
Budget-Constrained Truss Maximization over Large Graphs:
A Component-based Approach

Xin Sun

College of Intelligence and Computing, Tianjin University

Tianjin, China

sun_xin@tju.edu.cn

Xin Huang

Hong Kong Baptist University

Hong Kong, China

xinhuang@comp.hkbu.edu.hk

Zitan Sun

Hong Kong Baptist University

Hong Kong, China

zitansun@comp.hkbu.edu.hk

Di Jin

College of Intelligence and Computing, Tianjin University

Tianjin, China

jindi@tju.edu.cn

ABSTRACT
Cohesive substructure identification is one fundamental task of

graph analytics. Recently, a useful problem of dense subgraph max-

imization has attracted significant attentions, which aims at en-

larging a dense subgraph pattern using a few new edge insertions,

e.g., 𝑘-core maximization. As a more cohesive subgraph of 𝑘-core,

𝑘-truss requires that each edge has at least 𝑘 − 2 triangles within

this subgraph. However, the problem of 𝑘-truss maximization has

not been studied yet. In this paper, we motivate and formulate a

new problem of budget-constrained 𝑘-truss maximization. Given a

budget of 𝑏 edges and an integer 𝑘 ≥ 2, the problem is to find and

insert 𝑏 new edges into a graph 𝐺 such that the resulted 𝑘-truss of

𝐺 is maximized. We theoretically prove the NP-hardness of 𝑘-truss

maximization problem. To efficiently tackle it, we analyze non-

submodular property of 𝑘-truss newcomers function and develop

non-conventional heuristic strategies for edge insertions. We first

identify high-quality candidate edges with regard to (𝑘 − 1)-light
subgraphs and propose a greedy algorithm using per-edge insertion.

Besides further improving the efficiency by pruning disqualified

candidate edges, we finally develop a component-based dynamic

programming algorithm for enlarging 𝑘-truss mostly, which makes

a balance of budget assignment and inserts multiple edges simulta-

neously into all (𝑘−1)-light components. Extensive experiments on

nine real-world graphs demonstrate the efficiency and effectiveness

of our proposed methods.

CCS CONCEPTS
• Theory of computation→ Graph algorithms analysis; • Math-
ematics of computing→ Graph theory.

KEYWORDS
𝑘-truss; subgraph maximization; edge insertions;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482324

ACM Reference Format:
Xin Sun, Xin Huang, Zitan Sun, and Di Jin. 2021. Budget-Constrained Truss

Maximization over Large Graphs: A Component-based Approach. In Pro-
ceedings of the 30th ACM International Conference on Information and Knowl-
edge Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Aus-
tralia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3459637.

3482324

1 INTRODUCTION
Graph is an essential model to represent entities and their con-

nected relationships in many real-world networks, such as social

networks [23, 32, 42], the Web [10], collaboration network [45],

biological networks [14], to name a few. A fundamental task of

complex graph analytics is to identify cohesive portions reveal-

ing latent and critical community structures, which are frequently

modeled as cohesive subgraphs [21].

In the literature, many cohesive subgraph notions have been

proposed including 𝑘-clique, 𝑛-clan, 𝑛-club, and 𝑘-plex [33, 39].

The computations of all the above cohesive subgraphs are NP-hard

and not scalable over large graphs. A popular dense subgraph of

𝑘-truss, receives many attentions recently [11, 17, 22, 24, 53]. As a

relaxation of 𝑘-clique, 𝑘-truss requires that every edge is contained

in at least (𝑘−2) triangles in the 𝑘-truss [7], which can be computed

efficiently in polynomial time. The 𝑘-truss investigation has been

conducted in various important applications and different kinds

of networks, including community search [30], truss minimization

[53], network visualization [50], public-private social networks [11],

and probabilistic networks [22, 40].

One useful problem of dense subgraph maximization has at-

tracted significant attentions recently, which has several applica-

tions in improving communication network stability and online

social network services. One representative task is core maximiza-

tion [6, 51], which studies to enlarge another dense subgraph of

𝑘-core by inserting a few edges into a graph. The definition of

𝑘-core requires that every vertex has at least 𝑘 neighbors. In com-

parison, the 𝑘-truss is conceptually more rigorous than 𝑘-core, as

𝑘-truss is defined on the edge and its strength measured by the

number of triangles whereas 𝑘-core is defined on the node and

its strength measured by the simple degree [17, 36]. The 𝑘-truss

model ensures the strong tie strength among users with at least 𝑘-2

common neighbors. However, to our best knowledge, the problem

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1754

https://orcid.org/0000-0002-1825-0097
https://doi.org/10.1145/3459637.3482324
https://doi.org/10.1145/3459637.3482324
https://doi.org/10.1145/3459637.3482324

4-truss edge 3-truss edge

Figure 1: An example of 𝑘-truss maximization on graph 𝐺 ,
where 𝑘 = 4 and the budget 𝑏 = 2. After inserting two edges
𝐸Δ = {(𝑣3, 𝑣4), (𝑣8, 𝑣10)} into graph 𝐺 , a new graph 𝐺𝑛𝑒𝑤 has
the maximum 4-truss with 22 edges.

of dense subgraph maximization on the 𝑘-truss model has not been

studied yet.

In this paper, we investigate a new problem of budget-constrained

𝑘-truss maximization, that is, given a number 𝑘 and a budget 𝑏,

it aims at inserting a set of 𝑏 new edges into graph 𝐺 such that

the size of 𝑘-truss is maximized. We motivate the 𝑘-truss maxi-

mization problem using a wide range of real-life representative

applications, for example, improving flight network connectivity

and social group engagement, enhancing stability of P2P networks,

and identifying missing defense links in military networks, as ana-

lyzed in the dense subgraph maximizing problem of another 𝑘-core

model [6, 51] and further illustrated in Section 3.3.

Motivating example. Consider a social network𝐺 with 12 vertices

as shown in Figure 1(a), where each vertex represents a user and an

edge represents a friendship between two users. The whole graph𝐺

is the 3-truss, as each edge is contained in at least one triangle in𝐺 .

The induced subgraph of 𝐺 by {𝑣5, 𝑣6, 𝑣7, 𝑣8} is the 4-truss in blue,

where each pair of users have two common friends. Assume that

𝑘 = 4 and the budget 𝑏 = 2, we seek to enlarge 4-truss by inserting 2

new edges into graph𝐺 . An optimal solution is to insert two edges

(𝑣3, 𝑣4) and (𝑣8, 𝑣10), which maximizes 4-truss from the original

six edges of 𝐺 to the new 22 edges of 𝐺𝑛𝑒𝑤 in blue as shown in

Figure 1(b).

Different edge insertion strategies have significantly different

performances, e.g., considering an alternative answer for the above

example𝐺 in Figure 1(a) by inserting two edges (𝑣1, 𝑣8) and (𝑣1, 𝑣10),
which leads to no any increment size of 4-truss at all. However,

developing effective algorithms for 𝑘-truss maximization brings

non-trivial challenges. We analyze the hardness of 𝑘-truss maxi-

mization problem and theoretically prove that it is NP-hard reduced

from a well-known maximum coverage problem. Even worse, we

observe that the objective function of 𝑘-truss newcomer does not

enjoy the submodularity for a simple greedy approximation algo-

rithm design. Therefore, we explore heuristic strategies to develop

efficient algorithms for enlarging 𝑘-truss using a few new edges.

The key idea is to identify those edges that are easily converted

into 𝑘-truss using a small cost of edge insertions. We first give a

definition of (𝑘 − 1)-light, which is a subgraph of (𝑘 − 1)-truss
formed by all edges of the trussness of 𝑘 − 1. Then, we prune those

candidate (𝑘 − 1)-light edges of low quality, in terms of the tri-

angle weights. Our first greedy algorithm is a per-edge insertion

method, which iteratively inserts one edge with the largest 𝑘-truss

newcomers into graph 𝐺 until the budget of 𝑏 edges is used up. To

improve the efficiency, we develop advanced techniques to further

prune disqualified candidate edges, by distinguishing stable edges
and unstable edges. Moreover, we propose a novel component-based

approach, which divides the graph into several independent compo-

nents and uses dynamic programming techniques to enlarge 𝑘-truss

in a global optimization. This is an integrated method by balancing

the budget assignment such that a limited number of inserted edges

enlarges the 𝑘-truss mostly.

In summary, we make the contributions in this paper as follows:

• We motivate a new problem of 𝑘-truss maximization, which

inserts a given budget of 𝑏 new edges into a graph to enlarge

𝑘-truss (Section 3).

• We theoretically prove that the 𝑘-truss maximization problem

is NP-hard. We also analyze the property of 𝑘-truss newcomer

function and show its non-submodularity (Section 4).

• We give a formal definition of candidate weight and formulate

the candidates for edge insertions. We then propose a greedy

approach to iteratively select one best candidate edge to in-

sert into graphs. Moreover, we further design an optimization

technique for pruning candidates (Section 5).

• For improving the efficiency and quality, we propose a component-

based approach CBTM for 𝑘-truss maximization. It first parti-

tions the graph into multiple components and makes 𝑘-truss

estimations for each component, and then conducts an edge

insertion assignment to maximize 𝑘-truss newcomers by dy-

namic programming techniques (Section 6).

• We conduct extensive experiments on nine real-world large

graphs. We show that our component-based approach CBTM
can efficiently and effectively enlarge 𝑘-truss using a limited

budget 𝑏 (Section 7).

We discuss related work in Section 2 and conclude the paper in

Section 8.

