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Abstract—Community search that finds only the communities
pertaining to the query input has been widely studied from simple
graphs to attributed graphs. However, a significant limitation
of previous studies is that they all require the input of query
nodes, which makes it difficult for users to specify exact queries
if they are unfamiliar with the queried graph. To address this
issue, in this paper we study a novel problem of keyword-centric
community search (KCCS) over attributed graphs. In contrast to
prior studies, no query nodes, but only query keywords, need to
be specified to discover relevant communities. Specifically, given
an attributed graph G, a query Q consisting of query keywords
Wq, and an integer k£, KCCS serves to find the largest subgraph
of k-core of GG that achieves the strongest keyword closeness
wrt. Wq. We design a new function of keyword closeness
and propose efficient algorithms to solve the KCCS problem.
Furthermore, a novel core-based inverted index is developed
to optimize performance. Extensive experiments on large real
networks demonstrate that our solutions are more than three
times faster than the baseline approach, and can find cohesive
communities closely related to the query keywords.

Index Terms—Kkeyword-centric, community search, attributed
graph

I. INTRODUCTION

Many real-world networks can be represented as graphs,
such as social networks, collaboration networks, biological
networks, and knowledge graphs. In these graphs, nodes often
have important properties described by text, tags, or keywords.
For example, authors in collaboration networks have research
topics; users in social networks have roles; proteins in protein-
protein interaction networks have molecular functions. Thus,
it is natural to model these graphs as attributed graphs, in
which textual attributes are associated with nodes to capture
their properties. As an important functional component, a
community naturally exists as a group of densely connected
nodes in these graphs. Community detection is to discover
all communities in the entire graph, which is a fundamental
problem for complex network analysis. A related but different
problem, called “community search”, which identifies only the
communities pertaining to the query input, has been widely
studied recently [1]-[10].

In the literature, numerous community models for commu-
nity search have been developed on various kinds of dense
subgraphs, including quasi-clique [1], k-core [2]-[4], k-truss
[5], [6], and densest subgraph [7]. More recently, attributed
community search [8]-[10] has extended the community
search problem from simple structural graphs to attributed
graphs. However, one significant limitation of all these models

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00045

422

Health System
U3

H

vy
ML, Health

System
vy

Fig. 1. An attributed graph and keyword-centric dense subgraph

is that they require the input of query nodes. In practice, it
might be difficult for users to specify the exact query nodes, as
they could be unfamiliar with the background information of
the queried graph. Consider the community search on collabo-
ration networks; users may issue a query to find the community
working on machine learning and healthcare systems. This
query contains no query nodes, but only query keywords. Such
problem has not been investigated in any previous studies for
community search [1]-[10].

This paper investigates the novel problem of keyword-
centric community search (KCCS) over attributed graphs. Dif-
ferent from the traditional node-based community search, the
keyword-centric community search has only query keywords,
but no query nodes, as input. To ensure that the communities
discovered are closely related to the query keywords, we
propose and optimize a new function of keyword closeness
by minimizing a node-to-keyword distance. Our keyword-
centric community model has several major advantages. First,
it makes users easier to issue queries to discover communities,
even if they do not know any node in the graph. Second,
it avoids the risk of generating buggy queries that consist
of query nodes irrelevant to users’ intention. Third, more
importantly, it presents a novel approach for mining attributed
communities.

Let us look at an example of researcher collaboration
network G shown in Fig. 1. Each node wv; represents a
researcher and each edge represents the collaboration rela-
tionship between two researchers. The keywords associated
with the nodes represent their research interests, e.g., v1o’s
research interest is “System”. For illustration, consider a
search for attributed communities containing the query key-
words W, ={“ML”, “Health”, “System”} based on the k-core
community model. A k-core is a dense subgraph requiring that
each node has at least k neighbors [2]-[4]. Assume that k = 3
for our query. To solve this problem, different community
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search models have substantial differences:

o Structural Community Search. Structural community
search [2]-[4] finds communities using query nodes. One
natural method is to find a random set of query nodes,
say v; and vy, collectively covering all query keywords
and then to apply the traditional algorithm of node-based
community search [3] with query nodes {vi,vio} as
input. In this case, the entire graph G will be returned as
the answer, since every node has a degree of 3 or above.
However, most members have a long distance to reach
the others in the community. Even worse, this community
contains nodes with irrelevant attributes (e.g., vg and vg
are associated with “DM” only).

