Improving the generalization ability of face anti-spoofing methods from the perspective of the domain generalization.

Learning a generalized feature space that is shared and discriminative.

Network Components

- **Multi-adversarial Domain Generalization:**
 \[L_{DG} = \sum_{i \neq j} \left(D_{ij}(x_i, x_j) + D_{ji}(x_j, x_i) \right) \]
 - Train one feature generator to compete with all the N domain discriminators simultaneously.
 - A shared feature space is learned after one feature generator fools all the N domain discriminators.

- **Dual-force Triplet-mining Constraint:**
 \[L_{DG} = \sum_{i \neq j} \left(D_{ij}(x_i, x_j) + D_{ji}(x_j, x_i) \right) \]
 - Fake face with the same identity has similar facial characteristics; real face with the different identity has different facial characteristics.
 - Distance of each subject to its intra-class domain positive smaller than to its intra-cross-domain negative.

- **Auxiliary Face Depth Information:**
 \[L_{DG}(X; Dep) = \| Dep(G(X)) - 1 \|^2 \]
 - Feature space guided to exploit generalized differentiation cases related to the face depth in the learning process.

Experimental Results

- **Datasets**
 - CASIA
 - MSU
 - Oulu

- **Comparison Results**
 - Ours
 - Ours_w/o

- **Ablation Study**
 - Methods
 - Ours
 - Ours_w/o

- **Limited source domains**
 - Methods
 - M4L to C
 - M4L to O

- **Attention Map**
 - Original
 - Binary CNN
 - Ours

- **Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection**
 - Rui Shao, Xiangyuan Lan, Jiawei Li, Pong C. Yuen
 - Department of Computer Science, Hong Kong Baptist University