
Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

1

Special Interest Group on Innovative Software 2011-2012
Workshop on Android app development

Session 1: Application Fundamentals

Contents
1 Setup development environment and emulator ... 2

1.1. Download and install the ADT ... 2

1.2. Download the Android SDK ... 4

2 Steps for developing Android apps .. 7

3 Control the emulator ... 8

4 Understand fundamental concepts ... 11

4.1. Android architecture .. 11

4.2. Application components .. 11

4.3. Application resources .. 12

4.4. Define the app properties in Android .. 13

5 Create your first application... 14

5.1 Run and debug apps in emulator .. 15

5.2 Run and debug apps in actual device .. 17

6. Create UI element using XML .. 18

6.1. Understand the XML layout structure ... 19

6.2. Add text and image to the UI... 19

7. Handle user input and more interface design ... 26

7.1. Accept user input by adopting EditText and Button 26

7.2. Activity lifecycle ... 29

7.3. Use TableLayout for structural elements and data 30

7.4. Use ScrollView for large content ... 33

8. Prepare to publish your app .. 35

8.1. Prepare the app icon ... 35

8.2. Change the app name and apply localization .. 36

8.3. Sign and export the APK .. 37

9. Reference and learning resources: .. 39

Prepared by Mr. Felix Tam, Committee Member of the Special Interest Group (SIG) on Innovative Software

2011-2012, Department of Computer Science, Hong Kong Baptist University.

All rights reserved. All content copyright and other rights reserved by its respective owners. Any content,
trademark(s), or other material that may be found on this document remains the copyright of its
respective owner(s). In no way does the Special Interest Group on Innovative Software claim ownership
or responsibility for such items, and you should seek legal consent for any use of such materials from its
owner.

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

2

1 Setup development environment and emulator

Tools that you will need for Android app development:
1. Eclipse IDE for Java Developers
2. Java SDK
3. ADT plugin for Eclipse
4. Android SDK

1.1. Download and install the ADT
1. Make sure you have the JDK installed on your computer. If no, please download

it from http://www.oracle.com/technetwork/java/javase/downloads/index.html
and select the version according to your operating system.

2. Start Eclipse, go to Help > Install New Software, click on the Add in the top-right
corner. (You may get Eclipse IDE for Java Developers at
http://www.eclipse.org/downloads/)

3. In the Add Repository dialog, type ADT Plugin for the name and
https://dl-ssl.google.com/android/eclipse/ for the location respectively.

4. After a while you will see an option called Developer Tools. Select the checkbox

next to those options and click Next to continue.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
https://dl-ssl.google.com/android/eclipse/

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

3

5. Click Next, Finish and accept the terms of the license agreements in order to get
the ADT plugin from the remote site. When you are asked for unsigned content,
click OK to accept. You have to restart Eclipse after the installation is finished.

6. After restarting Eclipse, you will be asked to configure an Android SDK as well.

Click Cancel at this moment since we will download and configure the SDK
manually.

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

4

1.2. Download the Android SDK
1. Go to http://developer.android.com/sdk/index.html and download the latest

SDK in zip format.
2. Unzip the zip file and you will get the folder android-sdk-windows. Put the SDK

folder to your favorite location. In this tutorial, we will put it under the Eclipse
root folder.

3. The SDK does not contain any Android platform binary initially. If you need to
develop an app which bases on Android 4.0, you have to download the Android
4.0 platform binary and other related stuff. In this workshop, all of our tutorials
and examples will base on Android 2.3.3. To download Android 2.3.3 platform
binary, please navigate to your SDK folder and start SDK Manager.exe.

4. Download and install the packages according to the screenshots:

http://developer.android.com/sdk/index.html

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

5

5. Choose Accept All and click Install. This should take a few minutes.

6. When you are asked to restart ADB, choose Yes.
7. We can now create an Android 2.3.3 emulator for testing and debugging. Go to

the SDK folder and start AVD Manager.exe.
8. In the Android Virtual Device Manager, click New to create a new Android

emulator.
9. Please refer to the screenshot below for the options in creating the emulator.