o Attributed Community Search. Attributed community
search [8], [9] focuses on identifying communities con-
taining the query nodes and sharing homogeneous key-
words. Such strict keyword constraints mean that it is
likely that no desired communities are found. For in-
stance, using the same query keywords W, ={“ML”,
“Health”, “System”} and a query vertex v, as input, [8]
will find a 3-core community as the induced subgraph of
G formed by nodes {v4, vs,ve, v7} sharing one common
attribute “ML”.

+ Keyword-Centric Community Search. Keyword-centric
community search, proposed in this paper, aims to find
communities using query keywords. Consider the 3-core
community indicated by the rectangle in Fig. 1. Although
not all the nodes in the community contain all the query
keywords, each node can reach any keyword within
one hop. This community is a good candidate to be a
collaborative team for interdisciplinary research, which
can be discovered by our search.

We formulate our keyword-centric community search
(KCCS) queries over an attributed graph G as follows. Given
a query @ = (Wq,k) consisting of a set of keywords
Wq and an integer k, KCCS is to find a subgraph H of
G such that the minimum degree of each node in H is
at least k£ and the distance between the nodes and all the
keywords is minimized. A straightforward solution to KCCS
is enumerating all the node combinations that cover the query
keywords, and transferring keyword-centric community search
into node-based search. Existing query techniques can then be
applied to find the k-core community with the highest keyword
cohesiveness. However, this is not practical in most cases.
Given a query () with the keywords {wi,wa, -, wp}, we
use V,,, to denote the set of nodes containing the keyword w;.
Then there can exist 2/":| node combinations for this single
keyword. For all the keywords in @, there exist [[?_, 2/l
different node combinations. Thus, one KCCS query will result
in thousands or even millions of node-based community search
queries, and the cost would be prohibitively high.

To tackle these challenges, we propose novel, efficient
search algorithms to find the KCCS by iteratively removing
the nodes with the largest distance to the query keywords from
the community. However, this basic solution is still inefficient

on large graphs, due to repeated removal iterations in the
community exploration procedure. For the query efficiency,
we propose an advanced approach based on the keyword-
structure measure and the structure-keyword measure. With the
keyword-structure measure of a node u, we can determine u’s
candidate communities. With the structure-keyword measure
of u, the communities that « belongs to can be found without
checking the distance from « to the keywords. Additionally, to
further reduce the search space for the algorithms, we propose
several optimizations, including search space reduction and
keyword set reduction, along with a core-based inverted index.
The following summarizes our contributions made in this
paper.

o We formalize the KCCS problem for attributed graphs,
where a function of keyword closeness is designed to
measure the distance between community nodes and
query keywords, and the minimum node degree is used
to measure the structural cohesiveness. (Section III)

o By analyzing the properties of k-core and keyword close-
ness function, we propose the basic approach to the KCCS
query. We show that the KCCS community can be found
by iteratively removing the nodes with the largest distance
to the keywords. (Section IV)

e We propose the keyword-structure measure and the
structure-keyword measure, which evaluate the effect be-
tween the keyword distance and structural cohesiveness.
Based on these, we develop an advanced approach. We
further propose several well-designed optimizations and
indexes to optimize performance. All these techniques
can significantly prune non-answer nodes and keywords
w.r.t. a given query. (Section V and Section VI)

o« We conduct extensive experiments on real datasets to
show that our proposed techniques can find keyword-
centric communities effectively and efficiently. (Section
VII)

II. RELATED WORKS

The related works to our study include keyword search on
graphs and community search.

