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Tutorial Outline

Introduction, Motivations, and Challenges
Networks & Community Detection

Community Search (4 Parts)

— Densely-connected community search
— Attributed community search

— Social circle discovery

— Querying geo-social groups

Future Work & Open Problems



Networks

Networks are everywhere (e.g. chemistry, biology,
social networks, the Web, etc.)
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Communities

e Communities naturally exist in networks.

Blogosphere



Community Structure

e Community structure: Nodes with a shared latent
property, densely inter-connected .

 Many reasons for communities to be formed:

Social Networks Citation Networks World Wide Web Biological Networks
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Basis of Community Formation

* The strength of weak ties [Mark Granovetter,1973] and
the models of small-world [Strogatz and Watts, Nature’98]
both suggest

— Strong ties are well embedded in the network
— Weak ties span long ranges

‘ﬁ

e Given a network, how do we find all communities?




Community Detection

e Q: Given a network, how do we find all communities?
 A: Find weak ties and identify communities

— Betweenness centrality [Girvan and Newman, PNAS02],

— Modularity [Newman, PNAS'06]

— Graph partitioning methods [Karypis and Kumar, SISC’08]

-
?

SFI collaboration network [Newman]



[Palla et al. Nature’05])

Overlapping Communities

e Communities defined by different nodes in a
network may be quite different.

Physicists
\ Depariment of
Biological Physics

‘Qoom" "zoory

Hobby
Scientific,
Community
Family




Community Search

 Problem: Given a set of query nodes, find densely
connected communities containing them.

query vertex

e State-of-the-art research focus:
Simple and static graphs =2
Evolving, attributed, and
location-based big graphs




Community Detection v.s. Community Search

e Community detection: identify all communities.
— fundamental & widely studied
— global computation (expensive)
— static graphs (hard to handle evolving graphs)

e Community search: find query-dependent communities
— useful & less studied
— user-centered & personalized search
— dynamic graphs
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Applications

Social circle discovery

Planning a cocktail party/conference/workshop
Infectious disease control

Tag recommendation

Protein complex identification

11



Community Search
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Planning a cocktall party




Planning a cocktall party




Planning a cocktall party

Recipe for a successful party: ¥ %

Participants should be “close” to the
organizers (e.g., a friend of a friend).

Everybody should know sufficiently
many in the party (on an average?).

The graph should be connected.

The number of participants should not
be too small but...

...not too large eitherlll

social distance not too large.

Not an easy task...




Protein Complex Identification

Given: a protein-protein interaction network

A set of proteins that regulate a gene that a biologist wishes
to study.

What other proteins should she study? those contained in a
compact dense subgraph containing the given proteins.

e e T R e R L e e 16




Challenges

Complexity of underlying community models
Responsiveness requirements of query processing
Dynamic network structures

Massive volume of big graphs



Related Work

Community Detection (Finding all communities in the entire network)
— non-overlapping community detection [Girvan and Newman, PNAS’02]
— overlapping community detection [Ahn et al, Nature’10]

Community Search (Finding communities containing given query nodes)

Different community models are proposed for various types of networks
and query processing techniques.

— Structural Networks ---> Densely-connected community search
— Attributed Graphs ---> Attributed community search

— Ego-networks ---> Social circle discovery

— Location-based Social Networks ---> Querying geo-social groups

18



Part 1: Densely-connected Community Search

* |n the simplest way, a graph represents a structure of
interactions within a group of vertices.

e Task: finding densely-connected communities
containing query nodes.
— Quasi-clique model [Cui et al. SIGMOD’13]
— Query-biased densest subgraph model [Wu et al. PVLDB’15]

— K-core model [Sozio & Gionis KDD’10, Cui et al. SIGMOD’14, Li et al.
PVLDB’15, Narbieri et al. DMKD’15]

— K-truss model [Huang et al. SIGMOD’14, Huang et al. PVLDB’16]

19



[Cui et al., SIGMOD’13]

Quasi-Clique based Model

* a-adjacency-y-quasi-k-clique community model
— y-quasi-k-clique: a k-node graph with at least | yk(k-1)/2 | edges.
— a-adjacency-y-quasi-k-clique: overlap a vertices, where a<k-1.

k-clique: a complete - o ~\
graph of k nodes with
k(k-1)/2 edges.

