

e-Transformation Technologies: Case Studies and The Road Ahead – A Value Chain Perspective

William Kwok-Wai Cheung

Department of Computer Science

Hong Kong Baptist University

Kowloon Tong, Hong Kong

Abstract

e-Transformation technologies, for the past few years, have

been evolving towards the goal of information integration

and system interoperability. While there is no doubt that

interoperable systems can enable many value-added

functions and provide new business opportunities, whether

the current development trend can really lead to some real

impacts on people’s daily lives is still a commonly asked

question. In this paper, we first describe a value chain of

e-transformation that starts from the availability of data

from heterogeneous sources and stops at the ultimate goal

of autonomous and context-aware computational services

provision. Based on this value chain, we first describe in

details two of our recently developed projects, namely

e-Bus Planner and e-Food Marketplace for demonstrating

the promises that can be provided by information

integration applications. Then, we address the limitations

of the projects from the end-user perspective and argue

that the value adding process should further be advanced

along the chain with the use of Web intelligence techniques

for analyzing Web-based social networks. The ultimate

objective is to benefit the end-users more directly and

immediately.

Keywords: e-Transformation, value chain, information

extraction, information integration, Web intelligence

1. Introduction

e-Transformation is here defined as the transformation of

some operational processes caused by the incorporation of

advanced information technology, where paradigm shift

and process reengineering are usually resulted. One of the

best examples is the evolution of e-commerce from

e-cataloging, to e-tailing, to e-business and eventually to

e-enterprise, causing a lot of companies to reconsider their

e-commerce strategies almost every year. e-Transformation

technologies, or simply called e-technologies, are referred

to as those technologies which facilitate the transformation

to happen efficiently and effectively. In many cases, the

e-technologies are common for different problem domains

(say e-commerce, e-learning, e-government). Some

examples include on-line payment, search engines,

middleware for system interoperability, use of ontology,

etc.

After more than a half-decade of e-transformation, there

are many important lessons learnt from the market. For

example, the first-mover strategy does not always work.

Also, running some processes on-line does not necessarily

imply that the involved cost is low [1]. Eventually, gaining

competitive advantage in the Internet is found to be not

easy and identifying the true values that different

e-technologies can provide to users becomes especially

important.

The e-transformation value chain in fact can roughly be

divided into a number of important value-adding phases: (1)

information dissemination, (2) information extraction and

Figure 1 The e-Transformation Value Chain.

integration, (3) services orchestration, and eventually to (4)

problem solving (in a distributed and wireless

environment). A more detailed overview and analysis are

provided in Section 2. According to the experience of

many not so successful e-transformation related examples

(no matter in e-learning, e-government, e-business, etc.),

one crucial factor lies in the fact that the end-users have not

been effectively satisfied by the existing e-services.

Recently, there have been a lot of effort in developing

techniques and applications which are adaptive to user

behaviors (autonomous/ubiquitous computing) and

environmental context (context-aware computing), with the

hope of adding high enough value so that the end-users

will eventually decide to get over the barrier and switch

from their traditional modes of operation to the ones

enabled by the new e-technologies. In addition, we believe

that in the last mile of value adding process, the value

added functions should be targeted at not only providing

new opportunities but also making them to be able to

benefit the end users directly.

In this paper, we first provide an overview of the

e-transformation value chain in Section 2. Then, we

describe in detail two of our recently implemented

prototypes for illustrating part of the e-transformation

mediation path in Section 3 and 4. Then, in Section 5, we

argue that in order for those related systems to have high

impact to end-users, Web Intelligence (WI) techniques

should be integrated into the devices commonly used by

ordinary users, e.g., personal information management

(PIM) systems, so that the underlying social intelligence

can readily be collected to achieve the high-level goals set

by the end-users in an autonomous and adaptive manner.

Section 6 concludes the paper.

