
Learning the Kernel Matrix for XML Document Clustering

Jianwu Yang1, William K. Cheung2, Xiaoou Chen1
Institute of Computer Sci. & Tech.1

Peking University
Beijing 100871, China

{yjw, cxo}@icst.pku.edu.cn

Department of Computer Science2
Hong Kong Baptist University

Kowloon Tong, Hong Kong
william@comp.hkbu.edu.hk

Abstract

The rapid growth of XML adoption has urged for the
need of a proper representation for semi-structured
documents, where the document structural information
has to be taken into account so as to support more precise
document analysis. In this paper, an XML document
representation named “structured link vector model” is
adopted, with a kernel matrix included for modeling the
similarity between XML elements. Our formulation allows
individual XML elements to have their own weighted
contribution to the overall document similarity while at
the same time allows the between-element similarity to be
captured. An iterative algorithm is derived to learn the
kernel matrix. For performance evaluation, the ACM
SIGMOD Record dataset as well as the CEDB dataset
have been tested. Our proposed method outperforms
significantly the traditional vector space model and the
edit-distance based methods. In addition, the kernel
matrix obtained as a by-product provides knowledge
about the conceptual relationship between the XML
elements.

1. Introduction

XML has widely been used as a mark-up language for
describing different categories of semi-structured
information and thus plays an important role in supporting
system interoperability. Examples include those W3C
recommended ones, e.g., NewsML, MathML, SVG, as
well as those used privately in companies. The rapid
growth in XML adoption has led to a great need in semi-
structured document management systems, where
functionalities like retrieval, classification and clustering
of XML documents are fundamentally important.

To contrast with the ordinary unstructured documents,
XML documents carry additional information about their
syntactic structure. Making best use of the structure
information is crucial for the corresponding effectiveness
of the document management systems. One of the

underlying research issues is to determine the similarity
between XML documents. In the literature, trees are
commonly used for modeling XML documents without
reference elements and the structural similarity between a
pair of XML documents can then be defined as some edit
distance between the corresponding labeled trees [1,2].
Various tree distance algorithms differ from each other
according to the set of edit operations allowed and
whether repetitive and optional fields being handled or
not. Zhang, Statman and Shasha proved in [3] that
computing the edit distance for unordered labeled trees is
NP-complete, and yet not optimized in any sense related to
the elements’ semantics. A rather different approach has
recently been proposed in [4], where the structure of an
XML document is represented as a time series with each
occurrence of a tag corresponding to an impulse. The
degree of similarity among documents is computed by
analyzing the corresponding Fourier transform
coefficients. This approach does not take into account the
order in which the element tags appear and is adequate
only when the XML documents are drastically different
from each other, i.e., they have few tags in common.

Another promising approach for addressing the
problem is using kernel methods to incorporate XML
element similarity into the formulation of the document
similarity for capturing the underlying semantics between
the elements. In [5], Yang and Chen extended the vector
space model for document representation and proposed a
structured link vector model (SLVM) for representing
XML documents. The model takes into account the
document structure, referencing link and element
similarity for representing XML documents. The similarity
between an element pair is pre-set in [5] to be related to
the path difference between the two elements as well as
the depth of the elements in the document structure. In this
paper, the optimality and adaptability of such a similarity
model is addressed. In particular, we extend the SLVM
model by treating the element similarity matrix as a kernel
and formulate the corresponding kernel-learning problem
so that the element similarity can be adapted based on a

set of unlabelled training data with pairwise similarity
information. We studied both semi-supervised (making
use of the pairwise similarity information) and
unsupervised kernel learning for clustering XML
documents and compared the results with other existing
approaches using one benchmarking and one real-world
datasets. The results obtained demonstrate that the
proposed kernel learning methodology can greatly
improve the clustering performance.

The rest of the paper is organized as follows. Section 2
provides a brief review on some related work in the area
of document similarity metric. The proposed kernel-
learning method for modeling XML documents is
described in Section 3. Section 4 shows the experimental
results and Section 5 concludes the paper with some future
research directions.

2. Background

2.1. Document Representation

Vector Space Model (VSM) [6] has long been used to
represent documents as a set of terms where a document
vector space spanned by the features of the n distinct
terms is defined. Let docx denote the xth document with the
corresponding feature vector dx such that

T
nxxxx , d, dd d ><=)()2()1(

)IDF(w) ,docTF(w d ixiix •=)(

where TF(wi,docx) is the frequency of the term wi in the
document docx, IDF(wi) is the inverse document frequency
of wi based on a document collection D, IDF(wi) =
log(|D|/DF(wi)) for discounting the importance of the
frequently appearing words, |D| is the total number of the
documents in the collection and DF(wi) is the number of
documents where the term wi appears at least once.