Keyword Search on Graphs: Keyword search related prob-
lems focus on the connection between the nodes and the
keywords in the query. Different semantics have been pro-
posed, such as r-radius Steiner graph [11], r-clique [12],
community [13], and tree semantics [14]-[20]. Among the
tree semantics, the group Steiner tree semantics is to find the
minimum-cost connected tree that contains all keywords [17],
but is known to be NP-complete. Due to the hardness of com-
puting the group Steiner tree, the distinct root semantics [16]
is introduced to find rooted trees where the cost of a tree is the
sum of the shortest distance from the root to the nodes that
contain the keywords. The connected tree semantics is first
proposed in [18]. Different from the distinct tree semantics,
there may exist multiple trees rooted at the same node in
G. For the subgraph semantics, Kargar and An [12] find the
subgraph containing all the keywords in @. It uses the sum
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of the shortest distance between all node pairs as the weight.
In [13], it is assumed that fixed center-nodes exist for each
community and the problem is to find the communities with
center nodes capable of reaching all keywords. In keyword
search problems, since the number of individual answers is
large, some works focus on summarizing results. Li et al. [11]
study the problem of clustering based on keywords. In [21],
the summarization methods are proposed to cluster the answers
to the keyword queries according to the answer graphs. They
focus on the paths between keywords and group the paths with
similar labels. In contrast to the above, our community model
not only optimizes the closeness between query keywords and
community nodes, but also requires the community nodes to
be densely connected using the k-core model.

Community Search: Given a set of query nodes, community
search over graphs is to find a densely connected subgraph
that contains the input query nodes [2]. Several different
community models have been proposed and studied, including
quasi-clique [1], k-core [2], [3], [8], [22], k-truss [5], [6],
and densest subgraph [7]. Recently, Fang et al. [8] propose
a k-core based attributed community model that finds a k-
core containing one query node with strictly homogeneous at-
tributes. Although our work also adopts the k-core community
model, our keyword distance function relaxes the constraint of
strictly homogeneous keywords using a quantified measure.
Huang et al. [9] propose a k-truss based model for attributed
community search that finds a connected k-truss with the
lowest communication cost and homogeneous attributes. Wang
et al. [10] study a k-core based community model in directed
attributed graphs. A comprehensive survey of recent studies on
community search can be found in [23], [24]. In contrast to
these studies, our problem does not need query nodes as input
for community search, but focuses on finding the community
closest to all the input keywords on the entire graph.

III. PROBLEM STATEMENT

In the following, we first present the notions of keyword
closeness and structural cohesiveness, and then propose our
keyword-centric community model and problem formulation.

We model an undirected attributed graph as G = (V, E, L),
where V' and E represent a set of nodes and a set of edges of
G, respectively. Each node u € V' is associated with a label,
denoted as L£(u), consisting of a set of attribute-value pairs.
That is, L(u) = {(c1 : f1), (a2 : B2),...}, where «; is an
attribute name and f; is the attribute value of a;. Given a
keyword w, we say a node u contains the keyword w, if w is
contained in any of the attribute values in £(u), denoted by
w € L(u). For example, consider a node u that represents an
author named “David” who conducts research on health sys-
tems. The label of u is £(u) = {(name: “David”), (research:
“Health Systems”)}, and w contains the keyword “Health”.
Given a keyword w, we use V(w) ={ue V:w e L(u)} to
denote the set of nodes containing w in V. Table I summarizes
the frequently used notations in this paper.

A. Keyword Closeness

For a subgraph H C G, we use V(H) and E(H) to denote
the set of nodes and the set of edges for H, respectively.
We define a path in H as a sequence of edges, denoted as
p = (v1,v2, - ,0y), Where (v;,v;y1) € E(H) for every
v; (1 <4 < w). For two nodes u,v € V(H), we denote by
dist(u, v, H) the length of the shortest path between u and v
in H, where dist(u,v, H) = 400 if u and v are disconnected.
Given a node u and a keyword w, node u can reach keyword
w in H if there exists a path from u to a node v € V(w). The
distance between node u and keyword w in H is denoted by
kdist(u, w, H) = min,ev (w)nv () dist(u, v, H).

Example 3.1: In Fig. 1, the distance dist(vg,v19,G) = 2
between the two nodes vy and v1g, because of the shortest
path p = (v4,v7,v10). Given a keyword w =“System” and a
node vy, the distance between w and vy is kdist(vs, w, G) = 1,
as vz € V(w) and dist(vq, v3,G) = 1. a

The keyword distance for multiple query keywords is de-
fined as follows.