2. The e-Transformation Value Chain

With the advent of hardware technologies for human

computer interaction (e.g., the use of touch-screens,

pen-based computers, speech recognizers) as well as the

ever-decreasing production cost, the digital divide due to

the proficiency in operating computing devices is gradually

closing up. However, penetration of information

technology into our daily lives still requires “smart”

enough software systems which can take some easily

specified high-level problems as input and solve them

based on up-to-minute information without further human

intervention (unless for necessary clarifications). For

example, we may be looking forward to the day when we

can ask our PDA (by pressing a button) or an information

kiosk (by presenting your smart card) for a “How to take a

bus home?” service and can get directly the bus route

numbers available in a nearby bus stop with the traffic

conditions taken into consideration. For another

business-related example, one can ask his/her desktop

computer for a “Want to place orders to suppliers for stock

refilling” service (saying by clicking a button on the

desktop) and the computer returns you a suggested

purchasing order after negotiating with the suppliers’

software agents. Of course, we know that we are still far

from the day with the aforementioned examples happened

in our daily lives. In this section, we try to look at the way

to achieve the goal using an e-transformation value chain.

The e-transformation value chain starts from Web pages of

heterogeneous sources to value-added services like

personal assistants and involves various e-technology

architectures and tools to make the value keep increasing

along the chain. Figure ? provides a pictorial view of the

value chain. For each phase of the chain, discussion related

to the information/functional characteristics, the tools

required, and the value being added will be provided in the

following.

2.1 Heterogeneous Information Sources

2.1.1 Sources as HTML Pages

Characteristics: HTML pages contain semi-structured as

well as unstructured information. They can be static or

dynamically generated (e.g., database driven). To contrast,

static Web pages is normally less structured (or sometimes

almost unstructured) while dynamic pages, as generated by

programs, should normally be more structured.

Tools: To support dynamically generated Web pages,

database connectivity via Web programs (e.g., DBI, JDBC,

etc.) is needed.

Value added: On-line users can get up-to-minute

information by visiting particular pages and locating the

information.

2.1.2 Sources as Web Services

Characteristics: Web services is an emerging standard of

on-line APIs. They can be simply information provision

services (in XML format through SOAP messaging) or

together with some computational processing involved.

The granularity and the structuredness of the accessible

information or services are determined by the Web

services’ “methods” whose details are normally publicized

in a repository (e.g., UDDI) using Web Services

Description Language (WSDL).

Tools: Matchmaking engines assisting the information

providers to match their own database schema to some

standard one are needed to facilitate effective

cross-institution (e.g., B2B) information exchange.

Value added: Information (structured data) can now be

made available to other computer programs, which in turn

enables systems interoperability and integration within or

between enterprises. In addition, by introducing a

presentation layer, the structured information in XML

format can easily be “transcoded” into other mark-up

languages like XHTML, WML, etc. for human-friendly

presentation.

2.2 Web Page Wrapper - Information Extraction

2.2.1 Wrapping HTML Pages

Characteristics: Information extracted from Web pages

using wrappers can then be made available to other

computer programs via, say, Web services.

Tools: Owing to the different structuredness of the data

embedded on Web pages, wrappers with different

capacities are needed. To extract tabulated data, wrappers

capable of analyzing the grammatical structures of HTML

tags are needed [2]. For some textual information items,

e.g., customers’ comments, more sophisticated techniques

capable of analyzing the natural language structures are

needed [3]. Note that this extraction process should

normally be done by some external brokers, rather than the

information providers, for providing further value-added

functions (see Section 2.3).

Value added: With the use of wrappers, we can enable a

Web page information source into a Web Service enabled

one, and thus the users can gain all the values as described

in Section 2.1.2.

2.3 Composite Service I – Information Integration

Characteristics: Information of different structures (e.g.,

due to the use of different XML tags or XML schemas) are

semantically integrated.

Tools: Tools that can perform matching of related XML

schemas with possibly missing items are needed (as it is

common that heterogeneous information sources contain

information details to different extents). Domain-specific

ontologies are commonly required. Related mark-up

language standards (OWL), editing tools and inference

engines are also needed.