VSM is used to be applied for representing
unstructured text documents and does not consider at all
the document structure. For example, it does not make the
difference between a word in title and the same word in
the main text. Thus, directly applying it to represent XML
documents is inadequate. Structured Link Vector Model
(SLVM) was proposed by Yang and Chen [5], which can
be considered as an extended vector space model for
representing XML documents. In the model of SLVM,
each document, docx, is represented as a matrix d ,
given as

mn
x R ×∈

T
nxxxx , d, dd d ><=)()2()1(

>=<),()2,()1,()(, mixixixix ddd d

where m is the number of elements, d is a feature

vector related to the term w

m
ix R∈)(

i for all the elements, dx(i,j) is a

feature related to the term wi and specific to the element ej,
given as

)IDF(w.e,docTF(w d ijxijix ⋅=)),(

and TF(w is the frequency of the term w)jxi .e,doc i in the

element ej of the documents docx. In order to discount the
factor caused by different numbers of words appearing in
different elements, each dx(i,j) is normalized by ∑

i
jixd),(

.

One can interpret SLVM as extending VSM by keeping
the term statistics for each element instead of the whole
document.

2.2. Similarity Measure

Based on VSM, the similarity between two documents
docx and docy is commonly defined as:

∑
=

⋅==

><=
n

i
iyixyx

yxyx

dddd

dddocdocsim

1
)()(*

),cos(),(
 (1)

where “*” indicates the vector dot product, and dx and dy
are the normalized document feature vectors of docx and
docy so that |dx|2=1.

For SLVM, the document similarity can be defined
similarly with a kernel matrix introduced, given as

∑
=

••=
n

i
iye

T
ixyx dMddocdocsim

1
)()(),((2)

where Me is an m*m kernel matrix which captures both the
similarity between a pair of XML elements as well as the
contribution of the pair to the overall document similarity.
An entry in Me being small means that the two XML
elements should be semantically unrelated and same
words appearing in the two elements should not contribute
to the overall similarity and vice versa. To determine the
value of Me, we adopt the kernel-learning approach in this
paper.

2.3. Similarity Learning

Recently, there have been some algorithms proposed in
the literature for learning similarity (c.f. distance) metrics.
Among the different approaches, [7] and [8] posed the
metric learning as a convex optimization problem. Some
other approaches (e.g. [9]) used the Mahalanobis distance
(with the use of covariance matrix) to describe the
similarity. In [10], an iterative similarity learning approach
was proposed to measure the similarity between objects
defined in some non-orthogonal feature space. They
assume the existence of a dual relationship between the
object similarity and the feature similarity in their
algorithm.

IndexTermsPage

conf Nameaut hor s gener al
Terms

aut hor

Wei Hong

Document

El ement

Text

abst r actcat egor yAndSubj
ect Descr i pt or s

1992ACM SIGMOD

In t hi s paper

conf Yeart i t l e

Expl oi t i ng t erm
cat egor yAnd
Subj ect Descr
i pt or sTupl e

cat egor y cont ent
Inf ormat i on
.

H. 2. 4
Inf ormat i on

Fig. 1 The DOM tree of an XML document extracted from ACMSIGMOD dataset.

3. Learning the Kernel Matrix for XML
Documents

In this section, we present the problem formulation
which is based on kernel methods and provide the details
about the kernel learning algorithm.

3.1. Problem Description

As in [10], we derive our algorithm based on the notion
that different elements have different contributions to the
overall XML document similarity and the contribution is
dependent on the elements’ semantic rather than the
relative position of the elements in the XML documents.
For example, in Figure 1, it is obvious to understand that
the contribution of the element “confYear” should be
much less than that of the element “authors” to the overall
similarity of documents. Instead, words appearing in both
document A’s “title” element and document B’s “abstract”
element should be considered to be more relevant.
However, this intuitive requirement is by no mean related
to merely the XML data structure and thus cannot be
satisfied using the edit distance measure. The adopted
SLVM can take into account not only the terms in the
documents, but also the elements they belong to. The
formulation is flexible enough to represent the
contribution of different elements to the overall document
similarity and at the same time can capture similarity
between elements.

