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Abstract

Mining distributed data for global knowledge is getting
more attention recently. The problem is especially challeng-
ing when data sharing is prohibited due to local constraints
like limited bandwidth and data privacy. In this paper, we
investigate how to derive the embedded manifold (as a 2-
D map) for a horizontally partitioned data set, where data
cannot be shared among the partitions directly. We pro-
pose a model-based approach which computes hierarchical
local data abstractions, aggregates the abstractions, and
finally learns a global generative model – generative to-
pographic mapping (GTM) based on the aggregated data
abstraction. We applied the proposed method to two bench-
marking data sets and demonstrated that the accuracy of the
derived manifold can effectively be controlled by adjusting
the data granularity level of the adopted local abstraction.

1. Introduction

Recent progress in automatic data collection, data stor-
age and networking technologies has resulted in high ac-
cessability of distributed and massive data for application
domains like e-Science and e-Commerce. This becomes
important for data mining techniques, if needed, to be ap-
plied in a distributed environment. Distributed data mining
is challenging as data sharing is in many cases prohibited
due to local constraints like limited bandwidth and data pri-
vacy. The former constraint is faced as the distributed data
can be of high volume, e.g., in e-Science. The latter one
happens when the local data owners indicate high privacy
concern while they still prefer some degree of personalized
e-services, like the situations in e-Commerce.

To avoid sharing data directly, one possible approach is
to adopt some flexible statistical model for abstracting the
local data so that the local data granularity (or the local pri-
vacy level from the data privacy perspective) can be con-

trolled. A model with high complexity usually can retain
more details when compared with one of low complexity.
The use of the model-based approach for distributed data
mining can be found in [4, 3, 5].

In particular, Zhanget al. demonstrated in [5] how a
global cluster model can be learned based on local data ab-
stractions. In this paper, this distributed model-based ap-
proach was extended to visualizing the embedded manifold
of a set of distributed data. Generative topographic map-
ping (GTM) which is an effective nonlinear mapping tool
for visualizing high dimensional data was chosen to be the
global model, and Gaussian mixture model (GMM) [2] was
chosen for local data abstraction due to its representation
flexibility. To learn the global GTM, we proposed a modi-
fied EM-like algorithm for learning directly from the aggre-
gated local data abstraction. The experimental results ob-
tained based on two benchmarking data sets demonstrated
that the proposed distributed learning approach can achieve
comparably good visualization results and at the same time
satisfy the limited bandwidth and data privacy requirements
of the local sources in a controlled manner.

2 Problem Formulation

2.1 Local Data Abstraction

Local data abstraction is here defined as the process of
representing a given set of data by its statistics forming an
abstraction. Via the abstractions, the statistical information
of the data can be shared, instead of the data themselves.
The abstraction process is formulated as a parametric den-
sity estimation problem and a hierarchical GMM with dif-
ferent numbers of components at different levels of the hi-
erarchy is adopted to support sharing local data details at
different data granularity levels.

Assume that there are totallyL distributed data sources.
Let ti ∈ <d denote theith observed data item of dimen-
sion d, θl denote the set of parameters of the local model
(GMM) as the abstraction of thelth source,θlj denote the



jth component’s parameters of thelth local model (includ-
ing the component’s meanµlj and covariance matrixΣlj),
αlj denote the mixing proportion of thejth component in
the lth local model. The probability density function of the
lth local modelplocal(ti|θl) with Kl components is given
as,

plocal(ti|θl) =
∑Kl

j=1
αljpj(ti|θlj)∑Kl

j=1
αlj = 1

pj(ti|θlj) = (2π)−
d
2 |Σlj |−

1
2 exp{− 1

2
(ti − µlj)

T Σ−1
lj

(ti − µlj)}.

The local GMM parameters,i.e., {θ1, θ2, ..., θL}, are
first derived as the abstractions of the distributed local
data by applying the agglomerative hierarchical algorithm
(AGH). Given the dendrogram, illustrated in Figure 1, a hi-
erarchy of GMMs with different number of components for
representing the local data at different granularity levels can
easily be computed. In particular, at a particular data gran-
ularity level, a local Gaussian component can be derived
by computing the mean and covariance matrix of the data
within a group at that level. Then the local GMM parame-
ters can be sent to a global server for learning a global data
model. In principle, the global model can be any type of
generative model.

Figure 1. A hierarchy of data abstractions. A higher
level of abstraction is acquired by merging and com-
puting the statistics of the two nearest data subgroups
at the next lower level.