Value added: Aligning semantically corresponding

information from heterogeneous sources can save on-line

users the effort in switching between different Web sites

and comparing in detail the embedded information, which

is commonly needed for comparison shopping.

2.4 Composite Service II – Service Orchestration

Characteristics: Semantic information can be interchanged

and semantic services can be interacted to solve a problem

via orchestrating the available Web services.

Tools: Mechanisms to publish and discover services using

their semantics, including their functionalities, current

capacities, etc. are needed. Workflow engines for

coordinating multiple services for executing a task are also

important. QoS composition can guarantee the promised

service quality. [4,5]

Value added: Tasks requiring coordination of multiple

types of services can thus be delegated. Most of the

high-level tasks initiated by users can effectively be solved

directly using composite services of this type, without the

need of taking care the time-consuming coordination

details.

2.5 Adaptive and Context-Aware Applications

Characteristics: The solutions provided by composite

services can be adaptive to the current context and the user

profiles.

Tools: We need to acquire and represent the current context

(location, traffic conditions, time zones, etc.), and thus

sensors are sometimes needed. The quality of the

context-aware applications depends heavily on the sensors’

accuracy. Thus, different sensor fusion or denoising

techniques are needed. Also, we need to acquire and

represent the user profiles (e.g., interest, credit card

information, home address). Personalization and social

intelligence techniques are then needed for directing the

adaptation of the underlying services. [6]

Value added: Applications become autonomous and

proactive which can free users from initiating processes

and tuning them to suit the current context and their current

interest.

In the next two sections, we describe in detail two of our

recently developed prototypes that are related to the two

examples we mentioned at the beginning in Section 1. The

first project is called e-Bus Planner which takes

information posted on HTML pages (semi-structured

heterogeneous data) as input, and then wraps and

transcodes the information into XML format (information

extraction), and eventually integrate the information to

support bus trip planning (information integration). The

second project is called e-Food Marketplace which takes

data records in database (structured data) as input, and then

assist the user to derive Web Services for information

provision (schema matching), and eventually support

virtual catalogs in e-Marketplaces (information

integration).

3. e-Bus Planner

Public Bus Network in Hong Kong is well developed,

which connects most urban and rural areas. The network is

massive and complicated. Planning a trip on this public bus

network can be a non-trivial and time-consuming task,

especially for tourists. While bus routes related information

has been made available on the Web by different bus

services operators, those Web sites are not interoperable,

making bus trip planning involving multiple operators

almost impossible. In this project, we have built a

Web-based information assistant called e-Bus Planner to

support bus trip planning. e-Bus Planner extracts and

integrates online bus routes information of different bus

services operators to support bus trip planning. The

information assistant has a set of tools for managing the

underlying processes for the just-in-time trip planning,

including data retrieval, data conversion as well as

integrated path searching modules where bus trips

involving multiple bus routes operated by different

operators can easily be identified.

3.1 System Overview

Figure 2 The system architecture of e-Bus Planner.

Figure 2 gives the overall system architecture of e-Bus

Planner. The system is built to support two main processes,

namely information extraction and information integration.

The former process is enabled by four major components,

namely Data Retriever, Data Extractor, Data Checker and

Data Exporter. It is supposed to be run by the system

administrator of e-Bus Planner. The latter process is

enabled by a major component – Trip Planning Engine. A

user starts planning a trip by providing the origin and the

destination to the Path Searching Engine for suggestions of

bus trips with minimum transportation cost. Other relevant

information such as attraction points, restaurants, and fast

food shops near the destination can also be displayed to the

user.

3.2 Information Extraction from Multiple On-line

Sources

Web pages are human readable with attractive layouts.

Useful information are typically embedded in the some

tables in the pages possibly surrounded by graphics. The

goal of information extraction is to collect specific

information (e.g., public bus information in our case) from

particular pages of some Web sites (e.g., routes information

pages maintained by multiple bus services operators). The

extraction part of eBus Planner is designed according to the

Myllymaki's framework [7]. In the following, we describe

the components involved in the context of bus trip

planning.1

3.1 Data Retriever

Data Retriever is designed to communicate with target

remote Web servers. It retrieves Web pages from Web

servers with their URLs pre-defined by the administrator.