2 RELATEDWORK
Our work is related to 𝑘-truss mining and subgraph enhancement.

K-truss mining. The 𝑘-truss is the largest dense subgraph where

every edge exists in at least 𝑘 − 2 triangles in the subgraph [7].

Truss decomposition is to find the trussness of every edge in a

graph. An in-memory algorithm of truss decomposition is presented

in [41]. The 𝑘-truss decomposition has numerous applications in

large graph analysis, including visualization [2], community search

[9, 18, 29, 38], probabilistic graphs [12], modular centrality [15] and

maximal clique finding [35]. Parallel algorithms for accelerating k-

truss decomposition have also been studied [4, 5, 25, 37]. There also

exist many studies on 𝑘-truss mining [7] over different networks,

including dynamic graphs [49], directed graphs [30], uncertain

graphs [22], heterogeneous graphs [43] and public-private graphs

[11]. Recently, the problem of 𝑘-truss minimization is to shrink

𝑘-truss as most as possible by deleting 𝑏 edges [53]. Several 𝑘-

truss based community models have been developed for finding

communities in an online manner [20].

Subgraph enhancement. Several studies work on the subgraph

enhancement, e.g., the anchored 𝑘-core to enlarge the 𝑘-core by

strengthening a set of nodes, these nodes will retain within the

anchored 𝑘-core, even if their degree within the 𝑘-core subgraph

is less than 𝑘 [3, 27, 47]. This problem can identify critical vertices

(e.g., people) whose participation is critical to overall engagement of

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1755

the networks. Corò et al. [8] investigate the problem of improving

the graph reachability through edge insertions. The closest work

to us is the edge addition approach to maximize the 𝑘-core [6, 51].

Chitnis et al. [6] propose solutions for graphs with bounded tree-

width. Zhou et al. [51] propose a heuristic algorithm and use a layer

structure to reduce the candidate set and the time for computing

followers. Compared with the 𝑘-core maximization problem where

each vertex has degree at least 𝑘 within the 𝑘-core [6, 51], 𝑘-truss

enjoys more cohesive structure than 𝑘-core. On the other hand,

some studies aim at minimizing the size of 𝑘-core [31, 52]. Related

problems also include the anchored 𝑘-truss problem [48] and the

collapsed 𝑘-truss problem [46]. Different from all the above studies,

we study a new problem of 𝑘-truss maximization in this paper, and

propose novel techniques of (𝑘 − 1)-light based per-edge insertion

strategy and component-based dynamic programming algorithm

w.r.t. a limited budget of new edge insertions.

3 PRELIMINARY
We consider an undirected simple graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 |
vertices and𝑚 = |𝐸 | edges. Given a subgraph 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) ⊆
𝐺 , we denote the set of neighbors of a vertex 𝑣 in 𝐻 by 𝑁𝐻 (𝑣),
i.e., 𝑁𝐻 (𝑣) = {𝑢 ∈ 𝑉 (𝐻) : (𝑣,𝑢) ∈ 𝐸 (𝐻)}. We denote the degree

of 𝑣 in graph 𝐺 by 𝑑 (𝑣) = |𝑁𝐺 (𝑣) | and the maximal degree by

𝑑𝑚𝑎𝑥 = max𝑣∈𝑉 𝑑 (𝑣), respectively. A triangle is a 3-clique formed

by three vertices 𝑣,𝑢,𝑤 , denoted as △𝑣𝑢𝑤 . The support of an edge

𝑒 , denoted as 𝑠𝑢𝑝𝐻 (𝑒), is the number of triangles containing 𝑒 in 𝐻 .

When it is clear from the context, we drop the subscript 𝐻 and 𝐺

of our notations.

3.1 K-Truss Newcomers
We begin with a definition of 𝑘-truss.

Definition 1 (K-Truss [41]). Given a graph 𝐺 and an integer
𝑘 ≥ 2, the 𝑘-truss, denoted as 𝑇𝑘 , is the largest subgraph of 𝐺 such
that each edge is contained in at least 𝑘 − 2 triangles in 𝑇𝑘 .

The 𝑘-truss subgraphs inherit good hierarchical properties, such

as the 𝑘-truss is always a subgraph of 𝑘 ′ truss for 𝑘 ′ ≤ 𝑘 , i.e.,

𝑇𝑘 ⊆ 𝑇𝑘′ . Thus, an edge may appear in multiple 𝑘-trusses 𝑇𝑘 for

different 𝑘 . The trussness of an edge 𝑒 in𝐺 is the largest 𝑘 such that

there exists a 𝑇𝑘 ⊆ 𝐺 containing 𝑒 , which is represented as 𝜏 (𝑒).
Consider the graph 𝐺 in Figure 1, the edge (𝑣5, 𝑣6) appears both in

3-truss and 4-truss. The trussness of (𝑣5, 𝑣6) is 𝜏 ((𝑣5, 𝑣6)) = 4.

In this paper, we are interested to add a few new edges 𝐸Δ into

graph𝐺 to enlarge𝑘-truss𝑇𝑘 . The new graph and the corresponding

new 𝑘-truss are denoted as 𝐺∗ = (𝑉 , 𝐸 ∪ 𝐸Δ) and 𝑇 ∗𝑘 , respectively.
We give a new definition of 𝑘-truss newcomers as follows.

Definition 2 (𝐾-Truss Newcomers). The 𝑘-truss newcomers
are a set of edges that do not appear in 𝑇𝑘 of graph 𝐺 but belong
to 𝑘-truss 𝑇 ∗

𝑘
of new graph 𝐺∗ after the edge insertions of 𝐸Δ. The

number of 𝑘-truss newcomers is denoted as f (𝐸Δ, 𝑘)= |𝑇 ∗𝑘 | − |𝑇𝑘 |.

The 𝑘-truss newcomers may be either the newly inserted edges

or the original edges in graph𝐺 . The edges, which may be inserted

to the graph, are called candidate edges.

3.2 Problem Formulation
Based on the above definitions, we formulate the problem of budget-

constrained 𝑘-truss maximization (KTM-Problem) as follows.

Problem 1. Given a graph𝐺 (𝑉 , 𝐸), an integer𝑘 ≥ 2, and a budget
of𝑏 ≥ 1 edges that can be inserted into𝐺 , the trussmaximization prob-
lem aims to find a set of new edges 𝐸Δ = {(𝑣,𝑢) : 𝑣,𝑢 ∈ 𝑉 , (𝑣,𝑢) ∉ 𝐸}
and |𝐸Δ | ≤ 𝑏 such that the 𝑘-truss newcomers f (𝐸Δ, 𝑘) is maximized
in new graph 𝐺∗ = (𝑉 , 𝐸 ∪ 𝐸Δ), i.e.,

𝐸∗Δ = arg max

|𝐸Δ | ≤𝑏
|𝑇 ∗
𝑘
| − |𝑇𝑘 |.

Example 1. Consider the graph 𝐺 in Figure 1. Assume that 𝑘 = 4

and 𝑏 = 2. Our problem of 𝑘-truss maximization is to insert two
new edges into 𝐺 such that the new 4-truss is maximized. One choice
is to insert two edges {(𝑣1, 𝑣5), (𝑣2, 𝑣6)} into 𝐺 with 11 newcomers.
However, this solution is not optimal. The best choice is to insert
{(𝑣3, 𝑣4), (𝑣8, 𝑣10)} edges into 𝐺 , which brings 16 𝑘-truss newcomers.
The enlarged 4-truss of 𝐺𝑛𝑒𝑤 is shown in Figure 1(b).

3.3 Applications
We motivate the KTM-Problem using two useful applications.

Flight network connectivity improvement. It is well known
that adding more routes bring a connectivity improvement of trans-

portation network, e.g., flight network, ferry route networks, rail

networks, and so on. A strong network connectivity certainly gives

more route choices for users and facilitates traveling. A connected

𝑘-truss enjoys good structural property of (𝑘−1)-edge-connectivity,
indicating that the 𝑘-truss network keeps connected by removing

any fewer than 𝑘-2 edges [7]. In flight networks, one route between

any two airports can be suspended due to unexpected circumstances.

We need to offer more alternative transit plans when direct flights

fail. Therefore, our KTM-Problem applied on flight networks aims

at maximizing a strong-connected 𝑘-truss network by adding a

budget of 𝑏 new routes.

Social group engagement. Many online social network applica-

tions feature a friend suggestion function to help form friendships,

e.g., Facebook, Instagram, and so on [13]. The newly formed friend-

ships are corresponding to our problem setting of edge insertions.

Given a social network, we can reinforce social groups by creating

new friend relationships and construct a larger 𝑘-truss community.

Every two people have at least 𝑘-2 common friends under the 𝑘-

truss community model, ensuring solid and stable relationships.

People are more likely to share and contributes user-generated

contents if they have enough common friends [1, 44]. Social-based

activities such as group shopping and friend recommendations may

achieve better outcomes in an enlarged 𝑘-truss group.

Besides the above applications, our problem is also applicable

to other application scenarios of 𝑘-core maximization, due to that

𝑘-truss is a more generalization and denser subgraph of 𝑘-core, e.g.,

enhancing stability of P2P networks, and identifying missing defense
links in military networks [6, 51].

4 PROBLEM HARDNESS ANALYSIS
In this section, we first analyze the hardness of𝑘-trussmaximization

problem. Then, we present the non-submodular property of 𝑘-truss

newcomers function f (𝐸Δ, 𝑘), with regard to w.r.t. 𝐸Δ for a given 𝑘 .

