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Abstract

Partially observable Markov decision process (POMDP)
is commonly used to model a stochastic environment with
unobservable states for supporting optimal decision mak-
ing. Computing the optimal policy for a large-scale
POMDP is known to be intractable. Belief compression, be-
ing an approximate solution, reduces the belief state to be
of low dimension and has recently been shown to be both
efficient and effective in improving the problem tractabil-
ity. In this paper, with the conjecture that temporally close
belief states could be characterized by a low intrinsic di-
mension, a novel belief state clustering criterion function
is proposed, which considers the belief states’ spatial (in
the belief space) and temporal similarities, resulting in be-
lief state clusters as sub-POMDPs of much lower intrinsic
dimension and to be distributed to a set of agents for col-
laborative problem solving. The proposed method has been
tested using a synthesized navigation problem (Hallway2)
and empirically shown to be able to result in policies of su-
perior long-term rewards when compared with those based
on only belief compression. Some future research directions
for extending this belief state analysis appproach are also
included.

1 Introduction

Markov decision process (MDP) is a well-known deci-
sion making framework under a stochastic environment. An
MDP model consists of a finite set of states, a set of corre-
sponding state transition probabilities and a reward func-
tion. Solving an MDP problem means finding an optimal
policy which maps each state to an action so as to achieve
the best long-term reward. One of the most important as-
sumptions in MDP is that the state of the environment is
fully observable. This, however, is unfit to a lot of real-
world problems. Partially observable Markov decision pro-
cess (POMDP) generalizes MDP in which the decision pro-
cess is based on the incomplete information about the state.

A POMDP model is essentially equivalent to that of MDP
with the addition of a finite set of observations and a set
of corresponding observation probabilities. Due to the par-
tially observability on the environment, the observation his-
tory has to be memorized to help making proper decision,
then the policy of a POMDP is a mapping from histories of
observations to actions.

With compressing the observation history into abelief
state, POMDP’s policy is now defined over these belief state
which is a probability distribution over the unobservable
real states as an effective summary of the observation his-
tory. The policy of a POMDP is thus a mapping from a
belief state to an action over the entire continuous belief
space. The best bound of computing complexity for obtain-
ing the exact solution of optimal policy is doubly exponen-
tial in the horizon [3]. For large-scale POMDP problems, it
is computationally infeasible even though it is known that
the value function can be proven piecewise linear and con-
vex (PWLC) over the belief space [1].

In the literature, there exist a number of different meth-
ods proposed to solve large-scale POMDP problems effi-
ciently, including the witness algorithm [1], VDC algorithm
[10], BFSC alogrithm [11], etc. Another orthogonal direc-
tion for making the solution scalable is to take the divide-
and-conquer approach, which, at the same time, can further
facilitate the problem solving to be conducted in a multi-
agent setting. While there have been some previous work
on automatic decomposition of POMDP, efficient and ef-
fective paradigms to support POMDP decomposition and
distribution are still lacking.

In this paper, we are inspired by the recently proposed
belief compression approach and notice that analyzing a
sample of belief states computed based on observations
could in fact provide us a lot of hints for reducing the prob-
lem complexity in a problem-specific manner. For example,
based on the fact that belief states of POMDP can typically
be characterized by a much lower dimensional state space,
the belief compression approach uses dimension reduction
techniques like PCA and exponential PCA to reduce the
problem complexity. With the conjecture that temporally
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close belief states could be characterized by a set of clus-
ters, each with a further reduced intrinsic dimension, this
paper proposes to cluster belief states based on their spa-
tial (in the belief space) and temporal similarities, resulting
in belief state clusters as sub-POMDPs of much lower in-
trinsic dimension and to be distributed to a set of agents
for collaborative problem solving. We have tested the pro-
posed method using a synthesized navigation problem and
showed that the belief state clustering approach can result in
policies of superior long-term rewards when compared with
those based on standard belief compression.

The remaining of this paper is organized as follows. Sec-
tion 2 provides the background on belief compression. Sec-
tion 3 describes the proposed belief state clustering tech-
nique. Section 4 provides the details for computing the sub-
POMDP policies and how they are used for solving the en-
tire POMDP as a whole. Experimental results are reported
in Section 5 with possible extensions included in Section 6.
Section 7 concludes the paper.