The URLs of most Web pages published by operators are

in regular patterns that can be easily identified. Some

examples are listed in Figure 3.

Route Number 1, Kowloon Motor Bus
http://www.kmb.com.hk/english.php?

page=search&prog=route_no.php&route_no=1
Route Number 2, New World First Bus
http://www.nwfb.com.hk/eng/routesearch/

routesearch06s.asp?v_first=2

Figure 3 The URL patterns for retrieving routes

information from two different bus services operators.

3.2 Data Extractor

Data Extractor is designed to extract data from specific

locations of the retrieved Web pages. It consists of two

1 The design of the proposed system in fact can be easily

ported to other applications.

major functions - Data Preparation and Data Extraction.

3.2.1 Data Preparation

Web pages are written in HTML. However, it has been

well known that most of the Web documents found on the

World Wide Web are not conformed to the official HTML

specifications recommended by the World Wide Web

Consortium (W3C). Reading and processing ill-formed

HTML documents may lead to a high error rate in data

extraction.

Figure 6 Useful Information.

Figure 5 shows the Web page published by one of the

operators. Multimedia elements such as graphics,

animations and audio clips form part of the page to enrich

the content for human readers. Bus route information is

embedded in the Web page and the corresponding portion

is shown in Figure 6. They are to be extracted out and

stored in the database to support subsequent trip planning.

An ill-formed HTML document fragment

<p>here is an emphasized paragraph.</p>
After converting it to a well-formed document fragment

<p>here is an emphasized paragraph.</p>

Figure 4 Examples of ill-formed HTML documents.

Data preparation is to repair ill-formed HTML documents

and translate them to well-formed ones. The package called

JTidy [8] is used for the convertion as shown in Figure 4

and the output is in the format of XHTML which is in

XML syntax. This implies that all XML tools such as

Extensible Stylesheet Language (XSL), XSL

Transformation (XSLT) and XPath can be used for the

subsequent extraction processes.

Figure 7 Useful routes info. extracted from a Web page.

Figure 7 shows the input and output of the Data Extraction

process. After the HTML page is converted to XHTML

format, it can readily be represented as a Document Object

Model (DOM) tree. XML related technologies, i.e., XPath,

XSL and XSLT as mentioned above, can then be used for

extracting data from the tree. In particular, data extraction

rules written in XSL format are fed into XSLT to convert

the retrieved XHTML document to an XML document of

pre-set format. The design of the XSL documents is

customized according to the layout and structure of target

Web pages (see Figure 8 for an example). Different Web

pages structures require different XSL documents in order

to correctly extract data from their heterogeneous layouts.

Once the layout design of a Web page is changed, the

extraction process will easily fail. So, it is important to

create an XSL document robust enough to tolerate a small

3.2.2 Data Extraction

Figure 5 Target Web Page (Source: Kowloon Motor Bus).

amount layout change.

Figure 8 shows an XSL document used in one of the data

extraction processes. In the figure,

“/html/body/table[5]/tr/td[2]/table”

denotes the XPath of the target data in the Web page. The

XPath identifies the location of the targeted data in the

Web page. In the example, the target data is in the table

that is the fifth one within the page body.

The information extraction part of e-Bus Planner not only

extracts bus routes and bus stops information from the web

sites, but also the district information that each stop

belongs to. The district information is later on found to be

useful for bus trip planning.

Figure 8 An XSL document for data extraction.

3.3 Data Checker

Data Checker checks and validates all the data extracted

from the previous steps to further reduce the amount of

errors to be stored in the database. The corresponding error

cases to be detected and corrected have to be pre-set by the

administrator. For example, the fare information should be

a floating-point number. Once some non-numeric

characters are found in the item extracted from the web

pages as the fare information, the whole process will be

terminated and alert messages will be displayed to the

system administrator.