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1756

d

s
_
1s1 s2 s

_
2 s3 s

_
3

t1 t
_
1 t2 t

_
2 t3 t

_
3 t4 t

_
4

H1 H2 H3 H4
Figure 2: An illustration of constructing graph 𝐺 in KTM-
Problem from an instance of MC-Problem where 𝑆1 = {𝑡1, 𝑡3},
𝑆2 = {𝑡1, 𝑡2, 𝑡3}, 𝑆3 = {𝑡3, 𝑡4}.

Theorem 1. The KTM-Problem is NP-hard.

Proof. We reduce the well-known NP-hard problem of maxi-

mum coverage (MC-Problem) to our problem [26]. Given a ground

set𝑇 = {𝑡1, . . . , 𝑡𝑛} and a collection of sets S = {𝑆1, . . . , 𝑆𝑚}, where
𝑇 =

⋃𝑚
𝑗=1

𝑆 𝑗 . For two given numbers 𝑋 and 𝑏 where 𝑏 ≤ 𝑚, the

decision version of MC-Problem is asking whether there exists a

selection of 𝑏 sets such that | ∪𝑏
𝑗=1

𝑆𝑙 𝑗 | ≥ 𝑋 where 1 ≤ 𝑙 𝑗 ≤ 𝑚 for

1 ≤ 𝑗 ≤ 𝑏, which is also NP-hard.

Given an instance ofMC-Problem, we construct an instance of

KTM-Problem as follows. For each set 𝑆𝑖 ∈ S, we create two ver-

tices 𝑠𝑖 and 𝑠𝑖 . For each element 𝑡 𝑗 ∈ 𝑆𝑖 , we create two vertices 𝑡 𝑗
and 𝑡 𝑗 , and add edge between any pair nodes of {𝑠𝑖 , 𝑠𝑖 , 𝑡 𝑗 , 𝑡 𝑗 }, except
for the edge (𝑠𝑖 , 𝑠𝑖) as shown in Figure 2. In addition, for each edge

(𝑡 𝑗 , 𝑡 𝑗), we link (𝑡 𝑗 , 𝑡 𝑗) with one 𝑑-extendible subgraph, denoted

as 𝐻 𝑗 , which is with all blue nodes and surrounded with multiple

4-cliques as shown in Figure 2. Here, 𝑑 ≫ 4𝑛𝑚. Except for the

edge (𝑡 𝑗 , 𝑡 𝑗), other each edge 𝑒 ′ ∈ 𝐸 (𝐻 𝑗) has at least two triangles

in graph 𝐻 𝑗 , reflecting that 𝐻 𝑗 is 3-truss but not 4-truss. Now, we

have a completed graph𝐺 = (𝑉 , 𝐸) where𝑉 = {𝑠1, 𝑠1, . . . , 𝑠𝑚, 𝑠𝑚}∪
(⋃𝑛

𝑗=1
𝑉 (𝐻 𝑗)) and𝐸 = {(𝑠𝑖 , 𝑡 𝑗), (𝑠𝑖 , 𝑡 𝑗), (𝑠𝑖 , 𝑡 𝑗), (𝑠𝑖 , 𝑡 𝑗) : ∀𝑡 𝑗 ∈ 𝑆𝑖 , 1 ≤

𝑖 ≤ 𝑚} ∪ (⋃𝑛
𝑗=1

𝐸 (𝐻 𝑗)). Figure 2 shows an example of graph 𝐺

with 𝑛 = 4 and 𝑚 = 3. For 𝑘 = 4, let be the decision version of

KTM-Problem as whether there exists 𝐸Δ edges to be inserted into

𝐺 such that |𝐸Δ | = 𝑏 and f (𝐸Δ, 𝑘) ≥ 2𝑑𝑋 . The hardness follows

from this.

(⇒) : Suppose there exists S∗ ⊆ S as a YES-instance of MC-
Problem, i.e. |S∗ | = 𝑏 and | ∪𝑆𝑖 ∈S∗ 𝑆𝑖 | ≥ 𝑋 . For each set 𝑆𝑖 ∈ S∗,
we add an edge (𝑠𝑖 , 𝑠𝑖) into𝐺 . Let𝐺𝑛𝑒𝑤 be the new graph after edge

insertions. Thus, (𝑠𝑖 , 𝑠𝑖) becomes a 4-truss newcomer in 𝐺𝑛𝑒𝑤 . Let

𝑇 ∗ = ∪𝑆𝑖 ∈S∗𝑆𝑖 ⊆ 𝑇 and |𝑇 ∗ | ≥ 𝑋 , indicating that at least 𝑋 edges

of (𝑡 𝑗 , 𝑡 𝑗) become 4-truss newcomers for 𝑡 𝑗 ∈ 𝑇 ∗. Consequently, at
least 𝑋 subgraphs of 𝐻 𝑗 belong to 4-truss in 𝐺𝑛𝑒𝑤 . Each graph 𝐻 𝑗

has 2𝑑 newcomers. Thus, the total number of newcomers has at

least 2𝑑𝑋 , which is a YES-instance of KTM-Problem.

(⇐) : Suppose𝐸∗Δ is aYES-instance ofKTM-Problem, i.e., it achieves

at least 2𝑑𝑋 newcomers as f (𝐸∗Δ, 𝑘) ≥ 2𝑑𝑋 . Let be the graph

𝐺𝑛𝑒𝑤 = (𝑉 , 𝐸 ∪ 𝐸∗Δ). We prove it by contradiction. Assume that

at least 𝑋 subgraphs of 𝐻 𝑗 become as the part of 4-truss in 𝐺𝑛𝑒𝑤 ;

Otherwise, we have less than 𝑋 subgraphs of 𝐻 𝑗 that belong to

4-truss, reflecting 𝑓 (𝐸∗Δ, 𝑘) < 2𝑑𝑋 as 𝑑 ≫ 4𝑛𝑚. As the most new-

comer benefit of inserting such edges (𝑠𝑙 𝑗 , 𝑠𝑙 𝑗) and 𝑑 ≫ 4𝑛𝑚, it

e2

e1

e3
Figure 3: An example for graph 𝐺 in submodular analysis.

should add the 𝑏 edges 𝐸∗Δ = {(𝑠𝑙 𝑗 , 𝑠𝑙 𝑗) : 1 ≤ 𝑗 ≤ 𝑏, 1 ≤ 𝑙 𝑗 ≤ 𝑚}
into 𝐺 . Let be the set 𝑇 ∗ = {𝑡 𝑗 : 𝐻 𝑗 belong to 4-truss } and S∗ =
{𝑆 𝑗 : (𝑠𝑙 𝑗 , 𝑠𝑙 𝑗) ∈ 𝐸∗Δ}. This reflects that there exists S

∗
such that

|S∗ | = 𝑏 and |⋃𝑆 𝑗 ∈S∗ 𝑆 𝑗 | ≥ |𝑇
∗ | ≥ 𝑋 , which is a YES-instance of

MC-Problem.

Theorem 2. f (𝐸Δ, 𝑘) is not submodular w.r.t. 𝐸Δ.

Proof. Consider a graph𝐺 in Figure 3 and𝑘 = 4. The function of

f (𝐸Δ, 𝑘) w.r.t. 𝐸Δ, is reformulated as g(𝐸Δ) = f (𝐸Δ, 4). Let 𝑆 = {𝑒2},
𝑇 = {𝑒2, 𝑒3}, and 𝑆 ⊂ 𝑇 . We have g(𝑆) = 6 and g(𝑇) = 12. As 𝑒1 ∉ 𝑇

and 𝑒1 ∉ 𝑆 , we have g(𝑆 ∪ {𝑒1}) = 12 and g(𝑇 ∪ {𝑒1}) = 19. Thus,

g(𝑆 ∪ {𝑒1}) − g(𝑆) = 6 and g(𝑇 ∪ {𝑒1}) − g(𝑇) = 7. As a result, we

have g(𝑆 ∪ {𝑒1}) −g(𝑆) < g(𝑇 ∪ {𝑒1}) −g(𝑇), indicating g(𝐸Δ) and
f (𝐸Δ, 𝑘) is not submodular w.r.t. 𝐸Δ.

In view of the above NP-hardness and non-submodularity of

KTM-Problem, it infers that the prospects for efficient approxima-

tion algorithms are not promising.

5 PER-EDGE INSERTION GREEDY METHOD
In this section, we propose a heuristic approach that greedily inserts

one edge into 𝐺 at each round of budget consumption. Then, we

develop candidate pruning techniques to improve the efficiency.

5.1 Candidate Edges
To address KTM-Problem, the first key step is to identify high-

quality candidate edges that can be inserted into graph𝐺 to enlarge

𝑘-truss. There exists a large room for candidate edge selection in

large sparse graphs as 𝐸Δ ⊆ 𝑉 ×𝑉 \ 𝐸. We give theoretical analysis

to prune candidate edges as follows.

Let us consider one simplest case for 𝑏 = 1, i.e., inserting an edge

𝑒0 ∉ 𝐸 into 𝐺 . According to the rules of 𝑘-truss maintenance over

dynamic graphs [19], the trussness of any possible edge increases

at most by one for an edge insertion. Thus, only the edges with

trussness 𝑘 − 1, have chances to appear in the enlarged 𝑘-truss 𝑇 ∗
𝑘
.

We give a new definition of (𝑘 − 1)-light as follows.

Definition 3 ((𝑘 − 1)-Light). A (𝑘 − 1)-light is an induced
subgraph of 𝐺 by all edges 𝑒 with 𝜏 (𝑒) = 𝑘 − 1, denoted by 𝐿𝑘−1

.