Definition 3.1:[Keyword Distance] Given a set of query
keywords Wq = {w1, w2, -+ ,w,} and a node u in H, the
keyword distance between u and Wq in H is denoted by
kdist(u, Wq, H) = max,ecw, kdist(u, w, H). |

Intuitively, the smaller the keyword distance, the stronger
the relationship between nodes and query keywords. Note
that when the context is obvious, we use kdist(u, k) and
kdist(u, Wq) to denote kdist(u, k, H) and kdist(u, Wq, H),
respectively. Based on the definition of keyword distance, we
define the keyword closeness for a graph as follows.

Definition 3.2:[Keyword Closeness] For a subgraph H C G
and a set of query keywords Wq = {wi,ws,- - ,w,}, the
keyword closeness of H is denoted by KwdC(Wq, H) =
Max eV (H),wewq} Kdist(u, w, H). ]

Note that if a subgraph H does not cover all query keywords
of Wq, then the keyword closeness KwdC(Wq, H) = +oc.

Example 3.2: Consider the attributed graph G in Fig. 1
and query keywords Wq = {“ML”, “Health” “System”}.
For the vertex vy in H (indicated by the rectangle), the
keyword distance between vy and Wq is kdist(vy, Wq) =
max,ew, kdist(vy,w) = 1, since for any keyword w € Wq,
kdist(vs,w) = 1. The keyword closeness of graph H is
KWdC(WQ,H) = MaX{yeV(H),weWq} kdiSt(U,w,H) =1,
since for each node u in H, kdist(u, Wq, H) = 1. ad

B. Structural Cohesiveness

Besides considering the closeness between query keywords
and community nodes, we consider the structural cohesiveness
among community nodes.For a subgraph H C G and a
node v € V(H), we denote the set of neighbors of v by
nbr(v,H) = {u € V(H) : (v,u) € E(H)} and the degree of
v in H as deg(u, H) = |nbr(v, H)|. Consider the example of
attributed graph G in Fig. 1. For the subgraph H and a node vy,
nbr(vy, H) = {v1,v2,v3,vs} and the degree deg(vy, H) = 4.
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A k-core is defined as the largest subgraph H of G such
that every vertex u has a degree of at least k in H (ie,
deg(u, H) > k). The whole graph G in Fig. 1 is 3-core. Due
to the structural properties and efficient computation of k-core,
several community models adopt the k-core model for the
structural cohesiveness [2]-[4]. Therefore, we also advocate
the k-core model to define structural cohesiveness.'

Definition 3.3:[Structural Cohesiveness] For a subgraph
H C G, the structural cohesiveness of H is defined as
the minimum vertex degree in H, denoted by StrC(H) =
min, ey () deg(u, H). m]

C. Keyword-Centric Community Model

Combining the keyword closeness of KwdC(Wgq, H) and
structural cohesiveness of k-core, we define a keyword-centric
community as follows.

Definition 3.4:[Keyword-Centric Community] Given an at-
tributed graph G and a query Q = (Wgq, k) consisting of a
set of keywords Wq = {wy,ws,--- ,w,} and an integer k, a
keyword-centric community H is the maximum subgraph of
G, satisfying the following two conditions:

1) Structural cohesiveness: StrC(H) > k.

2) Keyword closeness : There does not exist any subgraph
H', suchthat H' ¢ H, StrC(H') > k, and KwdC(Wq, H') <
KwdC(Wq, H). O

In terms of structural cohesiveness, Condition (1) requires
that the community is densely connected such that each node
has at least k& neighbors. In terms of keyword closeness, Con-
dition (2) ensures that the community is as close as possible to
all the query keywords. Note that this condition also implies
that the community should cover all query keywords of Wq.
If H does not contain all the keywords in Wq, the closeness
would be KwdC(Wgq, H) = +o00. By Def. 3.4, we also call
the keyword-centric community H for query @ as KC,.(Q, G).
The KCCS problem studied in this paper is formulated below.
Problem Statement: Given an attributed graph G and a query
Q = (Wq,k), the KCCS-problem is to find the keyword-
centric community KCy (@, G).