3.4 Data Exporter

After a series of data retrieval, extraction, and correction,

the Data Exporter will store the data extracted from target

Web pages into the system database. Oracle XML-SQL

utility (XSU) and DOM are used for inserting XML data to

the Oracle database. These utilities provide an interface for

data storing. All the extracted routes information is stored

into one single database table to support the subsequent bus

trip planning. Other than “routes” and “stops” information,

“district” information can also be extracted from the XML

documents generated in previous steps and stores it into the

database separately.

3.5 Management Tools

To manage the data extraction process, a set of

management tools is developed. The data extraction rules,

in the form of XSL documents, are at the moment

hand-drafted by the staff with the help of a set of

Web-based interfaces. Also, the history of the XSL

documents created so far is stored in the database for later

retrieval, which can further ease the rule creation process.

With the help of the properly configured tools, the staff can

then initiate the data extraction process by simply

providing the set of route numbers to be extracted and the

remaining steps will be started one by one automatically.

3.6 Information Integration for Trip Planning

3.6.1 Integrating Information

Different operators structure their routes information

differently. For example, some operators may include bus

arrival frequency in the bus routes information while some

do not. e-Bus Planner has to integrate information from

multiple sources with different structures and convert them

into one common data structure in order to support

inter-operator bus trip planning. In our case, the

integration is done by aligning bus stops of different

operators. In this project, simple keyword-based matching

of the names of bus stops and major buildings is adopted.

3.6.2 Trip Planning

The Trip Planning Engine is designed to search for bus

trips with unlimited number of bus route interchanges.

After receiving the origin and destination of the trip from

the user, the engine first identifies the bus stops that are

close to both the origin and the destination, possibly owned

by different operators. Again, simple keyword search is

used. After locating the stops, the engine checks for all

routes that passing through the located origin and

destination. If there is a single route that connects both

locations, the engine will stop searching for more paths and

suggests the path to the user.

Figure 9 Path searching illustration.

As shown in Figure 9, if there is no single route providing

direct bus services from the origin to the destination, the

engine will start looking for paths by combining different

routes. All the routes that go via the origin will be

considered as the first route in the potential trip plans. All

the stops of those routes that can interchange with other

routes are identified as the potential interchange stops of

the optimal trip plans. The engine then further checks for

other routes that passing through the potential interchange

stops as well as the destination. If at least one route is

found, the engine will suggest the user to take the first bus

and get on to that interchange stops then take the second

bus to the destination. Of course, if still no paths can be

found, the engine will go deeper into the path search tree in

a similar manner until the destination is reached. The basic

idea is similar to that of the breadth-first search.

3.7 A Prototype System

A prototype of e-Bus Planner has been developed and

tested using the information published on the Web sites of

two major public bus services operators in Hong Kong,

namely the Kowloon Motor Bus and the New World First

Bus. These two operators are operating about four

hundreds bus routes covering most of the areas in Hong

Kong. The latest version of e-Bus Planner has successfully

extracted about more than a hundred of the bus routes from

the corresponding Web sites for illustration. By providing

the origin and destination to e-Bus Planner, plans of bus

trips with a maximum of four different bus routes will be

suggested to the user.

Figure 10 A trip plan returned by e-Bus Planner involving

two bus routes.

Figure 10 shows a screen shot of a bus trip plan returned

by e-Bus Planner. It involves two bus routes operated by

two different bus services operators. The trip information

such as the route fare, the stops for getting off and getting

on for route interchange are displayed to the user.

4. e-Food Marketplace

e-Technologies have long been known to be important to

streamline processes in supply chain management. e-Food

Marketplace is yet another project for illustrating the use of

Web services as interfaces for making buyers’ and

suppliers’ systems interoperable. To contrast with other

related projects, we believe that the cost for Web services

development and maintainance is still relatively high for

small-to-medium enterprises (SME) and propose to build a

case tool for wrapping buyers’ and sellers’ information

Step 1 Industry-Specific Entity Declaration systems with Web services. Building such a case tool is

challenging as companies, even for those of the same

industry, are likely to have their databases designed

differently. To demonstrate the feasibility, we have

implemented a prototype called Web Services Builder

based on the java platform and the JavaTM Web Services

Developer Pack (JWSDP). The tool enables the user to put

semantic tags via a GUI to their internal data according to

the ontology (knowledge representation) of a given

industry. Then, the internal data schema is automatically

mapped to a standard schema of the chosen industry. Based

on the matching results, Web services code can

automatically be generated. The current version of the

prototype can assist the user to build interoperable Web

services for product ordering, searching, price quoting and

registration without writing a single line of code.

