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Abstract— With the advent of the WWW, providing just-
in-time personalized product recommendations to customers
becomes possible. Collaborative recommender systems utilize
the correlation between customer preferenceratings to identify
“lik e-minded” customersand predict their product preference.
One factor determining the successf the recommendersystems
is the prediction accuracy, which in many casesis limited by
lacking adequate ratings (the sparsity problem). Recently, the
use of latent classmodel (LCM) has been proposedto alleviate
this problem. In this paper, we first study how the LCM can
be extended to handle customers and products outside the
training set. In addition, we proposethe use of a pair of LCMs
(called dual latent class model — DLCM), instead of a single
LCM, to model customers’ likes and dislikes separately so as
to enhancethe prediction accuracy Experimental results based
on the EachMovie dataset show that DLCM outperforms both
LCM and the cornventional correlation-based method when the
available ratings are sparse.

Index Terms— Collaborative fitering, recommender systems,
personalization, latent class models

I. INTRODUCTION

Product recommendationis one of the most important
businessactivities for attractingcustomersWith the advent of
the World Wide Web, on-line companiecannow recommend
productsto their customerson a one-to-onebasisin real
time, and more importantly at a much lower cost. Different
recommendesystemshave beenproposedn theliterature[1],
[2] and related products/servicebave also beenreleasedin
themarket (e.g.,Andromedia.comNetperception.comBased
on the underlying technology recommendesystemscan be
broadly categorizedas content-basear collaborative

Content-basedecommendesystemanatchcustomerinter-
estprofiles(e.g.,revealedby their highly ratedproducts)with
the productattributes (or featue§ when making recommen-
dations.Different machinelearning [3], [4] and information
retrieval [5], [6] algorithms have been proposedfor profile
representatiomndratingsprediction.One successfubpplica-
tion of the content-basedpproachs personalizedNVeb pages
recommendatiofe.g.,Letizia[7]). In orderfor theapproacho
be effective, sufficiently rich andaccuratgroductinformation
aswell as personalprofiles shouldbe available. Besides the
productattributeshave to be carefully chosenfor the product
and profile Bad choicesof featuresresultin recommender
systemswith either low discriminating power (the shallow-
analysisproblem)or bias in reflectingthe customerinterest
(the over-specializationproblem)|[8].
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Collaboratve recommendesystemsare basedon the sim-
ilarity between customer preferenceratings for computing
recommendationsAs the approachdoes not rely on prod-
uct contents,it does not possesghe two problemsof the
content-basedipproachand thus has widely been used for
recommendingroductswhereproductdescriptionsare either
lacking or foundto betoo specificto be useful.Many different
techniqueshave beenproposedfor collaboratve recommen-
dation, including the mostoriginal correlation-basednethods
[9], [1Q], latentsemanticindexing (LSI) [11], [12], Bayesian
learning[13], [14], etc.Successfuhpplicationdomainsinclude
recommendatiorof Usenetarticles[9], musics[10], etc. In
orderfor collaboratve recommendatioto be accuratea large
enoughnumber of customerswilling to provide preference
ratingsfor the productsarerequired,andthe productcoverage
of their ratingsshouldhave significantoverlaps.However, this
may not be the casein reality becauseof eitherlacking such
a large customerpool or new products being encountered
(the spasity problem). Applying simple clusteringor some
statistical cluster modelsto the preferenceratings has been
demonstratedo be able to improve the local density of the
ratings and is consideredto be a promising remedyfor the
sparsityproblem[15], [16].

In this paper we first describea statisticalclustermodel—
thelatentclassmodel(LCM), originally proposedy Hofmann
etal. for collaboratve filtering [15], andstudyhow a properly
trained LCM can also be used to handle customersand
productsoutsidethetrainingsetfor recommendatiorilso, we
arguethatthe LCM is limited in termsof correctly modeling
like and dislike ratingsand proposea dual latent classmodel
(DLCM) which is trained using two setsof data corverted
from the original ratings,one with ratingsfor likeditemsand
anothemwith thosefor disliked ones.This modificationallows
the groupingsof customerswith similar likes and dislikes to
be capturedand thus improve the overall predictve power
of the model. Experimentsbasedon the EachMwie dataset
were conductedfor performanceevaluation. It was found
thatDLCM outperformsd.CM anda corventionalcorrelation-
basedmethodwhenthe ratingsare sparse.