2 Belief Compression

Belief compression is a recently proposed paradigm [8],
which reduces the sparse high-dimensional belief space to a
low-dimensional one via projection. The principle behind is
to explore the redundancy in computing the optimal policy
for the entire belief space which is typically sparse. Using a
sample of belief states computed based on observations of a
specific problem, data analysis techniques like exponential
principal component analysis (EPCA) can be adopted for
characterizing the originally high-dimensional belief space
using a compact set of belief state bases. This paradigm
has been found to be effective in making POMDP problems
much more tractable.

Let S denote the set of true states,B denote the belief
space of dimension|S|, b ∈ B denote the belief state where
its jth elementbi(j) ≥ 0 and

∑|S|
j=0 bi(j) = 1, B denote a

|S|×n matrix defined as[b1|b2|...|bn] wheren is the number
of belief states in the training sample.

According to [8], one can apply EPCA and obtain a|S|×
l transformation matrixU which factorsB into the matrices
U andB̃ such that

B ≈ eUB̃ (1)

where each column ofB equalsb ≈ br = eUb̃ and the
dimension ofB̃ is l × n. As the main objective ofU is for
dimension reduction, it is typical thatl << |S|.

To compare with some standard dimension reduction
techniques like PCA, EPCA is found to be more effective
in dimension reduction. Also, EPCA can guarantee all the
elements of a belief state to be positive, which is important
as each belief state is a probability distribution by itself.
However, the transformation is a non-linear one, making

the value function of the projected belief states no longer
piecewise linear. The consequence is that many existing al-
gorithms taking the advantage of the piecewise-linear value
function become not applicable together with belief com-
pression. As suggested in [8], those sampled belief states
in the projected space can be used as the states of a corre-
spondingly formed MDP. One can then compute the optimal
policy for that associated MDP.

3 Clustering Belief States for POMDP De-
composition

3.1 General Ideas

Rather than being yet another technique to address the
POMDP’s scalability issue, we perceive that the belief com-
pression approach in fact opens up a new dimension for
tackling POMDP problems. That is the possibility to apply
data analysis techniques to the belief space, leading to the
possibilities of having more elegant problem solving tricks.

3.2 Dimension Reduction Oriented Clustering

As mentioned in [8], the efficiency of belief compression
is owing to its strategy for tackling the high-dimensional be-
lief state which is one of the main causes for the exponen-
tial complexity. To further exploit the dimension reduction
paradigm, we propose to decompose POMDP by analyzing
the manifold of a set of sampled belief states for clustering.
We anticipate that in these cases, there should exist some
clusterings which could result in more substantial dimen-
sion reduction per cluster when compared with that of the
overall belief states. In other words, the clustering criterion
that we are looking for is one that is formulated to maxi-
mize the with-in cluster problem regularity to account for
the further reduction. To contrast, most of the conventional
data clustering techniques try to identify data clusters for
maximizing the overall inter-cluster variance/distance while
at the same time minimizing the overall intra-cluster vari-
ance/distance.

This idea can be intuitively interpreted as exploitation of
the structural modularization from the belief state perspec-
tive. Thus, the proposed belief state clustering has some
analogy with POMDP decomposition. However, in the lit-
erature, most of the proposed POMDP decomposition tech-
niques focus on analyzing the original states of the POMDP,
instead of based on the statistical properties of belief state
occurrence as what being proposed in this paper.
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3.3 A Spatio-Temporal Criterion Function for
Clustering

In this paper, we propose to cluster the belief states based
on both their euclidean distance as well as their temporal
difference, with the conjecture that regularities should be
easier to identify for temporally close belief states. Among
all the clustering algorithms, thek-means algorithm [7] is
here chosen just for the simplicity reason. It is based on
a function defined for measuring the distance between the
cluster means and each data item. Data found to be closest
to one of the cluster means will contribute to the update
of that mean in the next iteration. The whole process will
repeat until it converges. For clustering belief states with the
dimension-reduction objective, we define a spatio-temporal
distance function between two belief states, given as

dist(bi, bj) =
√

distspatial(bi, bj) + λdisttemporal(bi, bj)