In this project, the food industry is chosen. A small set of

entities (by no means comprehensive) is adopted for

illustration. Some important items are shown as follows:

Product is attributed by product id, name, price, stock level and

description(s)

Order is attributed by order id, ordering date, ordering company,

ordered product(s), ordered quantity

Registered Company (refers to the registered buyers) is

attributed by company name, password, address, city, country,

phone, email, contact person’s name, phone and email.

It is possible to have a user interface for specifying

different industry-specific ontologies, which however is

not included in our current version of WSB.

Step 2 Database Mapping

Based on an agreed ontology, the subsequent step is to

build the mappings between the ontology and the entities

stored in the database. The different possibilities of the

database design make this step not straight-forward to

achieve. For instance, two possible ways to store products

in the database are shown in Figure 12.

4.1 Web Services Builder - Conceptual Framework

In this section, the conceptual architecture of the case

tool – Web Services Builder (WSB) is described in detail

(see Figure 11). It basically consists of four important

modules, each for a particular step in building Web

services wrappers.

Figure 12 Two possible ways for representing products.

Our current version of WSB provides an interface to assist

the users in first specifying the database connectivity

related information (e.g., database driver name, connection

string) and the database tables’ foreign keys if not

provided, and then creating the mappings between the

database fields and the items in the ontology declared in

Step 1 (i.e., product, order, company). The system

robustness towards different schemas is currently achieved

Figure 11 The system architecture of Web Services Builder.

by checking with a list of pre-set schema patterns which

are carefully designed manually. Figures 13-15 show the

corresponding schemas used by WSB for storing the

mappings’ information which can in turn help generate the

suitable SQL statements to select the right information

from the database. To further reduce the mapping effort,

automatic schema matching techniques can be explored

[9].

Figure 13 XML schema for product information mappings

(visualized using XMLSPY).

Figure 14 XML schema for order information mappings.

Furthermore, other related difficulties in database schema

matching will also be encountered in this Step, including

incompatibility in field’s unit of measure, field’s types,

composite primary keys, etc.

Step 3 Interface Declaration

As we are not interested in providing a low-level database

query functionality (as this will induce many security

issues) but a set of on-line accessible services for enabling

just-in-time execution of business processes in the

marketplace, we need eventually the Web services

interface declaration on top of the data-level mappings.

Figure 15 XML schema for registered company

information mappings.

Here, we assume that the e-Food Marketplace with the help

of WSB installation provides each participant with four

different Web services, namely, product search, price

quotation, registration (for potential buyers) and product

ordering (password authentication needed). The

specifications of their schemas as well as the WSDL

document are listed below.

WS.1 Web service for product search

Input Output

String:

Keyword

String: Product described in the following

XML format which can be extracted by

the following XML schema.

Output Schema

WS.2 Web service for product ordering

Input Output

String: Order in

XML format

String: Confirmation message with Order ID

Input Schema

WS.3 Web services for price quotation

Input Output

String: price quotation request

described in XML format

String: price of the order

Input Schema

WS.4 Web service for potential buyer registration

Input Output

String: Company

information

String: Reject or accept messages with

authentication information

Output Schema

Step 4 Business logic declaration / Function mapping

The Web services that can be created in Step 3 are all

data-driven ones. In many cases, we need to incorporate

business logics into the trading systems to partially

automate some business processes. Incorporating these

logics into the Web services wrappers without coding

effort needs much more sophisticated tools. In our WSB,

we only incorporate a discount delegation function in it. By

properly specifying general and customer-specific discount

rules, simple customized price quotation function can

readily be supported and integrated into the price quotation

Web service. Other than configuring some built-in

functions for implementing business logics, another

possibility is to explore the available APIs in the legacy

internal systems and wrap them with Web services

interfaces. However, such function mapping normally

requires unavoidable coding effort.

