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Abstract 
 

The rapid growth of XML adoption has urged for the 
need of a proper representation for semi-structured 
documents, where the document structural information 
has to be taken into account so as to support more precise 
document analysis. In this paper, an XML document 
representation named “structured link vector model” is 
adopted, with a kernel matrix included for modeling the 
similarity between XML elements. Our formulation allows 
individual XML elements to have their own weighted 
contribution to the overall document similarity while at 
the same time allows the between-element similarity to be 
captured. An iterative algorithm is derived to learn the 
kernel matrix. For performance evaluation, the ACM 
SIGMOD Record dataset as well as the CEDB dataset 
have been tested. Our proposed method outperforms 
significantly the traditional vector space model and the 
edit-distance based methods. In addition, the kernel 
matrix obtained as a by-product provides knowledge 
about the conceptual relationship between the XML 
elements. 
 
1. Introduction 
 

XML has widely been used as a mark-up language for 
describing different categories of semi-structured 
information and thus plays an important role in supporting 
system interoperability. Examples include those W3C 
recommended ones, e.g., NewsML, MathML, SVG, as 
well as those used privately in companies. The rapid 
growth in XML adoption has led to a great need in semi-
structured document management systems, where 
functionalities like retrieval, classification and clustering 
of XML documents are fundamentally important. 

To contrast with the ordinary unstructured documents, 
XML documents carry additional information about their 
syntactic structure. Making best use of the structure 
information is crucial for the corresponding effectiveness 
of the document management systems. One of the 

underlying research issues is to determine the similarity 
between XML documents. In the literature, trees are 
commonly used for modeling XML documents without 
reference elements and the structural similarity between a 
pair of XML documents can then be defined as some edit 
distance between the corresponding labeled trees [1,2]. 
Various tree distance algorithms differ from each other 
according to the set of edit operations allowed and 
whether repetitive and optional fields being handled or 
not. Zhang, Statman and Shasha proved in [3] that 
computing the edit distance for unordered labeled trees is 
NP-complete, and yet not optimized in any sense related to 
the elements’ semantics. A rather different approach has 
recently been proposed in [4], where the structure of an 
XML document is represented as a time series with each 
occurrence of a tag corresponding to an impulse. The 
degree of similarity among documents is computed by 
analyzing the corresponding Fourier transform 
coefficients. This approach does not take into account the 
order in which the element tags appear and is adequate 
only when the XML documents are drastically different 
from each other, i.e., they have few tags in common.  

Another promising approach for addressing the 
problem is using kernel methods to incorporate XML 
element similarity into the formulation of the document 
similarity for capturing the underlying semantics between 
the elements. In [5], Yang and Chen extended the vector 
space model for document representation and proposed a 
structured link vector model (SLVM) for representing 
XML documents. The model takes into account the 
document structure, referencing link and element 
similarity for representing XML documents. The similarity 
between an element pair is pre-set in [5] to be related to 
the path difference between the two elements as well as 
the depth of the elements in the document structure. In this 
paper, the optimality and adaptability of such a similarity 
model is addressed. In particular, we extend the SLVM 
model by treating the element similarity matrix as a kernel 
and formulate the corresponding kernel-learning problem 
so that the element similarity can be adapted based on a 



set of unlabelled training data with pairwise similarity 
information. We studied both semi-supervised (making 
use of the pairwise similarity information) and 
unsupervised kernel learning for clustering XML 
documents and compared the results with other existing 
approaches using one benchmarking and one real-world 
datasets. The results obtained demonstrate that the 
proposed kernel learning methodology can greatly 
improve the clustering performance. 

The rest of the paper is organized as follows. Section 2 
provides a brief review on some related work in the area 
of document similarity metric. The proposed kernel-
learning method for modeling XML documents is 
described in Section 3. Section 4 shows the experimental 
results and Section 5 concludes the paper with some future 
research directions.  
 