Thus, for a (𝑘 − 1)-light edge (𝑢, 𝑣), we identify an candidate

edge surrounding the (𝑘 − 1)-light edge to form a new triangle

△𝑢𝑣𝑤 , which may increase the support of (𝑢, 𝑣) and enlarge 𝑘-truss
by creating 𝑘-truss newcomers. However, not all newly formed

triangles are likely to be valid.

Definition 4 (TriangleWeight). Theweight of a triangle△𝑢𝑣𝑤
is defined as the minimum trussness of three edges as min{𝜏 ((𝑢, 𝑣)),
𝜏 ((𝑢,𝑤)), 𝜏 ((𝑣,𝑤))}. A triangle with weight 𝑘 is also called a 𝑘-level
triangle. Obviously, a 𝑘-level triangle can exist in 𝑘-truss. We denote
the 𝑘-level triangles containing e by Δ𝑘𝑒 , and the cardinality of △𝑘𝑒 by
|△𝑘𝑒 |.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1757

Algorithm 1 Per-Edge Insertion Greedy Algorithm

Input: 𝐺 = (𝑉 , 𝐸), truss value 𝑘 , budget 𝑏
Output: A set 𝐸Δ of newly inserted edges

1: Initialization: 𝐸Δ ← ∅;
2: Find the candidate edges C using Algorithm 2;

3: while |𝐸Δ | < 𝑏 do
4: for each edge 𝑒 ∈ C do
5: Compute 𝑘-truss newcomers: f ({𝑒}, 𝑘) ← |𝑇 ∗

𝑘
| − |𝑇𝑘 |;

6: 𝑒∗ ← arg max

𝑒∈C
f ({𝑒}, 𝑘);

7: 𝐸Δ ← 𝐸Δ ∪ {𝑒∗};
8: C ← C \ {𝑒∗};
9: Update graph 𝐺 by adding the edge 𝑒∗ into 𝐺 ;

10: return 𝐸Δ;

Only the newly formed triangles with a weight of 𝑘 − 1 may

contribute to the newcomers. To evaluate goodness of candidate

edges, we give a useful definition of candidate weight.

Definition 5 (Candidate Weight). For a candidate edge 𝑒 =
(𝑢, 𝑣) ∉ 𝐸, the candidate weight of 𝑒 is defined as 𝜆(𝑒) =|{𝑤 ∈
𝑁 (𝑢) ∩ 𝑁 (𝑣) : min{𝜏 ((𝑢,𝑤)), 𝜏 ((𝑣,𝑤))} ≥ 𝑘 − 1}|.

Actually, we can find that only candidate edges 𝑒0 with 𝜆(𝑒0) ≥
𝑘 − 2 are feasible to contribute 𝑘-truss newcomers, which is moti-

vated by the 𝑘-truss maintenance rules [19]. In other words, those

candidate edges 𝑒0 with 𝜆(𝑒0) < 𝑘 − 2 cannot appear in 𝑘-truss

after one edge insertion. As a result, we have

Theorem 3. The feasible candidate set for an edge insertion is
C = {𝑒 ∈ 𝑉 ×𝑉 \ 𝐸 : 𝜆(𝑒) ≥ 𝑘 − 2} , which can form (𝑘 − 1)-level
triangles with other edges 𝑒 ′ ∈ 𝐿𝑘−1

.

5.2 Per-Edge Insertion Greedy Algorithm
We present a greedy algorithmBaseline for𝑘-truss maximization by

per-edge insertions, which is outlined in Algorithm 1. The general

idea of Algorithm 1 is to insert one edge 𝑒∗ ∈ C with the largest

f ({𝑒∗}, 𝑘) into 𝐺 , until all 𝑏 budgets of edge insertions are used up.

Specifically, the algorithm initializes 𝐸Δ as an empty set and finds

all candidate edges C by invoking a procedure of Find-Candidates
in Algorithm 2. Next, it iteratively computes the newcomers for

each edge and adds one into 𝐸Δ until |𝐸Δ | = 𝑏 (lines 3-9). At each
iteration, it computes the 𝑘-truss newcomers f ({𝑒}, 𝑘) for each edge
𝑒 ∈ C, which simulates an edge insertion of 𝑒 into the current graph

𝐺 and calculates the number of new edges in 𝑘-truss [19] (lines 4-5).

Then, for the best candidate edge 𝑒∗ with the largest newcomer

contribution, it adds 𝑒∗ into answer 𝐸Δ and graph 𝐺 , and removes

𝑒∗ from candidates C (lines 6-7).

Candidate identification. The procedure of finding all candidate

edges is described in Algorithm 2. Specifically, the algorithm identi-

fies the feasible candidates C as the edges 𝑒 ∉ 𝐸 with weight 𝜆(𝑒) ≥
𝑘 − 2 by Theorem 3. For each (𝑘 − 1)-light edge 𝑒 = (𝑢, 𝑣) ∈ 𝐿𝑘−1

,

it checks the candidate feasibility of two possible edges (𝑤, 𝑣) for
𝑤 ∈ 𝑁 (𝑢) and (𝑤,𝑢) for𝑤 ∈ 𝑁 (𝑣), respectively (lines 2-8). Follow-

ing the rule that forming a new triangle △𝑢𝑣𝑤 with weight 𝑘 − 1, it

adds one possible edge 𝑒 = (𝑤, 𝑣) into C when the other two edges

(𝑤,𝑢) and (𝑢, 𝑣) have trussness no less than 𝑘−1 (lines 3-5). Similar

Algorithm 2 Find-Candidates

Input: Graph 𝐺 (𝑉 , 𝐸), truss value 𝑘
Output: Candidate edge set C
1: Initialization: C ← ∅;
2: for each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐿𝑘−1

do
3: for each𝑤 ∈ 𝑁 (𝑢) do
4: if 𝜏 ((𝑤,𝑢)) ≥ 𝑘 − 1 and (𝑤, 𝑣) ∉ 𝐸 ∪ C then
5: C ← C ∪ {(𝑤, 𝑣)};
6: for each𝑤 ∈ 𝑁 (𝑣) do
7: if 𝜏 ((𝑤, 𝑣)) ≥ 𝑘 − 1 and (𝑤,𝑢) ∉ 𝐸 ∪ C then
8: C ← C ∪ {(𝑤,𝑢)};
9: for each edge 𝑒 = (𝑢, 𝑣) ∈ C do
10: Compute the candidate weight 𝜆(𝑒) by Def. 5;

11: if 𝜆(𝑒) < 𝑘 − 2 then
12: C ← C \ {(𝑢, 𝑣)};
13: return C;

checking are done for edges 𝑒 = (𝑤,𝑢) for 𝑤 ∈ 𝑁 (𝑣). Next, the
algorithm further deletes from C the disqualified candidate edges 𝑒

with 𝜆(𝑒) < 𝑘 − 2 (lines 9-12).

Example 2. Consider the graph 𝐺 in Figure 1, 𝑘 = 4, and 𝑏 = 2.
Algorithm 1 first selects the edge (𝑣3, 𝑣4) with the largest newcomers of
10 and then the edge (𝑣8, 𝑣10) with 6 newcomers. Finally, two inserted
edges are 𝐸Δ = {(𝑣3, 𝑣4), (𝑣8, 𝑣10)}, and f (𝐸Δ, 4) = 16.

Complexity analysis. We analyze the time and space complexity

of Algorithm 1. Let be the number of candidate edges as 𝑐 = |C|.
Moreover, we assume that 𝑛 ≤ 𝑚 + 1, w.l.o.g., by considering that

the graph 𝐺 is connected [41].

Theorem 4. Algorithm 1 takes 𝑂 (𝑏𝑐𝑚1.5) time in 𝑂 (𝑚) space.

Proof. Algorithm 1 takes 𝑂 (𝑚1.5) time to find all candidate

edges, which invokes the triangle listing in Algorithm 2 (line 2).

For each edge insertion, we simulate the insertion of all candidate

edges and compute the gain of 𝑘-truss newcomers in 𝑂 (𝑐𝑚1.5)
(lines 4-5). Overall, Algorithm 1 takes 𝑂 (𝑏𝑐𝑚1.5) time for 𝑏 new

edge insertions. As we do not store all the candidate edges, the

space complexity is optimized to 𝑂 (𝑚 + 𝑛) = 𝑂 (𝑚).

5.3 Candidate Pruning Optimizations
Algorithm 1 suffers from inefficiency, due to the time-consuming

step of calculating the𝑘-truss newcomers for all candidate edges 𝑒 ∈
C (line 5 of Algorithm 1). We introduce an optimization technique

to further prune the candidate set. We call the new method in

Algorithm 1 equipped with the following pruning strategy, as the

Greedy Truss Maximization (GTM).

Candidate edges reduction. We reduce the size of candidate

edges C as follows. Recall that the truss decomposition [41] it-

eratively removes an edge with the support less than 𝑘 − 2 to find

the 𝑘-truss. Some edges in (𝑘 − 1)-light have no less than 𝑘 − 2

triangles at the beginning, but are finally removed from 𝑘-truss,

due to a collapse by other edges 𝑒 with |Δ𝑘−1

𝑒 | < 𝑘 − 2. Since the

edges in (𝑘 − 1)-light satisfy |Δ𝑘−1

𝑒 | ≥ 𝑘 − 3, the edges 𝑒 leading

the collapse can be denoted by |Δ𝑘−1

𝑒 | = 𝑘 − 3. In other words, we

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1758

Table 1: An example of stable edges and unstable edges in
(𝑘 − 1)-light of graph 𝐺 in Figure 1. Here, 𝑘 = 4.