=

√
‖bi − bj‖2 + λ‖ i− j

n|S| ‖
2 (2)

whereλ is a trade-off parameter for controlling the rela-
tive contribution of the first (spatial) term and the second
(temporal) term.n|S| is introduced to normalize the second
term to be within[0, 1

n ]. If λ is too large, it will dominate
the first term and thek-means clustering results will essen-
tially be cutting the belief state sample into some consecu-
tive parts according to the belief state appearance sequence
in the sample. Also, the value ofk, i.e., the number of clus-
ters, is another parameter that one can tune for optimal be-
lief state dimension reduction. To determine the values of
λ andk, we only used an empirical procedure in this paper
to be explained in the subsequent section. It is in fact pos-
sible to replace thek-means clustering with methods like
mixture of Gaussians so that the data partition becomes soft
instead of hard and the analytical derivation of optimalλ
could be possible. This part will further be pursued due to
the promising empirical results we obtained in this paper.

As just mentioned, the optimality ofk andλ should be
defined based on some criterion function which measures
the difference between the original belief states and the re-
constructed belief states after belief compression is applied.
As each belief state is a probability distribution, Kullback-
Leibler (KL) divergence could be used for evaluating the
discrepancy between the original belief states and the re-
constructed belief states, as given in Eq.(3).

KL(B) =
∑n

i=1 KL(bi‖br
i )

n
(3)

KL(bi‖br
i ) =

|S|∑

j=1

bi(j) ln
(

bi(j)
br
i (j)

)
. (4)

For the original belief compression, the compression
is based on primarily one transformation matrixU as de-
scribed in Section 2. Now, as the belief states are clustered,
there will be several transformation matrices, each corre-
sponding to a particular cluster. Let the belief state sam-
ple be partitioned intoP clusters{C1, C2, ..., CP } and the
transformation matrix of thepth clusterCp to beUp. The
reconstructed belief states associated toCp can then be ap-

proximated asbr,Cp = eUpb̃. To measure the dimension re-
duction effectiveness via the clustering, the KL divergence
per cluster is to be computed, given as

KL(Cp) =

∑
bj∈Cp

KL(bj‖br,Cp

j )

|Cp| . (5)

Before proceeding to the next section for computing the
policy, we would like to highlight the fact that clustering the
belief states can result not only in reducing the overall com-
plexity for solving the original POMDP problem, but also
that for performing the EPCA for belief compression and
that for computing the transition probabilities of the pro-
jected belief states. This computational gain is achieved at
the expense of the clustering overhead as well as the opti-
mality of the resulting policy that we may sacrify after the
problem decomposition. Fortunately, the clustering over-
head is found to be not significant when compared with the
overall complexity. For the resulting policy’s optimalty, the
results we obtained so far are very positive.

4 Computing POMDP Policy

As mentioned in Section 2, those existing efficient ex-
act algorithms (e.g. Witness algorithm [1]) no longer fit to
solve the POMDP problem with reduced dimension due to
EPCA’s non-linear projection. As in [8], we use the MDP
value iteration method on the low-dimensional sampled be-
lief states to get an approximate policy, which has been
proven to be a bounded-error approximation in [4]. While
we do not have major contribution in this part, related for-
mulations are still repeated here for completeness.

Let B̃ denote the set of belief state clusters, each being
associated with a different transformation matrixUp. Thus,
we have

B̃ = {B̃C1 , B̃C2 , ..., B̃Cp} (6)

where
B̃Ci = {b̃j |br

j ∈ Ci}. (7)

The approximate value iteration algorithm uses the fol-
lowing rule to compute at-step lookahead value function
V t from a(t−1)-step lookahead value functionV t−1, given
as
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V t(̃bCk
i ) = maxa(R̃Ck (̃bCk

i , a)

+γ
∑

b̃
Ck
j

T̃Ck (̃bCk
i , a, b̃Ck

j ) · V t−1(̃bCk
j ))(8)

where R̃Ck and T̃Ck are the approximate reward and
transition functions in the corresponding partitioned low-
dimensional space.