Il. COLLABORATIVE RECOMMENDER SYSTEMS

The conceptof collaboratve recommendatiorfalso called
the word-of-mouth approach)was first usedin Goldbeg et
al.’s e-mail filtering system[17]. The idea was then quickly
pursued for product recommendationlIn this section, we
further elaboratehe sparsityproblemandbriefly suney some
existing methodsproposedn the literaturefor alleviating it.



A. The Sparsity Problem

Most of the pioneering collaboratve systems use the
correlation-basedapproachfor recommendationprediction.
For example, in [9], the predictedrating of customerz for
producty is computedas

Doy =Tz + K)Z w(z,1)(ry,y — 7i),
]
where r; , denotesthe recordedratings of customers for
product y, 7; denotesthe expected rating of customers:
over all the products,w(z,4) denoteshe Pearsorcorrelation
coeficient (P-Corr) betweenthe ratingsof customersz ands,
givenas

Z (re,j — 7o) (rij — Ti)
e — 7 s — P

w(z,1)

and & is a normalization constant. The correlation-based

approach(also called memory-baseth [13]) hasbeenknown
to be problematicwhen the available ratings are sparse.To
alleviatethe problem bothstatisticalandnon-statisticamodel-
basedmethodshave beenproposedso that problem-specific
prior knowledgecanbeincorporatedo interpolatethe missing
ratings.An extremeform of the sparsityproblemis calledthe
first-rater problem which ariseswhenthereare new products
introducedinto the market with no previous rating at all. In
that case either someratingshave to be collectedor content-

basedinformation has to be explored for recommendations

personalization.

B. Model-BasedMethods

The spirit behind model-basednethodsis to incorporate
prior knowledgeinto the problemformulationso that missing
customerratings can be properly interpolatedfor improving
the generalizatiorperformanceBesidesjf the modelis prop-
erly chosen,the estimatedvalues of the model parameters
can provide useful information about the characteristicsof
customerandproductg(cf. datamining), whichin mary cases
is usefulfor further market analysisandmanagemendecision
making. For example, customersegmentationcan be readily
achieved via the useof clustermodels.Variousmethodshave
beenproposedn the literature,including clustermodels[15],
dependeng models[18], classifermodels[19] and subspace
methodg[12].

I1l. LATENT CLASS MODELS

The latent classmodel (LCM) is a statisticalmodel under
the family of mixture models. Hofmann et al. adoptedit
for modelingthe co-occurenceof two randomvariablesand
successfullyapplied it to documentcatagorization[20] and
collaboratvefiltering [15]. It is a clustermodelwhich assumes
thatcustomerpreferenceatingscomefrom a numberof latent
classes(or hidden preferencepatterns),each correspondso
a group of like-minded customersand their corresponding
setof preferredproducts.The predictedratingsare computed
basedon a probabilistic graphicalmodel with three random
variablesrepresentinghe customerstheir liked productsand
the preferencepatterns.

Mathematicallyspeakinglet z € Z = {#,...,zx} denote
a latent class variable, where z; representshe it* hidden
preferencepattern. Also, let (x,y) denotethe obsenation
that customerz € X = {z1,...,zx} hasevaluatedproduct
y €Y ={y,--,ym} andn(z,y) denotethe corresponding
preferencerating of customerz for producty.® The joint
probability distribution of z andy canbe expressedhs

=3 PGz )P(ylz")
Z'ezZ
where P(z|z) and P(y|z) are class-conditionamultinomial
distributions and P(z) are the class prior probabilities. So,
z andy are assumedo be conditionally independentf z is
given.
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A. Model Training

