applications. Different
from previous research work, we propose the StableBuffer
solution which does not rely on modifying the firmware or
hardware of SSD. It is motivated by systematic study of
IO performance of various write patterns on SSD. The ba-
sic idea is to decomposite the write streams of good write
patterns after archiving the write requests into a temporary
focused area called StableBuffer. It is implemented as a
software model inside DBMS buffer manager. Preliminary
evaluation result shows that there is 1.5x performance gain
with StableBuffer manager on TPC-C benchmark trace.

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for ssd per-
formance. In ATC’08, pages 57–70. USENIX Association,
2008.

[2] L. Bouganim, B. T. Jónsson, and P. Bonnet. uflip: Under-
standing flash io patterns. In CIDR, 2009.



[3] L. Chang. On efficient wear leveling for large-scale flash-
memory storage systems. In SAC’07, pages 1126–1130,
2007.

[4] L. Chang, T. Kuo, and S. Lo. Real-time garbage collection
for flash-memory storage systems of real-time embedded
systems. Trans. on Embedded Computing Sys., 3(4):837–
863, 2004.

[5] Y. Chang, J. Hsieh, and T. Kuo. Endurance enhancement
of flash-memory storage systems: an efficient static wear
leveling design. In DAC’07, pages 212–217, 2007.

[6] F. Chen, D. A. Koufaty, and X. Zhang. Understanding intrin-
sic characteristics and system implications of flash memory
based solid state drives. In SIGMETRICS ’09, pages 181–
192. ACM, 2009.

[7] S. Chen. Flashlogging: exploiting flash devices for syn-
chronous logging performance. In SIGMOD ’09, pages 73–
86. ACM, 2009.

[8] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-
memory based file system. In USENIX Winter, pages 155–
164, 1995.

[9] H. Kim and S. Lee. A new flash memory management for
flash storage system. In COMPSAC’99, page 284, 1999.

[10] S. Lee and B. Moon. Design of flash-based dbms: an in-page
logging approach. In SIGMOD ’07, pages 55–66, 2007.

[11] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim.
A case for flash memory ssd in enterprise database applica-
tions. In SIGMOD, pages 1075–1086, 2008.

[12] S. Nath and A. Kansal. Flashdb: Dynamic self-tuning
database for nand flash. Technical Report MSR-TR-2006-
168, Microsoft Research, 2006.

[13] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe. Query processing techniques for solid state
drives. In SIGMOD ’09, pages 59–72. ACM, 2009.

[14] C. Wu, T. Kuo, and L. P. Chang. An efficient b-tree layer
implementation for flash-memory storage systems. Trans.
on Embedded Computing Sys., 6(3):19, 2007.