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

6

10. You can create emulators as many as you want. Please make sure you have
downloaded the corresponding Android platform using the SDK Manager before
making an emulator.

11. We also need to specify the SDK directory in Eclipse. Inside Eclipse, select

Window > Preferences > Android, click Browse to choose the location of your
SDK directory.

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

7

2 Steps for developing Android apps

Source: Google Inc., 461px x 738px, http://developer.android.com

http://developer.android.com/

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

8

3 Control the emulator

1. To start the emulator, go to the Android Virtual Device Manager. You can start
the manager by double clicking the AVD Manager.exe in the SDK directory or
the icon in Eclipse toolbar.

2. Choose the emulator, click Start and Launch.

3. After the emulator has successfully booted, you will see the following the screen.

(It may take several minutes to boot up the emulator for the first time.)

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

9

4. Here is a list of shortcut that you may use it during your development:
Emulated Device Key Keyboard Key
Home HOME
Menu F2 or Page-up button
Back ESC

Call/dial button F3

Hangup/end call button F4

Search F5

Power button F7

Switch to previous layout orientation

(for example, portrait, landscape)
KEYPAD_7, Ctrl-F11

Switch to next layout orientation

(for example, portrait, landscape)
KEYPAD_9, Ctrl-F12

Toggle cell networking on/off F8

Toggle full screen mode Alt-Enter

Toggle trackball mode F6

Enter trackball mode temporarily

(while key is pressed)
Delete

Source: Google Inc., http://developer.android.com
Please refer to
http://developer.android.com/guide/developing/tools/emulator.html for
more information.

5. We can use DDMS (Dalvik Debug Monitor Server) to control and monitor
emulators and actual devices. You will find DDMS in the tools/ directory of the
SDK and we can also start it in Eclipse. To do this, click Window > Open
Perspective > Other > DDMS.

http://developer.android.com/
http://developer.android.com/guide/developing/tools/emulator.html

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

10

6. By using DDMS, you will able to simulate phone calls, network status, GPS
coordinate for the emulator. You can also browse the file inside the emulator
and using Logcat. Logcat is very important towards your development as it
provides you a view for collecting and viewing the system debug output.

7. For example, if your application is force closed, then you are required take a

look at the logcat to see the exceptions thrown by the Android system

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

11

4 Understand fundamental concepts

4.1. Android architecture

Source: Google Inc., 713px x 512px, http://developer.android.com

For details, please refer to
http://developer.android.com/guide/basics/what-is-android.html

4.2. Application components
1. Activities

 Each activity is a single screen with user interface
 Every screen is implemented as a subclass of android.app.Activity

http://developer.android.com/
http://developer.android.com/guide/basics/what-is-android.html

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

12

2. Services
 Run in background
 No user interface
 Designed for performing long-running tasks
 Every service is implemented as a subclass of android.app.Service

3. Content providers

 A shared set of application data
 E.g. Contacts, Calendar (Android 4.0)

4. Broadcast receivers
 A component designed to response to global broadcast

announcements
 System broadcast announcements E.g. change of battery

status/network status

4.3. Application resources
 Provide other resources to your apps. E.g. Image, Video, Audio, Text etc…
 Resource are put under res directory of your Android project
 Every resource is identified by a resource ID

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

13

 Resources can have qualifier names for alternative E.g. layout-land,
values-ja, drawable-hdpi etc

4.4. Define the app properties in Android
We use a file called Manifest.xml to describe information about your app to the
system and Android Market as well. Inside this file, you can:

1. Define the package name
2. Define version code and version name
3. Define app icon
4. Define the components (Activities/Services/Receivers etc.)
5. Define the permission(s) should be granted

You may refer to
http://developer.android.com/guide/topics/manifest/manifest-intro.html for details.

http://developer.android.com/guide/topics/manifest/manifest-intro.html

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

14

5 Create your first application

1. Start Eclipse, select File > New > Project and choose Android > Android Project.

2. Type Hello Android in Project Name.

3. Select Google APIs (API level 10).

Note:

 You will have more Build Target once you downloaded more emulator
images.