\_ \_ y

—

v-quiasiliktaBques a-adjacency-y-quasi-k-cliques
(v=0l&;%=4) (a=2, y=0.8, k=4)
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[Cui et al., SIGMOD’13]

Quasi-Clique based Model

 Problem: Given a query vertex g in graph, the
problem is to find all a-adjacency-y-quasi-k-clique
containing q.

A 0.8-quasi-7-clique containing g

21



* K-core: every vertex has degree at least k in this

subgraph.

11@

K-Core

Z2-core

&

e

J-core
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d-core

&
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[Sozio and Gionis, KDD’10]

K-Core based Model

* Input:
a graph G & a set of query nodes Q

e Qutput: a connected subgraph H containing Q such that
(1) Query distance D,(H) <= distance constraint.

(2) [V(H)| <= size constraint.
(3) H is a k-core with the largest k by satisfying (1) and (2).

e Other k-core based community models:

Local search algorithm [Cui et al. SSIGMOD’14]
Minimum-size Community [Narbieri et al. DMKD’15]
Influential Community [Li et al. PVLDB’15]
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[Jonathan Cohen, 2008]

K-Truss

e Triangle: fundamental building blocks of networks

e k-truss of graph G: every edge in H is contained in at least
(k-2) triangles within H.

2-truss

3-truss

24



K-Core V.S. K-Truss

e K-core: any pair of vertices within an edge

may have no common neighbors.

e K-truss: any pair of vertices within an edge

must have k-2 common neighbors.

e d e d

d b a b

3-core 3-truss
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[Huang et al., SIGMOD’14]

K-truss Community Model

* A k-truss community satisfies:
(1) K-truss: each edge within at least (k-2) triangles
(2) Edge Connectivity: all pairs of edges connected by triangles
(3) Maximal Subgraph

Two 4-truss communities for g 26



Problem Formulation

e Problem: Given a graph G(V, E), a query vertex q
and an integer k = 3, find all k-truss communities
containing q.

27



Index Based Query Processing
Algorithm Framework

e Several different index structures are designed
for the efficient search of k-core and k-truss
based communities.

e We take the k-truss community model as an
example.

28



Index Based Query Processing
Algorithm Framework

e Index Construction (offline)

— They design a novel and compact tree-shaped
structure called TCP-index.

 Query Processing (online)

— Based on TCP-index, k-truss community search
can be done in optimal time complexity.

29



TCP-Index Construction

e TCP-Index for vertex x is a tree structure as T,.

— T, is a maximum spanning forest.

— Build T, with weighted edges level by level.

— O(m) linear disk space, O(|Ans|) optimal query time.

-

Level-5 edge

Level-4 edge

~

Level-3 edge
\_ /

30



Query Processing using TCP-Index

* Rationale: If y, z are connected via a series of edges with
weight = kin T,, then y, z are in the same k-truss community;
We use V,(x, y) to denote all such vertices z.

* For example, querying 5-truss communities containing q.

Each edge is accessed only 2 times. Constant!!!
(First time in black; Second time in red.)
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[Wu et al. VLDB’15].

Motivation: Free Rider Effect

* Free Rider Effect: far away and irrelevant nodes are
included into communities.

* Classic density: f(S) =|E(S)|/|S|, E(S)=ENS?

Classic density: |E|/|V|

Goodness metrics A AUB AUC
Classic density 250 295 2.83
Edge-surplus 15.3 26.5 228
Minimum degree 4 4 4
Subgraph modularity 2.0 3.6 4.6
Density-isolation -2.6 3.8 1.5
Ext. conductance  0.25 0.14 0.11
Local modularity 0.63 0.70 0.78

Free Riders: irrelevant to query nodes -



[Wu et al. VLDB’15].

