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Abstract—Communities serve as basic structures for under-
standing the organization of many real-world networks, such as
social, biological, collaboration, and communication networks.
Recently, community search over large graphs has attracted
significantly increasing attention, from simple and static graphs
to evolving, attributed, location-based graphs. Different from
the well-studied problem of community detection that finds all
communities in an entire network, community search is to find
the cohesive communities w.r.t. the query nodes.

In this tutorial, we survey the state-of-the-art of community
search on various kinds of networks across different application
areas such as densely-connected community search, attributed
community search, social circle discovery, and querying geo-
social groups. We first highlight the challenges posed by the
community search problems. We continue the presentation of
their principles, methodologies, algorithms, and applications,
and give a comprehensive comparison of the state-of-the-art
techniques. This tutorial finally concludes by offering future
directions for research in this important and growing area.

I. INTRODUCTION

Community structures naturally exist in numerous real-
world networks, social, biological, collaboration, and com-
munication networks being just a few examples. The task
of community detection is to identify all communities in a
network, which is a fundamental and well-studied problem in
the literature. Recently, several works have studied a related
but different problem called community search, which is to
find cohesive communities containing a given set of query
nodes. Since the communities defined by different nodes in a
network may be quite different, community search with query
nodes opens up the prospects of user-centered and personalized
search [16]. As just one example, in a social network, the
community formed by a person’s high school classmates can be
significantly different from that formed by her family members
which in turn can be quite different from the one formed by
her colleagues [20].

In this tutorial, we will first introduce the basic background
and concepts of communities and networks, then give an
overview of the state-of-the-art research. For each proposed
method, we will give a brief explanation of the community
models, the intuition behind them, and the algorithms. We
will show examples illustrating recent research using the
techniques, and make a comprehensive comparison of different
community models. A brief overview of the scope of the
tutorial is as follows.

Cohesive Community Search. In the simplest way, a graph
represents a structure of interactions within a group of vertices.

Community models in this class can only leverage the struc-
tural characteristics of networks, essentially focusing on the
density of the connection structure. Given a set of query nodes,
community search is to find a densely-connected subgraph
containing all query nodes. Recently, several community mod-
els based on different dense subgraphs have been proposed,
including quasi-clique [14], densest subgraph [46], k-core [39],
[15], [5], [31] and k-truss [23], [26].

Attributed Community Search. Many real social networks
contain attributes or predicates on the vertices, e.g., a person
may have information including name, interests, and skills, etc.
In addition to the network structure, users may aim to search
for attribute-related communities, or attributed communities.
An attributed community is a group of vertices that are
connected with cohesive structure, which share homogeneous
query attributes [18], [25]. The latter property bears some
resemblance to keyword search over databases and graphs, but
has important differences.

Social Circle Discovery. Online social networks allow users
to manually categorize their friends into social circles within
their ego network (e.g., circles on Google+) [35], [44]. As one
special kind of communities, social circles are communities
formed by only friends. The task of social circles discovery
is to automatically identify all social circles for a given user.
Social circles can be used for content filtering, for privacy, and
for sharing groups of users that others may wish to follow.
The number of distinct social contexts also affects the process
of information diffusion on social contagion [42], [21].

Querying Geo-Social Groups. In location-based social net-
works, many users share their locations, which enables a new
computing paradigm that explicitly combines both location and
social factors to generate useful information for either business
or social good. Geo-social group queries look for a group of
users densely and closely connected in terms of both social and
spatial proximity [32], [33], [50]. Relevant applications include
recommending a group of friends nearby for gathering, and a
restaurant pushing mobile coupons to a group of close friends
in location-based advertisements.

Last but not least, we will offer open problems and future
directions.

II. TARGET AUDIENCE

This tutorial targets anyone interested in modeling and
querying communities over large graphs, from data mining and



data management researchers to practitioners from academia
and industry. For those new to the domain, this tutorial will
cover the necessary background material to help understand
the topics and will offer a comprehensive survey of the state-
of-the-art. In addition, the tutorial is aimed at giving a new
perspective that will be interesting and valuable even for
researchers with more experience in the field. For those having
worked in classic community detection and graph clustering,
we will demonstrate how the problem of community search
interacts with commonly used models in terms of algorithmic
efficiency and network dynamics, and poses new challenges
compared to community detection. For those having worked
in querying communities, we hope to inspire new research
directions through connecting with recent developments in
a new public-private model of graphs and distributed graph
processing systems.