In the modeltraining phase the numberof hiddenprefer
encepatterns K, is first assume#l and the parameterof the
LCM, including {P(z)}, {P(z|z)} and {P(y|z)}, are then
estimatedaccordingly The total numberof model parameters
isK+N x K+ M x K.Theexpectationandmaximization
(EM) algorithm is typically used.The EM algorithm is an
efficient optimization algorithm for solving the maximum-
likelihood estimationproblem with missing information (the
hiddenpreferencepatternsin our case).lt involvestwo steps:
the E-stepand the M-step. The E-stepis for computingthe
expected values of the missing information basedon the
current estimate of the model parametersand the M-step
is for computing the maximum-likelihood estimatesof the
model parameterausing the expectedvaluesof the missing
information. To train a LCM, the E-stepand the M-step can
be formulated,given as

E-step
P(2)P(e]2) P(y]-)
PElv) = S By Pl Pl
M-step
() P(ele )
P(Z) Zw’,y’,z’n(xlayl)P(zllm'layl)
S n(a, ) P(el’, )
POl = o )Pl )
P(zz) - 2y n(z,y)P(2|z,y)

2oy @Y )P (2|2, y)

The EM algorithm alternateshe two stepsuntil it corverges
to a local maximum. The generalizationperformanceof the

corverged solution dependson both the model initiation as
well asthe model compleity (i.e., the numberof preference
patterns).In this paper an algorithm similar to K-means
clusteringis usedfor the model initialization. Also, models
with different number of preferencepatternsare trained for

subsequenperformancecomparison.

LIn Hofmanns paper [15] n(z,y) denotesthe numberof times the pair
(z,y) hasbeenobsered and the customerpreferencerating is represented
by anotherandomvariable.Herewe assumehat the numberof obserations
shouldcarry similar informationas the customematedpreference.

2Automatically determiningthe optimal numberof hiddenpatternss under
thefield of model selection,which is not addressedh this paper



B. RecommendatioRrediction

To provide personalizedrecommendationgo customers
inside the training set [15], the probability that a customer
z buys a producty canbe computedas

ZP "lz)P

P =V
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Productscan then be sorted accordingto their associated
valuesof P(y|z).

P(ylz) = (yl2") @)

where
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IV. EXTENSIONS TO THE LCM

Although the LCM has beenshovn to be promising for
collaboratve recommendationthere are at leasttwo limita-
tions preventingit from being effectively applied.First, only
customersn thetrainingsetcanbe senedandonly productsn
the training setcanbe recommendedeven thoughpreference
ratingscanbe collectedfrom a newly registeredcustomerthe
computationalcost requiredfor re-training the model makes
real-time recommendationmpossible.The secondlimitation
is relatedto model accurag. The original LCM cannotdis-
tinguish betweenmissing ratings and ratings of value zero.
This meansthat the dislike ratings (i.e., ratings with low
values)cannotbe properly utilized for discovering customer
preferencepatterns,resultingin limited prediction power of
the LCM.

In this section,we describehow the LCM canbe extended
for handling customersand productsoutsidethe training set.
Besides,we proposea dual LCM which divides customer
ratings into “like” and “dislike” setsto remedy the model
deficieny of the LCM.

A. Recommendin@roductsto New Customes

New customersre herereferredto the onesnot existing in
thetrainingsetbut somepreferenceatingshave beencollected
from them. Our goal hereis to recommendexisting products
to thesecustomersas well without retrainingthe model.

Let z, ¢ X denotea new customerand ), C Y the setof
productshe hasratedsofar. The probability of recommending
producty, € Y, = Y\); canbe computedas

ZP z|zp) P

ZEZ

P(yr|zn) = (yr|2) 4)
whereall except P(z|z,) have beenestimatedand storedin
the LCM. To estimateP(z|z,) which is the probability that

customerz,, falls into the preferencepatternz,

P(zlzn) =~ P(zlen, V1)
x Z P(z|yn) P (zn|yn)
Yn€Vn
o Y Plalyn)n(@n, yn)
Yh€Vn
Y P(ynl2)P(2)n(zn,yn) )
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wherewe assumehat P(y;,) is constantAccordingto Eq.(5),
it is notedthat the estimationof P(z|z,) is equivalentto a
simple correlationbetweenP(yy|z) and n(z,,ys) weighted
by P(z).