2. Background 
 
2.1. Document Representation 
 

Vector Space Model (VSM) [6] has long been used to 
represent documents as a set of terms where a document 
vector space spanned by the features of the n distinct 
terms is defined. Let docx denote the xth document with the 
corresponding feature vector dx such that  
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where TF(wi,docx) is the frequency of the term wi in the 
document docx, IDF(wi) is the inverse document frequency 
of wi based on a document collection D, IDF(wi) = 
log(|D|/DF(wi)) for discounting the importance of the 
frequently appearing words, |D| is the total number of the 
documents in the collection and DF(wi) is the number of 
documents where the term wi appears at least once. 

VSM is used to be applied for representing 
unstructured text documents and does not consider at all 
the document structure. For example, it does not make the 
difference between a word in title and the same word in 
the main text. Thus, directly applying it to represent XML 
documents is inadequate. Structured Link Vector Model 
(SLVM) was proposed by Yang and Chen [5], which can 
be considered as an extended vector space model for 
representing XML documents. In the model of SLVM, 
each document, docx, is represented as a matrix d , 
given as 
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where m is the number of elements, d is a feature 

vector related to the term w

m
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i for all the elements, dx(i,j) is a 

feature related to the term wi and specific to the element ej, 
given as 
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and TF(w is the frequency of the term w)jxi .e,doc i in the 

element ej of the documents docx. In order to discount the 
factor caused by different numbers of words appearing in 
different elements, each dx(i,j) is normalized by ∑

i
jixd ),(

. 

One can interpret SLVM as extending VSM by keeping 
the term statistics for each element instead of the whole 
document. 
 
2.2. Similarity Measure 
 

Based on VSM, the similarity between two documents 
docx and docy  is commonly defined as: 
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where “*” indicates the vector dot product, and dx and dy 
are the normalized document feature vectors of docx and 
docy so that |dx|2=1. 

For SLVM, the document similarity can be defined 
similarly with a kernel matrix introduced, given as 
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where Me is an m*m kernel matrix which captures both the 
similarity between a pair of XML elements as well as the 
contribution of the pair to the overall document similarity. 
An entry in Me being small means that the two XML 
elements should be semantically unrelated and same 
words appearing in the two elements should not contribute 
to the overall similarity and vice versa. To determine the 
value of Me, we adopt the kernel-learning approach in this 
paper. 
 
2.3. Similarity Learning 
 

Recently, there have been some algorithms proposed in 
the literature for learning similarity (c.f. distance) metrics. 
Among the different approaches, [7] and [8] posed the 
metric learning as a convex optimization problem. Some 
other approaches (e.g. [9]) used the Mahalanobis distance 
(with the use of covariance matrix) to describe the 
similarity. In [10], an iterative similarity learning approach 
was proposed to measure the similarity between objects 
defined in some non-orthogonal feature space. They 
assume the existence of a dual relationship between the 
object similarity and the feature similarity in their 
algorithm. 
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Fig. 1 The DOM tree of an XML document extracted from ACMSIGMOD dataset. 

 
 

3. Learning the Kernel Matrix for XML 
Documents 
 

In this section, we present the problem formulation 
which is based on kernel methods and provide the details 
about the kernel learning algorithm. 
 
3.1. Problem Description 
 

As in [10], we derive our algorithm based on the notion 
that different elements have different contributions to the 
overall XML document similarity and the contribution is 
dependent on the elements’ semantic rather than the 
relative position of the elements in the XML documents. 
For example, in Figure 1, it is obvious to understand that 
the contribution of the element “confYear” should be 
much less than that of the element “authors” to the overall 
similarity of documents. Instead, words appearing in both 
document A’s “title” element and document B’s “abstract”  
element should be considered to be more relevant. 
However, this intuitive requirement is by no mean related 
to merely the XML data structure and thus cannot be 
satisfied using the edit distance measure. The adopted 
SLVM can take into account not only the terms in the 
documents, but also the elements they belong to. The 
formulation is flexible enough to represent the 
contribution of different elements to the overall document 
similarity and at the same time can capture similarity 
between elements. 