 Google APIs includes both standard Android and Google libraries such
as Google Maps. Thus, if your application requires the use of Google
Maps, you must use Google APIs as the build target.

4. Type com.hkbu.helloandroid in Package Name, check the box Create Activity

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

15

and choose 10 (Google APIs (Google Inc.)) as the Minimum SDK.

5. Since we have checked the option “Create Activity”, the ADT plugin will

automatically generate a stub activity and related resources right after the
project is created.

5.1 Run and debug apps in emulator
1. We can try to test the app in the emulator by choosing “Run” and select

“Android Application”.

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

16

2. The ADT plugin will automatically launch the emulator, install and run the
app once the emulator is successfully booted.

Note:
 If you have more than one emulator created or device connected and

satisfied the requirements, you will have a dialog to choose which emulator
should be used for testing.

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

17

5.2 Run and debug apps in actual device
1. Make sure your device driver is properly installed otherwise the ADB will not be

able to detect the present of your device.

2. On your device, go to Settings > Applications > Development and enable the
USB debugging option. If you are using Android 4.0, the path will be System
settings > Developer options instead.

3. Run the application from Eclipse using the same steps shown in 5.1.
4. Select your actual device in Android Device Chooser window. (Please refer to

the note in 5.1)

Android 2.3 or below Android 4.0

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

18

6. Create UI element using XML

All UI elements are built using View
and ViewGroup objects in an
application. The View can be
extended to a TextView,
ImageView, WebView etc, and the
ViewGroup serves as layout
architecture which describes how
the View to be organized in an
activity. Apart from building UI
directly in the source code, we can also create the interface using XML format. By
using the XML, we can simply our code and make debugging easier.

The XML layout file is saved in res/layout. By using the Hello Android example, you
will find the initial UI is defined in main.xml. When you open the main.xml, Eclipse
will show you a graphical UI editor for the interface preview.

However, the graphical UI editor is not sophisticated enough. The final appearance of
the interface layout may differ from the preview in the editor. Therefore, the best
practice is to create the UI elements by editing the XML code directly. To do this, you
can click on the XXX.xml tab.

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

19

6.1. Understand the XML layout structure
Using the main.xml as an example:
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello" />

</LinearLayout>

The LinearLayout is a ViewGroup which holds its children in a single column or a
single row. The above LinearLayout has only one child – TextView. Android uses
TextView to display text to users. For a complete list of ViewGroup and View, please
refer to http://developer.android.com/reference/android/view/ViewGroup.html
and http://developer.android.com/reference/android/view/View.html respectively.

Each kind of ViewGroup or View has its own attributes. The attributes usually start
with android:xxx where the xxx is the property name of an attribute. Different
ViewGroup and View share some common attributes but some of them are unique.
For a complete set of attributes, please refer to the Reference section in
developer.android.com.

To have a quick outlook on different layouts and UI elements, please go to
http://developer.android.com/resources/tutorials/views/index.html for the
samples. Now, we will see how to add an image just below the text in our main.xml.

6.2. Add text and image to the UI
1. Prepare an image. You may download this

http://developer.android.com/assets/images/home/ics-android.png as an
example.

2. Put the image under res/drawable. If this folder is not found, you can create it
manually using the Package Explorer in Eclipse.

http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/resources/tutorials/views/index.html
http://developer.android.com/assets/images/home/ics-android.png

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

20

3. Drag the image directly to the drawable folder through the Package Explorer. In

the File Operation, choose Copy files. You also need to rename the file if the
characters are not in (a-z), (0-9), (_) and (.) .

4. In the main.xml, add the following codes below the TextView.

<ImageView

 android:src="@drawable/ics_android"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 The ImageView is used to show an image in the interface.
 The android:src is used to specify the source of the image file. Here the

path and the file name are @drawable/ics_android. (File extension is
omitted)

 The android:layout_width and android:layout_height="wrap_content" is
used to specify the ImageView size which is the same as the image itself.

For the list of complete attributes and values of ImageView, please refer to
http://developer.android.com/reference/android/widget/ImageView.html.