For the extremecasewhenthe new customerhasnot rated
anything before,i.e., Y, = §, Eq.(4) degenerateso

=Y P(2)

ZEZ

P(ylzn) = P(yl2). (6)

which givesrecommendationsimply basedon the “averaged”
opinionsof all the customersn the training set, or in other
words,themostpopularproductsin ) amongall thecustomers
in X.

As the role of productsand customersan be interchanged
in the LCM, recommendingnen productsy, can also be
achievedin a similar mannerRatingsfor new productscanbe
collectedfrom various customersin the training set and the
parametersP(z|y,) canbe estimatedaccordingly

B. DLCM — Modeling Likes and Dislikes

Apart from the inability to handle data unknown in the
training step,anotherimportantlimitation of the LCM s that
dislike® ratingsarenot properlymodeled Underthe LCM, the
correlationof a customers ratingswith a set of bad ratings
(rating value =0) is intrinsically identical to that with a setof
missing ratings (rating value =unknawn). That is, both zero-
rated and unratedproductsdo not affect the iterationsin the
modeltraining stepat all. Sincethe factthata customerdoes
not like a movie is obviously not identical to that a customer
hasnot ratedthat movie, this modeldeficieny is highly likely
to limit the prediction accurag of the LCM. To relieve the
limitation, we corverttheratingsdata{n(z,y)} into two data
sets{n*(z,y)} and{n~(z, y)} wheretheformeronedenotes
like ratings and the latter one denotesdislike ratings. The
corversionis performedusing a threshold(or natural vote).
Ratingsin {n(z,y)} with valueshigher than the threshold
remainunchangedn {n*(z,y)}. Ratingswith valueslower
than the thresholdare setto zerosin {n™(z,y)}. Similarly,
ratingsin {n(z,y)} with valueslower thanthe thresholdare
setto {1—n(z,y)} in {n~(z,y)}. Ratingswith valueshigher
thanthe thresholdaresetto zerosin {n~(z,y)}. In thatcase,
{n*(z,y)} containsonly like ratingsand{n~(z,y)} contains
only dislike ratings.For missingratings,asthereareno cues
about their values, they are setto 0.5 in both {n*(z,y)}
and {n~(z,v)}. Eq.(7) and Eq.(8) are the formula for the
corversion.

for n(z,y) >=0.5
for n(z,y) < 0.5
for n(x,y) is missing

n(z,y)
nt(z,y) = 0
0.5

()

< 0.5

>=0.5

18 missing
®)

for n(z,y)
for n(z,y)
for n(z,y)

1- n(x, y)
n~(z,y) = 0
0.5

SHere, for ratingswithin the rangeof [0,1], thosewithin [0,0.5) refersto
asdislike ratingswhile thosewithin [0.5,1] refersto aslike ratings.



For example,if thereis a setof ratings{0.0, 0.8, ??,0.4, ??,
0.6,0.2,1.0}, it will be corvertedto {0.0,0.8,0.5,0.0, 0.5,
0.6, 0.0, 1.0} (like ratings)and {1.0, 0.0, 0.5, 0.6, 0.5, 0.0,
0.8, 0.0} (dislike ratings).

Using the two setsof corvertedratings,we thentrain two
LCMs, oneusing {n*(z,y)} andanotherusing {n~(z,y)}.
A dual LCM (DLCM) is thus definedas the pair of LCMs,
containing two sets of parameters:{ P*(y|z), Pt (z|z),
Pt(z) } and{ P~ (y|z), P~ (z|z), P~(z) }. Theformer set
summarizeghe like ratingsand modelshow likely z “lik es”
y. Similar to the orginal LCM, z representghe preference
pattern.The latter set of parametersummarizeshe dislike
ratings and models how likely z “dislikes” y, and z now
representshe dislike patterns.