Based on the SLVM described in Section 2.1, we
denote a set of XML documents as

T
nBBBB >=<)()2()1(,,, where is a

matrix with its k

pm
i RB ×∈)(

th column corresponding to dk(i) of the kth
document and p is the number of documents. To recall, dk(i)
is a feature vector (TF-IDF in our case) related to the ith
term for all the elements. The similarity matrix of the
document set {docx} can then be defined as

∑
=

••=
n

i
ie

T
id nBMBS

1
)()(/)(. (3)

Note that Me is not restricted to have diagonal elements
all equal to 1, implying that it is not a similarity matrix and
thus we call it a kernel matrix. The matrix captures not
only the elements’ similarity but also their individual
contributions to the overall document similarity at the
same time.

Based on Eq.(3), the remaining task is how to estimate
the kernel matrix Me based on a set of XML documents.

3.2. Learning the Kernel Matrix

In this paper, we extend the iterative algorithm
proposed by Ning Liu et al. in [10] for clustering
unstructured documents to semi-structured documents.

With the notion that term similarity should be affecting
document similarity and vice versa, we propose a similar
iterative algorithm for learning the kernel matrix Me in the
SLVM model, given as

∑
=

••=
n

i
ie

T
id nBMBS

1
)()(/)((4)

∑
=

••=
n

i

T
idie nBSBM

1
)()(/)(. (5)

4. Experiments Note that we here assume that all the similarity
measurements are normalized. In other words, all the
entries’ values of matrix Sd should be between zero and
one. Two totally different documents should have a
similarity value equal zero and two identical documents
should have a similarity value of one; otherwise, the
similarity should be between zero and one. In order to
satisfy this constraint, we modify Eq.(4) and Eq.(5) by
normalizing them using a set of parameters

)||,|max(|/9.0 1 ∞= iii BBλ and estimate Sd and Me
iteratively, given as

4.1. Datasets and Experiment Design

In our experiment, we first used the benchmarking
dataset --- ACMSIGMOD Record [11], which is
composed of hundreds of documents of issues of
SIGMOID Record. In addition, we also tested the
proposed algorithm on part of a real world dataset
“Chinese Encyclopedia Database” (CEDB) [12], which is
one of the earliest large-scale national projects in China
adopting XML for representing documents. The dataset
contains millions of XML documents from a Chinese
encyclopedia with 74 categories. In order to test the
sensitivity of the proposed algorithm on datasets with
different sizes, we extracted a number of data subsets as
shown in Table 1 for our experiments. Note that for all the
datasets, the number of documents per class is identical.

∑
=

+ ••⋅=
n

i
i

k
e

T
ii

k
d nBMBS

1

1 /)(λ (6)

nBSBM
n

1i

T
i

k
dii

1k
e /)(∑

=

+ ••⋅= λ (7)

Note the iterative equations Eq.(6) and Eq.(7) have an
obvious trivial solution of having both matrices with all
zero elements. Thus, an additional constraint for getting a
non-trivial solution is required to force the diagonal
elements of Sd (i.e., the similarity of identical documents)
to take the value of one. Up to this step, the iterative
algorithm is still essentially unsupervised as the
information about how the documents should be grouped
is not yet used.

Table 1 Data subsets used in our experiments.

Datasets Sources Num. of
classes

Total num. of
documents

ACM-8 ACMSIGMOD 8 96
ACM-16 ACMSIGMOD 16 96
CEDB-8 CEDB 8 320

CEDB-16 CEDB 16 640
CEDB-32 CEDB 32 960

In order to incorporate supervised learning, one
possibility is to collect document pairs that are known to
be similar. Then, instead of only forcing the diagonal
elements of Sd to one, we can force also the value of

corresponding to those similar document pairs to one
throughout the iterations. The proposed iterative algorithm
is summarized in Figure 2.

),(jidS

Before running the experiments, all documents are

preprocessed by 1) converting all the words to lower case
(for ACMSIGMOD), 2) going through the Porter
stemming algorithm (for ACMSIGMOD), and 3)
removing stop-words (for both ACMSIGMOD and
CEDB). To compare the performance of the proposed
method with that of other related works, we have
implemented the traditional VSM as well as a version of
SLVM but with the element similarity estimated using the
edit distance approach. For our proposed supervised and
unsupervised versions of the kernel learning approach, we
have also tested their performance using training sets of
different sizes. Cross-validation is used for conducting the
experiments to avoid bias in training data sampling. All
the algorithms were implemented in C++ and all
experiments were run on a PC with a 2.66GHz Intel CPU
and 512M RAM.