Free Rider Effect in Real Networks

Aifeng Yan
Wei Fan =% Philip S. Yu
BTG

Ete X
(H-::-ng Cheng \

: 25
Benyu Zhang) 5%}(
|
Wei-Ying Ma ) (SIFz FH{(sET3)

(a) Co-author network (b) Biological network

(Shuicheng Yan

One existing method: classic density



[Wu et al. VLDB’15].

Query Biased Node Weighting

Node Weight: m(u) = L

r(u)
r(u) : proximity value w.r.t. the query

Query biased density:
e(S)

m(S) = Xyes m(u) : sum of node weights

Subgraph A becomes the

query biased densest subgraph



[Huang et al. VLDB’16]

Graph Diameter

* Graph Diameter of G: diam(G) = maxy vec{dista(u,v)}

e Fig.(a), shaded, has diameter 4, the longest shortest
path span from g, to p,

e But, Fig.(b) has diameter 3.

4-truss

(a) Graph G (b) Closest Truss Community
for Q={q1, 92, 93}

35



[Huang et al. VLDB’16]

Closest Truss Community Search

* |nput:
a graph G & a set of query nodes Q

 Qutput: a connected subgraph H containing Q such that

(1) H is a k-truss with the largest k
(2) H has the smallest diameter among subgraphs satisfying (1).

(a) Graph G (b) Closest Truss Community

for Q={q1, 92, 93} .



[Huang et al. VLDB’16]

Case Study: DBLP network

A —.
H. Garcia-Molina =<Rakesh Agrawal

_ _ NN K Joséph M. Hellerstein
Jefirey D. Ullman Jennifer Widom < N, |~
'( Michael J. Franklin

N

'\
Gerhard Weikum |

ichael J. Franklin

Alon Y. Halevy Laura M.aas

Jennifer Widom

Michael J. Carey Philip A. Bernstein

(a) O-truss (b) Closest Truss community

Community search on DBLP network using query Q={ “Alon Y. Halevy”,
“Michael J. Franklin”, “Jeffrey D. Ullman”, “Jennifer Widom” }
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Desiderata of Good Query Communities

Query nodes: single or multiple.

Cohesive structure: quasi-clique, densest subgraph,
k-core, or k-truss.

Quality of approximation: guaranteed or
non-guaranteed.

Input queries: parameter-free or user-unfriendly.

38



Part 2: Attributed Community Search

 Motivation: many real social networks contain attributes or
predicates on the vertices.
— Vertices: Person (in social networks), Attributes: name, interests, and skills.

e Facebook: link relationship, user background
» Twitter: following/follower-ship, tweets

— Vertices: Protein (in PPl networks), Attributes: GO (Gene-Ontology) terms
representing molecular functions, biological processes, and cellular

components.
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Community Search in Attributed Graph

Structure + Semantics: In addition to the network structure, users
may aim to search for attribute-related communities, or
attributed communities.

Input: a graph G where nodes are associated with attributes

an input query Q consisting of nodes V, and attributes W,

Output: a connected community H containing Q such that most community
members are densely inter-connected and have similar attributes

An example of
collaboration
attributed network

4-truss
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[Huang and Lakshmanan, PVLDB’17].

Community Search in Attributed Graph

DB

v
h DB 1,

v,0B
Vs DB
(@) Hy1. 4-truss community on
Ve ={q1, 92}, Wq = {DB}

V, DM V, DM

d 3 DM

1

s 0,

(b) H2. 4-truss community on Vg = (¢) Hs. 4-truss community on

{QIaqz}’ Wq:{DBﬂ DP”'{} "/:f; Z{qlaQQ}a Wq' Z{Dﬂ/f} 41



Keyword Search

* |nput: given a query consisting of nodes and attributes
(keywords), e.g., W={q,, DB}

e Qutput: finds the substructure (trees or subgraphs) with
minimum communication cost that connect the input
keywords/nodes, where the communication cost is based on
diameter, weight of spanning tree or steiner tree.