C. Recommendation

To recommendoroductsusing the proposedDLCM, Bayes
factorcanbe computed Bayesfactoris definedasthe ratio of
the posteriorprobabilitiesthat customerz likes and dislikes
producty, givenas

P(L =1|z,y) Pz,ylL=1) PL=1)
P(L =0|z,y) P(z,y|L=0)  P(L=0)
_ Piay)  P(L=1)
P~(z,y) P(L=0)
_ Pt(ylz) Pt(z) P(L=1)
= () P < PL=0)"
. Pty PL=1)
* Fok fPa=9 @0

The higherthe valueof the Baysefactor the higherthe chance
that the correspondingproductitem is liked by the customer
Here, L denotesa bi-variaterandomvariableindicating“lik "
if L =1 and“dislike” if L = 0. Also, it is assumedhat the
customerprior probabilities P+ (x) and P~(z) are constant
and identical, which is used when jumping from Eq.(9) to
Eq.(10). This assumptiorcan be justified by the fact that all
the customersaretreatedto be identicalbeforeary ratingsare
collectedfrom them.

According to the Eq.(10),the prior probabilitesP(L = 0)
and P(L = 1), are computedby counting the numbersof
“lik es” and “dislikes” in the training set using 0.5 as the
threshold.P*(y|z) and P~(y|z) are obtainedusingthe EM
algorithm similar to that of the standardLCM (see Section
[lI-A). Then,we cancomputethe Bayesfactorfor eachof the
productitems andrank themaccordingly

V. EXPERIMENTAL RESULTS
A. ExperimentSetup

In orderto evaluatethe effectivenessf the proposedexten-
sions,experimentshave beenperformedusingthe EachMaovie
database.The full set of the databaseconsistsof 72,916
customerpreferenceratings for 1628 different movies. The
ratings are discretizedinto 6 levels, as 0, 0.2, 0.4, 0.6, 0.8
and 1. In this empirical study ten subsetof dataare sampled
from different parts of the databasén sucha way that each
data subsetcontains 180 customers’preferenceratings for

500 different movies and we use the ratings of the first 100
customerdor trainingandthe remainingfor testing.Also, the
ten datasubsetgorm two groups,denotedas{dat a_100_* }
and{dat a_50_* }. Theformeronecontainscustomershaving
at least 100 ratings and the latter one contains customers
having at least50 ratings.Using thesetwo groupsof datasets,
we can evaluate recommendatiorperformanceunder differ-
ent level of data sparsity It is noted that the datasetsin
{dat a_100_* } alsohave higherdegreeof ratingsoverlapping
(65.2-72.7 co-rateditems on average)when comparedwith
thosein {dat a_.50_* } (28.5-39.40n average).

We then applied the three methods— the Pearsoncorre-
lation method (P-Corr), the latent class model (LCM) and
the dual latent class model (DLCM) to the datasetsfor
performancecomparison.

B. PerformanceEvaluation

In [15], perpleity is used as the performancemeasure.
However, it cannotbe usedheresincewe aretrying to predict
the preference®f customeraot appearingn the training set.
Instead,our evaluationis basedon three different measures.
The first one is the traditional classificationaccuracy. In
our experments,we calculatethe accurag of P-Cor; LCM
and DLCM via thresholdingon the predicted ratings, the
posteriorprobabilitiesand the Bayesfactor respectiely. The
correspondinghresholdsaresetto be 0.5, 0.5/M and1. The
secondmeasurds the break-ezen point, which is commonly
usedin areaof informationretrieval. Here,moviesin the test
setareorderedwith decreasingreferencdpredicted) andthe
break-@enpoint is the point at which recall equalsprecision
In the currentcontext, recall is the percentageof interesting
moviesthatcanbelocated whereagrecisionis thepercentage
of movies that are predictedto be interestingand are really
interestingto the customer The third measureis basedon
the expectedutility usedin [13]. Again, we utilize the list as
usedin computingthe break-&en point. We assumehat each
successie item in this list will be lesslikely to be viewed by
the userwith an exponentialdecay Then,for customerz, the
expectedutility of this list is:

B max(n(x,j) —d,0)
Bo =) G060
J

whered is the neutralrating (here,we take 0.5) and g is the
viewing half-life (setto 5). We also computethe maximum
and minimum achievable utilities R™*® and R, and the
final scoreis thencomputedas:

utility = (R; — R™™)/(R"*® — RT"™).