4.1 Computing the Reward Function

The reward functionR(si, a) denotes an immediate re-
ward if taking an actiona at statesi. Naturally, an imme-
diate reward after taking an actiona at belief stateb or b̃
should be the expected value over the all true states. See
following equation:

R̃Ci(b̃j , a) =
|S|∑

i=1

R(si, a)bj(si) (9)

Note that in some problems, there is another form of re-
ward functionR(si, a, sj) which means the immediate re-
ward is also relative to the state to be reached. Also, we can
get the expectedR(si, a) from R(si, a, sj),

R̃(si, a) =
|S|∑

j=1

R(si, a, sj)T (si, a, sj) (10)

4.2 Computing the Transition Function

Computing the transition function of the projected be-
lief states is a bit more complicated. One should first recur
to the transition trajectory of the high-dimensional space
based on the Bayes rules. It is a process in and out of
the high-dimensional and low-dimensional space to accom-
plish the beliefs’ evolvement, projection, reconstruction and
matching, as described in [8]. For our proposed method, we
only consider pairs of low-dimensional beliefs in the same
cluster, regardless of the possible transitions between clus-
ters. Thus, we get the transition functioñTCk (̃bCk

i , a, b̃Ck
j )

as the sum ofp(z, j|i, a) over all observationsz, i.e.,

p(z, j|i, a) = ω(̃bCk
j , b̃′Ck)

|S|∑

l=1

p(z|sl)bCk
a (sl) (11)

whereb̃′Ck is the low-dimensional belief projected from a
high-dimensional beliefbCk of a clusterCk, which is up-
dated after executing an action and receiving an observa-
tion from the high-dimensional reconstruction ofb̃Ck

i us-

ing br,Ck = eUb̃Ck . ω(̃bCk
j , b̃′Ck) = 1

k as we usek-
nearest-neighbor for approximate discretization on the low-
dimensional belief space. Also,p(z|sl) in Eq.(11) can be

computed as

p(z|sl) =
|S|∑

i=1

p(ai|sl)p(z|ai, sl) (12)

with p(ai|sl) = 1
|Actions| andp(z|ai, sl) is the given ob-

servation probability. ForbCk
a (sl) in Eq.(11), it denotes the

expected belief and can be computed as

bCk
a (sl) =

|S|∑

j=1

T (sj , a, sl)bCk
i (sj). (13)

It is updated only by executing an action instead of using
both action and observation.

Generally speaking, constraining the transitions within
clusters will bring some reward information loss and
weaken the policy quality accordingly. However, the spatio-
temporal clustering we adopted is essentially geared to re-
duce the loss to a certain extent since it is based on the con-
jecture that belief state visited within a short period will
try to be clustered as far as possible based on the spatio-
temporal notion. In other words, good clustering results
should benefit not only dimension reduction, but also the
accuracy of the subsequently computed policy.

4.3 Value Function Computation and Policy Ap-
plication

The final step is to compute the value function for each
cluster to get the policy tables corresponding to the clusters
using the reward and transition functions computed accord-
ing to the previous two subsections. Based on Eq.( 8), the
conventional MDP value iteration algorithm can be used,
which will stop when the value at time stept + 1 is mathe-
matically close to the value at time stept.

To apply the policy in a multi-agent setting, the com-
puted policy tables will be distributed to different agents
and a coordinating agent is needed with the role of select-
ing which agents to forward a new observation to based on
comparing the corresponding high-dimensional belief state
with the sampled beliefs. Our implementation selects the
nearest one which is indexed with the corresponding agent
for taking the next step action based on the agent’s policy
table.

5 Experimental Results

5.1 The Hallway2 Problem

The Hallway2 Problem which is defined with a specific
maze is commonly used to test the scalability of algorithms
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for solving POMDP problems (see also [1]). The prob-
lem is to find the goals in the maze with 92 states (4 be-
ing the goal states), and contains 5 actions and 17 types
of observations. Reaching one of the goal states will yield
a +1 reward and then the next state will be set to a ran-
dom non-goal state. In addition, it is assumed that all
the non-goal states of the problem are equally likely to be
the initial state location and thus the starting belief state is
b1 = ( 1

88 , ..., 1
88 , 0.0, 0.0, 0.0, 0.0, 1

88 , ..., 1
88 )T . Also, the

discount factor used is 0.95. In this paper, all the experi-
mental results reported are based on this problem setting.