2.2 Learning A Global GTM

Generative topographic mapping (GTM) [1] is a prob-
abilistic non-linear latent variable model which can be
used to explore the embedded manifold of a set of high-
dimensional data. GTM assumes that the data are generated
due to a lattice of latent variables in a low-dimensional (usu-
ally 2D) latent space. Via a non-linear mapping, a point
in the latent space is mapped to a data item in thedata
space. Visualizing the latent space with the original high-
dimensional data projected back to it can result in an “un-
folded” version of the embedded manifold which is useful
for understanding the structure and organization of the data.

2.2.1 GTM Formulation

Let N denote the total number of data items,zk ∈ <H de-
note thekth lattice point (altogetherM ) defined in the latent
space.y(z;W ) := WΨ(z) maps in an non-linear fashion a
point z in the latent space onto a corresponding pointy in
the data space, with the mapping governed by a generalized
linear regression modelΨ weighted byW . A multivariate
Gaussian distribution in the data space is assumed in GTM
for ti givenzk, given as

p(ti|zk, W, β) = (2π)−
d
2 β

d
2 exp{−β

2
‖(ti − y(zk; W )‖2} (1)

whereβ is the reciprocal of the data variance.
The EM algorithm is typically used for estimating the

parametersW andβ. The E-step for the original GTM is
given as

Rik(Wold, βold) = P (zk|ti, W, β) =
p(ti|zk, Wold, βold)∑M

j=1
p(ti|zj , Wold, βold)

and the M-step is given as

N∑
i=1

M∑
k=1

Rik(Wold, βold){WnewΨ(zk)− ti}Ψ(zk)T = 0 (2)

1

βnew
=

1

Nd

N∑
i=1

M∑
k=1

Rik(Wold, βold)‖WnewΨ(zk)− ti‖2. (3)

2.2.2 Learning from Local Data Abstraction

In order to learn the global GTM model parameters directly
from the local GMM parameters, we first approximate the
original estimated indicatorsRik by a uniform distribution
over the data items corresponding to a particular GMM
component which is now to be shared instead of the data.

Assume thatRlk is now an indicator for thelth local
component1 with its underlying data to be generated by the
kth global component. That is, the likelihood of the subset
of the data generated by thekth component of the global
model is assumed to be approximated by an overall estimate
of the correspondinglth local component being generated
by the same component of the global model.Rik can then
be approximated as

Rik ≈
∑

i∈lthsource
Rik

Nl
(4)

whereNl denotes the number of data from thelth source.
Rlk is hence equivalent to

Rlk =
∑

i∈lthsource

Rik. (5)

To estimateRlk, the formulation adopted is given as

1Note that in the subsequent derivation, we abuse the index “l” to refer
to one of the local components of the aggregated local model.



Rlk =
exp{−D(plocal(t|θl)||pgtm(t|zk, W, β))}∑M

j=1
exp{−D(plocal(t|θl)||pgtm(t|zj , W, β))}

(6)

where the Kullback Leibler (KL) divergence between a
local component and a global component, denoted as
D(plocal||pgtm), can be derived as2

ln
β−

d
2

|Σl|
1
2

+
β

2
tr(Σl) +

1

2
(β(||y(zk; W )− µl)||2 − d). (7)

For the extreme case that one local GMM is used to repre-
sent one data item, the first two terms of Eq.(7) will become
constant with respect to the local data. Thus, only the third
term will be in effect and Eq.(7) degenerates back to the
original GTM’s E-step (Eq.(1)). Accordingly, the new M-
step can be derived as

L∑
l=1

M∑
k=1

Rlk(Wold, βold){WnewΨ(zk)− µl}Ψ(zk)T = 0 (8)

1

βnew
=

1

Nd

M∑
k=1

(

L∑
l=1

Rlk(Wold, βold)(Σl + µlµ
T
l ))

− 1

Nd

M∑
k=1

((WnewΨ(zk))2
L∑

l=1

Rlk). (9)

2.2.3 GTM Initialization Based on Local Abstractions

Given the aggregated local model, the initialization of the
global GTM can be obtained as equivalent to that of the
original GTM. Original GTM uses principle component
analysis (PCA) for initializingβ andW . For the proposed
method, the original data are lacking for computing the
global data covariance matrix, and thus the PCA. Fortu-
nately, one can easily show that the global covariance ma-
trix can analytically be derived based on the covariance ma-
trices of the local data, given as

µglobal =

∑L

l=1
Nlµl

N

Σglobal =

∑L

l=1
Nl(Σl + µlµ

T
l )

N
− µglobalµ

T
global.