Step 1))||,|max(|/9.0 1 ∞= iii BBλ

=
else 0

�class samein are doc and doc if 1 ji
),(

0
jidS

Step 2) M ∑

=

+ ••⋅=
n

1i

T
i

k
dii

1k
e nBSB /)(λ

Step 3) S nBMB
n

1i
i

k
e

T
ii

1k
d /)(1∑

=

++ ••⋅= λ

Step 4)

= +
+

else S
�class samein are doc and doc if 1

j)(i,
1k

d

ji
),(

1
ji

k
dS

4.2. Evaluation of Clustering Performance Step 5) Repeat Step 2 to Step 4 until M converges. e
 Fig. 2 The iterative algorithm for learning the kernel matrix.

Among the existing similarity-based clustering
algorithms, such as k-means, CLARANS, AHC, we
choose the Agglomerative Hierarchical Clustering (AHC)
algorithm [13] in this paper and more extensive empirical
evaluation for the others will be conducted in the future.
AHC computes the similarity between all pairs of clusters

Our preliminary experiments show that M normally

converges within 5 iterations.
e

at each stage and merges the most similar pair. The
process repeats until all the documents are merged as a
cluster and then a hierarchical clustering result will be
generated. We use the following measure as the similarity
between a pair of clusters Ci and Cj:

For comparison between the supervised and
unsupervised learning of the kernel matrix, the supervised
version outperforms the unsupervised one significantly for
CEDB but not ACMSIGMOD. We are currently
investigating the reason behind and believe that the use of
the supervised information still has rooms for
improvement. ||||

),(
),(

||

1

||

1

ji

C

k

C

l
j

l
i
k

ji CC
ddSim

CCSIM
i j

⋅
= ∑ ∑= =

where |Ci| represents the number of documents in the ith
cluster Ci and dk

i represents the kth document in Ci.
Conventional AHC possesses the possibility of
considering each isolated data point as a cluster. In our
implementation, clusters of isolated points are merged
with their corresponding nearest clusters.

5. Conclusion and Future Work

Measuring the similarity of XML document is a

fundamental issue for XML document management.
Based on the use of SLVM for representing XML
documents, we formulated an iterative estimation
procedure for learning a kernel matrix which captures both
the element similarity and the elements’ relative
importance. Both semi-supervised and unsupervised
versions have rigorously been studied and tested for their
clustering performance using two datasets ACMSIGMOD
Record and Chinese Encyclopedia Database. The
proposed kernel-based learning approach is found to
outperform the conventional vector space model and the
commonly adopted edit-distance approach significantly.

Also, among the different quality measures for
clustering, we use one of the most common ones F-
measure [14] which combines the precision and recall
rates as an overall performance measure. The measure first
assumes that each cluster is the result of a query and each
class is the desired set of the documents for the query.
Then, the recall and precision rates of each cluster for each
given class are computed. More specifically, for the jth
cluster and ith class,

iji / n nj) recall(i, =
As a by-product, it is interested to note that the

estimated kernel matrix itself provides the knowledge
about the semantic relationship among the elements. For
example, if a word appears in different elements and is
found to be not similar as revealed by the kernel matrix,
this may imply that there exist more than one senses for
the word (polysemy). We are currently investigating how
this can be related to ontology generation in general.

jij / n n i, j) precision(=

where nij is the number of items of the ith class falling into
the jth cluster, nj is the number of items in the jth cluster
and ni is the number of items in the ith class. The F-
measure associated to the jth cluster and the ith class is then
given by

, j) recall(i i, j) precision(
 i, j)precision(i, j) * * recall(F(i, j)

+
=

2
Acknowledgement and the overall weighted F-measure can then be computed,

given as
This work was partially supported by RGC Central
Allocation Group Research Grant (HKBU 2/03/C). {F(i,j)}

n
nF j

i

i max∑=

 where n is the number of the documents. In other words,
we only consider the cluster with the largest value of F-
measure for each class when computing the overall F-
measure.

References

[1] Z.P. Zhang, R. Li, S.L. Cao, and Y.Y. Zhu, “Similarity
Metric for XML Documents”, Proceedings of the 2003
Workshop on Knowledge and Experience Management
(FGWM 2003), Karlsruhe, Oct. 2003.

4.3. Results and Discussion

 [2] A. Nierman and H. V. Jagadish, “Evaluating Structural
Similarity in XML Documents”, Proceedings of the Int.
Workshop on the Web and Databases (WebDB), Madison,
WI, Jun. 2002.