Vi DB_' DM Vg

4-truss

Keyword Search with query W={q,, DB}
An example attributed graph G "



A Comparison of Representative Works

e Keyword Search (KS), Team Formation (TF), Densely-connected
Community Search (DCS) and Attributed Community Search (ACS)

Method | Topic Participqtion Attl‘ib}lte Cohesivepess Communication
Condition Function Constraint Cost
[6] KS X v X v
[17] KS X v X v
[30] KS X v X v
[29] TF X v X v
[19] TF X v v v
[28] TF X v X v
[39] DCS v X v v
[14] DCS v X v X
[15] DCS v X v X
[5] DCS v X v X
[26] DCS v X v v
[31] DCS X X v X
[46] DCS v X v v
[18] ACS v v v X
[25] ACS v v v v




The Number of Related Works

Graph type Community Detection Community Search

Non-attributed [1000+ papers] [10+ papers]

Attributed [100+ papers] K-core-based: ACQ
K-truss-based: ATC



[Fang et al. PVLDB’16)].

Attributed Community Query (ACQ)

e Given a graph G, a vertex g, a set S of keywords and
an integer k, find the sub-graphs s.t. each G satisfies:

* Connectivity: G, is connected and it contains g ;
e Structure cohesiveness: minimum degree > k ;

 Keyword cohesiveness: the number of keywords in S shared by
other vertices in G, is maximized

John: {kungfu, research, web}

Jane: {art, drama_ music}

Alice: {art, cook voga}

Ada: {cook. music, voga}

Jack: {research, sports, tour} Tom: {art, chess, voga}

g=Jack, k=2, S={research, sports, tour}



Densely-connected Community Search [1,2]

e Who is in Jim Gray’s community?

— “k-core” (with Local 2laa, [?*" ~ad- ~nnected by k=4
or more £

A community can have 10°
nodes!

GEl"nm w
i ~adicl

 Why are these people considered as Jim’'s community?
 What is the theme of this community?

[1] Sozio, Mauro, and Aristides Gionis. "The community-search problem and how to plan a successful cocktail party." Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2010.

[2] Cui, Wanyun, et al. "Local search of communities in large graphs." Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014.



Attributed Community (AC)

e Previous CS solutions overlook keywords

— e.g., a researcher’s interest

Peter 7. Kunszt Jan Vandenberg | {SDSS,...}

Bruce . Lindsay

Gerhard Weillkum DMichael Stonebraker

{transaction,...} Christopher Stoughton Jordan Raddick

{transaction,
SDSS, ...}



Attributed Community (AC)

e |In fact, Jim has 2 distinct attributed communities

(AC).

Bruce . Lindsay

Hector Garera=Ro
{transaction...}

stanley B. Z'd onj

Gerhard Weillum DMichael Stonebraleer

jresearch, transaction, data, management, system;

{SDSS,...}

Peter Z. Kunszt Jan Vandenberg

Christopher Stoughton Jordan Raddick
{sloan, digital, sky, data, sdss ;

-

Common keyword set (AC label)



Part 3: Social Circle Discovery

e Social circles: communities formed by only friends

Facebook

Real Life

Social Circle in Facebook

49



An Ego-network

 Ego-network: an induced subgraph of a network only

by her friends.

friends under the same advisor




Social Circle Discovery

 Examples: online social networks allow users to manually
categorize their friends into social circles within their ego
network (e.g., circles on Google+)

e Social circle discovery: the task is to automatically identify
all social circles for a given user.

e Applications:
— content filtering

— privacy protection
— sharing groups of users that others may wish to follow



[Leskovec and Mcauley, NIPS’12]

Learning to discover social circles

 An unsupervised community model predicts
hard memberships to multiple, overlapping

circles, using both user profile and network
structure.

p((x,y) € E) x exp{ Z (o(x,y),6) — Z oy (p(x, y), 9;()}

Ci{x} Ciple)

N, o

'd w
circles containing both nodes all other circles

Training is done by maximum likelihood, using QPBO and L-
BFGS.