(11)

For all the three measuresye only computethem basedon
the ratedmoviesin the testset.

Comparingthe three performancemeasuresthe brealeven
pointandtheaccurag canbeviewedasevaluatingtheranking
quality at a coarse-lgel as both of them are not sensitve if
adjacentitems in the ranked outputlist are flipped. Instead,
detailed ranking quality can be revealed using the utility
measureFor example,if the ranked recommendatioroutput
is { movieA, movieB , movieC } andthey areall liked by the



customemwith the sameorderof preferencethe accurag and
recall (whichin turnsaffectsthe break-&enpoint) will remain
unchangedventhoughtheir ordersarechangedHowever, the
utility measurewill be different.

C. Resultsand Discussions

1) Performance Comparison Among P-Corr, LCM and
DLCM: We have performeda number of experimentsto
comparethe recommendatiorperformanceof P-Cor; LCM
and DLCM. The resultsaretakulatedin Tablel, Il andlll.

[ Performanceneasureexpectedutility

| Performanceneasurebreak-gen point

Datasets{dat a_-100_* } (# customers=180# products=500)
# rateditems | P-Corr(%) | LCM (%) | DLCM (%)

21 723(3.3) | 73.3(2.2) | 75.3(L.6]

10.9 75.9(2.4) | 745(1.9) | 76.7(1.6)

19.1 76.4(2.1) | 74.6(2.1) | 76.9(1.5)

255 76.8(1.9) | 74.7(2.0) | 77.0(1.8)

33.1 77.2(2.0) | 745(2.0) | 77.2(1.9)
Datasets{dat a_-50_* } (# customers=180# products=500)
# rateditems | P-Corr(%) | LCM (%) | DLCM (%)

12 68.0(3.5) | 70.6(1.9) | 71.3(2.0F

6.3 70.9(2.1) | 71.0(2.0) | 72.2(1.4)

115 71.9(1.7) | 70.9(2.0) | 72.2(1.6)

14.2 72.2(1.5) | 71.0(2.0) | 72.3(1.6)

18.6 72.5(1.6) | 70.8(2.0) | 72.3(L.7)

TABLE |

PERFORMANCE COMPARISON USING BREAK-EVEN POINT. EACH
REPORTED VALUE IS AN AVERAGE OVER FIVE DATA SETS. THE

BRACKETED VALUE IS THE CORRESPONDING STANDARD DEVIATION. THE
COMPARISON IS DONE BETWEEN P-CORR AND THE BEST OF LCM AND
DLCM. RESULTSWITH {*} INDICATE THAT THEY ARE SIGNIFICANTLY

BETTER WITH 80% CONFIDENCE ACCORDING TO T-TEST.

| Performancemeasureaccuray

PERFORMANCE COMPARISON USING ACCURACY. RESULTSWITH {***}

Datasets{dat a_100_* } (# customers=180# products=500)
# rateditems | P-Corr(%) | LCM (%) | DLCM (%)

2.1 65.4(4.5) | 70.2(1.7) | 73.7(2.4F*

10.9 75.3(1.9) 72.0(2.1) | 73.9(2.4)

19.1 75.5(2.1) | 72.2(2.2) | 73.8(2.4)

255 75.7(2.2) 72.3(2.3) | 73.8(2.4)

33.1 75.9(2.1) 72.3(2.2) | 73.8(2.4)
Datasets{dat a_50_* } (# customers=180# products=500)
# rateditems | P-Corr(%) | LCM (%) | DLCM (%)

1.2 59.3(1.3) | 73.9(3.2) | 78.3(4.6F*

6.3 76.9(3.7) 74.9(2.5) | 78.4(4.6)

11.5 78.0(4.8) | 75.2(3.0) | 78.3(4.6)

14.2 78.4(4.5) | 75.2(3.0) | 78.3(4.6)

18.6 78.7(4.3) | 75.1(3.1) | 78.3(4.6)

TABLE 1l

INDICATE THAT THEY ARE SIGNIFICANTLY BETTER WITH 95%

CONFIDENCE ACCORDING TO T-TEST.