According to the experimental results reported in Table
2-6, the clustering performance of the proposed kernel-
learning method is significantly better than that based on
the others by 21-60% at maximum for each dataset. In
particular, the conventional vector space model performs
the worst for both ACMSIGMOD and CEDB. The
adoption of structure information using the edit distance
results in significant improvement in performance. The
proposed kernel learning approach again outperforms the
edit distance approach significantly.

[3] K. Zhang, R. Statman, and D. Shasha, “On the Editing
Distance between Unordered Labeled Trees”, Information
Processing Letters, 42(3):133--139, 1992.

[4] S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A.
Pugliese, “Detecting Structural Similarities between XML
Documents”, Proceedings of the International Workshop on
the Web and Databases (WebDB), Madison, WI, Jun. 2002.

Table 2: F-measure (%) computed for different methods based on ACM-8.

Unsupervised (# classes for training) Supervised (# classes for training) VSM Edit Dist 2 4 2 4
39.9 52.7 53.6±2.1 64.6±7.3 54.1±1.9 62.5±9.2

Table 3: F-measure (%) computed for different methods based on ACM-16.

Unsupervised (# classes for training) Supervised (# classes for training) VSM Edit Dist 2 4 8 2 4 8
52.2 58.9 64.4±4.7 64.7±8.4 73.0±9.6 63.7±3.5 63.4±5.2 71.7±13.7

Table 4: F-measure (%) computed for different methods based on CEDB-8.

Unsupervised (# classes for training) Supervised (# classes for training) VSM Edit Dist 2 4 2 4
40.0 89.0 90.8±6.6 90.4±6.2 99.6 ±0.3 100±0.0

Table 5: F-measure (%) computed for different methods based on CEDB-16.

Unsupervised (# classes for training) Supervised (# classes for training) VSM Edit Dist 2 4 8 2 4 8
37.3 93.3 94.1±1.4 94.5±2.3 94.7±4.2 96.2±3.1 97.0±2.6 95.7±4.4

Table 6: F-measure (%) computed for different methods based on CEDB-32.

Unsupervised (# classes for training) Supervised (# classes for training) VSM Edit Dist 2 4 8 16 2 4 8 16

41.5 85.1 91.8
±1.6

91.4
±1.2

90.6
±1.4

92.1
±0.5

96.5
±0.8

96.3
±1.2

95.4
±2.3

96.6
±3.3

[5] J.W. Yang, and X.O. Chen, “A Semi-Structured Document
Model for Text Mining”, Journal of Computer Science and
Technology, 17(5): 603-610, 2002.

[6] G. Salton, and M. J. McGill, Introduction to Modern
information Retrieval. McGraw-Hill, 1983.

[7] M. Schultz, and T. Joachims, “Learning a Distance Metric
from Relative Comparison”, Proceedings of the Neural
Information Processing Systems (NIPS), Whistler, B.C.,
2003.

[8] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart
Russell, “Distance Metric Learning, with Application to
Clustering with Side-Information”, Proceedings of the
Neural Information Processing Systems (NIPS), Whistler,
B.C., 2003.

[9] J. Kandola, J. Shawe-Taylor, and N. Cristianini, “Learning
Semantic Similarity”, Proceedings of the Neural
Information Processing Systems (NIPS), Canada, 2002.

[10] N. Liu, B.Y. Zhang, J. Yan, Q. Yang, S.C. Yan, Z. Chen,
and W.Y. Ma, “Learning Similarity Measures in the Non-
orthogonal Space”, Proceedings of the Thirteenth
Conference on Information and Knowledge Management
(CIKM 2004), Washington D.C., U.S.A., Nov. 2004.

[11] http://www.acm.org/sigs/sigmod/record/xml/XMLSigmodR
ecordMarch1999.zip

[12] http://www.ecph.com.cn
[13] P. Sneath, and R. R. Sokal, Numerical Taxonomy - The

Principles and Practice of Numerical Classification, W. H.
Freeman, San Francisco, 1973.

[14] B. Larsen and C. Aone, “Fast and Effective Text Mining
Using Linear-time Document Clustering”, Proceedings of
the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego,
California, August 1999.

http://www.ecph.com.cn/

	1. Introduction
	2. Background
	2.1. Document Representation
	2.2. Similarity Measure
	2.3. Similarity Learning

	3. Learning the Kernel Matrix for XML Documents
	3.1. Problem Description
	3.2. Learning the Kernel Matrix

	4. Experiments
	4.1. Datasets and Experiment Design
	4.2. Evaluation of Clustering Performance
	4.3. Results and Discussion

	5. Conclusion and Future Work
	Acknowledgement
	References