Example 3.3: For the graph G in Fig. 1 and a query
Q = (Wq.,3) with Wq = {“ML”, “Health”, “System™},
the subgraph H (indicated by the rectangle) is the keyword-
centric community KC.(Q,G), since H is the largest sub-
graphs such that (1) StrC(H) > 3, as deg(u,H) > 3
for u € V(H); and (2) H achieves the strongest keyword
closeness as KwdC(Wq, H) = 1. O

IV. BASIC APPROACH

In this section, we introduce the basic approach to find the
keyword-centric community for the KCCS query. For the self-
containment of the paper, we first discuss k-core computation

'Our proposed community model and query algorithms are not confined to
the k-core structure, and can be extended to other cohesive structures, such
as k-truss.

TABLE 1
FREQUENTLY USED NOTATIONS
| Notations | Definitions ]
G(V,E, L) Attributed graph & with the node set 1/, the edge set F and

label function as L.
Distance between node u and query keywords Wgq in H.
Keyword closeness of H to Wq in Def. 3.2,

kdist(u, Wg. H)
KwdC(Wg, H)

StrC(H) Structural cohesiveness of H in Def. 3.3.

GL(vE ET) Induced graph of the nodes with ed"(u) < d for u € V(&)

KCL(Q, G) The maximum subgraph Hy; of &, such that
KwdC(Q, Hy) = d and StrC(Hy) = k.

ksd(u, @2, ) The minimal number of d, such that there exists a subgraph
H C G containing u with StrC(H) > k and for each node
v e H, and cd"(v) < d.

skd(u, w, ) The minimal number of d, such that there exist a path p from

u to the keyword w with len(p) < d, and for each node
v € p. cd"(v) < d.

briefly. Then we present the properties of keyword distance
and the basic approach for the KCCS query.

A. k-core Computation

According to Condition (1) in Def. 3.4, for a KCCS query,
the minimum degree of all the nodes in the result graph should
be larger than or equal to k. We use GG, to denote the k-core of
the graph G. For each node u, the core number of u, denoted
as C(u), is the largest value for k, such that u € V(Gy).
Thus, a k-core is the induced subgraph of the nodes, whose
core number is not smaller than k. In general, computing the
k-core is equivalent to computing the core number for every
node.

The idea behind computing k-core is that, each node u €
V(G) will be removed from G if deg(u, G) < k. After that,
the degree of the node v € nbr(u) will be reduced by 1,
and v will be removed further if deg(v) < k. This procedure
continues until deg(u) > k for each node u in the remaining
graph. The complexity to compute the k-core is O(E(G))
[25].

Example 4.1: Consider the graph shown in Fig. 2. The whole
graph is 2-core because deg(v) > 2 for v € V(G). Also, if
we aim to find the 3-core of the graph, vz is the first to be
removed since deg(v13) < 3. After removing v,3, the degree
of v; and v3 will be reduced by 1. After that, the minimum
degree of the nodes in the remaining graph is 3. Thus, the
remaining graph is a 3-core, as shown in Fig.3(a). O

In the following, we discuss the properties of keyword
closeness and the basic approach for the KCCS query.

B. Properties of Keyword Closeness

According to Def. 3.4, the KCCS query is to find the
subgraph H = KCi(Q, G) of G with the strongest keyword
closeness of ). For ease of illustration, we use KC}i(Q, G)
to denote the maximum subgraph H, on the condition that
StrC(H) > k and KwdC(Q,H) < d. Then, the KCCS
community is KCf"“’", in which d,,;,, is the minimum value
of d such that KCg(Q, (7) contains all keywords in W(?. In the
following, we concentrate on the computation of KC.(@Q, G).
Note that, given a number d, there will exist a unique
KC4(Q.G). The reason is that, if there are more than one
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Fig. 2. A Graph as the Running Example of the Algorithms

Algorithm 1 Basic Approach for KCCS Query
Input: A Graph G, a KCCS query Q(Wq, k);
Output: The keyword-centric community of G w.r.t. Q);

1: G+ CoreComp(G, k), d + KwdC(Q), ), KC} « G;
2: if G does not contain all keywords in @) then

3: return (&;

4: G« G

5: while G’ # ) and G’ contains all keywords in @ do

6.