5. You can press the Graphical Layout tab to preview the result.
6. Run your app in the emulator and see the actual result. The final appearance

should look likes this:

http://developer.android.com/reference/android/widget/ImageView.html

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

21

7. The above example uses LinearLayout which is the most basic layout in Android.

If we need to achieve the result below, you have to complete the following
changes:
 Create a new layout XML file and use the RelativeLayout
 Resize the ImageView
 Add one more ImageView and refer to the new image
 Add more attributes to the TextView and ImageView

8. Now we need to create a new layout file called main_relative inside the

res/layout. Right Click on the layout folder in Package Explorer and choose New

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

22

> Other > Android > Android XML Layout File. Type main_relative for File and
select RelativeLayout in Root Element. Hit Finish when you are done.

9. Add a TextView to the RelativeLayout by inserting following code:
 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello"/>

10. Since elements in RelativeLayout are depending to each others. We have to add
ID to each element as an identifier. To add an ID for the TextView, we can use
android:id="@+id/MyText". (Now the ID of this TextView is MyText)

11. Next, we can add two ImageViews for our two images. The second image can be
downloaded via this link (Also put this image in res/drawable, replace the (-)
with (_) for the file name):
http://developer.android.com/assets/images/home/maps-large.png

12. Insert the following codes for the first ImageView:
<ImageView

 android:id="@+id/ImageView1"

 android:layout_width="138dp"

 android:layout_height="102dp"

 android:src="@drawable/ics_android"

 android:layout_below="@id/MyText"/>

 We specify the width and height in android:layout_weight and
android:layout_height. Please note that we should use dp for the unit of

http://developer.android.com/assets/images/home/maps-large.png

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

23

dimension. dp stands for Density-independent Pixel which is an abstract
unit based on the physical density of the screen. This unit uses a 160 dpi
screen as a reference. By using dp, we can ensure the same physical image
dimension on every device with different screen sizes and resolutions. For
details, please refer to:
http://developer.android.com/guide/practices/screens_support.html

 The android:layout_below:"@id/MyText" defines the first ImageView
should be placed below MyText (TextView).

 Go to /src/com.hkbu.helloandroid/HelloAndroidActivity.java, change
(R.layout.main) to (R.layout.main_relative) for pointing to our new layout
file.

 Till now, the interface will look likes this:

13. To add the second image, we can copy the codes of the first ImageView and

paste them as the last element of the RelativeLayout. However, you have to
modify the following attributes:
 Change the value of android:id to @+id/ImageView2
 Change the value of android:src to @drawable/maps_large
 Add android:layout_toRightOf="@id/ImageView1". This means that the

second ImageView will be placed on the right-hand side of the first
ImageView.

 Till now, the interface will look likes this:

http://developer.android.com/guide/practices/screens_support.html

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

24

14. We can add margins for the TextView and ImageView to make them not to close

to each others.
 Add android:layout_marginBottom="10dp" to the TextView
 Add android:layout_marginRight="10dp" to the first ImageView
 Till now, interface will look likes this:

15. In the next step, we will align the two images to the center of the screen

horizontally. Since RelativeLayout does not support centering more than one
child element in the same height, we have to use LinearLayout to encapsulate
the two ImageViews. Add the LinearLayout and move the ImageViews into it by
using the following code:

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

25

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout … …>

<LinearLayout android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_below="@id/MyText"

 android:orientation="horizontal"

 android:gravity="center">

 <ImageView

 android:id="@+id/ImageView1"

 … …/>

 <ImageView

 android:id="@+id/ImageView2"

 … …/>

 </LinearLayout>

</RelativeLayout>

 We moved the attribute android:layout_below="@id/MyText" from the
first ImageView to the LinearLayout to make sure our LinearLayout will be
placed under the TextView. Also, remove the same attribute for the second
ImageView.

 You also need to remove android:layout_toRightOf="@id/ImageView1"
from the second ImageView since it is only for RelativeLayout before.

 The default direction for aligning elements of LinearLayout is vertical, we
have to use android:orientation="horizontal" for horizontal alignment.
android:gravity="center" is used to center ImageViews in the screen.

 The final result:

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

26

7. Handle user input and more interface design

In this section we will learn how to handle simple user input and manipulate the UI
elements in Java code. We will add a TextField and a Button under our images.