Basedon Table | andll, it is obsened that LCM outper
forms P-Corr significantly when the number of items rated
by the new customeris small (which is usedto be the casein
practice).In particular accordingo Tablell, whenthe number
of rateditemsis around2 for the datasetsin {dat a_50_* },
LCM hasanaccurag of 73.9%while that of P-Corris 59.3%

Datasets{dat a_100_* } (# customers=180# products=500)

# rateditems | P-Corr (%) LCM (%) DLCM (%)
21 48.9 (4.6) 61.1(3.5)* 59.6 (2.7)
10.9 63.6(1.8) 65.6 (2.0)* 62.2(2.4)
19.1 67.5(1L.5) 65.7(2.0) 62.8(1.4)
255 68.8(1.2)*** | 65.9(2.0) 63.5(1.6)
33.1 69.6 (1.4y** | 65.8(1.9) 63.8(1.7)

Datasets{dat a_-50_* } (# customers=180# products=500)

# rateditems | P-Corr (%) LCM (%) DLCM (%)
12 48.6(3.3) 62.6(1.6) 62.9(1.9**
6.3 58.5(2.5) 64.6(2.8)*** | 63.9(1.9)
11.5 64.1(2.4) 64.2(3.2) 63.6(2.1)
14.2 64.4(2.6) 64.4(3.3) 63.6(1.8)
18.6 67.2(0.9) 64.2(3.2) 64.0(1.9)

TABLE 1l

PERFORMANCE COMPARISON USING EXPECTED UTILITY. RESULTSWITH
{*}.{**} AND {***} INDICATE THAT THEY ARE SIGNIFICANTLY BETTER
WITH 80%, 90% AND 95% CONFIDENCE ACCORDING TO T-TEST.

(14.6%better).Consistentesultswere obtainedfor the other
two performancemeasuresi.e., brealeven point and expected
utility. However, whenthe new customerratesmoreandmore
items, LCM (model-based)start losing its advantagesand
P-Corr (memory-based)eventually has better performance.
According to takulatedresults,as the numberof rateditems
is increasedo around18, LCM’s accurag rate continuesto
raiseand eventually saturatedat around75.1%while P-Corr's
raisesto 78.7% (3.6% higher than that of LCM). This most
probablyis dueto the deficieny of the LCM to model both
like and dislike ratings. It also echosa similar situationin
the field of patternrecognitionwhere the simple k-nearest
neighbormethodcan outperformother powerful model-based
approacheftik e artifical neuralnetworks whenthe training set
is sufficiently large and clean.

By usingthe proposedDLCM, we succeededh improving
the predictionpower of LCM. As revealedin Tablel, Il and
[, DLCM, as inherited from the model-basedadwvantages
of LCM, performssignificantly betterthan P-Corr when the
numberof rateditemsis small. Whenthereare moreratings,
we found DLCM in generalcan achieze accurag ratesand
brealeven pointscomparableo thoseof P-Corr In particular
Accordingto Tablell andl, whenthe numberof rateditem
is around18 for the dataset{dat a_50_* }, the accurag and
break-&enpoint of P-Corrare 78.7%and 72.5%while those
of DLCM are 78.3%and 72.3%. The differencesare smaller
than0.4%.However, whenthe expectedutility is usedinstead
asthe performancemeasurethe performanceof the DLCM,
thoughstill betterthanthat of P-Cort is not as good asthat
of the LCM. For example,accordingto Table Ill, whenthe
number of rated items is around 18, the expected utilities
of P-Corr LCM and DLCM are 67.2%, 64.2% and 64.0%
respectrely. Such an obsenation implies that the current
implementationof the DLCM is capableof improving the
orderingof the productsat a coarselevel (asrevealedby the
measure®f break-een point and accurag) but not at a fine
level (asrevealedby the utility measure)Furtherinvestigation
alongthis directionis needed.