Edge type Included edges

Stable edge (𝑣1, 𝑣2), (𝑣9, 𝑣11), (𝑣8, 𝑣9), (𝑣8, 𝑣12)

Unstable edge

(𝑣1, 𝑣3), (𝑣2, 𝑣3), (𝑣1, 𝑣4), (𝑣2, 𝑣4), (𝑣3, 𝑣5)
(𝑣3, 𝑣6), (𝑣4, 𝑣5), (𝑣4, 𝑣6), (𝑣6, 𝑣12)
(𝑣8, 𝑣11), (𝑣10, 𝑣11), (𝑣9, 𝑣12) (𝑣9, 𝑣10)

can partition the edges of (𝑘 − 1)-light into two categories: stable
edges and unstable edges. Specifically, we have

• stable edges 𝐸𝑠 = {𝑒 ∈ 𝐿𝑘−1
: |Δ𝑘−1

𝑒 | ≥ 𝑘 − 2} and
• unstable edges 𝐸𝑢 = {𝑒 ∈ 𝐿𝑘−1

: |Δ𝑘−1

𝑒 | = 𝑘 − 3 }.
For a stable edge 𝑒 ∈ 𝐸𝑠 , it already gets an enough triangle

support to be contained in 𝑘-truss. For a unstable edge 𝑒 ∈ 𝐸𝑢 ,
it must need at least one new valid triangle to increase the edge

support, which is able to join the final enlarged 𝑘-truss. Thus, the

unstable edges are essentially important for 𝑘-truss maximization.

In this way, one edge is qualified to become a candidate edge as

long as it can form a (𝑘 − 1)-level triangle with unstable edges of

(𝑘 − 1)-light. Thus, we prune from C those edges that cannot form

(𝑘 − 1)-level triangles with unstable edges.

Example 3. Suppose that we want to enlarge the 4-truss of the
graph in Figure 1. The edge (𝑣8, 𝑣9) is a stable edge in 3-truss with
|Δ3

(𝑣8,𝑣9) | = |{△𝑣8𝑣9𝑣11
, △𝑣8𝑣9𝑣12

}| = 2 ≥ 2, however the edge (𝑣9, 𝑣10)
is unstable with |Δ3

(𝑣9,𝑣10) | = |{△𝑣9𝑣10𝑣11
}| = 1 < 2. Specifically, we

list all the stable edges and unstable edges in Table 1.

6 A COMPONENT-BASED APPROACH
In this section, we propose a component-based approach for 𝑘-

truss maximization called CBTM, which improves the quality and

efficiency of per-edge insertion method in Algorithm 1.

6.1 Solution Overview
We identify two limitations of Algorithm 1 as follows. First, it costs

expensive to check and calculate newcomers for each candidate

edge. Moreover, the size of candidate edges is enormous in a large

sparse graph. Another limitation is that Algorithm 1 cannot con-

sider to insert multiple edges simultaneously. The addition of the

first candidate edge may make no difference on newcomer incre-

ment, but the addition of a few more candidate edges may brings

lots of newcomer increment significantly. For example, consider the

graph 𝐺 in Figure 1(a). The number of newcomers is 0 by inserting

an edge (𝑣1, 𝑣5) into 𝐺 . However, when we add two edges (𝑣1, 𝑣5)
and (𝑣2, 𝑣6) at the same time, the number of newcomers is 11. This

motivates us to improve the idea of edge insertions and design an

improved algorithm of CBTM below.

An overview of CBTM. The general idea of CBTM is to convert

the critical edges located in (𝑘 − 1)-light and avoid the expensive

computation of newcomers for each candidate edge. The whole

algorithm consists of three key steps:

(1) (𝑘 − 1)-light partition: This step partitions the subgraph of

(𝑘 − 1)-light into several components and imposes an edge

Figure 4: The split components of graph 𝐺 in Figure 1

connectivity constraint to improve the independence of the

partition.

(2) Component-based 𝑘-truss estimation: This step explores the

strategy to convert each component to a 𝑘-truss. Due to

the high connectivity of 𝑘-truss and multiple insertions, we

make an estimation of newcomers for each component. We

propose efficient insertion strategies that consume a small

budget to complete the conversion.

(3) Dynamic programming based edges selection: Based on the

above exploration of insertion strategy, we obtain solutions

for each component. This step selects the (𝑘−1)-light compo-

nents for edge insertions. We use the dynamic programming

optimizations to maximize the total number of newcomers

by inserting candidate edges into (𝑘 − 1)-light components.

Finally, we compute the precise newcomers for the selected

candidate edges.

6.2 Three Key Steps

Partition (𝑘 − 1)-light into components. It is observed that can-
didate edges may fall in the same local neighborhood of𝐺 and lead

to the same newcomers. For example, (𝑣5, 𝑣12) and (𝑣7, 𝑣12) bring
the same result of newcomers in Figure 1, i.e., f ({(𝑣5, 𝑣12)} , 4) =
f ({(𝑣7, 𝑣12)} , 4) = {(𝑣6, 𝑣12), (𝑣8, 𝑣12)}. Recall that the process of

computing newcomers of a given candidate edge 𝑒 is to traverse the

edges from 𝑒 based on the (𝑘 − 1)-level triangle connectivity [19].

Obviously, the visited edges can compose a connected component.

The unvisited edges can not be affected by the candidate edges. The

trussness of all the visited edges is no less than 𝑘 − 1. Thus, the

component can be seen as a partition of the (𝑘 − 1)-truss.
Based on this observation, we decompose (𝑘 − 1)-light 𝐿𝑘−1

into

multiple components as P(𝐿𝑘−1
) = {G1, . . . ,Gℎ} where

⋃ℎ
𝑖=1
G𝑖 =

𝐿𝑘−1
. The partition rule requires that any two edges should belong

to the same triangle or can be reachable from each other through a

series of adjacent (𝑘 − 1)-level triangles in the (𝑘 − 1)-light com-

ponent. The essential advantage of the proposed partition rule is

that even if one component G𝑖 fails to form a new 𝑘-truss by can-

didate edges, it does not affect other components G𝑗 ∈ P(𝐿𝑘−1
).

Algorithm 3 depicts the procedure of (𝑘 − 1)-light partition. The
graph 𝐺 in Figure 1 can be split into three components as shown

in Figure 4.

Component-based 𝑘-truss estimation. We have identified the

keys of a collapse in 𝑇𝑘−1
when computing 𝑘-truss in Section 5.3,

i.e, the unstable edges. Compared with the stable edges, they only

lack one (𝑘 − 1)-level triangle support.
The general idea is to record the unstable edges that belong to the

same triangle with the candidate edges. After that, we recursively

choose the best candidate edge to convert themost unstable edges in

the component until all the unstable edges have a new triangle with

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1759

Algorithm 3 (𝑘 − 1)−Light Partition
Input: (𝑘 − 1)-light 𝐿𝑘−1

.

Output: the split components P(𝐿𝑘−1
) = {G1, . . . ,Gℎ} of 𝐿𝑘−1

.

1: Initialization: ℎ ← 0, Queue 𝑄 ← ∅;
2: Mark all edges in 𝐿𝑘−1

as unvisited;

3: for edge 𝑒 = (𝑢, 𝑣) ∈ 𝐿𝑘−1
and 𝑒 is unvisited do

4: ℎ ← ℎ + 1; Gℎ ← ∅;
5: 𝑄 ← 𝑄 ∪ {(𝑢, 𝑣)};
6: while 𝑄 ≠ ∅ do
7: 𝑒 = (𝑢, 𝑣) ← Q.pop();

8: for each𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣) do
9: if 𝜏 ((𝑤,𝑢)) ≥ 𝑘 − 1 and 𝜏 ((𝑤, 𝑣)) ≥ 𝑘 − 1 then
10: if 𝜏 ((𝑤,𝑢)) = 𝑘 − 1 then
11: Gℎ ← Gℎ ∪ {(𝑤,𝑢)};
12: mark (𝑤,𝑢) as visited;
13: 𝑄 ← 𝑄 ∪ {(𝑤,𝑢)};
14: if 𝜏 ((𝑤, 𝑣)) = 𝑘 − 1 then
15: Gℎ ← Gℎ ∪ {(𝑤, 𝑣)};
16: mark (𝑤, 𝑣) as visited;
17: 𝑄 ← 𝑄 ∪ {(𝑤, 𝑣)};
18: P(𝐿𝑘−1

) ← P(𝐿𝑘−1
) ∪ Gℎ ;

19: return P(𝐿𝑘−1
) = {G1, . . . ,Gℎ};

weight 𝑘 − 1. Note that other edges whose trussness are less than

𝑘 − 1 may also become newcomers under multiple insertions. Thus,

We make an estimation of 𝑘-truss maximization in each component

G𝑖 ∈ P(𝐿𝑘−1
).

Algorithm 4 outlines the details of 𝑘-truss estimation in a com-

ponent G𝑖 . The algorithm first collects 𝐸𝑢 of unstable edges in G𝑖
(line 2). For a unstable edge 𝑒 ∈ 𝐸𝑢 , if there is a candidate edge

that can form a (𝑘 − 1)-level triangle with 𝑒 , it can convert 𝑒 to

a stable edge. Similar with Algorithm 2, we find candidate edges

C𝑖 , and additionally use an hash table 𝑃 (𝑒) for 𝑒 ∈ C𝑖 to keep

records of those unstable edge that can be converted into stable

edge by 𝑒 (line 3). For example in Figure 4, we have 𝑃 (𝑣8, 𝑣10) =
{(𝑣8, 𝑣11), (𝑣9, 𝑣10), (𝑣10, 𝑣11)}, 𝑃 (𝑣11, 𝑣12) = {(𝑣8, 𝑣11), (𝑣9, 𝑣12)} for
component G3.