7.1. Accept user input by adopting EditText and Button
1. Add an ID to the LinearLayout (E.g. android:id="@+id/MyLinearLayout")
2. Add an EditText (For inputting text) below the LinearLayout

<EditText android:id="@+id/MyTextField"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_marginTop="10dp"

 android:layout_below="@+id/MyLinearLayout"/>

3. Add a Button at the bottom of the screen.
<Button

android:id="@+id/MyButton"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:text="Click Me!" />

4. When users click on this button, the app should perform following actions:
 The text in the TextView will be change to those users typed in the EditText
 The images in the two ImageViews will be swapped.

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

27

5. From now on, we will write the Java code to listen the action when users click
on the button. Add the following code above the “onCreate()” method in
HelloAndroidActivity.java.
Button myBtn;

TextView myTextView;

EditText myEditText;

ImageView myImgView1;

ImageView myImgView2;

Here we create four null references for our Button, TextView and two
ImageViews respectively. Import any necessary package suggested by Eclipse.

6. In the onCreate() method, add the following code below the setContentView()
method:
myBtn = (Button)findViewById(R.id.MyButton);

myTextView = (TextView)findViewById(R.id.MyText);

myEditText = (EditText)findViewById(R.id.MyTextField);

myImgView1 = (ImageView)findViewById(R.id.ImageView1);

myImgView2 = (ImageView)findViewById(R.id.ImageView2);

 We use the findViewById() method to get the reference to the UI created
using XML format.

 The R class will be automatically generated by AAPT (Android Asset
Packaging Tool) and updated once you added or updated a resource. We
will always use this class to handle all the elements located in the res/
directory. For details, please refer to
http://developer.android.com/guide/topics/resources/accessing-resources.
html

7. Add the following code below the onCreate() method to create an anonymous
implementation of OnClickListener:
private OnClickListener myBtnListener = new OnClickListener() {

 @Override

 public void onClick(View arg0) {

 }

 };

We may use Eclipse’s quick-fix feature to fix most of errors. Note that for
onClickListener you should import android.view.View.OnClickListener

8. Inside the onCreate() method, add the following code to register the
myBtnListener to myBtn:

myBtn.setOnClickListener(myBtnListener);

9. Add the following code to the onClick function:

http://developer.android.com/guide/topics/resources/accessing-resources.html
http://developer.android.com/guide/topics/resources/accessing-resources.html

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

28

myTextView.setText(myEditText.getText());

 We use the getText() and setText() method to grab the text from the
EditText and then set it to the TextView.

10. Then add the following code to swap the images for our ImageViews:
myImgView1.setImageResource(R.drawable.maps_large);

myImgView2.setImageResource(R.drawable.ics_android);

 We use the R class again to refer to our images. The R class has different
subclasses for each type of resources. For image, it is R.drawable.

11. That’s it! Try to run it on the emulator or on your device. For a list of R
subclasses, please refer to
http://developer.android.com/guide/topics/resources/available-resources.html

http://developer.android.com/guide/topics/resources/available-resources.html

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

29

7.2. Activity lifecycle
In our previous example, we create references and register event listener inside the
onCreate() method. It is because the onCreate() method will be called once the
activity is started.

Source: Google Inc., 545px x 711px, http://developer.android.com

Things you have to know:
Entire lifetime: Happens between onCreate() and onDestory
Visible lifetime: Happens between onStart() and onStop()
Foreground lifetime: Happens between onResume() and onPause()
For details, please refer to
http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/
http://developer.android.com/reference/android/app/Activity.html

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

30

7.3. Use TableLayout for structural elements and data
Sometimes if you like to position your UI elements or displaying a set of data in rows
and columns, using TableLayout will be much more convenient than using
LinearLayout or RelativeLayout. Suppose we have the following set of data need to
be shown:
Chinese (Traditional): Chinese - Hong Kong SAR (zh_HK)
Arabic: Israel (ar_IL)
Bulgarian: Bulgaria (bg_BG)
Catalan: Spain (ca_ES)
Czech: Czech Republic (cs_CZ)
Danish: Denmark(da_DK)

1. Start a new project in Eclipse using the steps written in section 5. For the Project

Name and Package Name, we will use Table Layout Sample and
com.hkbu.tablelayoutsample respectively.