2) Different Numberof Latent Classes:All the aforemen-
tionedl experimentsassumethat the numberof latent classes
K is setto 10. In fact, estimatingthe optimal number of
latent classeg(i.e., hidden preferencepatterns)is crucial for
controling the model compleity of LCM andDLCM so that
they are flexible enoughto capturethe true patternsbut at
the sametime strict enoughto avoid spuriouspatternsdue to
noisein the data.In this paperwe did not attemptthe problem
of estimatingthe optimal numberof latent classeswhich is
definitely an important open researchproblem. Instead,we
tried three different numberof K = {5,10,15}.* Generally
speakingbetterresultswereobtainedby settingK to 10 or 15,
insteadof 5. This revealsthat the numberof hidden patterns
should be somehav more than five. Also, the performance
difference betweenthe two casesK=10 and K=15 is not
significant and overfitting (i.e., modelswith bigger K work
worser)was obsened for somecases.

3) Different Degrees of Ratings Overlapping: To further
understandhe adwantageof adoptingmodel-basedmethods
like LCM and DLCM, we cancomparethe resultsbasedon
thetwo groupsof datasetdat a_100_* } and{dat a_50_* }
which are reportedin the upperand lower halves of Tablel,
Il and Ill. Also, we usedthe bold faceto highlight the best
performanceamongthe three methods.It is notedthat more
reportedvalueswith bold facewere found in the columnsof
LCM andDLCM in the lower halves(i.e., {dat a.50_* }) of
the three tableswhen comparedwith the upper halves (i.e.,
{dat a-100_*}). It indicatesthat the performancegain (or
improvement)dueto LCM and DLCM, whencomparedwith
P-Corr, is more prominantfor the datasetsn {dat a_.50_*}
which hasa significantly lower degreeof ratingsoverlapping.
Such an obsenation cohereswith our understandingthat
the model-basedpproachhasthe advantageof interpolating
missingdata,especiallywhenthe datais sparse.

VI. CONCLUSION

In this paper the latentclassmodel hasfirst beenextended
so that it can be usedto recommendproductsto newv cus-
tomers.The extensionwasempiricallyfoundto outperformthe
standardPearsoncorrelationmethod only when the number
productitems rated by the new customersis small. As the
limitation is mainly causedby the instrinsic deficieng of the
adoptedatentclassmodelin discriminatingmissingandzero
(dislike) ratings,a dual latentclassmodelwasthen proposed,
which correctsthe deficieny by modelingthe like anddislike
ratings separately The empirical results shav that such a
separatiorcan further improve the model’s predictionpower.
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LIST OF TABLES

Performancecomparisonusing break-een point. Each reportedvalue is an averageover five data sets. The
bracletedvalueis the correspondingstandarddeviation. The comparisonis donebetweenP-Corrandthe bestof
LCM and DLCM. Resultswith {*} indicatethat they are significantly betterwith 80% confidenceaccordingto

Performancecomparisonusing accurag. Resultswith {*** } indicatethat they are significantly betterwith 95%
confidenceaccordingto t-test. . . . . . . . . L
Performanceomparisorusingexpectedutility. Resultswith {*},{** } and{*** } indicatethatthey aresignificantly
betterwith 80%, 90% and 95% confidenceaccordingto t-test.. . . . . . . . . . . . ... ...



1)

2)
3)

4)

Footnotes

In Hofmanns paper [15] n(z,y) denotesthe numberof times the pair (z,y) hasbeenobsened and the customer
preferencerating is representedy anotherrandomvariable. Here we assumethat the numberof obserations should
carry similar information as the customerrated preference.

Automatically determiningthe optimal numberof hidden patternsis underthe field of model selection,which is not
addressedh this paper

Here, for ratingswithin the rangeof [0,1], thosewithin [0,0.5) refersto as dislike ratings while thosewithin [0.5,1]
refersto aslike ratings.

Due to the spacelimitation, more experimentaldetailscan be found in [21].