III. OUTLINE

Our tutorial includes 3 sections where the 2nd section
consists of 4 subsections, and will take 1.5 hours to cover
in all. We summarize the content of each section as follows.

A. Introduction, Motivations, and Challenges

In this part, we provide the background of community
search. It consists of an introduction to the research field
and highlights the popularity, applications, and challenges
in community search. Specifically, we first introduce various
kinds of networks and some of the most notable examples of
communities. For a good understanding of this problem, vivid
examples are illustrated to distinguish community search with
related problems such as, community detection [49], [10], [38],
[24], [9], keyword search [1], [20], [6], [17], [30], [37], and
team formation [29], [28], [19]. A brief comparison of different
problems is shown in Table I. Next, we elaborate on the
application scenarios and challenges. The challenges include,
but are not limited to, the complexity of underlying community
models, responsiveness requirements of query processing, dy-
namic structures and massive collection of networks. As an
example to illustrate the difficulty in designing community
models, in a research collaboration network, the communities
of a famous scholar and of a junior scholar can be dramatically
different in terms of the community size and density [23].

B. Existing Research

We review different community models on various types
of networks and query processing techniques.

Densely-Connected Community Search. This part gives an
overview of the community search in simple graphs, which
only have structural characteristics of networks. Community
search on a simple graph aims to find densely connected
communities containing all query nodes. We survey the-state-
of-art community search models in simple graphs. They are
based on different densely-connected subgraph definitions,
including quasi-clique [14], densest subgraph [46], k-core [39],
[15], [5], [31] and k-truss [23], [26]. An important issue here is
the “free rider effect” [26], [46], whereby nodes far away from
query nodes and irrelevant to them are included in the detected
community. Several different index structures are designed for
the efficient search of k-core and k-truss based communities

Method Topic Participation Attribute Cohesiveness Communication
Condition Function Constraint Cost

[6] KS χ X χ X
[17] KS χ X χ X
[30] KS χ X χ X
[29] TF χ X χ X
[19] TF χ X X X
[28] TF χ X χ X
[39] DCS X χ X X
[14] DCS X χ X χ
[15] DCS X χ X χ
[5] DCS X χ X χ
[26] DCS X χ X X
[31] DCS χ χ X χ
[46] DCS X χ X X
[18] ACS X X X χ
[25] ACS X X X X

TABLE I. A COMPARISON OF REPRESENTATIVE WORKS ON KEYWORD
SEARCH (KS), TEAM FORMATION (TF), DENSELY-CONNECTED

COMMUNITY SEARCH (DCS) AND ATTRIBUTED COMMUNITY SEARCH
(ACS).

[5], [31], [23], [26]. The tutorial discusses these models in
a comparative fashion, and points out their pros and cons in
the context of desiderata of good query communities. More
specifically, we make a comparison of these models w.r.t.
three aspects: (i) consideration of query nodes, (ii) cohesive
structure, and (iii) quality of approximation.

Attributed Community Search. In this part, we focus on
the attributed community search in attributed networks, where
nodes are associated with attributes or predicates. Many real
networks contain attributes in vertices, e.g., in social networks,
a person has attributes including name, interests, and skills,
etc. Given a set of query nodes and attributes, the attributed
community search is to find the communities containing query
nodes with a cohesive structure and sharing homogeneous
query attributes. Recently, [18] and [25] have proposed two
different models for attributed community search over at-
tributed graphs. The key distinction between two works is that
the model [18] is based on k-cores in structure with a strict
attribute function. In contrast, the model [25] is based on k-
truss in structure with a relaxed attribute function. We will
discuss the pros and cons of these design choices.