7

8

remove u from G if kdist(u) > d;
G' + CoreComp(G', k);
: d' + UpdareDis(G', Q, d);
9:  d+«d KCY @& ifd <d;
10: return KCH(Q, G) if KCH(Q, G) # 0 with the smallest d;
11: procedure UpdateDis(G, ), d)
12: compute kdist(u, Wq, G) for each node u € G;
13: return max, e ¢ kdist(u, Wq, G);

graph G, G4, - - - satisfying the conditions that StrC(G;) > k
and KwdC(Q, G;) = d, we can always merge them as H. It
can be found that StrC(H) > k and KwdC(Q. H) = d.

According to Def. 3.2, given a graph G and a KCCS
query Q(Wg,k), assume that we aim to check whether
u € V(KCL(Q,G)). A basic approach is computing the
k-core H of G, and then kdist(u,w, H) is computed for
each keyword w € Wq. If KwdC(Q,H) < d, we have
KCH(Q,G) < H. Otherwise, if kdist(u, Wq,G) > d, u
cannot belong to any KC{(Q,G). With these properties, we
design the basic algorithm for the KCCS query, which reduces
the keyword closeness from the largest kdist(u, Wq, ) for
u e V(G).

C. Basic Algorithm for the KCCS Query

The basic algorithm for the KCCS query is described in
Algorithm 1. We use CoreComp(G, k) to denote the procedure
of computing k-core in G based on the discussion in Sec-
tion IV-A. Initially, the k-core of the graph G and KwdC(Q, G)
is computed as G and d, respectively (line 1). If G does not
contain all the keywords, it has KwdC(Q, G) = +oc. In this
scenario, the k-core is returned (lines 2-3). Otherwise, the
algorithm iteratively checks whether there exists KC{(Q, G)
containing all keywords in descending order of d. At first, G’
is used to keep the remaining graph (line 4). If kdist(u, @, G")
is larger than or equal to KwdC(@, G'), which is d, the node
u and all the incident edges are removed (lines 6). The k-
core in the remaining graph is then computed (line 7), and
the keyword distance in the remaining graph is updated as
d' (line 8). If d’ is smaller than d, d is updated as d’, and
the remaining graph is KCf (line 9). The non-empty graph

(c) (d)

Fig. 3. Illustration of the Algorithms

with the smallest d is returned (line 10). In the procedure of
updating the distance, kdist(u, Wq, G) is re-computed and the
maximum kdist(u, Wq, G) is returned (lines 12-13).

Example 4.2: Consider the graph shown in Fig. 2 and the
KCCS query Q({w1,ws},3). For clarity, we only show the
labels of w; and ws in the figure. According to the discussion
in Example 4.1, the corresponding 3-core is shown in Fig. 3(a).
The graph ¢ in Fig. 3(a) contains the query keywords w;, wa.
Hence, it is a candidate graph. Also, it can be computed
that kdist(ve,we,G) = 3, and KwdC(Q,G) = 3. Thus,
the graph shown in Fig. 3(a) is ch. In order to check
whether there exists KC%, in which KwdC(Q,G) < 2, each
node u with kdist(u, @, G) > 2 is removed. After removing
vo, it has deg(vi) = 2 and wv; is removed afterwards.
The remaining graph is shown in Fig. 3(b). After removing
v1,vg, for node w1, kdist(vi, w1, G) needs to be updated
to kdist(vqy, w1, G) = 3. Thus, v1; is also removed. After
removing vy, deg(vs) becomes 2. Hence, v3 is further re-
moved and the remaining graph is shown in Fig. 3(c). For the
graph G in Fig. 3(c), KwdC(Q, G) < 2 and it is a 3-core. This
procedure continues and the final result is shown in Fig. 3(d).
It is a 3-core, and KwdC(Q,G) = 1. O

In Algorithm 1, since kdist(u) can be increased after
removing nodes, kdist(u) for each keyword w; € Wgq must
be updated in each iteration. Thus, in each iteration, it will
cost Wq|=*(|V(G)|+ |E(G)|) to update the distance between
each node and each keyword. Furthermore, the number of the
iterations is bounded by |V (G')|. Consequently, the complexity
of Algorithm 1 is shown in the following theorem.