Based on the SLVM described in Section 2.1, we 
denote a set of XML documents as 
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th column corresponding to dk(i) of the kth 
document and p is the number of documents. To recall, dk(i) 
is a feature vector (TF-IDF in our case) related to the ith 
term for all the elements. The similarity matrix of the 
document set {docx} can then be defined as 
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Note that Me is not restricted to have diagonal elements 
all equal to 1, implying that it is not a similarity matrix and 
thus we call it a kernel matrix. The matrix captures not 
only the elements’ similarity but also their individual 
contributions to the overall document similarity at the 
same time. 

Based on Eq.(3), the remaining task is how to estimate 
the kernel matrix Me based on a set of XML documents. 
 
3.2. Learning the Kernel Matrix 
 

In this paper, we extend the iterative algorithm 
proposed by Ning Liu et al. in [10] for clustering 
unstructured documents to semi-structured documents.  

With the notion that term similarity should be affecting 
document similarity and vice versa, we propose a similar 
iterative algorithm for learning the kernel matrix Me in the 
SLVM model, given as 

∑
=

••=
n

i
ie

T
id nBMBS

1
)()( /)(                    (4) 

∑
=

••=
n

i

T
idie nBSBM

1
)()( /)( .                 (5) 



4. Experiments Note that we here assume that all the similarity 
measurements are normalized. In other words, all the 
entries’ values of matrix Sd should be between zero and 
one. Two totally different documents should have a 
similarity value equal zero and two identical documents 
should have a similarity value of one; otherwise, the 
similarity should be between zero and one. In order to 
satisfy this constraint, we modify Eq.(4) and Eq.(5) by 
normalizing them using a set of parameters 

)||,|max(|/9.0 1 ∞= iii BBλ  and estimate Sd and Me 
iteratively, given as 

 
4.1. Datasets and Experiment Design 
 

In our experiment, we first used the benchmarking 
dataset --- ACMSIGMOD Record [11], which is 
composed of hundreds of documents of issues of 
SIGMOID Record. In addition, we also tested the 
proposed algorithm on part of a real world dataset 
“Chinese Encyclopedia Database” (CEDB) [12], which is 
one of the earliest large-scale national projects in China 
adopting XML for representing documents. The dataset 
contains millions of XML documents from a Chinese 
encyclopedia with 74 categories. In order to test the 
sensitivity of the proposed algorithm on datasets with 
different sizes, we extracted a number of data subsets as 
shown in Table 1 for our experiments. Note that for all the 
datasets, the number of documents per class is identical. 

∑
=

+ ••⋅=
n

i
i

k
e

T
ii

k
d nBMBS

1

1 /)( λ                     (6) 

nBSBM
n

1i

T
i

k
dii

1k
e /)(∑

=

+ ••⋅= λ                     (7) 

Note the iterative equations Eq.(6) and Eq.(7) have an 
obvious trivial solution of having both matrices with all 
zero elements. Thus, an additional constraint for getting a 
non-trivial solution is required to force the diagonal 
elements of Sd (i.e., the similarity of identical documents) 
to take the value of one. Up to this step, the iterative 
algorithm is still essentially unsupervised as the 
information about how the documents should be grouped 
is not yet used.  

 
Table 1  Data subsets used in our experiments. 

Datasets Sources Num. of 
classes 

Total num. of 
documents 

ACM-8 ACMSIGMOD 8 96 
ACM-16 ACMSIGMOD 16 96 
CEDB-8 CEDB 8 320 

CEDB-16 CEDB 16 640 
CEDB-32 CEDB 32 960 

In order to incorporate supervised learning, one 
possibility is to collect document pairs that are known to 
be similar. Then, instead of only forcing the diagonal 
elements of Sd to one, we can force also the value of  

corresponding to those similar document pairs to one 
throughout the iterations. The proposed iterative algorithm 
is summarized in Figure 2. 