Figure 16 A snap shot of the Web Service Builder system.

After going through the four steps, four different Web

services as well as their WSDL document will be generated

automatically. The WSDL documents can then be

published in a repository (e.g., UDDI) for later services

discovery.

4.2 Enabled integrated services in e-Food Marketplace

Based on the interoperable Web services provided by the

buyers/sellers registered in the marketplace, a number of

value-added functions can be composed.

(A) On-demand and just-in-time price comparison

To purchase a particular product, one can discover related

suppliers in the UDDI, look for those with the desired

products and obtain just-in-time price quotations based on

your existing business relationship with those suppliers as

well as their stock levels. Other possible future extensions

(available upon further enhancements of WSB) include

product search under constraints (e.g., discovery time),

autonomous negotiation and semantic service discovery

using industry-specific ontology.

(B) One-stop e-Procurement and order-tracking

support

Upon identifying some desired products to be purchased

from different suppliers, the ordering requests can be sent

to the corresponding suppliers and an integrated

order-tracking can also be supported. Those order tracking

information can later on be fed back into the autonomous

negotiation module, if any, for optimizing future

negotiation strategy.

5. Possible Extensions: Orchestration, Adaptation and

Context-awareness – From An End-User Perspective

The aforementioned two projects are trying to demonstrate

the readiness of e-technologies to provide value-added

functions based on information integrated from

heterogeneous sources. The first example that is related to

public transportation could be a good starting point for an

e-government initiative, which in turn could have an

important impact on local tourism. The second example is

a typical scenario requiring e-technologies for frictionless

B2B e-commerce. They can both be extended to

applications of larger scale and generalized to other

problem domains without too many technical difficulties.

Also, more sophisticated tools can be built to automate the

manual processes (e.g., wrapper induction, schema

matching). However, we believe that the impact of these

information integration applications at their present forms

is still limited. According to the value chain we described

in Section 1, these projects have only reached at the middle

part of the chain. We strongly believe that killer

applications won’t happen unless more value can be added

up to a point where the end users can eventually find the

applications not only powerful and resourceful, but also

“familiar”, “personalized” and “helpful”.

For being “familiar”, we propose that those value-added

services should be integrated into some commonly used

software platforms. In particular, we envision that one of

the best places for e-technologies to reach people who

works with computers would be their electronic or on-line

diaries where they used to plan their events to be attended,

clients to be met, order to be placed, tasks to be done, gift

to be bought, etc. So, while using e-diaries, the users often

need to make a lot of decisions, where the aforementioned

value-added Web services can be tapped into as some

enhanced functions, instead of treating them as another set

of new systems with another set of interfaces to learn.

For being “personalized”, we use the same scenario of

e-diaries. E-diaries have a lot of personal information

stored in it, e.g., phone books, users’ past events and

records, credit card information, etc. Those data provide an

excellent source of the users’ social networks where social

intelligence related to the users could effectively be mined

for decision support. For instance, if you put down “Dinner

with Ann” on a particular day at a particular time, a

“helpful” calendar function should be able to mine your

relationship with Ann as far as possible based on your past

schedules and consult some restaurants recommendation

Web services with your as well as Ann’s taste taken into

account. Also, special promotions entitled by your

subscribed credit cards could be a good source for

providing smart suggestion. If the calendar function is an

on-line version, knowledge about some preference patterns

embedded in different users’ schedules can in fact be

discovered in a collaborative manner [10].

For being “helpful”, we mean that the services directly

provided to the end users should be of high-level and

context-aware so as to address the users’ need directly

instead of expecting the users to go through some iterations

to fine-tune them as far as possible. To achieve that, we

need an easy way to orchestrate a set of publicly available

Web services (some possibly interfaced with different

sensors) for composing Web services at a higher level via

declaration for problem solving. Problem Solver Markup

Language (PSML), as suggested in [11], is proposed under

a related scenario. Putting semantics in the service

discovery mechanism with the use of OWL-S [12] is also

important to further ease related composition tasks.