-




Datasets: Ground-truth Social Circles

e Datasets are collected from real-world networks
Facebook, Google+, and Twitter

ego-networks circles nodes edges
Facebook 10 193 4,039 88,234
Google+ 133 479 107,614 13,673,453
Twitter 1,000 4,869 81,306 1,768,149

All data are available on snap.stanford.edu/data/



Detected Circles

Facebook:

Google+:

Blue = true positive; gray = true negative; red = false positive; yellow = false
negative; green = detected circles for which we have no groundtruth.
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[Ugander et al. PNAS’12].

Social Contagion

Social circles can affect the process of
information diffusion on social contagion

Consider an existing Facebook user invites

e Case Study (Facebook) | the non-existing Facebook user to join
[Ugander et al, PNAS’12] Facebook.

We want to study the success rate that this
Existing Facebook user non-existing user will join Facebook

Non-Existing Facebook ]

Friendship user

neighborhood:

}

Contact S o
neighborhood:



e Case Study (Facebook)

[Ugander et al. PNAS’12].

Social Contagion

[Ugander et al, PNAS’12]

Friendship
neighborhood:

Contact
neighborhood:

Social circles can affect the process of
information diffusion on social contagion

Consider an existing Facebook user invites
the non-existing Facebook user to join
Facebook.

is

The no. of connected components is related to
the success rate

Success rate

Inviter degree:
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[Huang et al. VLDBJ'15].

Top-K Structural Diversity Search

 The structural diversity of a node is defined to be the number
of connected components in its ego-network.

* Problem

— Find k nodes with the greatest structural diversity in a social network

(Node Ranking).

e Application

— Political campaign, promotion of health practices, marketing
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[Zhu et al. ArXiv’'14]

Part 4: Querying Geo-Social Groups

e Boom in geo-social networks
— Foursquare, Facebook, Weibo, DazhongDianPing, Yelp, Flickr
— Social networks coupled with user locations

e Group-based activity planning and business
— Find a group of friends at the conference for gathering

— Find a group of nearby friends for sports, ridesharing, groupon...

fﬂ\‘ﬂ 'T'.l'

04 )

.i% flickr ﬂ'ﬂ

.ﬂﬂ

() Facebook Places

"‘-._g"f W Wihat. When. And nivw Wihere.
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[Zhu et al. ArXiv’'14]

Geo-Social Group Queries (GSGQ)

* Givenan LBSN G=(V, E), a query user v, € V and an integer ¢
> 1, find a group of users V’ c V containing v, and satisfying:
— Social constraint: G[V’] € G is a c-core

— Spatial constraint:

e Range: all users of the group are in a given spatial range
e kNN: the closest group with k other users (NP-hard!)

Social
Layer

Spatial
Layer

59



Key Concept

e Core Bounding Rectangle (CBR): Given G=(V, E), a node v,
an integer ¢ 21, CBR, . is a rectangle that covers v and in
which any user group containing v cannot form a c-core.