5.2 Belief State Sampling

The process of belief compression is operated on a belief
state sample generated via simulation. During the simula-
tion for sample generation, two levels of random numbers
are used to select an action, and the Bayes rules are used to
evolve the belief states. When one random number is found
to be less than the threshold defined as 0.5, another random
number will be generated to decide the next action. Oth-
erwise, it will sum up all the beliefs generated so far and
take the state with the maximal sum of probabilities as the
current state. Then, an MDP solver will be called to get the
corresponding policy table to choose the next action for its
‘current state’.

Note that the sampled belief states in consecutive time
steps often own the similar shape with the same number
of modes [6]. Obviously, these “structural” similar belief
states could have them represented at a much lower dimen-
sion. That’s why the belief space is often considered to be
sparse.

5.3 Performance of Belief State Clustering

The first experiment focuses on evaluating the effective-
ness of the proposed spatio-temporal clustering scheme for
overall dimension reduction. We enumerated a set of dif-
ferent values for the trade-off parameterλ as well as the
number of the clustersP and evaluated the corresponding
dimension reduction performance. For performance mea-
surement, we contrasted the values of the KL-divergence
between the set of original belief states and the ones recon-
structed based on the conventional belief state compression
(i.e., without clustering) and the one we proposed in this pa-
per with belief state clustering. We only care those param-
eter settings (λ, l, P ) on which the averaged KL divergence
of each cluster is less than that using the conventional be-
lief compression. It is noted that a number of settings can
result in better overall dimension reduction. Among those
settings, we set a filter and highlight those with high reduc-
tion. The filtering is based on a ratioR, defined as

Original Proposed Comp.
# Items EPCA Method Cost (sec.)

Cluster1 96 1.3997 0.0024 1.84
Cluster2 16 0.4998 0.0004 0.34
Cluster3 36 0.1893 0.0003 0.49
Cluster4 352 4.2596 0.4938 69.27

Table 1. Performance comparison between
the conventional EPCA for belief compres-
sion and the proposed method, where the
number of clusters is 4, the reduced dimen-
sion is 3 and λ = 3.

R(λ, l, P ) = 1/P∗
P∑

p=1

(KLU (λ, l, Cp)−KLUp
(λ, l, Cp))

KLU (λ, l, Cp)
(14)

where KLU (λ, l, Cp) stands for the KL-divergence be-
tween the original belief states in thepth cluster and the
corresponding reconstructed belief states based on onlyU
(original EPCA), andKL{Up}(λ, l, Cp) stands for the KL-
divergence between the original belief states in thepth clus-
ter and the corresponding reconstructed belief states based
onUp (resulted from applying EPCA to the cluster).

We select a parameter setting (3,3,4) withR > 0.95. Ta-
ble 1 tabulates the performance measures for comparing the
KL divergence under this parameter setting. Figure 1 shows
the comparison of the average KL-divergence over all sam-
pled beliefs at different reduced dimensions using EPCA.
Obviously, our proposed method achieves more accurate re-
construction than that of using conventional EPCA. In addi-
tion, as reported in the last column of Table 1, our proposed
method took 71.94 seconds while the conventional EPCA
took 153.08 seconds.

5.4 Policy Quality with Spatio-Temporal Cluster-
ing Introduced

In terms of those parameter settings(λ, l, P ) with sig-
nificant intrinsic KL-Divergence reduction, we compute the
policy for each cluster and test the policy. The comparison
of policy performance occurs between the computing policy
via dimension reduction directly and computing policies via
spatio-temporal clustering using different numbers of bases.
For each parameter setting, we execute 1000 trials. Each
trial is a trajectory with maximal 251 steps before any one
of the objective states is reached. The trajectory is evolved
by executing the computed policies. Our experimental re-
sults show that nearly half of these parameter settings result
in the policy quality enhancement, and some of them help
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Figure 1. Average KL Divergence for conven-
tional EPCA.

increase the average reward greatly.
According to Figure 2, we can see obvious performance

enhancement over the conventional belief compression. For
the Hallway2 problem with 500 sampling beliefs, it also
shows that using four clusters is a generally better strategy.