),( jidS
 
Before running the experiments, all documents are 

preprocessed by 1) converting all the words to lower case 
(for ACMSIGMOD), 2) going through the Porter 
stemming algorithm (for ACMSIGMOD), and 3) 
removing stop-words (for both ACMSIGMOD and 
CEDB). To compare the performance of the proposed 
method with that of other related works, we have 
implemented the traditional VSM as well as a version of 
SLVM but with the element similarity estimated using the 
edit distance approach. For our proposed supervised and 
unsupervised versions of the kernel learning approach, we 
have also tested their performance using training sets of 
different sizes. Cross-validation is used for conducting the 
experiments to avoid bias in training data sampling. All 
the algorithms were implemented in C++ and all 
experiments were run on a PC with a 2.66GHz Intel CPU 
and 512M RAM.  
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4.2. Evaluation of Clustering Performance  Step 5)  Repeat Step 2 to Step 4 until M  converges.    e
 Fig. 2 The iterative algorithm for learning the kernel matrix. 

Among the existing similarity-based clustering 
algorithms, such as k-means, CLARANS, AHC, we 
choose the Agglomerative Hierarchical Clustering (AHC) 
algorithm [13] in this paper and more extensive empirical 
evaluation for the others will be conducted in the future. 
AHC computes the similarity between all pairs of clusters 

 
Our preliminary experiments show that M  normally 

converges within 5 iterations.  
e

 



at each stage and merges the most similar pair. The 
process repeats until all the documents are merged as a 
cluster and then a hierarchical clustering result will be 
generated. We use the following measure as the similarity 
between a pair of clusters Ci and Cj: 

For comparison between the supervised and 
unsupervised learning of the kernel matrix, the supervised 
version outperforms the unsupervised one significantly for 
CEDB but not ACMSIGMOD. We are currently 
investigating the reason behind and believe that the use of 
the supervised information still has rooms for 
improvement. ||||
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where |Ci| represents the number of documents in the ith 
cluster Ci and dk

i represents the kth document in Ci. 
Conventional AHC possesses the possibility of 
considering each isolated data point as a cluster. In our 
implementation, clusters of isolated points are merged 
with their corresponding nearest clusters.  

5. Conclusion and Future Work 
 
Measuring the similarity of XML document is a 

fundamental issue for XML document management. 
Based on the use of SLVM for representing XML 
documents, we formulated an iterative estimation 
procedure for learning a kernel matrix which captures both 
the element similarity and the elements’ relative 
importance. Both semi-supervised and unsupervised 
versions have rigorously been studied and tested for their 
clustering performance using two datasets ACMSIGMOD 
Record and Chinese Encyclopedia Database. The 
proposed kernel-based learning approach is found to 
outperform the conventional vector space model and the 
commonly adopted edit-distance approach significantly.  

Also, among the different quality measures for 
clustering, we use one of the most common ones F-
measure [14] which combines the precision and recall 
rates as an overall performance measure. The measure first 
assumes that each cluster is the result of a query and each 
class is the desired set of the documents for the query. 
Then, the recall and precision rates of each cluster for each 
given class are computed. More specifically, for the jth 
cluster and ith class, 

iji  / n nj ) recall(i, =   
As a by-product, it is interested to note that the 

estimated kernel matrix itself provides the knowledge 
about the semantic relationship among the elements. For 
example, if a word appears in different elements and is 
found to be not similar as revealed by the kernel matrix, 
this may imply that there exist more than one senses for 
the word (polysemy). We are currently investigating how 
this can be related to ontology generation in general. 

jij  / n n i, j ) precision( =  

where nij is the number of items of the ith class falling into 
the jth cluster, nj is the number of items in the jth cluster 
and ni is the number of items in the ith class. The F-
measure associated to the jth cluster and the ith class is then 
given by  
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Acknowledgement and the overall weighted F-measure can then be computed, 

given as  
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 where n is the number of the documents. In other words, 
we only consider the cluster with the largest value of F- 
measure for each class when computing the overall F-
measure. 
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