Theorem 4.1: Given a graph G and the KCCS gquery
Q(Waq, k), the complexity of Algorithm 1 is O(|Wq|-n-(m +
n)), where n = V(G) and m = E(G). O

V. THE ADVANCED APPROACH FOR THE KCCS QUERY

In this section, we introduce the advanced approach for
the KCCS query. Unlike the basic approach, which reduces
the keyword closeness from the largest kdist(u,Q,G) for
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cd > d-1
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w>a ()
od > dl _,
O

cod>d

(b)

Fig. 4. Illustration of the Advanced Approach

u € V(G), our advanced approach functions in a bottom-up
fashion by exploiting the new keyword-structure measure and
structure-keyword measure.

For the basic approach, as illustrated in Fig. 4(a), in each
iteration, it can only decide whether the node u belongs to
KCHQ,G) with d = KwdC(Wq,G). In this scenario, the
number of the iterations needed in Algorithm 1 is large.
Further, the shortest distances between nodes and keywords
must be re-computed in each iteration. Thus, the cost is
quite high. Unlike the basic approach, the motivation of our
advanced approach is that, if it can be determined that the node
u is possible to appear in KC{(Q, G) with d < KwdC(Wq, G),
then we can set u as a candidate node for KC}(Q,Q).
Thus, in the iteration of computing KC{(Q, ), we only need
to consider the induced subgraph of the candidate nodes.
Furthermore, as illustrated in Fig. 4(b), we aim to determine
the bound of d with the corresponding KCﬁ to which the node
is possible to belong. These minimum values for different node
sets, denoted as V) in Fig.4(b), can be determined in one
iteration. Thus, the number of iterations needed to achieve the
result could be reduced significantly, and the cost will also be
saved.

A. Problem Analysis

For ease of illustration, we use cd(u, @, G) (cd(u) for short)
to denote the minimum value of d such that u € KC{(Q, G).
Given a graph G and a KCCS query, there are two factors
that determine whether the node u appears in KC{(Q,G).
The first factor is about the influence from the keyword
measure to the structural measure. Specifically, given the
query (), assume that u belongs to the k-core of G, and
after removing a node v from G, there does not exist any
k-core that contains u. In this scenario, whether u appears
in KCY(Q, Q) is determined not only by kdist(u, Wq), but
also by kdist(v, Wq). The reason is that, for the subgraph
H = KCY(Q, Q) with d < kdist(v, Wq), it has v ¢ V(H)
due to the keyword closeness condition. In this scenario, w
cannot appear in H either because StrC(H) > k and u does
not belong to any k-core without v. The second factor concerns
from the structural measure to the keyword measure. Consider
a node u and all the paths p1,ps - --p; from u to a keyword

w; € Wg. If we have found that for a number d, there exist
nodes v; € p; (1 <4 <) on the condition that cd(v;) > d,
then cd(u) is determined not only by kdist(u, Wq), but also
by cd(v;). The reason is that, if u appears in the subgraph
H= KCZ/(Q, G) with d’ < d, at least one node in the path
p; will not appear in H. In this scenario, u cannot reach the
keyword w; in H. Thus u ¢ V(H).

Considering the factors discussed above, we propose two
evaluations which are the keyword-structure measure and
structure-keyword measure. In the following, we use cd" (u, G)
(cd“(u) for short) to denote the existing pruning bound of
cd(u) in the graph G. In other words, u cannot belong to
KCHQ,G) if d < cd“(u). Notice that for cd“(u) of each
node u, it always has cd"(u) > kdist(u, Wq, G). The reason
is that, given H = KC(Q, G), if u cannot reach w; € Wq
within d in G, u cannot reach w; within d in H either. Thus,
we have the following property for cd"(u) in G.

Property 1: cd"(u) > kdist(u, Wq, G).