Table 2 lists out the detailed parameter settings selected
for performance comparsion. Generally speaking, those set-
tings with relatively higherR(λ, l, P ) ratio induces a better
average reward, which is consistent to our conjecture that a
clustering with a better dimension reduction power should
also result in a policy of higher quality. It is also noted that
it is hard to set a threshold of getting a good set ofl and
P as the value of the ratioR(λ, l, P ) for resulting in better
policy varies quite a lot given different set ofl andP .

As being discussed before, the performance enhance-
ment is induced by the much more accurate low-
dimensional representation, though some rewards among
clusters are lost inevitablely. Our experimental results are
consistent with what we have discussed in the previous sec-
tion and show that the reward loss do not affect much the
overall performance given good spatio-temporal clustering
results.

6 Discussion and Future Works

This paper mainly demonstrates the possibility of clus-
tering the belief states in a spatio-temporal manner for
achieving further belief state compression and good policy
performance. We are currently working on several exten-
sions of this work as depicted as follows.
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Figure 2. A comparison of policy performance
using different schemes for average reward
over 1000 trials with different parameter set-
ting which is labelled as (λ, l, P ).

6.1 Towards Optimal Spatio-Temporal Cluster-
ing

While the criterion function used in this paper has shown
to be effective empirically, it is by no means an optimal
choice. In addition, we still lack automatic mechanisms
(other than exhaustive search) for setting the parameters to
govern the clustering. We believe that this is an immediate
and important research direction to be pursued in the future.

6.2 The Multi-Agent Consideration

In this paper, we distribute each sub-POMDP to a prob-
lem solving agent. The agents are basically independent to
each other, except to be coordinated by the brokering agent.
As the decomposition based on the proposed belief state
clustering may not result in a set of sub-POMDP problems
which are equivalent to the original POMDP problems, in-
teraction between those agents for achieving the overall op-
timal policy is an important research issue. Nash Equilib-
rium is an important concept commonly used in multi-agent
learning [5] for solving decentralized MDP [2] and POMDP
problems [9]. Our research agenda also includes how to
apply this paradigm to the our decomposition scheme for
further performance boosting. The basic idea is that every
agent would conjecture other agents’ behaviors and give the
best response to other agents from its local view. A Nash
equilibrium usually would not deduce the optimal policy.
However, it should be able to guarantee a not-too-bad sub-
optimal one.

6



avg. reward avg. reward
without with
clustering clustering λ l P R(λ, l, P )

0.0191 11 2 2 0.1781
0.0180 0.0211 13 2 2 0.3646

0.0182 19 2 2 0.2167
0.0180 3 2 4 0.7857

0.0180 0.0161 13 2 4 0.5229
0.0149 21 2 4 0.4954
0.0258 19 5 4 0.6387

0.0199 0.0284 21 5 4 0.7044
0.0224 3 6 4 0.7857

0.0174 0.0214 17 6 4 0.5229
0.0185 19 6 4 0.4954

Table 2. Performance comparision for differ-
ent parameter settings.

What being described so far assumes that the whole
model of the decision process is known. That is, we have
the perfect knowledge about the reward function, transition
function and observation function. Solving the correspond-
ing POMDP problems is an off-line process. It is also inter-
ested to see how the multi-agent approach can be extend to
support online learning (e.g., Q-learning [12]) for POMDP
under partial observation scenarios.

7 Conclusion

This paper extends the recently proposed belief compres-
sion by introducing a spatio-temporal belief state clustering
for addressing large-scale POMDP problems. It was found
that the proposed spatio-temporal method can further com-
press the belief states in each cluster to a much lower di-
mension while maintaining similar belief state reconstruc-
tion accuracy and thus a better policy. Also, each cluster of
belief states can naturely been distributed to different agents
for collaborative problem solving. Future research direc-
tions include at least further enhancement in automatic de-
termination of clustering parameters, hierarchical clustering
of the belief states and the integration of the proposed belief
state clustering and the multi-agent paradigm as a unified
solution for solving large-scale POMDP problems.
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