Social Circle Discovery. This part discusses one special kind
of communities in social networks, called social circles. In
social networks, for a query user, social circles are communi-
ties formed only by her friends. The induced subgraph of an
entire network only by her friends and herself is called ego
network. [36] proposed an unsupervised community model to
automatically detect circles in ego networks. The discovered
circles are disjoint, overlapping, and hierarchically nested.
Social circles can affect the process of information diffusion
on social contagion [42]. A social circle represents a distinct
social context of a user, and the multiplicity of social contexts
is termed structural diversity [42]. Taking one social contagion
process in Facebook as an example, a user is much more likely
to join Facebook and become engaged if he or she has a larger
structural diversity. [21], [22] studied the problem of finding
k users with the highest structural diversity in graphs, which
can be beneficial to political campaigns, promotion of health
practices, marketing, and so on.

Querying Geo-Social Groups. This part covers the group
queries in location-based social networks. With the rapid



development of location-aware mobile devices, many users
share their locations in social networks [32], [3]. The problem
of querying geo-social groups looks for a group of users
densely and closely connected in terms of both social and
spatial proximity. [48] selected a group of nearby attendees
with a tight social relationship, which aims to minimize the
spatial distance among selected users. [50] proposed a new
family of k-core based geo-social group queries with minimum
acquaintance constraint. [32], [33] studied a minimum user
group query, in which each user has k neighbors and the users’
joint regions cover all query points. Variants of R-tree index
structure integrating the social information are designed for
different geo-social query processing. A general framework
that offers flexible data management and algorithmic design
for geo-social network queries has been proposed in [3], [2].

C. Future Directions

While good progress has been made, research on commu-
nity search is still in its infancy, and there are many opportu-
nities for further research. In the following, we highlight some
of the promising directions.

Querying Communities on Heterogeneous Information
Networks. Most of the current research on community search
focuses on homogeneous networks. In heterogeneous real-
world networks where nodes and relations are of different types
[40], the study of community search has not been investigated
as yet. For example, in a healthcare network, nodes can be
patients, doctors, medical tests, diseases, medicines, hospitals,
treatments, and so on. On one hand, treating all the nodes as
of the same type may miss important semantic information.
On the other hand, treating every node as of a distinct type
may miss the big picture. Such multiple types of objects,
interconnected, forming complex, heterogeneous but often
semi-structured information networks, bring rich opportunities
and challenges for community modeling and discovery [41].

Scalability. Scaling community search techniques to the mas-
sive and rapidly growing network datasets of the Big Data
era is another important direction. Current graph processing
techniques include I/O efficient algorithms for k-core decom-
position [45], [43] and k-truss decomposition [11], distributed
graph computing (including Pregel [34]and Blogel [47]), and
sketching [7], [13]. Techniques for handling community in-
dexes in highly evolving graphs [23] and streaming graphs [4]
are also avenues for future work.

Public-Private Social Networks. Most existing works assume
that the entire network structure is visible and assume un-
restricted access to it. However, in real applications, due to
privacy issues, social networks can be more complex than
a simple fully visible graph. Social network providers allow
users to control their privacy by controlling the information
they are willing to share. E.g., as reported in a recent study,
52.6% of 1.4 million New York City Facebook users hid their
friends list [16]. Such privacy protection leads to a novel
graph model, called public-private graphs [12]. It contains
a public graph, in which each node is also associated with
a private graph. The public graph is visible to everyone,
and each private graph is visible only to the corresponding
user. Despite the long existence of such networks, they have

started gaining attention from the research community very
recently. Owing to the scale of the network and its associated
idiosyncrasies, community search over such networks cannot
be efficiently answered by traditional algorithmic tools and
techniques, which remain largely unexplored.

Community Search on Probabilistic Graphs. A large num-
ber of real-world networks are associated with uncertainty,
due to the data collection process, machine-learning methods
employed at preprocessing, inherent uncertainty in link infer-
ence in biological networks, or privacy-preserving reasons. The
discovery of communities in uncertain graphs can be beneficial
for a wide range of application domains including functional
module identification for helping critical clinical diagnosis of
diseases such as cancer in biology. Given the recent surge of
interest in dense subgraphs such as k-core [8] and k-truss
[27] in probabilistic graphs, an exciting question is how to
generalize various community models [5], [23], [18], [26] and
search techniques to probabilistic graphs. The challenge is to
develop extensions that are widely useful and tractable.
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