However, due to the candidate weight constraint and the graph

topology, it may be not possible to insert candidate edges in any

graph location. In other words, unstable edges may be not fully

converted into stable edges in some components (lines 6-8). They

lead to a cascade of support decrease, thus the selected candidate

edges for this component are wasted. To address this issue, we have

a pruning strategy to refine G𝑖 into a smaller component (line 7).

Specifically, we invoke a peeling procedure to keep removing from

G𝑖 those unstable edges 𝐸𝑢 , which cannot be converted. After that,

we recalculate the unstable edges in the refined component. The

removed edges may lead to a 𝑘-truss collapse and generate some

new unstable edges. Then we find new candidate edges to convert.

The above process can be recursively invoked until we convert all

the unstable edges in the refined component as 𝐸𝑢 = ∅. Note that
if one component G𝑖 cannot convert all the unstable edges into

𝑘-truss or the size of S𝑖 is larger than 𝑏, we return the empty result

(line 12). Finally, the algorithm returns the selected candidate edges

S𝑖 and the corresponding newcomers N𝑖 in G𝑖 (line 14).

Algorithm 4 Component-based Truss Estimation

Input: A component G𝑖 .
Output: S𝑖 : the selected candidate edges in G𝑖 , N𝑖 : the estimated

newcomers for S𝑖 in G𝑖 .
1: Initialization: C𝑖 ← ∅,S𝑖 ← ∅,N𝑖 ← ∅ ;
2: 𝐸𝑢 ← Compute all the unstable edges of G𝑖 ;
3: C𝑖 ← Compute candidate edges for 𝐸𝑢 using a variant of Algo-

rithm 2 by keeping records of 𝑃 (𝑒) for 𝑒 ∈ C𝑖 ;
4: while 𝐸𝑢 ≠ ∅ do
5: 𝑒∗ ← arg max

𝑒∈C𝑖
|𝑃 (𝑒) |;

6: if 𝑃 (𝑒∗) = ∅ then
7: Remove the unstable edges 𝐸𝑢 from G𝑖 ;
8: goto line 1 of this algorithm;

9: S𝑖 ← S𝑖 ∪ {𝑒∗} , C𝑖 ← C𝑖 \ {𝑒∗};
10: 𝐸𝑢 ← 𝐸𝑢 \ 𝑃 (𝑒∗);
11: 𝑃 (𝑒) ← 𝑃 (𝑒) \ 𝑃 (𝑒∗),∀𝑒 ∈ C𝑖 ;
12: if |S𝑖 | > 𝑏 then return ∅;
13: N𝑖 ← G𝑖 ∪ S𝑖 ;
14: return {(S𝑖 ,N𝑖)};

Example 4. For the component G3 in Figure 4, we first find the
candidate edges and create the hash table to maintain the unsta-
ble edges that the candidate edges can convert. The hashtable after
initialization is shown on the left of Figure 5. According to the Algo-
rithm 4, it first collects the candidate edge (𝑣8, 𝑣10) into S3 since it
can convert the most unstable edges. Next, it updates the hashtable
by removing the unstable edges that have been converted by (𝑣8, 𝑣10).
The candidate edge chosen in the second iteration is (𝑣6, 𝑣9). There
are no remaining unstable edges after the selection of the above two
candidate edges. Thus, the whole edges in the component as well as
the selected candidate edges are the newcomers. Finally, the algorithm
returns the conversion solution of this component.

Dynamic programming based budget assignment. Based on

the estimation of the selected candidates and newcomers in all

components of 𝐿𝑘−1
, we are going to distribute 𝑏 budget of edge in-

sertions for different components to maximize the total newcomers.

The objective function of our candidate assignment is formulated as

maximizing

ℎ∑
𝑗=1

|N𝑗 |𝑥 𝑗 , where the variables 𝑥 𝑗 ∈ {0, 1} for 𝑗 ∈ [1, ℎ]

and

ℎ∑
𝑗=1

|S𝑗 |𝑥 𝑗 ≤ 𝑏. For a component G𝑖 , 𝑥𝑖 = 1 indicates that it

selects the S𝑖 candidate edges for insertions, which costs a budget

of |S𝑖 | and achieves a gain of |N𝑖 | 𝑘-truss newcomers; otherwise, it

takes the zero budget and zero gain for 𝑥𝑖 = 0. We adopt a similar

dynamic programming solution with the 0-1 knapsack problem [16],

but our problem is more challenging due to the dependent property

of candidate edges. For example, consider the two components G1

and G2 in Figure 4. The edge (𝑣3, 𝑣4) belongs to a candidate edge

of G1 and G2 simultaneously. Thus, we need to ensure the edge

(𝑣3, 𝑣4) that costs one budget of edge insertions.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1760

Hash table P Unstable edges

Select

Convert to 4-truss over

Unstable edgesHash table P

Select

Figure 5: An example of the component-based 𝑘-truss estimation.

Algorithm 5 CBTM

Input: Graph 𝐺 (𝑉 , 𝐸), truss value 𝑘 , budget 𝑏
Output: a set 𝐸Δ of newly inserted edges

1: 𝐿𝑘−1
← the subgraph of G induced by (𝑘 − 1)-light;

2: Initialization: |𝐸Δ | ← ∅;
3: Apply Algorithm 3 to partition 𝐿𝑘−1

into multiple components

P(𝐿𝑘−1
) = {G1, . . . ,Gℎ} by (𝑘 − 1)-level triangle adjacency;

4: for each component G𝑖 ∈ P(𝐿𝑘−1
) do

5: Apply Algorithm 4 on component G𝑖 ;
6: 𝑥 ← |P(𝐿𝑘−1

) |, 𝑦 ← 𝑏 − |𝐸Δ |;
7: 𝑓 (𝑖, 𝑗) ← 0 for all 0 ≤ 𝑖 ≤ 𝑥 , 0 ≤ 𝑗 ≤ 𝑦;
8: for 𝑖 ← 1 to 𝑥 do
9: for 𝑗 ← 1 to 𝑦 do
10: if 𝑗 < |S𝑖 | then
11: 𝑓 (𝑖, 𝑗) = 𝑓 (𝑖 − 1, 𝑗);
12: else
13: 𝑓 (𝑖, 𝑗) =𝑚𝑎𝑥 (𝑓 (𝑖 − 1, 𝑗), 𝑓 (𝑖 − 1, 𝑗 − |S𝑖 |) + |N𝑖 |);
14: 𝑥𝑖 ← 1, P(𝐿𝑘−1

) ← P(𝐿𝑘−1
) \ G𝑖 , if component G𝑖 is chosen;

15: 𝐸Δ ← ∪S𝑖 , where 𝑥𝑖 = 1 for 𝑖 ∈ [1, ℎ];
16: if there are duplicate edges in 𝐸Δ then
17: Remove duplicate edges and goto line 6 of this algorithm;;

18: Compute the 𝑘-truss newcomers: f (𝐸Δ, 𝑘) ← |𝑇 ∗𝑘 | − |𝑇𝑘 |;
19: return 𝐸Δ;

6.3 CBTM Algorithm
Integrating with all the above techniques, the CBTM algorithm is

presented in Algorithm 5. The algorithm first partitions the (𝑘 − 1)-
light 𝐿𝑘−1

into multiple components P(𝐿𝑘−1
) = {G1, . . . ,Gℎ} (lines

1-3). It then applies Algorithm 4 to effectively select candidate

edges and give estimation of newcomers on each component G𝑖 ∈
P(𝐿𝑘−1

) (lines 4-5). Next, the algorithm applies a variant of 0-

1 knapsack dynamic programming technique [16] to tackle our

optimization function (lines 6-17). Finally, the algorithm returns

the answer of |𝐸Δ | and corresponding the 𝑘-truss newcomers of

f (𝐸Δ, 𝑘) (lines 18-19).

7 EXPETRIMENT
In this section, we conduct experiments to evaluate the effectiveness

and efficiency of our proposed algorithms.

Datasets. We use nine real-world graph datasets. Syracuse56 is

from [34], and the others are from SNAP [28]. Table 2 reports the

network statistics of all graph datasets, listed in increasing order of

their edge numbers.

Compared Algorithms. To our best knowledge, there is no exist-

ing studies for the 𝑘-truss maximization problem. We compare our

proposed algorithms with one baseline method RD below. Besides

RD, we also test other edge insertion methods, e.g., inserting the

 0

 500

 1000

 1500

 2000

 2500

5 10 15 20 25

#
N

e
w

c
o

m
e
r
s

b

CBTM

GTM

 0

 500

 1000

 1500

 2000

 2500

5 10 15 20 25

#
N

e
w

c
o

m
e
r
s

b

BL

RD

(a) Twitter

 0

 800

 1600

 2400

 3200

 4000

20 40 60 80 100

#
N

e
w

c
o

m
e
r
s

b

CBTM

GTM

 0

 800

 1600

 2400

 3200

 4000

20 40 60 80 100

#
N

e
w

c
o

m
e
r
s

b

BL

RD

(b) Syracuse56

Figure 6: Quality evaluation by varying 𝑏.

edges to form triangles with the edges whose trussness less than

𝑘 −1 or connecting vertices with high degree. However, these meth-

ods have poor quality performance with only a few newcomers.

This result also shows that identifying high-quality candidate edges

is a very critical step in the 𝑘-truss maximization problem. Thus,

we implement and compare four algorithms as follows:

• RD: a method selects 𝑏 edges from C randomly.