— CBR, ;< CBR,, ifcl<c2
— Construction cost: O(|E| log | V])

group if query range — CBR

QT CBR,,
IIII ‘ S
e S Pruning: exclude v from result
/ ‘I/ |-
\-r

60



[Li et al. ICDE 2016]

Geo-Social K-Cover Group Queries

 Problem: Given an LBSN G(V, E), a set of query points
P={p,, p,, ..., b}, and an integer k > 1, find a group of

users V’ c V satisfying:

1) Spatial constraint: Pc U ,_,-U.R

2) Social constraint: G[V’] € G is a c-core
3) Size requirement:

V’| is minimum

U ~

Uy —~
.'_-_'_ i3
RN
s usC,
! T
\ -
S P -
-~ Ly -~
H‘:\"'/

"""""""""""" Y '! H,;
‘u“ll ' !D; | i
as y |
= 3
P2 At
L ] .
12 |
uy T S N
Us I,

(a) Social networks

(b) Associated regions

e c=2,

P:{p1:p2:p3:p4}
V' ={u,,us,u,}
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[Li et al. ICDE 2016]

Applications

e Spatial task outsourcing: identify a group of
workers whose service regions collectively
cover the locations of spatial tasks

* Travel Recommendation: find a minimum
group of tourists for a self-drive tour of a set
of POls

e Collaborative team organization: find a
collaborative team to promote products in
several market areas

63



Other Geo-Social Group Queries

e Spatial-Aware Community (SAC) Search

— Y. Fang, et al., “Effective Community Search over Large
Spatial Graphs” [PVLDB’17]

— Problem: Given a graph G(V, E), an integer ¢, and a
query vertex g € V, find a subgraph G, c G:
1. Connectivity: g € G, is connected
2. Structure cohesiveness: Vv € G,, degg,(v) > ¢
3. Spatial cohesiveness: smallest minimum covering circle

e g=Q and c=2,
G,={Q, C, D}

64




Open Problems & Future Directions

e Heterogeneous Information Networks

65



Heterogeneous Information Networks

* Information network: A network where each node represents an
entity (e.g., actor in a social network) and each link (e.g., tie) a
relationship between entities.

e Homogeneous vs. heterogeneous networks

— Homogeneous networks
* Single object type and single link type
e Single model social networks (e.g., friends)

— Heterogeneous, multi-typed networks
* Multiple object and link types
* Healthcare network: patients, doctors, disease, hospitals, treatments

66



Heterogeneous Information Networks
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Open Problems & Future Directions

e Scalability
— 1/0-efficient algorithms & distributed computing
— Stream graphs
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Scalability

Scaling community search techniques to the massive and
rapidly growing network datasets of the Big Data era.

1/0 efficient algorithms: k-core decomposition and k-truss
decomposition.

Distributed graph computing: Pregel and Blogel.

Streaming graphs: handling community indexes in highly
evolving graphs.



Scalability

~ Data-Parallel

1T EEEE SN SN IS SESS SENS SEES SENN SESS SEEN SEES GESS MESS SESS O SENN e e e e

Graph-Parallel

( p ':ﬁ% R
Pregel Graph I_ab\ ? %

CIRATH

Property Graph

70



Open Problems & Future Directions

e Public-Private Social Networks
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Public-Private Social Networks

* Background: In Facebook social network, 52.6% of 1.4 million
New York City Facebook users hid their friends list.

T T 9<7F (Secretly follow in Weibo networks)

e Public-Private graph model contains a public graph, in which
each node is also associated with a private graph.

—The public graph is visible to everyone, but each private graph is visible
only to the corresponding user.

Viy

Vio

Vy Vs

A Public-private Graph Public Graph In the view of v9: GU G,



Open Problems & Future Directions

e Community Search on Uncertain Graphs

73



Not all real-world networks
are
deterministic graphes.

Probabilistic/Uncertain Graphs: each edge has
an existence probability.
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Probabilistic Graphs: Examples

 Topologies of wireless sensor networks (WSNs)
— Vertices: sensor nodes
— Edges: wireless links between sensor nodes
— Uncertainties: probabilities of wireless links functioning

0.88
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Discovery of communities
in uncertain graphs

Benefits:
— Find most influential communities in social networks.

— Functional module identification for helping critical clinical
diagnosis of diseases such as cancer in biology.

K-core and k-truss have been studied in probabilistic graphs.

An exciting question is how to generalize various community
models and search techniques to probabilistic graphs.
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