2. Edit the main.xml, change the LinearLayout to TableLayout. Remove the
android:orientation="vertical" attribute and the default TextView.
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

</TableLayout>

3. To add rows to the TableLayout, we can use <TableRow></TableRow> to
enclose our UI elements. For example, we can use the following code to
construct the first row of text.
<TableRow>

 <TextView

 android:layout_width="fill_parent"

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

31

 android:layout_height="wrap_content"

 android:text="Chinese (Traditional):" />

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Chinese – Hong Kong SAR (zh_HK)" />

 </TableRow>

*The number of elements in <TableRow></TableRow> equals to the number of
columns in a row. We do not need to explicitly specify the column.

4. Please use the same way for inserting the rest of data.
5. Till now, the interface will look likes this:

6. As you can see, if the text is too long in a cell, it will not be wrapped
automatically. Therefore, we have to add an additional attribute
android:shrinkColumns to <TableLayout>. This attribute will shrink a column
based on the index provided. You can shrink more than one column by
separated index using comma. Please note that the column is a zero-based
index. In our example, add the following attribute to <TableLayout>

android:shrinkColumns="1"

 After adding this attribute, the result will be like this:

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

32

7. If we need a cell to span over columns, all you need is to add an attribute called
android:layout_span to the elements in <TableRow>. For example, if we need to
add a TextView as a header to the table, you can add the following code to be
the first element in <TableLayout>.
<TableRow>

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="System Locales"

 android:layout_span="2"

 android:gravity="center" />

</TableRow>

8. To add space between each row, we can add some padding to the <TableRow>

For example: android:padding="5dp"
9. To add space between each column, we can add some margin to the elements

(TextViews in this case). For example: android:layout_marginLeft="5dp"
10. Till now, the interface will look like this:

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

33

7.4. Use ScrollView for large content
When using the TableLayout for showing a large volume of data, the TableLayout may
not be shown completely, as it is larger than the screen size.

1. To solve this problem, we can use ScrollView is to enable scrolling for the

TableLayout. The ScrollView extends the FrameLayout and it will enable the
scroll functionality of its child. Please note that the ScrollView can only contain
one child. If you want to scroll more than one UI elements at the same time, you
have to encapsulate UI elements first.

2. Add ScrollView to enclose your <TableLayout>:
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">
<TableLayout>… …</TableLayout>

</ScrollView>

 *Note: You have to insert
xmlns:android="http://schemas.android.com/apk/res/android" for the outermost

Some data cannot be shown since
the screen size is not large enough

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

34

element.
3. Now you can view more data by scrolling the table up and down.

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

35

8. Prepare to publish your app

Before you publish the app to Android Market or distribute it to someone else, you
need to design an icon for your app instead of using the default one. Also, you may
need to change the app name according to your preference later on.

8.1. Prepare the app icon
For the app icon, we have to prepare at least three different sizes for different screen
resolutions. Namely: ldpi, mdpi, hdpi. (There are also xhdpi and tvdpi)
1. Please prepare an app icon and resize it to 36x36px for ldpi, 48x48 for mdpi and

72x72 for hdpi. For the app icon design guideline. Please refer to
http://developer.android.com/guide/practices/ui_guidelines/icon_design_lau
ncher.html. You can also download some free icons with different sizes at
www.iconarchive.com

2. Put the icon with the same file name (E.g. icon.png) into drawable-hdpi (72x72),
drawable-mdpi (48x48) and drawable-ldpi (36x36) respectively.

3. Open the AndroidManifest.xml, change
android:icon="@drawable/ic_launcher" to android:icon="@drawable/icon".
You can also delete the default launcher icon.