• BL: the per-edge insertion greedy method in Algorithm 1.

• GTM: an improved method of Algorithm 1 using candidate

pruning optimizations in Section 5.3.

• CBTM: our component-based method in Algorithm 5.

To evaluate the effectiveness, we use two metrics as the number

of candidate edges and 𝑘-truss newcomers. We compare the algo-

rithm efficiency in terms of running time (in seconds). By default,

we set 𝑘 = 20 for the first five small graphs, and 𝑘 = 40 for the last

four large graphs. We set the budget 𝑏 = 200. We treat the running

time as infinite if the algorithm runs exceeding 48 hours.

Exp-1: Evaluation of different algorithms on all datasets. Ta-
ble 2 reports the effectiveness and efficiency results of different

algorithms on all datasets. Our method CBTM outperforms all the

other algorithms on all datasets by achieving the smallest candidate

edges and the highest newcomers using the least running time.

This reflects the superiority of (𝑘 − 1)-light partition and dynamic

programming techniques of candidate assignments by CBTM. The

worse performance of GTM may be caused by only inserting one

edge at a time for calculation of newcomers, which is equivalent to

only converting the unstable edges within one-hop neighborhood

of the candidate, and the remaining unstable edges will cause col-

lapse and bring negative effects. Moreover, GTM and BL achieve

the competitive results of 𝑘-truss newcomers in contrast to CBTM,

as all algorithms attempt to convert the same edge pool of 𝐿𝑘−1
to

𝑘-truss. The effectiveness of RD is also competitive, indicating that

the candidate edges we located by Algorithm 2 are very effective.

In addition, CBTM and GTM have the same number of candidates,

which is much less than the candidate edges of BL, thanks to our
pruning techniques.

Exp-2: Effectiveness evaluation by varying budget 𝑏. We vary

the budget 𝑏 to evaluate the effectiveness of all algorithms. Figure 6

reports the results of newcomers on two graphs with 𝑘 = 45 and

the increased budget 𝑏, all methods achieve an improved result of

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1761

Table 2: Network statistics of nine graph datasets. |P(𝐿𝑘−1
) | is the number of the components. We report the number of the

candidate edges, newcomers and the running time of the proposed algorithms.
Candidate edges Newcomers Running time(s)

Dataset |𝑉 | |𝐸 | 𝑘𝑚𝑎𝑥 |P(𝐿𝑘−1
) |

BL GTM/CBTM RD BL GTM CBTM BL GTM CBTM
Facebook 4,039 88,234 97 100 23,837 10,898 647 1,169 1,169 1,845 1,304 549 6
Enron 36,692 183,831 22 9 22,105 7,898 1,765 2,832 2,667 3,858 16,621 8,339 45

Brightkite 58,228 214,078 43 55 12,648 5,794 645 902 878 989 279 100 15
Syracuse56 13,654 543,982 59 354 273,786 81,287 1,277 - 7,241 7,261 - 97,702 164
Gowalla 196,591 950,327 29 110 46,850 22,397 1,633 3,881 3,819 4,439 135,970 75,757 183
Twitter 81,306 1,768,149 82 82 1,533,582 587,476 2,102 - 4,233 6,986 - 30,502 312
Stanford 281,903 2,312,497 62 655 135,088 102,164 3,186 4,026 4,021 4,200 10,080 2,993 133
wiki-Talk 2,394,385 5,021,410 53 115 173,865 97,062 1,412 - - 5,400 - - 1,402
LiveJournal 3,997,962 34,681,189 352 433 94,022 65,730 1,369 - 12,969 16,393 - 15,829 748

10
-1

10
0

10
1

10
2

10
3

10
4

INF

50 100 150 200 250

T
im

e
 C

o
s
t

(s
e
c
)

b

CBTM
GTM

10
-1

10
0

10
1

10
2

10
3

10
4

INF

50 100 150 200 250

T
im

e
 C

o
s
t

(s
e
c
)

b

BL

(a) Brightkite

10
-1

10
0

10
1

10
2

10
3

10
4

INF

5 10 15 20 25

T
im

e
 C

o
s
t

(s
e
c
)

b

CBTM
GTM

BL

(b) Twitter

Figure 7: Efficiency evaluation by varying 𝑏.

 0

 500

 1000

 1500

 2000

 2500

10 15 20 25 30 35

#
N

e
w

c
o

m
e
r
s

k

CBTM

GTM

BL

RD

(a) Facebook

10
-1

10
0

10
1

10
2

10
3

10
4

INF

10 15 20 25 30 35

T
im

e
 (

s
e
c
)

k

CBTM
GTM

BL

(b) Brightkite

Figure 8: Quality and efficiency evaluation by varying 𝑘 .

𝑘-truss newcomers generally. CBTMwins the most cases among all

methods. The increasing budget 𝑏 has a bottleneck when it is large

enough, the number of newcomers does not increase significantly.

This is because the edges in 𝐿𝑘−1
in the graph have basically been

updated to 𝑘-truss. GTM and BL have similar performance on new-

comers, because GTM’s techniques mainly aimed at accelerating

the efficiency.

Exp-3: Efficiency evaluation by varying 𝑏. We evaluate the effi-

ciency of three algorithms BL, GTM, and CBTM by varying 𝑏. We

set 𝑘 = 45 and 𝑘 = 10 on Twitter and Brightkite, respectively. The

results of running time are shown in Figure 7. CBTM runs much

faster than BL and GTM. Moreover, CBTM is scalable well with

the increased 𝑏, which achieves the stable performance of running

time. This is because CBTM avoids the expensive computation of

newcomers for each candidate edge. On the other hand, GTM runs

faster than BL, which validates the effectiveness of the pruning

optimizations in Section 5.3.

Exp-4: Effectiveness and efficiency evaluation by varying 𝑘 .
We vary parameter 𝑘 to evaluate the the proposed algorithms with

𝑏 = 100. The results of newcomers and running time are shown in

Figure 8(a) and 8(b), respectively. Once again, CBTM achieves the

best performance, and RD performs in worst. We can see that as 𝑘

increases, the number of newcomers by GTM and CBTM generally

has a decreasing trend in Figure 8(a). This is because there are

fewer edges in (𝑘 − 1)-light with a larger 𝑘 , in which the size of

(a) 𝑇𝑘 (b) 𝑇 ∗
𝑘

Figure 9: A case study of truss maximization on a flight net-
work. Here, 𝑘 = 26 and 𝑏 = 5.

𝐿𝑘−1
directly determines the upper bound of newcomers for a small

number 𝑏. Also, CBTM is the fastest method under different 𝑘 in

Figure 8(b).

Exp-5: Case study on flight networks. We construct a flight net-

work from an openflights dataset.
1
A vertex represents an airport.

An edge is added between two airports if there is at least one airline

between them. We apply CBTM on this flight network to enlarge 𝑘-

truss by adding a few new edges to increase the route connectivity.

Here, we set 𝑘 as the largest trussness 𝑘 = 26 and the budget 𝑏 = 5.

The origin 𝑘-truss 𝑇𝑘 is shown in Figure 9(a). CBTM inserts a set

of new edges 𝐸Δ = {(YYZ, AUS), (BRU, LED), (MAN, SVO), (NCE,

MXP), (CVG, SEA) } in red, and returns a much larger 𝑘-truss 𝑇 ∗
𝑘

with 692 newcomers marked in blue, as shown in Figure 9(b). The

abbreviation denotes a 3-letter (IATA) code of airport, e.g., MAN

denotes the Manchester Airport in England.
2

8 CONCLUSION
In this paper, we formulate and study the budget-constrained 𝑘-

truss maximization problem, which finds 𝑏 new edges to be inserted

into a graph for enlarging 𝑘-truss as large as possible. Due to its

problem NP-hardness, we first propose a greedy algorithm and fur-

ther improve the efficiency by pruning optimizations. Furthermore,

we propose a component-based dynamic programming algorithm to

effectively use a budget of 𝑏 new edges in a balanced way. Extensive

experimental results on large networks validate the effectiveness

and efficiency of our proposed algorithms.

ACKNOWLEDGMENTS
This work was supported by the Natural Science Foundation of

China under grants 61772361, 61876128, and HK RGC Grant No.

22200320. Di Jin is the corresponding author.

1
https://openflights.org/data.html

2
https://raw.githubusercontent.com/jpatokal/openflights/master/data/airports.dat

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1762

https://openflights.org/data.html
https://raw.githubusercontent.com/jpatokal/openflights/master/data/airports.dat

REFERENCES
[1] Vinti Agarwal and Kamal K Bharadwaj. 2011. Trust-enhanced recommendation

of friends in web based social networks using genetic algorithms to learn user

preferences. In International Conference on Computational Science, Engineering
and Information Technology. 476–485.

[2] J Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-

nani. 2006. Large scale networks fingerprinting and visualization using the k-core

decomposition. In Advances in neural information processing systems. 41–50.
[3] Kshipra Bhawalkar, Jon Kleinberg, Kevin Lewi, Tim Roughgarden, and Aneesh

Sharma. 2015. Preventing unraveling in social networks: the anchored k-core

problem. SIAM Journal on Discrete Mathematics 29, 3 (2015), 1452–1475.
[4] Yulin Che, Zhuohang Lai, Shixuan Sun, Yue Wang, and Qiong Luo. 2020. Acceler-

ating truss decomposition on heterogeneous processors. Proceedings of the VLDB
Endowment 13, 10 (2020), 1751–1764.

[5] Pei-Ling Chen, Chung-Kuang Chou, and Ming-Syan Chen. 2014. Distributed

algorithms for k-truss decomposition. In IEEE International Conference on Big
Data. 471–480.