3 Experiments on Visualizing Distributed
Data

To evaluate the effectiveness of the proposed approach of
visualizing distributed data using GTM, experiments were
performed based on two synthetic datasets — oil flow data
and S-curve data for benchmarking. In each experiment,
the data set was first horizontally partitioned in a random

2Due to the space limitation, detailed derivation of Eq. (7) is omitted.

manner into three equal parts as local data sources. Then,
global GTMs were to be learned under different settings for
comparison. Both the original GTM learned directly from
the original dataset and the new GTM learned from the ag-
gregated local model were tested. For all the experiments,
1600 latent lattice points were chosen as the global GTM
parameters.
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(a) 100 components for
each local source.
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(b) 200 components for
each local source.
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(c) 300 components for
each local source.
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(d) The original GTM.

Figure 2. The visualization of the oil flow data us-
ing GTMs. The posterior means of the projected data
of the three different configurations, namelyhomoge-
neous, annular andstratified, are labelled as red cir-
cles, blue triangles and green asterisks, respectively.
Their posterior modes are all shown as crosses.

The oil flow dataset was originally used in [1] for mim-
icking the measurements of oil flows mixed with gas and
water along multi-phase pipelines. The 12-dimensional
data set consists of 1000 instances evenly distributed among
three different geometrical configurations. In the related ex-
periments, 100, 200 and 300 local components were tested
for the abstraction of each local data source. We expect
that if each local data item is to be represented by one local
Gaussian component (the extreme case), the performance
of the proposed approach will be equivalent to that of the
original GTM. If less local components are assumed, the
visualization results will start to degrade.

The visualization results obtained for the oil flow data
where shown in Figure 2. It was observed that the visualiza-
tion map using 300 local components for each source was



comparable to that of the original GTM, as shown in Fig-
ure 2(d). The visualization result degraded gracefully when
the number of local components was dropped to 200 and
then to 100. This is consistent to what being anticipated.

S-Curve data another commonly used benchmarking
dataset for testing nonlinear manifold learning algorithms.
It is in a 3-D data space of which the embedded manifold’s
shape of 2-D and is like the shape of alphabet ‘S’. For the
ease of visualization, the 2000 data items in the dataset were
labelled. We first divided the dataset into six continuous
parts along the data embedded 2-D manifold and were then
labelled as blue, red, green, yellow, magenta and cyan cir-
cles respectively. 30, 60, 90, 120 and 1500 local compo-
nents were chosen for the abstractions of each local source.
The corresponding visualization results were shown in Fig-
ure 3.
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(a) 30 local com-
ponents.
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(b) 60 local com-
ponents.
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(c) 90 local com-
ponents.
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(d) 120 local com-
ponents.
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(e) 1500 local
components.
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(f) The original
GTM.

Figure 3. The visualization of the S-Curve data
which was partitioned into three equally weighted
distributed local sources for this experiment.

Figure 3(f) reveals the unfolded manifold obtained us-
ing the original GTM learned directly from the data. Those
obtained using the proposed GTM based on different num-
bers of local components are shown in Figure 3(a-e). The
unfolded manifold in Figure 3(a) was obtained with only 30
components per local source and found to be the worst when
compared with the others using more local components. In
particular, in the top region of the map, it can been seen that
the blue circles tangled up with the red ones which means
that it failed to unfold the top part of the original S-curve
data well. A similar situation was observed for the bottom
part. In Figure 3(b-d), the aforementioned two unfolded ar-

eas,i.e. the top and bottom parts, started to be unfolded
and were finally completely unfolded as the number of lo-
cal components per source was increased from 30 to 60, 90
and 120. When the number of local components was close
to the number of data items, as shown in Figure 3(e), the vi-
sualization results was found to be almost equivalent to that
of the original one shown in Figure 3(f).

4 Conclusions

In this paper, we proposed the use of the model-based
approach for visualizing distributed data with the constraint
that the distributed local data cannot be shared directly.
Gaussian mixture models (GMM) was adopted for local
data abstraction and generative topological mapping (GTM)
was chosen as the global model for high-dimensional data
visualization. A novel EM-like algorithm was proposed for
learning the global GTM solely based on the aggregated
local GMM. The effectiveness of the proposed method
was rigorously evaluated using a number of datasets with
promising results. Gracefully degrading global visualiza-
tion results were obtained as the granularity level of the lo-
cal data became coarser. We believe that the positive results
obtained and the formulation we introduced in this paper
hint the potential of the proposed method to be a principled
way of mining highly distributed high-dimensional data in
a distributed environment with limited bandwidth or high
data privacy concern.
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