4. The new icon will be shown in the launcher after you deploy your app into your

emulator or device.

http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://www.iconarchive.com/

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

36

8.2. Change the app name and apply localization
When you look at the AndroidManifest.xml file, you can see an attribute
android:label="@string/app_name" is already added to the <application> tag. The
@string/app_name refers to a value of an elements call app_name located in
value/strings.xml. By storing the string in the values/strings.xml, we can easily
localize our apps by using different qualifier name (language code this time).
Notes: zh-rTW for Traditional Chinese, zh-rCN for simplified Chinese

1. Go to values/strings.xml, change the app name to HKBU.
2. Create a folder called values-zh-rTW in res directory.
3. Create a strings.xml file inside the values-zh-rTW and insert the following code:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">香港浸會大學</string>

</resources>

4. Run your app in the emulator or device, you can see the app name is changed.
5. Now, change the locale setting in the emulator or device by going in Settings >

Language and keyboard > Select language > 中文 (繁體). You should see the
name of the app will be automatically changed to Chinese.

*Note: If the launcher cannot display the Chinese app name, try to force close
the launcher in Settings > Applications > Manage applications > All > Launcher
> Force stop

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

37

8.3. Sign and export the APK
For every Android app, you have to sign it before uploading it to Android Market or
distributing it to other users. The certificate used by ADT for deploying your app in
the emulator or device is a debug key only. When exporting the Android app in
Eclipse, you can create your own private key if you have not created it before.

1. In Eclipse, highlight your project and select File > Export > Android > Export

Android Application.

2. Click Next to continue if the selected project is correct.
3. Select Create new keystore, choose the location for saving the new keystore

and enter the password.

4. Enter your personal information in Key Creation step. Below is a sample
screenshot:

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

38

5. Choose your location for saving the published APK file.

6. Now you are ready to distribute your APK file to Android Market or install it
directly in any devices.

Workshop on Android app development Session 1 SIG on Innovative Software, COMP, HKBU

39

9. Reference and learning resources:

• Official Android developer website (especially the Resources section):
http://developer.android.com/index.html

• Many common questions raised by other developers previously:
http://stackoverflow.com/

• Many Android tutorials with complete source code:
http://www.anddev.org

• Create your app interface online
http://www.droiddraw.org/

• 3rd party UI development framework:
https://github.com/cyrilmottier/GreenDroid

• Different ways for implementing listeners in Android app
http://tseng-blog.nge-web.net/blog/2009/02/14/implementing-listeners-in-you
r-android-java-application/

• Sams teach yourself Android application development in 24 hours
Online access from HKBU library:
http://www.hkbu.edu.hk/lib-cgi/ejour/safari.pl?t=9780132786904)

• Special Interest Group on Innovative Software homepage:
http://www.comp.hkbu.edu.hk/~sigis/

- End -

http://developer.android.com/index.html
http://stackoverflow.com/
http://www.anddev.org/
http://www.droiddraw.org/
https://github.com/cyrilmottier/GreenDroid
http://tseng-blog.nge-web.net/blog/2009/02/14/implementing-listeners-in-your-android-java-application/
http://tseng-blog.nge-web.net/blog/2009/02/14/implementing-listeners-in-your-android-java-application/
http://www.hkbu.edu.hk/lib-cgi/ejour/safari.pl?t=9780132786904
http://www.comp.hkbu.edu.hk/~sigis/

	1 Setup development environment and emulator
	1.1. Download and install the ADT
	1.2. Download the Android SDK

	2 Steps for developing Android apps
	3 Control the emulator
	4 Understand fundamental concepts
	2.
	3.
	4.
	4.1. Android architecture
	4.2. Application components
	4.3. Application resources
	4.4. Define the app properties in Android

	5 Create your first application
	5.1 Run and debug apps in emulator
	5.2 Run and debug apps in actual device

	6. Create UI element using XML
	6.1. Understand the XML layout structure
	6.2. Add text and image to the UI

	7. Handle user input and more interface design
	7.1. Accept user input by adopting EditText and Button
	7.2. Activity lifecycle
	7.3. Use TableLayout for structural elements and data
	7.4. Use ScrollView for large content

	8. Prepare to publish your app
	8.1. Prepare the app icon
	8.2. Change the app name and apply localization
	8.3. Sign and export the APK

	9. Reference and learning resources:

