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ABSTRACT
Directed acyclic graph (DAG) is an essentially important model to

represent terminologies and their hierarchical relationships, such

as Disease Ontology. Due to massive terminologies and complex

structures in a large DAG, it is challenging to summarize the whole

hierarchical DAG. In this paper, we study a new problem of find-

ing k representative vertices to summarize a hierarchical DAG. To

depict diverse summarization and important vertices, we design

a summary score function for capturing vertices’ diversity cover-

age and structure correlation. The studied problem is theoretically

proven to be NP-hard. To efficiently tackle it, we propose a greedy

algorithm with an approximation guarantee, which iteratively adds

vertices with the large summary contributions into answers. To fur-

ther improve answer quality, we propose a subtree extraction based

method, which is proven to guarantee achieving higher-quality an-

swers. In addition, we develop a scalable algorithm k-PCGS based

on candidate pruning and DAG compression for large-scale hierar-

chical DAGs. Extensive experiments on large real-world datasets

demonstrate both the effectiveness and efficiency of proposed algo-

rithms.

CCS CONCEPTS
• Information systems→Hierarchical data models; Summa-
rization; • Theory of computation→Graph algorithms anal-
ysis.
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1 INTRODUCTION
Directed acyclic graph is an essential model widely adopted to rep-

resent hierarchical terminologies and their relation structure, such

as Disease Ontology [1, 15], Gene Ontology [14], Image-net [7],

Medical Entity Directory [16], ACM computing classification sys-

tem [25], and so on. In many real-world applications of DAGs,
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Figure 1: A disease ontology for DAG summarization.

vertices have not only edge relationships but also node weights. For
instance, in biomedicine, the weight of a terminology can be the

aggregate count of events, such as the occurrences of diseases [15].

However, the massive terminologies and complex structures

bring significant challenges to understanding aDAG dataset. Graph

summarization could give a direct and human-friendly overview of

the dataset being analyzed. Unfortunately, graph summarization

works only when the complexity of summarized results is within

human cognitive capacity; otherwise, the massive size of terminolo-

gies may overwhelm any user who tries to understand or visualize

it [15, 24]. For example, it is impossible to comprehend the whole

SNOMED CT dataset [2], which contains more than 311 thousand

medical concepts. Hence, it is important to reduce a large DAG
dataset to a manageable size using summarization. Furthermore,

hierarchical DAGs summarization has a wide range of applications

such as summarized recommendation, visual data exploration [4],

and snippet generation for information search [8, 9].

Motivating Example. We show a motivating example of DAG

summarization studied in this paper. Figure 1(a) shows an exam-

ple of hierarchical disease ontology in DAG, where each vertex

represents a disease terminology. The associated weight of each

vertex indicates the occurrence of the disease. A directed edge from

one vertex to another vertex represents the concept-instance rela-

tionship, e.g., “pneumonia” is a general concept of two instances

“SARS” and “COVID-19”. Assume that this DAG represents the dis-

ease occurrences of hospitals in a city. It contains 14 diseases with

different occurrence weights. The task is to find a small number

k = 4 representative diseases to summarize this DAG. We consider

four different methods in the following.

• Top-k largest weights. One simple method is to pick four ver-

tices with the largest weights, i.e., { “COVID-19”, “H1N1”, “H2N2”,

“colon cancer”}. However, these vertices are instances with very

limited representation to generalize other vertices, such as “H3N2”,

“brain cancer”, and so on.

• Aggregate method [15]. Jing and Cimino [15] proposed a sta-

tistical approach to pick a set of nodes with the highest aggregate

weights, i.e., { “disease”, “lung disease”, “pneumonia”, “COVID-

19”}, as shown in Figure 1(b). However, the approach suffers
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from the significant limitation of lacking diversity. All of “dis-

ease”, “lung disease”, and “pneumonia” are general concepts of

the disease “COVID-19”, which has the largest weight of 200. It

misses other important diseases, e.g., cancer and flu. Thus, the

summarization diversity is low.

• GDVO [14]. GDVO finds a set of representative vertices to sum-

marize a tree, which can be regarded as a special case of DAG.
However, the data structure of a tree has a limited ability to

represent complex relations, such as the relations of “disease

→ cancer→ lung cancer” and “disease→ lung disease→ lung

cancer” in Figure 1(a).

• Our approach. Figure 1(c) shows our expected solution, which

offers a better summarized view: “disease” is a general concept

representing all vertices in general; “cancer” and “flu” represent

two categories of multiple diseases with large weights; “COVID-

19” is the most important disease with the largest weight, which

has a more detailed summarization than “pneumonia” as no

“SARS” disease happened in this DAG.
Motivated by this example, we study the problem of top-k graph

summarization for large hierarchical DAGs. Specifically, given a

DAG with node weights, the problem is finding a small set of k
representative vertices to summarize the whole DAG. To model the

summary impact of a vertex, we design a summary score function

for capturing the diversity coverage and structure correlation. We

also show that the problem is NP-hard and challenging for develop-

ing fast algorithms. To tackle it, we first propose a greedy strategy

based method Greedy+. The algorithm finds an approximate an-

swer by iteratively adding vertices with the largest contribution

for summary score, until the answer has k representative vertices.

Based on Greedy+, we develop two improved methods to trade

off the answer quality and algorithm efficiency. Specifically, we

propose an effective EXT-Greedy algorithm for improving the an-

swer quality. EXT-Greedy extracts a subtree fromDAG based on the

top-k answer vertices by Greedy+ and applies tree-based dynamic

programming techniques to obtain a better result. We show that

this method consistently outperforms Greedy+ in terms of quality,

through both theoretical analysis and experimental evaluation. In

addition, to scale up with large-scale hierarchical DAGs, we pro-

pose an efficient algorithm k-PCGS, which can achieve the same

result as Greedy+ in a faster way. k-PCGS equips with two key

techniques of candidate pruning and DAG compression, which can

prune lots of disqualified candidates and reduce the DAG size.

To summarize, this paper makes the following contributions:

• We motivate the problem of graph summarization for large hier-

archical DAGs. Specifically, we propose a summary score func-

tion satisfying the good desiderata of diversity coverage and

structure correlation for important vertices. Based on this, we

formulate our problem as finding a set of k representative ver-

tices with the largest summary score to summarize a DAG, called
the kDAG-problem (Section 2).

• We analyze the hardness of our problem and formally prove it as

NP-hard. We also discuss the properties of our summary score

function and the alternative choices of representative correlation

functions (Section 3).

• We propose a greedy algorithmic framework to tackle our prob-

lem. It iteratively selects a representative vertex with the largest

summary score contribution into the answer. The greedy strategy

is effective with a (1− 1

e )-approximation guarantee. (Section 4).

• We propose an effective EXT-Greedy algorithm based on the

subtree extraction and tree-based summarization. EXT-Greedy
is proven to guarantee high-quality answers no worse than

Greedy+. (Section 5).

• We design several useful upper bounds and lower bounds to

estimate the summary contribution of a vertex. Based on the

bounds, we propose a pruning theorem to eliminate disquali-

fied candidates for saving computations. Moreover, we develop

a graph specification technique to compress DAG by discarding

tree-shape structures and useless vertices. Integrating with candi-

date pruning and DAG compression, we propose a fast algorithm

k-PCGS, which can achieve the same answer as Greedy+ on

large real-world DAGs. (Section 6).

• We conduct extensive experiments on real-world datasets to val-

idate the efficiency and effectiveness of our proposed algorithms

for DAGs and trees (Section 7).

We discuss related work in Section 8 and conclude the paper in

Section 9.

2 PRELIMINARIES
In this section, we define the notions and our problem.

2.1 Directed Acyclic Graph
Let G = (V , E, feq) be a directed acyclic graph (DAG) with a set

V of vertices, a set E of edges, and a weight function of vertices

as feq : V → R≥0
. The edges of G have directions, but G has no

directed cycles. Let n = |V | andm = |E | be the numbers of vertices

and edges, respectively. W.l.o.g. we assume that m ≥ n − 1 and

n ∈ O(m), following [19]. For an edge ⟨u,v⟩, we say u is an in-

neighbor of v and v is an out-neighbor of u. For a vertex v in G,
we denote the set of in-neighbors of v by N+(v) = {u : ⟨u,v⟩ ∈ E}
and the set of out-neighbors of v by N−(v) = {u : ⟨v,u⟩ ∈ E}. The
weight of vertex v is denoted by feq(v) ∈ R≥0

. The larger is the

weight of a node, the more is its importance.

For any two vertices u and v , we say that u can reach v (denoted

as u → v), if and only if there exists a directed path from u to

v in G. The connectivity in G is always weak, as there exists no

directed cycles in a DAG for strong connectivity. If neither u → v
nor v → u holds, u and v are disconnected. Note that v → v . The
longest distance between u → v in G is called the height of G,
denoted as h. In the following, we introduce two useful concepts of

ancestors and descendants.

Definition 1 (Ancestors). The ancestors of a vertex v , denoted
by anc(v), are the set of vertices that can reach v in G, i.e., anc(v) =
{u ∈ V : u → v}.

Definition 2 (Descendants). The descendants of a vertex v ,
denoted by des(v), are the set of vertices that are reachable from v in
G, i.e., des(v) = {u ∈ V : v → u}.

Example 1. Figure 2 shows an example of DAG. The vertex v2 has
the in-neighbor N+(v2) = {v1}, out-neighbors N−(v2) = {v3,v4,v5},
ancestors anc(v2) = {v1,v2}, and descendants des(v2) = {v2,v3,v4,v5,v6}.

2.2 Representative Correlation
Before formally defining the representative correlation, we intro-

duce the directed distance. In a DAG of concept hierarchy, two
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Figure 2: The DAG used in the running example
concept entitiesu andv are regarded to be correlative if there exists

a directed path between u and v . Specifically, we say u is a general
concept of v if u is an ancestor of v , i.e., v → u. In contrast, v is an

instance concept ofu ifv is a descendant ofu, i.e.,u → v . Obviously,
the strength of a correlation between u and v is reflected by their

distance. The smaller is the distance, the closer is the correlation.

We represent the distance from u to v , denoted by dist⟨u,v⟩, as
the length of the shortest directed path from u to v in G. Note that
dist⟨v,v⟩ = 0, and dist⟨u,v⟩ = +∞ ifv 9 u. Based on the distance,

we define the correlation as follows.

Definition 3 (Correlation). Given two vertices v,u, the rep-
resentative correlation of v to u is cor⟨v,u⟩ = 1

1+dist⟨v ,u ⟩ where
dist⟨v,u⟩ is the shorest distance from v to u.

The smaller is dist⟨v,u⟩, the higher is cor⟨v,u⟩. If u < des(v),
cor⟨v,u⟩ = 0, indicating that the correlation impact of v for u is

zero. For example, in the figure 1(a), “lung cancer” is not a good

general concept of “COVID-19”, as they are irrelevant to each other.

On the other hand, “pneumonia” could be a good general concept

of “COVID-19”, and even better than “lung disease” and “disease”.

Definition 3 implies the key property that should be obeyed by a

good score function of correlation. There exist many other choices

of the cor⟨v,u⟩ function. We further discuss different correlation

functions and analyze their properties in Section 3.2.

Example 2. In the DAG G shown in Figure 2, there exists one
shortest path from v2 to v5 as {⟨v2,v5⟩} and dist⟨v2,v5⟩ = 1. More-
over, dist⟨v2,v2⟩ = 0 and dist⟨v3,v4⟩ = +∞. Correspondingly,
cor⟨v2,v5⟩ =

1

2
, cor⟨v2,v2⟩ = 1, and cor⟨v3,v4⟩ = 0.

2.3 Summary Score
Based on the representative correlation, we define the representa-

tive score below.

Definition 4 (Representative Score). The representative score
of vertex v to vertex u, denoted by rep⟨v,u⟩, is proportional to the
correlation cor⟨v,u⟩ and node weight feq(u), i.e., rep⟨v,u⟩ = feq(u) ·
cor⟨v,u⟩.

The representative impact of v to u is proportional to cor⟨v,u⟩.
Obviously, a different representative vertex v could have signifi-

cantly different representative score rep⟨v,u⟩. Motivated by [14],

for each vertex u ∈ V , the best representative vertex of u is the

one vertex v achieving the largest representative score rep⟨v,u⟩.
Recall that this paper considers to select a small set of vertices S to

summarize the whole DAG G. To this end, we define the summary

score as follows.

Definition 5 (Summary Score). Given a vertex set S ⊆ V , the
summary score of S is the sum of the maximum representative scores
for all vertices in G, denoted by

g(S) =
∑
u ∈V

max

v ∈S
rep⟨v,u⟩.

Example 3. In Figure 2, rep⟨v2,v5⟩ = feq(v5) ·cor ⟨v2,v5⟩ = 18∗
1

2
= 9. Note that rep⟨v2,v2⟩ = 0 as feq(v2) = 0, and rep⟨v3,v4⟩ = 0

as cor⟨v3,v4⟩ = 0. We have the summary score g({v2,v4}) = 67 and
g({v3,v4}) = 81.

Properties of summary score д(S). In the following, we first

identify the essential properties that should be obeyed by a good

summary score function g(S), and then analyze how our summary

score function in Def. 5 satisfies the required properties.

Recall that the objective of our DAG summarization is to select

a small set of important vertices S to show a good summarization

of a DAG G. The summary score function g(S) should satisfy the

following four properties:

1. Diversity. The vertices of S are diverse but not very similar;

2. Small-scale. |S | is small, even within human cognitive capacity;

3. Large Coverage. The vertices of S can reach many vertices;

4. High Correlation. The representative correlation of S to a large

weighted vertex is high.

Our designed function g(S) in Def. 5 satisfies above four prop-

erties. First, one vertex could be represented by only one element

in S by Def. 5. Thus, if the representative vertices in S are similar,

the summary score may be low. The maximum objective function

of g(S) leads to a diverse set of S . Second, a small number k can

be easily set up to control the limit of summarized vertices, which

could guarantee the small-scale property. Last but not least, accord-

ing to the properties of summary score in Def. 5 and representative

score in Def. 4, g(S) satisfies the large coverage and high correla-

tion criteria respectively. For example, in Figure 1(c), our summary

result by g(S) covers all diseases and has high correlation of these

important diseases with large weights in Figure 1(a).

2.4 Problem Formulation
The problem of graph summarization in a directed acyclic graph

(kDAG-problem) studied in this paper is formulated as follows.

kDAG-problem. Given a DAG G = (V , E, feq) and an integer k ,
the problem is finding a set of representative vertices S ⊆ V , to
achieve the maximum summary score g(S) with |S | = k , i.e.

S∗ = arg max

S ⊆V , |S |=k
g(S).

Example 4. Consider a DAG G shown in Figure 2 and an integer
k = 2, the optimal solution of kDAG-problem is S∗ = {v3,v4} where
д(S∗) = 81 is larger than all the other summary scores.

3 HARDNESS AND PROPERTY ANALYSIS
In this section, we analyze the hardness of our problem and the

property of summary score function.

3.1 Hardness
Theorem 1. The kDAG-problem is NP-hard.

Proof. We reduce the well-known NP-complete 3-SAT problem

to our problem. Given a set of literals X = {x1, x̄1, · · · , xm, x̄m }
wherem ≥ 1 and some boolean clauses C = {c1, ..., cl } where l ≥ 1,

and each clause contains 3 literals from X in conjunctive normal

form, i.e., cp = xi ∪ x j ∪ xk . It is known that checking whether

there exists a satisfying boolean assignment of variables x1, ..., xm
to make the CNF F = c1 ∩ ... ∩ cl as true is NP-complete [17].
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Figure 3: An illustration of the construction of a kDAG-
problem instance from a 3-SAT instance.

Given an instance of 3-SAT with formula F and literals X, we

construct an instance of the problem of checking whether exists

an optimal solution of kDAG-problem where k =m achieving the

score of 110ml + l in graph G as follows. We first construct 2m
isolated nodes of X and other l isolated nodes C in G. For each
clause cp = xi ∪ x j ∪ xk , we insert three directed edges ⟨xi , cp ⟩,
⟨x j , cp ⟩, and ⟨xk , cp ⟩ into G. In addition, we add m nodes D =

{d1, ...,dm } and respectively two edges ⟨xi ,di ⟩, and ⟨x̄i ,di ⟩ for
each node di ∈ D. Now, we have a completed DAG G = (V , E, feq)
where V = X ∪ C ∪ D and the weights of vertex v is designed as

follows:

feq(v) =


100l, i f v ∈ X

20l, i f v ∈ D

2, i f v ∈ C.

Figure 3 shows an example of the constructed G and frequency

function feq. Let the kDAG-problem be to find S achieving the

maximum score g(S) =
∑
y∈V maxx ∈S∩ancG (y){feq(y) · cor⟨x,y⟩}

with |S | =m. The hardness follows from this.

(⇐) : Suppose S∗ ⊆ V is a YES-instance of kDAG-problem, i.e.,

g(S∗) = 110ml + l and |S∗ | =m. We have three observations. First,

one lower bound of the optimal solution S∗ ism · 100l , indicating
that allm nodes should be selected from X, i.e., S∗ ⊆ X; otherwise,
if S∗ ∩ (C ∪ D) , ∅, the score g(S∗) < m · 100l . Second, another
tight lower bound of the optimal solution ism · (100l +10l) = 110ml ,
indicating that only one node in each pair of nodes xi and x̄i is
selected in answer S∗; Otherwise, if there would exist xi ∈ S

∗
and

x̄i ∈ S∗, g(S∗) < m · 110l . Finally, the optimal solution achieves

g(S∗) = 110ml + l , indicating that each node c ∈ C is covered by

at least one variable x ∈ S∗ ⊆ X. Let each variable x ∈ S∗ be
true, and then each clause c ∈ C is shown to be true. As a result,

F = c1∩ ...∩cl = true , and there exists a boolean value assignment

of X following by S as a YES-instance of the 3-SAT problem.

(⇒) : Suppose a boolean value assignment h : X → {true, f alse}
is a YES-instance of the 3-SAT problem, i.e., F = c1∩ ...∩cl = true .
Since F = true , we can obtain cp = true for 1 ≤ p ≤ l . Thus, for
each cp = xi ∪ x j ∪ xk , there exists at least one variable x

′ = true ,
where x ′ ∈ {xi , x j , xk }, and the edge ⟨x

′, cp ⟩ exists inG . Due to the
mutual exclusion of function h, if h(xi ) = true , then h(x̄i ) = f alse ;
otherwise, if h(xi ) = f alse , thus h(x̄i ) = true . Based the above

facts, we can select exactly m variables of X satisfying the true

assignment and use S to represent it. In the graph G, the summary

score for S is 100ml . In addition, for each pair of xi and x̄i , there
exists exactly one variable in S , and node di can be covered in G.
Thus, the summary score for D is m · 20l · 1

2
= 10ml . Also, the

summary score for C is l · 2 · 1

2
= l . Overall, the total score is

110ml + l . This shows that there exists a summary set S that is a

YES-instance of kDAG-problem. �

3.2 Property of g(S) and Correlation Functions

Monotonicity and Submodularity of g(S). We show that our

summary score g(S) is monotone and submodular. A set function

f : 2
U → R≥0

is said to be monotone provided for sets S1 and

S2 with S1 ⊆ S2 ⊆ V , f (.) is monotone with f (S1) ≤ f (S2). It is

said to be submodular provided for all sets S ⊆ T ⊆ U and element

x ∈ U \T , f (T ∪ {x}) − f (T ) ≤ f (S ∪ {x}) − f (S), i.e., the marginal

gain of an element has the so-called “diminishing returns” property.

Lemma 1. g(.) is monotone and submodular.
Proof. The proof can be similarly done as in [14, 27]. �

Alternative Functions of Correlation. Based on the analysis of

Def. 3, we identify the properties of correlation.

Definition 6 (Correlation Functions). Given two vertices
x,y, the correlation function F(dist⟨x,y⟩) satisfies the two properties:
(a) Non-negative with F(dist⟨x,y⟩) ∈ [0, 1]; (b) Strictly monotonically
decreasing.

To model the representative impact of x to y, the correlation

F(dist⟨x,y⟩) should be strict monotonically decreasing with the dis-

tance dist⟨x,y⟩. The further is the distance from x to y, the weaker
is the correlation. Following the properties, we design alternative

correlation functions as follows.

1. F1(dist⟨x,y⟩) = 1 −
dist⟨x ,y ⟩

n , if x → y; otherwise, 0.

2. F2(dist⟨x,y⟩) = 1

dist⟨x ,y ⟩+1

3. F3(dist⟨x,y⟩) = 1

edist⟨x ,y⟩

4 APPROXIMATE ALGORITHM
In this section, we introduce a fast approximate algorithm using

greedy strategy to tackle the kDAG-problem.

4.1 Greedy+

Marginal Gain. We begin with a definition of marginal gain. Given

a set of summary vertices S ⊆ V , a vertex v ∈ V , we examine the

change of the summary score g(S) by adding v into S . Note that the
additional summary score is the difference between g(S ∪ {v}) and
g(S), i.e., g(S ∪ {v}) − g(S). This motivates the following.

Definition 7 (Marginal Gain). Given a DAG G and a set of
summary vertices S , the marginal gain of v , denoted by △g(v |S), is
the additional summary score of △g(v |S)= g(S ∪ {v}) − g(S).

Obviously, △g(v |S) ≥ 0 always holds, according to the increasing

monotonicity property of theд(·) function. For a given S , we add the
vertex with the largest marginal gain into S , in order to maximally

increase the total summary score. Thus, the greedy strategy of our

algorithm is presented as follows. We start from an empty set S = ∅,
and iteratively add one vertex v with the largest marginal gain

△g(v |S) into S , until the answer size |S | reaches k .

Summary Distance. Given a vertex set S ⊆ V , we define the

summary distance from S to a vertex y ∈ V , denoted by dist(S,y),
as the minimum distance from the vertex v ∈ S to y:

dist(S,y) = min

v ∈S
{dist⟨x,y⟩} = min

v ∈S∩anc(y)
{dist⟨v,y⟩} (1)

Obviously, if S ∩ anc(y) = ∅, the summary distance dist(S,y) =
+∞ holds. We define the representative score of S on a vertex

y ∈ V , denoted by rep(S,y) = maxv ∈S∩anc(y) rep⟨v,y⟩. We have

the following observation and lemma.

rep(S,y) = max

v ∈S∩anc(y)
rep⟨v,y⟩ =

feq(y)
1 + dist(S,y)

(2)
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Node v1 v2 v3 v4 v5 v6 v7

Step 1 △д(x |S) 37 46 39 42 18 6 6
Step 2 △д(x |S) 1 / 14 21 18 6 6

Table 1: The steps of Greedy+. Red indicates the largest
△д(x |S); Blue indicates that △д(x |S) is not updated.

Lemma 2. If dist(S∪{v},y) = dist(S,y), rep(S∪{v},y) = rep(S,y).

Proof. By Eq. 2, the proof is straightforward. �

Recall that △д(x |S) can be calculated as △д(x |S) =
∑
y∈V rep(S∪

{x}, y) −rep(S,y). According to Lemma 2, only the vertices y ∈
des(x) satisfying dist(S ∪ {x},y) < dist(S,y) need to be consid-

ered in the computation of △д(x |S). Noted that dist(S ∪ {x},y) =
min(dist(S,y), dist⟨x,y⟩). If dist(S∪{x},y) < dist(S,y), dist⟨x,y⟩ <
dist(S,y). Thus, we can prune the vertices y ∈ V with dist⟨x,y⟩ =
dist(S,y), or y < des(x). We have the following theorem.

Theorem 2. △д(x |S) =
∑
y∈Cx rep(S ∪ {x},y) − rep(S,y) holds,

where Cx = {y ∈ des(x) : dist⟨x,y⟩ < dist(S,y)}.

Greedy+Algorithm. Based on the greedy strategy and Theorem 2,

we propose a fast greedy algorithm called Greedy+. The general
idea is to iteratively select the vertices with the largest marginal

gains and add them into answers. However, it does not recompute

△д(x |S) for every vertex v ∈ V at each iteration. Only the good

candidate vertices are updated with the newest △д(x |S), which
saves lots of computations. Moreover, we develop a faster procedure

of computing △д(x |S) by one traversal of Cx , instead of the whole

vertex set V .

Algorithm 1 gives the details of Greedy+. The algorithm first

constructs a max-heap H to maintain △д(v |S) for all vertices v
(lines 2-5). It initializes the summary distance of all vertices be +∞

due to S = ∅. The algorithm also computes △д(v |S) for every vertex
v and pushes them into H (lines 3-5). Then, Algorithm 1 starts

the selection of summary vertices (lines 6-12). It gets (x∗, △max )

from the max-heap H where x∗ is the vertex and △max is the

upper bound of the marginal gain of including all vertices (line 7).

If △max > △д(x
∗ |S), we need to compute △д(x

∗ |S) and update the

corresponding (x∗, △д(x
∗ |S)) inH (lines 8-10). This may happen

due to the lazy update ofH . Otherwise, x∗ is the vertex with the

largest marginal gain among all candidates. The algorithm adds x∗

into S and updates the summary distance dist(v) for v ∈ des(x∗).

Compute △д(x |S). The procedure of computing △д(x |S) is shown
in Algorithm 2. The algorithm uses a breadth-first-search (BFS) to

traverse the reachable vertices u from x , and sums over the differ-

ence of
feq(u)

1+dist⟨v ,u ⟩ −
feq(u)

1+dist(S ,u) (lines 1-10). Note that Algorithm

2 prunes the vertices u whose summary distance dist(S,u) is not
larger than dist⟨x,u⟩ (lines 6-8), thanks to Theorem 2. Finally, the

algorithm returns △д(x |S) (line 11).

Example 5. We apply Algorithm 1 Greedy+ on a DAG G in Fig-
ure 2 for k = 2. Firstly, Algorithm 1 computes △д(x |S) for each vertex
x , as shown in Table 1. At the first iteration, the vertex v2 has the
maximum value of △д(v2 |S) = 46, so it is added into the set S . At the
second iteration, the △д(x |S) values of vertices v4,v3,v1 are updated.
It selects v4 with the maximum △д(v4 |S) = 21. The vertices v5,v6,v7

are not updated because their △д(x |S) values are smaller than 21.
Finally, the answer S = {v2,v4} and the summary score д(S) = 67.
However, this answer is not optimal. The exact solution for G is the
set S∗ = {v3,v4} and д(S∗) = 81.

Algorithm 1 Greedy+

Input: A DAG G = (V, E , feq), an integer k .
Output: A set of k summary elements S .
1: Let S ← ∅;
2: Let H be a max-heap H to maintain △д (v |S ) for all v ∈ V ;

3: for vertex v ∈ V do
4: dist(S , v) ← ∞;
5: H.push((v , △д (v |S ))) by invoking Algorithm 2;

6: while |S | < k do
7: (x ∗, △max ) ← H.pop();

8: if △max > △д (x ∗ |S ) then
9: H.push((x ∗, △д (x ∗ |S )));
10: Continue;
11: S ← S ∪ {x ∗ };
12: Update dist(S , v) for vertex v ∈ des(x ∗) in one DFS;

13: return S ;

Algorithm 2 Compute △д(x |S)

Input: A DAG G = (V , E , f eq), a set of vertices S , vertex x .
Output: △д (x |S ).
1: Queue Q ← {x }; V isited ← {x };
2: Distance dist⟨x , x ⟩ ← 0;

3: Let △д (x |S ) ← 0; //Initialization

4: while Q , ∅ do
5: v ← Q .pop();
6: for vertex u ∈ N−(v) do
7: dist⟨x , u ⟩ ← dist⟨x , v ⟩ + 1;

8: if u < V isited and dist(S , u) > dist⟨x , u ⟩ then
9: △д (x |S ) ← △д (x |S ) + (

feq(u)
1+dist⟨v ,u⟩ −

feq(u)
1+dist(S ,u) );

10: Q ← Q ∪ {u }; V isited ← V isited ∪ {u };
11: return △д (x |S );

4.2 Approximation and Complexity Analysis
We analyze the approximation and complexity of Algorithm 1.

Theorem 3. Algorithm 1 achieves a (1 − 1

e )-approximation of
optimal answers.

Proof. Assume that S∗ is an optimal answer and S is the result

by Algorithm 1. Obviously, g(S) ≥ (1 − 1

e ) · g(S
∗) holds for maxi-

mizing a monotone submodular set function with the cardinality

constraint of |S | = k by Lemma 1. �

Theorem 4. Algorithm 1 takes O(n · k ·m) time and O(m) space.

Proof. Algorithm 1 computes △д(x |S) for each vertex x at most

k times. Computing △д(x |S) takes O(n +m) ∈ O(m) time in worst.

Thus, the update of △д(x |S) for all vertices x takes O(knm) time in

total. Moreover, the heapH takesO(nk logn) time for the update of

push operations and pop operations. And it takes O(k ·m) time for

updating the distance in a total of k rounds. As a result, Algorithm 1

takesO(km+nk logn+nkm) ⊆ O(n ·k ·m) time andO(m) space. �

5 AN EFFECTIVE SOLUTION ON DAGS
In this section, we develop an effective algorithm EXT-Greedy for

kDAG-problem based on Greedy+ and subtree extraction, which

achieves high-quality answers no worse than Greedy+.
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Algorithm 3 EXT-Greedy

Input: A DAG G = (V , E , feq), an integer k .
Output: A set of k summary elements S .
1: S+ ← Apply the Greedy+ in Algorithm 1 on G ;

2: TS+ ← Extracts subtree TS+ of G using S+;
3: S ← Apply the DP approach [32] on TS+ for top-k summarization;

4: return S ;

v1
1

v20

v4
42

v5
18

v6

v3 24

v7
6 6

(a) Subtree TS+

v1
1

v20

v4
42

v5
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v6

v3 24

v7
6 6

(b) DP answer

Figure 4: An example of EXT-Greedy algorithm.

5.1 EXT-Greedy
W.l.o.g, assume that a DAG G(V , E, feq) has a unique root r with
|N+(r )| = 0. Otherwise, we add G with a virtual root r and a few

directed edges ⟨r ,u⟩ for all vertices u with |N+(u)| = 0. We define a

subtree T (V , Et , feq) of G as a directed tree rooted by r with edges

Et ⊆ E. Throughout the remaining paper, we use gG (S) to represent
the summary score of S in DAG G.

Overview. The idea of EXT-Greedy is to construct a tree T based

on an approximate answer of k representative vertices produced

by Algorithm 1. A directed tree is a special instance of DAG. There
exists a dynamic programming (DP) approach in polynomial time

to optimally tackle DAG summarization in a directed tree [32].

Therefore, EXT-Greedy applies a tree-based dynamic programming

method on the extracted tree T to obtain an improved answer.

Subtree extraction. Given a DAG G rooted by r and a summary

set S produced by Algorithm 1, we can extract a directed tree T
rooted by r from G. The generated tree T keeps the same distance

oracle for summary vertices S in G. In other words, the summary

distance dist(S,v) is unchanged in T for all vertices v ∈ V .

EXT-Greedy algorithm. The method of EXT-Greedy is detailed

in Algorithm 3. It first applies the the Greedy+ (Algorithm 1) onG ,
which finds a set of k summary vertices S+ (line 1). Then, it extracts
a subtree TS+ of G using S+ . Finally, Algorithm 3 invokes an exact

algorithm of DP [32] to find a summary set S in the tree TS+ , and
returns S as the answer (lines 3-4).

Example 6. Figure 4 shows an example of applying EXT-Greedy
on G in Figure 2. The answer of Greedy+ as S+ = {v2,v4} and
g(S+) = 67. Based on S+, EXT-Greedy extracts a subtree TS+ in
Figure 4(a). Figure 4(b) shows the optimal solution S = {v3,v4} in
TS+ by DP. In the extracted tree TS+ , the summary score gTS+ (S) =
72 ≥ 67 = g(S+). S is an optimal solution of G with the largest
summary score gG (S) = 81 in G in Figure 2.

5.2 Theoretical Analysis
We first analyze the quality of EXT-Greedy in Algorithm 3. Assume

that S∗ is the optimal answer of G and |S∗ | = k .

Theorem 5. Given a DAG G, ∃ a tree T ⊆ G such that gG (S∗) =
gT (S) where S is the optimal answer for T .

Proof. We construct a directed subtree T (V , E, feq) ⊆ G as fol-

lows. We apply Algorithm 3 to extract T from G using the input

of optimal answer S∗. As, S∗ ⊆ V and |S∗ | = k , S∗ is one feasible
answer in T . Moreover, the distance oracle of S∗ is the same in

both T andG . DP finds the optimal answer S in a tree T , indicating
gT (S) ≥ gT (S∗) = gG (S∗). Obviously, gT (S) ≤ gG (S) ≤ gG (S∗), as
T ⊆ G. As a result, gG (S∗) = gT (S) holds. �

Theorem 5 shows that our algorithm EXT-Greedy probably find

an optimal solution of G. In the following, we prove that EXT-
Greedy finds an answer no worse than Greedy+.

Theorem 6. дG (S
+) = дTS+ (S

+) ≤ дTS+ (S) ≤ дG (S) holds, where
S+ and S are respectively the answers of Algorithm 1 and Algorithm 3.

Proof. First, we prove дTS+ (S
+) = дG (S

+). As T ⊆ G, vertices
have the same weights inT andG . Moreover,T andG has the same

distance oracle for summary vertices S+. дTS+ (S
+) = дG (S

+) holds.

Second, we prove дTS+ (S
+) ≤ дTS+ (S). In tree TS+ , DP algorithm

finds an optimal solution S with the largest дTS+ (S), i.e., дTS+ (S) ≥

дTS+ (S
+). Third, we prove дTS+ (S) ≤ дG (S). SinceT ⊆ G , дTS+ (S) ≤

дG (S) clearly holds. �

6 K-PCGS: PRUNING AND COMPRESSION
In this section, we propose a fast DAG summarization algorithm

k-PCGS, which prunes candidate vertices and compresses DAG.
We first give an algorithm overview and then presents the details of

carefully designed pruning and compression techniques. Finally, we

propose variant approximate methods and analyze the complexity.

Overview. To improve Greedy+ in Algorithm 1, we develop two

efficient techniques : pruning candidates and compressing DAG. The
general idea of pruning candidates is to prune unnecessary vertices,

in order to reduce the number of vertices whose compute △g(v |S).
The general idea of compressingDAG is graph sparsification, which

shrinks the original graph by discarding tree components and use-

less vertices.

6.1 Candidate Pruning

Candidate Set. Let C be a candidate set of vertices for top-k DAG

summarization and C ⊆ V . Greedy+ in Algorithm 1 considers all

vertices V as candidates (lines 3-5) and C = V . However, some

vertices have small summary score contributions, which are impos-

sible qualified for the top-k answer and can be early pruned, e.g.

vertices v5,v6 and v7 in Figure 2 for k = 2 in the above example.

Upper and Lower Bounds of △g(v |S). Let C = V and see how

to reduce C using the upper and low bounds of summary score

contribution as follows.

For each vertex v , we define an upper bound UB(v) and a lower

bound LB(v) of its summary score contribution △g(v |S), such that

LB(v) ≤ △g(v |S) ≤ UB(v) for any set S ⊆ C \ {v} and |S | < k .

Lemma 3. For a vertex v ∈ C, UB(v) = △g(v |∅), then UB(v) ≥
△g(v |S) holds for any set S ⊆ C \ {v} and |S | < k .

Proof. Based on Lemma 1 and ∅ ⊆ S , △g(v |∅) = g({v})−g(∅) ≥
g({v} ∪ S) − g(S) = △g(v |S) for any set S ⊆ C and |S | < k . �

Lemma 4. For a vertex v ∈ C, LB(v) = △g(v |C \ {v}) , then
LB(v) ≤ △g(v |S) holds for any set S ⊆ C \ {v} and |S | < k .
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Proof. Based on Lemma 1 and S ⊆ C \ {v}, △g(v |C \ {v}) =
g(C) − g(C \ {v}) ≤ g({v} ∪ S) − g(S) = △g(v |S) for any set S ⊆ C
and |S | < k . �

Candidate Pruning. Beside the upper and lower bounds of ver-

tices, we define a minimum threshold for vertices to be candidate

answers. Specifically, we define a pruning threshold ∆∗k = {LB(v
∗) :

v∗ ∈ C is a vertex with the k-th largest lower bounds in C}. In other
words, there exist no less than k vertices u ∈ C with LB(u) ≥ ∆∗k
and less than |C| − k vertices u ∈ C with LB(u) < ∆∗k .

Theorem 7 (Pruning Candidates). Given a vertex v ∈ C, if
UB(v) < ∆∗k , the vertex v can be removed from C.

Proof. Ifv is an answer of Algorithm 1, there exists a set S ⊆ C
that satisfies |S | = k − 1 and △g(v |S) ≥ △g(u |S) for each u ∈ C \ S .
So UB(v) ≥ △g(v |S) ≥ △g(u |S) ≥ LB(u) for each vertex u ∈ C \ S .
There exists at most k - 1 vertices u ∈ C satisfying UB(v) < LB(u),
and u ∈ S must hold. However, UB(v) < ∆∗k indicates that there

exist at least k vertices u ∈ C satisfy UB(v) < LB(u), which is a

contradiction. �

Based on Theorem 7, Lemmas 3 and 4, we can delete all the

candidatesv ∈ C forUB(v) < ∆∗k . Briefly, we can delete the vertices
that are impossible to be answer in Greedy+. In addition, the lower

bounds and candidate C are dynamically updated and affected by

each other. Specifically, when vertices v having UB(v) ≤ ∆∗k are

removed from C1, C1 shrinks into a smaller set C2 ⊂ C1. Thus, the

lower bounds LB(v) increases as △g(v |C2\{v}) ≥ △g(v |C1\{v}) for
C2 ⊂ C1. Accordingly,∆

∗
k increases largely, which can further prune

more vertices and lead smaller candidates. The iterative process

stops when UB(u) ≥ ∆∗k for any u ∈ C. Note that Theorem 7

is applicable to any kinds of lower bounds and upper bounds of

△g(v |S).

6.2 DAG Compression
Wedefine a compressed graphGc (Vc , Ec , Feqc ) ofG(V , E, feq)where
Vc ⊆ V , Ec ⊆ E, and Feqc is an aggregate frequency function

of vertices. An aggregate frequency set of vertex v is Feqc (v) =
{(d, feqd (v)) : d ∈ Z≥0, feqd (v) ∈ R

≥0}, where the aggregate

frequency feqd (v) =
∑
dist⟨v ,u ⟩=d feq(u) for d ∈ [0,h(v)] and

h(v) = maxu ∈des(v) dist ⟨v,u⟩. Before DAG compression, all ag-

gregate frequency sets are initialized as Feqc (v) = {(0, feq(v))}.
We compress the DAG into a new graph Gc by graph removal.

When one vertex is deleted, the vertex and its incident edges are

deleted from graph together. There exists two kinds of disqualified

nodes v that could be removed: one has UB(v) < ∆∗k in the tree-

shape component and the other hasUB(v) = 0. Given a vertexv , we
say v is located in the tree-shape component ofG if and only if the

induced subgraph of G by the vertex set des(v) is a data structure
of tree rooted by v . After a vertex deletion of v , to ensure no loss of
vertex importances, we transform the weight importances of v to

its in-neighbor u ∈ N+(v) and update the corresponding aggregate

frequency Feqc (u) as follows.
Feqc (u) = {(d, feqd (u) + feqd−1

(v)) : d ∈ [1,h(u)]} ∪ {(0, feq(u))}
(3)

In this way, we store the frequency of its deleted out-neighbor v in

Feqc (u) for v ∈ N
−(u).

Algorithm 4 k-PCGS

Input: A DAG G = (V , E , f eq), an integer k .
Output: A summary set of k vertices S .
1: Let T be a k-size set to maintain the pruning threshold ∆∗k .
2: Let H be a min-heap to maintain ub(v) for verticesv with |N−(v) | = 0;

3: Initialization: candidate set C ← V ; T ← ∅;
4: for vertex v ∈ C do
5: lbFeq(v) ← {(0, feq(v))}; lb(v) ← feq(v )

2
in Eq.5;

6: ubFeq(v) ← {(0, feq(v))}; ub(v) ← feq(v) in Eq.4;

7: Let be an aggregate frequency set Feqc (v) ← {(0, feq(v))};
8: if |T | < k then
9: T ← T ∪ {v };
10: else if lb(v) > minv∈T {lb(v)} then
11: u∗ ← arg minv∈T {lb(v)};
12: T ← T \ {u∗ } ∪ {v };
13: |N−(v) | ← |{ ⟨v , u ⟩ ∈ E } |;
14: if |N−(v) | = 0 then
15: H.push((ub(v), v ));
16: while H , ∅ do
17: (ub(v), v) ← H .pop();
18: ∆∗k ← minv∈T , |T |=k {lb(v)};
19: if ub(v) < ∆∗k then
20: Candidate pruning: C ← C \ {v } using Theorem 7;

21: if ub(v) = 0 then
22: Delete vertex v and its incident edges from G ;

23: for vertex u ∈ N+(v) do
24: |N−(u) | = |N−(u) | − 1;

25: Update ubFeq(u) and ub(u) in Eq. 4;

26: if |N+(v) | = 1 and ub(v) < ∆∗k then
27: Update lbFeq(u) and lb(u) using Eq. 5;
28: Maintain T using the new lb(u) accordingly;
29: if des(v) = {v } then
30: Transfer weights and update Feqc (u) using Eq. 3;
31: Delete vertex v and its incident edges from G ;

32: if |N−(u) | = 0 then
33: H .push((ub(u), u));
34: Let the shrank graph G be a compressed graph Gc ;

35: Find the top-k answer S from candidates C on Gc using Algorithm 1.

In addition, we directly delete from graphG the verticesv whose

UB(v) = 0. Obviously, these vertices and their descendants all have

the weight feq(u) = 0 for u ∈ des(v), which are not kept in the

compressed graph Gc .

6.3 k-PCGS Algorithm
In the following, we present our algorithm k-PCGS based on the

candidatePruning andDAGCompression for top-kGraph Summarization.

An intuitive implementation of our algorithm is to first compute

UB(v) and LB(v) for all vertices v ∈ V , and then apply the pruning

threshold ∆∗k for pruning candidate set C by Theorem 7 and com-

pressing DAG as Gc . However, the exact computation of all UB(v)
and LB(v) based on C is very time costly, due to the large graph size

and iteratively changed C. To improve the efficiency, we integrate

two processes of candidate pruning and DAG compression into one

whole procedure and develop two new dynamic updating bounds

for cost saving.

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1909



Dynamic Updating Bounds. We design two loose bounds ub(v)
and lb(v) where ub(v) ≥ UB(v) and lb(v) ≤ LB(v) .

For the upper bound, we create an aggregate frequency set

ubFeq(v)= {(d, ubFeqd (v))} for each vertexv in compressed graph

Gc , which has the same structure and initialization as Feqc (v) but
with a different updating strategy. Specifically, we transfer the

weight importance ubFeq(u) to all in-neighborsv ∈ N+(u) as Eq. 3.
The upper bound ub(v) is calculated by:

ub(v) =
h(v)∑
d=0

ubFeqd (v) ·
1

d + 1

. (4)

We have ub(v) ≥
∑
u ∈des(v)

feq(u)
1+dist⟨v ,u ⟩ = △g(v |∅) = UB(v) in

Lemma 3.

For the lower bound, we also create an aggregate frequency

set lbFeq(v) = {(d, lbFeqd (v))}. Differently, we just update the re-
moved vertexv to its in-neighbor vertex. Moreover, in the updating

process, we only transfer the weight importance lbFeq(u) as Eq. 3
to the unique parentv , i.e.,v ∈ N+(u) and |N+(u)| = 1. The lower

bound lb(v) is calculated by:

lb(v) =
h(v)∑
d=0

lbFeqd (v) · (
1

d + 1

−
1

d + 2

). (5)

We have lb(v) ≤
∑
u ∈des(v) rep(C,u) − rep(C \ {v},u) = △g(v |C\

{v}) ≤ LB(v) in Lemma 4.

For ub(v) and lb(v), we can obtain them for all v ∈ V using one

bottom-up scan of G, which is very efficient.

k-PCGS algorithm. Algorithm 4 presents the details of top-k sum-

marization method based on pruning candidates and compress-

ing DAG. It starts from the leaf nodes v with |N−(v)| = 0 in a

bottom-up search manner to remove disqualified vertices and up-

date bounds ub(v) and lb(v) iteratively. Note that a vertex v with

|N−(v)| = 0 indicates that the bounds are updated exactly in Eq.4

and Eq.5. The algorithm first constructs a k-sized set T to maintain

the top-k lower bound vertices in candidate set C and a priority

queue H to maintain upper bounds ub(v) for all vertices v with

|N−(v)| = 0(lines 1-3). Then, it initializes the upper bounds and

low bounds of ub(v) and lb(v) for all vertices v ∈ C = V in Eq.4

and Eq.5 (lines 4-15). T is updated with the largest k lower bounds

lb(v) (lines 8-12). The algorithm pushes into H the leaf nodes v
with |N−(v)| = 0 (lines 13-15). Next, it iteratively finds a vertex

v with the smallest ub(v) in H and check whether to remove u
from candidate set C and graph G (lines 16-33). It calculates the

minimum threshold ∆∗k based on T (line 18). If ub(v) < ∆∗k , the

algorithm removes v from C (lines 19-20). If ub(v) = 0, it deletes v
and its incident edges from G (lines 21-22). For each in-neighbor

u ∈ N+(v), it then updates lb(u) and ub(b) accordingly (lines 23-31).
If vertex v is a leaf node in G with ub(v) < ∆∗k and |N+(v)| = 1,

it deletes v and its incident edges from G, and also transfers the

aggregate frequency sets from v to its unique parent u. Afterwards,
it checks whether to add the vertex u with |N−(v)| = 0 into H

for candidate verification (lines 32-33). Finally, we represent the

reduced graph as a compressed graph Gc and apply Algorithm 1

on Gc for top-k summary results (lines 33-35).

Approximation andComplexityAnalysis. Inmost applications,

ub(v) is much larger than UB(v), and lb(v) is much less than LB(v).
Thus, we set a parameter α ≥ 1 and relax Theorem 7 to delete

Name n m h Name n m h

LATT 4,226 8,190 18 IMAGE 73,298 74,732 20

LNUR 4,226 8,190 18 YAGO 5,699,254 17,512,754 17

ANIM 15,135 24,498 11 UCI 58,790,783 92,208,196 17

Table 2: The statistics of DAG datasets.
candidates v if ub(v) ≤ α · ∆∗k (for the lines 19 and 24 in Algo-

rithm 4). Note that when α = 1, k-PCGS obtains the same solution

as Greedy+. We analyze the complexity of k-PCGS in Algorithm 4.

Let h be the maximum of depth in G and mc = |Ec | is the size

of edges in Gc . The compression and pruning steps take O(mh)
time to update ub(.) and lb(.), O(n logk) time to maintain T and

O(n logn) time to maintainH . The Algorithm 1 applied onGc takes

O(k |C|mc ) time, wheremc ≤ m. Overall, k-PCGS takes O(nh +m)
space in the time complexity of O(mh + n logn + k |C|mc ), which

is much faster than O(knm) in Algorithm 1 for h ≤ n and |C| ≤ n.

7 EXPERIMENTS
In this section, we conduct experiments to evaluate all algorithms.

Datasets. We test six real-world datasets of DAGs with hierarchi-

cal terminologies. The first two datasets, LATT and LNUR, are ex-

tracted from the Medical Entity Dictionary (MED) [16]. They have

the same topological structure but with different vertex weights.

The third dataset, ANIM, is extracted from the "Anime" catalog in

Wikipedia[25]. The weight of each vertex is the number of page-

views in one month. The next dataset, IMAGE, is extracted from

the Image-net [7]. The node weight is the number of pictures in

the catalog. The last two datasets, YAGO [20] is a knowledgebase

from multilingual wikipedias and UCI [23] is a social friendship

network extracted from Facebook. We assgin random weights to

vertices following the weight distribution of LATT.

Methods compared. We compare our proposed model and algo-

rithms with state-of-the-art methods respectively for DAGs 1
. First,

we evaluate our summarization model of kDAG-problem and com-

pare it with three state-of-the-art methods – FEQ , CAGG[16] and
LASP[8]. Here, FEQ is a baseline approach, which selects k nodes

with the highest frequencies[16]. CAGG is a statistical method us-

ing two metrics of aggregate frequency and contribution ratio[16].

LASP is a greedy method of finding a rooted tree, which adds

the largest averaged score path until the answer size reaches k[8].
We also compare our approaches of Greedy+ (Algorithm 1), EXT-
Greedy (Algorithm 3), and k-PCGS (Algorithm 4).

Evaluation metrics. We compare all methods in terms of effec-

tiveness and efficiency metrics. To evaluate the quality of summary

result S found by an algorithm, we use threemetrics: summary score

g(S) in Def. 5, the average distanceDistavg(S), and the weighted cov-
erage Coverw(S). The Distavg(S) is defined as the weighted average
distance from S to all vertices in V , i.e.

Distavg(S) =
∑
u ∈V dist(S,u) · feq(u)∑

u ∈V feq(u)
.

Note that if dist(S,u) = ∞, we replace dist(S,u) to the length of

the longest path. Moreover, the weighted coverage Coverw(S) is
defined as the total weight of the vertices within 1-hop of S as

C(S) = {u ∈ V : dist(S,u) ≤ 1}, denoted by

Coverw(S) =
∑

u ∈C(S )

feq(u).

1
https://github.com/csxlzhu/CIKM20
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Figure 5: Quality evaluation of all methods on DAG datasets in Figure 5(a)-(b) and ANIM dataset varied by k in Figure 5(c)-(d).

Datasets LATT LNUR ANIM IMAGE YAGO

Greedy+ 5,747 6,710 18,972 547,098 12,602,525
k-PCGS (α = 1) 5,747 6,710 18,972 547,098 12,602,525
k-PCGS (α = 2) 5,726 6,710 18,972 547,098 12,602,525
k-PCGS (α = 5) 4,681 5,418 18,972 547,098 12,602,525
EXT-Greedy 5,747 6,710 19,140 547,182 /

Table 3: Summary scores of all algorithms. Here k = 25.
Datasets LATT LNUR ANIM IMAGE YAGO UCI

Greedy+ 4,226 4,226 15,135 73,298 5,699,254 58,790,783

k-PCGS (α = 1) 259 248 238 3,748 982 1,916,452

k-PCGS (α = 2) 118 124 120 241 601 1,794,678

k-PCGS (α = 5) 51 54 38 64 328 1,657,458

Table 4: The size of candidate C. Here k = 25.
Note that the smaller Distavg(S) is, the better quality is. The larger

Coverw(S) and g(S) are, the better qualities are. To evaluate the

efficiency of algorithms, we report the running time. We treat the

running time as infinite if the algorithm runs exceeding 3 hours.

We set the parameter k = 25 and α = 2 in k-PCGS by default.

EXP-1: Quality evaluation of summarizationmodels.Weeval-

uate the quality of summary results by all methods onDAG datasets.

Figure 5(a)-(b) show the results of average distance and weighted

coverage by four competitive methods kDAG, FEQ , CAGG and

LASP. Figure 5(c)-(d) depict the results of average distance and

weighted coverage by varying k . Our kDAG model clearly outper-

forms the competitors FEQ , CAGG, and LASP, in terms of both

metrics with the largest Coverw(S) and smallest Distavg(S).

EXP-2: Quality evaluation of our algorithms. We conduct the

quality evaluation of our algorithms. Table 3 shows the summary

score of Greedy+ and EXT-Greedy and k-PCGS. EXT-Greedy con-

sistently performs no worse than other methods. Note that EXT-
Greedy cannot finish within the time limit on YAGO. Compared

with Greedy+, k-PCGS always gets the same solution for α = 1

and competitive results for α = 2 and 5.

EXP-3: Approximation improvement on small DAGs. In this

experiment, we evaluate the approximation of our algorithms EXT-
Greedy andGreedy+. We randomly generate 300 small-scaleDAGs
with 20 nodes. Figure 7(a) shows the summary score of twomethods

on 300 DAGs. As we can see that EXT-Greedy wins Greedy+ in

most cases, reaching nearly 80% of all cases. For those cases that

EXT-Greedy produces no optimal results, EXT-Greedy gets at least

the same summary score as Greedy+.

EXP-4: Efficiency evaluation. We evaluate the running time of

different algorithms on ANIM, IMAGE, YAGO and UCI.We compare

four methods of Greedy+, EXT-Greedy, k-PCGS, and CAGG. Fig-
ure 6 shows the running times of all methods by varying k . k-PCGS
runs best among all methods on all datasets, and EXT-Greedy is

the worst. Although CAGG achieves the competitve quality as our

model, but CAGG runs slower than k-PCGS. Note that the running
time of FEQ and LASP are not reported due to their poor quality.

EXP-5: Evaluation of candidate pruning.We evaluate the effec-

tiveness of candidate pruning in k-PCGS algorithm. Table 4 shows

the size of candidate set |C|. k-PCGS reduces the candidate size very
significantly. It reduces at least 90% candidates in the worst case

and more than 99% in most cases. Moreover, |C| becomes smaller

with the increased α .

EXP-6: Scalability test. We conduct the scalability test of our

algorithms varying by the size of DAGs. We randomly generate 5

DAGs with the size of nodes varying from 10
5
to 10

6
. The graph

statistics follow Image-net. Figure 7(b) shows that EXT-Greedy,
Greedy+ and k-PCGS scale well with the increased node size. k-
PCGS achieves the best peroformance with a stable scalability.

EXP-7: Usability test. We conduct a usability test of topic recom-

mendation that verifies users’ preference for four methods FEQ ,

CAGG, LASP and kDAG. The task is to recommend the top-k most

attractive topics of SIGMOD’19. Based on the Proceedings of SIG-

MOD’19, we built a hierarchical DAG using 22 session topics and

104 secondary topics, where each paper belongs to a session topic

and is weighted by the number of downloads recorded in ACM Dig-

ital Library [3] (up to Dec 1, 2019). We ask 15 users, who published

PVLDB/SIGMOD papers in recent three years, to recommend the

top-k (k = 3, 5, 8) most attractive topics. We evaluate an accuracy

rate of overlapping topics between users’ choices and methods’

selections. Figure 8 shows the average accuracy results for four

competitive methods. Our method kDAG achieves the best perfor-

mance on all different k , which is slightly better than CAGG and

much better than FEQ and LASP. This indicates an easy usability

of kDAG in the SIGMOD’19 attractive topic recommendation.

8 RELATEDWORK
Our work is related to graph summarization and top-k diversifica-

tion.

Graph summarization. In the literature, numerous works study

the graph summarization [6, 11, 18, 26, 27, 27, 28]. A semi-structured

data summarization approach is proposed for RDF graphs [6]. Gou

et al. [11] propose a novel graph stream sketch to summarize the

graph streams with linear space cost and constant update time

cost. Both of these two works design data structures to store and

summarize graphs. Kumar and Efstathopoulos [18] propose a frame-

work to compute the utility for graph summarization and compress

the graph with high utility. Different from the above studies fo-

cusing on the general graph structure, we focus on a summary

optimization in DAGs with hierarchical relationships. Note that

object summaries [8, 9] shares similar motivations, but has three

major differences in data models, diversity definitions and problem

formulations.
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Figure 6: Efficiency evaluation of Greedy+, EXT-Greedy, k-PCGS and CAGG methods on DAGs
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Figure 7: Evaluation on synthetic DAGs.
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Figure 8: Usability test of top-k topic recommendation.
Top-k diversification. There exist several studies on the top-k
graph diversification [5, 10, 12, 13, 21, 22, 29–31]. Qin et al.[21]

investigate the diversified top-k search results in a graph. Ranu et

al. [22] propose NB-Index to solve the top-k representative queries

on graph databases. Based on a level-wise subgraph search, DSQL

is proposed for top-k diversified subgraph querying in [29]. Long

et al. [30] find top-k maximal cliques that can cover most number

of nodes in a graph. Different from the above works on the top-k

diversification on graph databases, subgraph queries, and cliques,

this paper studies the graph summarization problem in hierarchical

DAGs.

9 CONCLUSION
In this paper, we formulate and study a new kDAG-problem, which

finds k representative vertices to summarize a hierarchical DAG
associated with vertex weights. Due to the problem NP-hardness,

we propose efficient greedy algorithms to tackle it. In addition, we

develop two improved algorithms to find better answers with a

theoretical guarantee in quality and be faster with theoretical com-

plexity analysis, respectively. The k-PCGSmethod is scalable based

on the candidate pruning and DAG compression. Extensive exper-

iments validate the effectiveness and efficiency of our proposed

algorithms.
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