Besides, helpful services should be autonomous as well as

adaptive so as to identify the users’ need and provide

customized services proactively instead of staying passive.

Good examples include

- finding the best way home under the current traffic and

condition at around your usual time to leave office,

- prompting the users with special promotions which are

of potential interest to their family members and

available at this time in a nearby shop,

- negotiating with on-line retailers the prices of some

possibly interested electronic products which are

identified based on your interest profile as well as the

products’ recent sales, recent news about other related

products to be released and user comments.

6. Conclusion

While integrating information from heterogeneous sources,

as demonstrated by the two case studies, can provide us

useful value-added functions, we argue that the end users

need indeed services which are familiar in term of

operation, personalized in term of how much the services

know the user and his/her social network, and helpful in

term of how much user intervention can be weaved so that

high-level tasks can be dedicated to autonomous and

adaptive composite Web services with context awareness.

In order to meet the requirements of tomorrow’s Web

services-based systems (also called services-oriented

computing), other than those recently proposed

architectures and standards for Web-based system

interoperability, we argue that methods for supporting

social intelligence as well as distributed problem solving to

be applied to the dynamic environment of the Web are two

important areas that need much more research effort.

Acknowledgement

The author would like to thank Jonathan Leung and

Spencer Lui for implementing the two prototypes described

in the paper. This work is partially supported by Centre for

E-Transformation Research, Hong Kong Baptist

University.

References

[1] K.C. Laudon & C.G. Traver, E-commerce: Business,

Technology, Society, Addison Wesley, 2002

[2] I. Muslea, Extraction patterns for information extraction

tasks: A survey, in Proceedings of AAAI-99 Workshop on

Machine Learning for Information Extraction, Orlando

Florida, July, 1999

[3] M.E. Califf, Relational Learning Techniques for Natural

Language Information Extraction. PhD thesis, Department

of Computer Science, University of Texas, Austin, TX,

1998.

[4] M.P. Papazoglou and D. Georgakopoulos, Service-oriented

computing, Communications of the ACM, October, 2003,

Vol.45, No. 10, pp. 25-28.

[5] C. Peltz, Web Services Orchestration and Choreography,

IEEE Computer, October 2003, Vol. 36, No.10, pp. 46-52.

[6] A. Pashtan, S. Kollipara and M. Pearce, Adapting Content

for Wireless Web Services, IEEE Computer, October 2003,

Vol. 36, No. 10, pp. 79-85.

[7] Myllymaki J. Effective Web Data Extraction with Standard

XML Technologies. IBM Almaden Research Center, 2001.

[8] XHTML 1.0: The Extensible HyperText Markup Language

specification. The World Wide Web Consortium (W3C).

January 2000. http://www.w3.org/TR/xhtml1/

[9] E. Rahm and P.A. Bernstein, A survey of approaches to

automatic schema matching, The VLDB Journal, 2001, Vol.

10, pp. 334-350

[10] W. Lin, S. Alvarez and C. Ruiz, Efficient adaptive-support

association rule mining for recommender systems, Data

Mining and Knowledge Discovery, 2002, Vol. 6, pp.

83-105.

[11] N. Zhong, J. Liu and Y. Yao, In Search of the Wisdom Web,

IEEE Computer, November, 2002, pp. 27-30.

[12] OWL-S Home Page, http://www.daml.org/services

http://www.w3.org/TR/xhtml1/
http://www.daml.org/services

	Abstract
	4.1 Web Services Builder - Conceptual Framework
	
	Step 1 Industry-Specific Entity Declaration
	Step 2 Database Mapping
	WS.1 Web service for product search
	Input
	Output
	Output Schema
	Input
	Output
	Input Schema
	Input
	Output
	Input
	Output
	Output Schema

	Acknowledgement
	References