[6] Rajesh Chitnis and Nimrod Talmon. 2018. Can we create large k-cores by adding

few edges?. In International Computer Science Symposium in Russia. 78–89.
[7] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.

National security agency technical report 16 (2008), 3–29.
[8] Federico Corò, Gianlorenzo D’Angelo, and Cristina M Pinotti. 2020. Adding

Edges for Maximizing Weighted Reachability. Algorithms 13, 3 (2020), 68.
[9] Safaa Diab, Mhd Ghaith Olabi, and Izzat El Hajj. 2020. KTRussExPLORER: Ex-

ploring the Design Space of K-truss Decomposition Optimizations on GPUs. In

IEEE High Performance Extreme Computing Conference. 1–8.
[10] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2007. Extraction and

classification of dense communities in the web. InWWW. 461–470.

[11] Soroush Ebadian and Xin Huang. 2019. Fast algorithm for k-truss discovery on

public-private graphs. IJCAI (2019), 2258–2264.
[12] Fatemeh Esfahani, Jian Wu, Venkatesh Srinivasan, Alex Thomo, and Kui Wu.

2019. Fast Truss Decomposition in Large-scale Probabilistic Graphs.. In EDBT.
722–725.

[13] Facebook. 2020. How does facebook suggest friends for me?

https://www.facebook.com/help/1059270337766380 (2020).
[14] Eugene Fratkin, Brian T Naughton, Douglas L Brutlag, and Serafim Batzoglou.

2006. MotifCut: regulatory motifs finding with maximum density subgraphs.

Bioinformatics 22, 14 (2006), e150–e157.
[15] Zakariya Ghalmane, Mohammed El Hassouni, Chantal Cherifi, and Hocine Cher-

ifi. 2018. K-truss decomposition for modular centrality. In IEEE International
Symposium on Signal, Image, Video and Communications. 241–248.

[16] Olivier Goldschmidt, David Nehme, and Gang Yu. 1994. Note: On the set-union

knapsack problem. Naval Research Logistics (NRL) 41, 6 (1994), 833–842.
[17] Jinbin Huang, Xin Huang, and Jianliang Xu. 2021. Truss-based Structural Diver-

sity Search in Large Graphs. TKDE (2021).

[18] Sitao Huang, Mohamed El-Hadedy, Cong Hao, Qin Li, Vikram S Mailthody,

Ketan Date, Jinjun Xiong, Deming Chen, Rakesh Nagi, and Wen-mei Hwu. 2018.

Triangle counting and truss decomposition using fpga. In IEEE High Performance
extreme Computing Conference. 1–7.

[19] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1311–1322.

[20] Xin Huang and Laks VS Lakshmanan. 2017. Attribute-driven community search.

Proceedings of the VLDB Endowment 10, 9 (2017), 949–960.
[21] Xin Huang, Laks VS Lakshmanan, and Jianliang Xu. 2019. Community Search

over Big Graphs. Morgan & Claypool Publishers.

[22] Xin Huang, Wei Lu, and Laks VS Lakshmanan. 2016. Truss decomposition of

probabilistic graphs: Semantics and algorithms. In SIGMOD. 77–90.
[23] Di Jin, Cuiying Huo, Chundong Liang, and Liang Yang. 2021. Heterogeneous

Graph Neural Network via Attribute Completion. In Proceedings of the Web
Conference 2021. 391–400.

[24] Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Philip S Yu, and Weixiong Zhang. 2021.

A survey of community detection approaches: From statistical modeling to deep

learning. arXiv preprint arXiv:2101.01669 (2021).
[25] Humayun Kabir and Kamesh Madduri. 2017. Shared-memory graph truss de-

composition. In IEEE International Conference on High Performance Computing.
13–22.

[26] Richard M Karp. 1972. Reducibility among combinatorial problems. In Complexity
of computer computations. Springer, 85–103.

[27] Ricky Laishram, Ahmet Erdem Sar, Tina Eliassi-Rad, Ali Pinar, and Sucheta

Soundarajan. 2020. Residual Core Maximization: An Efficient Algorithm for

Maximizing the Size of the k-Core. In SDM. 325–333.

[28] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[29] Penghang Liu and A Erdem Sarıyüce. 2020. Characterizing and Utilizing the

Interplay Between Core and Truss Decompositions. (2020), 957–962.

[30] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-

based community search over large directed graphs. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2183–2197.

[31] Sourav Medya, Tiyani Ma, Arlei Silva, and Ambuj Singh. 2020. K-core minimiza-

tion: A game theoretic approach. IJCAI (2020), 3473–3479.
[32] Rafael T Mikolajczyk and Mirjam Kretzschmar. 2008. Collecting social contact

data in the context of disease transmission: prospective and retrospective study

designs. Social Networks 30, 2 (2008), 127–135.
[33] Robert J Mokken et al. 1979. Cliques, clubs and clans. Quality & Quantity 13, 2

(1979), 161–173.

[34] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with

Interactive GraphAnalytics and Visualization. InAAAI. http://networkrepository.
com

[35] Ryan A Rossi, David F Gleich, and Assefaw H Gebremedhin. 2015. Parallel

maximum clique algorithms with applications to network analysis. SIAM Journal
on Scientific Computing 37, 5 (2015), C589–C616.

[36] Rahmtin Rotabi, Krishna Kamath, Jon Kleinberg, and Aneesh Sharma. 2017.

Detecting strong ties using network motifs. InWWW Companion. 983–992.
[37] Ahmet Erdem Sarıyüce, C Seshadhri, and Ali Pinar. 2017. Parallel local algorithms

for core, truss, and nucleus decompositions. arXiv. org e-Print archive, https://arxiv.
org/abs/1704.00386 (2017).

[38] Ahmet Erdem Sariyuce, C Seshadhri, Ali Pinar, and Umit V Catalyurek. 2015.

Finding the hierarchy of dense subgraphs using nucleus decompositions. In

WWW. 927–937.

[39] Stephen B Seidman and Brian L Foster. 1978. A graph-theoretic generalization of

the clique concept. Journal of Mathematical sociology 6, 1 (1978), 139–154.

[40] Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi. 2021. Efficient proba-

bilistic truss indexing on uncertain graphs. In Proceedings of the Web Conference
2021. 354–366.

[41] Jia Wang and James Cheng. 2012. Truss decomposition in massive networks.

Proceedings of the VLDB Endowment 5, 9 (2012).
[42] Qianqian Xu, Jiechao Xiong, Xiaochun Cao, Qingming Huang, and Yuan Yao.

2018. From social to individuals: a parsimonious path of multi-level models for

crowdsourced preference aggregation. IEEE transactions on pattern analysis and
machine intelligence 41, 4 (2018), 844–856.

[43] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang. 2020. Effective and

efficient truss computation over large heterogeneous information networks. In

ICDE. 901–912.
[44] Ting Yuan, Jian Cheng, Xi Zhang, Qingshan Liu, and Hanqing Lu. 2015. How

friends affect user behaviors? An exploration of social relation analysis for rec-

ommendation. Knowledge-Based Systems 88 (2015), 70–84.
[45] Baichuan Zhang, Tanay Kumar Saha, and Mohammad Al Hasan. 2014. Name

disambiguation from link data in a collaboration graph. In ASONAM. 81–84.

[46] Fan Zhang, Conggai Li, Ying Zhang, Lu Qin, and Wenjie Zhang. 2018. Finding

critical users in social communities: The collapsed core and truss problems. IEEE
Transactions on Knowledge and Data Engineering 32, 1 (2018), 78–91.

[47] Fan Zhang, Wenjie Zhang, Ying Zhang, Lu Qin, and Xuemin Lin. 2017. OLAK:

an efficient algorithm to prevent unraveling in social networks. Proceedings of
the VLDB Endowment 10, 6 (2017), 649–660.

[48] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2018. Efficiently

reinforcing social networks over user engagement and tie strength. In 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE, 557–568.

[49] Yikai Zhang and Jeffrey Xu Yu. 2019. Unboundedness and efficiency of truss

maintenance in evolving graphs. In SIGMOD. 1024–1041.
[50] Feng Zhao andAnthony KHTung. 2012. Large scale cohesive subgraphs discovery

for social network visual analysis. Proceedings of the VLDB Endowment 6, 2 (2012),
85–96.

[51] Zhongxin Zhou, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Chen Chen. 2019.

K-Core Maximization: An Edge Addition Approach.. In IJCAI. 4867–4873.
[52] Weijie Zhu, Chen Chen, Xiaoyang Wang, and Xuemin Lin. 2018. K-core mini-

mization: An edge manipulation approach. In CIKM. 1667–1670.

[53] Weijie Zhu, Mengqi Zhang, Chen Chen, XiaoyangWang, Fan Zhang, and Xuemin

Lin. 2019. Pivotal relationship identification: the K-truss minimization problem.

In IJCAI. 4874–4880.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1763

http://snap.stanford.edu/data
http://networkrepository.com
http://networkrepository.com

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 K-Truss Newcomers
	3.2 Problem Formulation
	3.3 Applications

	4 Problem Hardness Analysis
	5 Per-Edge Insertion Greedy Method
	5.1 Candidate Edges
	5.2 Per-Edge Insertion Greedy Algorithm
	5.3 Candidate Pruning Optimizations

	6 A Component-based Approach
	6.1 Solution Overview
	6.2 Three Key Steps
	6.3 CBTM Algorithm

	7 EXPETRIMENT
	8 Conclusion
	Acknowledgments
	References