B. Keyword-Structure Measurement

In this subsection, we first discuss the keyword-structure
measurement, denoted as ksd(u), for each node u. According
to the structural cohesiveness, we aim to find a subgraph H
with StrC(H) > k. Considering two nodes u,v € V(QG), if v
is removed from G and after that, deg(u) < k, then u will also
be removed from G. In this scenario, it indicates that there is
no k-core H on the condition that w € V/(H) and v ¢ V(H).
Thus, for the keyword-structure measure of the node u, given a
graph G and a query @, ksd(u, @, G) (ksd(u) for short) is the
minimal number of d, such that there exists a subgraph H C G
containing v with StrC(H) > k and cd"(v, Wq, H) < d for
v € V(H). Considering the situation that after removing each
node u with cd"(u) > d from G, the k-core of the remaining
graph is H and we have the following theorem.

Theorem 5.1: Given a graph G and a KCCS query Q(Wq, k),
S is the induced subgraph of the node u with ch(u) <d, and
the k-core of S is H. Then for any node v € V(G) — V(H),
it has ksd(v) > d. O

Proof Sketch: If there exists a node v € V(G) — V(H) with
ksd(v) < d, then there exists a subgraph H' containing v, such
that StrC(H’) > k and for each node h € V(H'), cd“(h) =
d’ < d. Since S is the induced subgraph of the node u with
cd"(u) < d, it has H' C S. As H is the k-core of S, H’
is the subgraph of H. Thus, we have v ¢ H' for the node
v € V(G) — V(H). This contradicts the assumption. O

For each node u, ksd(u) can also be a pruning bound for
cd(u), which is shown in the following theorem.

Theorem 5.2: Given a KCCS query Q(Wq, k) and a graph
G with cd“(u) for u € V(G), it has ksd(u) < cd(u). O

Proof Sketch: For the node u with cd(u) = d, there exists a
subgraph H C G containing u, such that cd(v) = d for each
node v € V(H) and StrC(H) > k. As cd“(v) < cd(v), H
is also a subgraph with cd"(v) < d and StrC(H) > k. As
H C G, it has ksd(u, Q,G) < ksd(u, @, H) < d. Thus, the
theorem is proven. m]
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According to Theorem 5.2, u cannot belong to any
KC{(Q,G) if d < ksd(u). Thus ksd(u) can also be used
as the pruning bound of cd(u), and to update cd"(u) if
cd"(u) < ksd(u). Thus, in the procedure to compute cd(u),
the nodes can be removed in the decreasing order of their
cd" value. After removing the node u with cd“(u) > d, if a
node £ is also removed in the k-core computation procedure,
cd"(h) and ksd(h) can be updated as d according to Theorem
5.1 and Theorem 5.2. As cd"(h) can be updated as ksd(h),
in the following, we focus on the relationship between the
structure-keyword measure and the cdb value for the nodes.

C. Structure-Keyword Measure

In this subsection, we propose the structure-keyword mea-
sure, denoted as skd(u,w, ). Given a graph G and a KCCS
query @, if kdist(u,Wq) < d, then u can reach all the
keywords in Wq within d. However, considering the shortest
path p from u to a keyword w € Wg, if there exists a node
v € p with cd"(v) > d, then the path p cannot appear in
KCH(Q.G) as v ¢ V(KCEH(Q,G)). Thus, even if kdist(, Wq)
is small in G, cd(u, @, G) can also be quite large because of
the cd“(v) of the node v on the paths from u to the keywords.

Considering these, we propose skd(u,w,G) (skd(u) for
short) as the minimal number of d, such that there exists a path
p from u to the keyword w at the condition that, len(p) < d,
and for each node v € p, cd"(v) < d. We use skd(u, Wq. G)
to denote max(skd(u, w;, G)) for w; € Wq. With skd(u), we
have the following theorem.

Theorem 5.3: Given a graph G and a KCCS gquery @, for
each keyword w; € Wq and uw € V(G), it has cd(u) >
max(skd(u, w;, G)) for 1 < i < |Wgq|. O

Proof Sketch: Assume that d = «cd(u) and u €
V(KC}f(Q, (+)). For each path p from u to a keyword w; € Wq
in the graph KC{(w,G), p is also a path in G. If d <
skd(u, w;, G), then among all the nodes in the path p, there
exists at least one node u, such that cd"(u) = skd(u, w;, G) >
d or len(p) > d. This contradicts to the assumption that
pC KCﬁ(Q, G). Thus, the theorem is proven. O

Example 5.1: Consider the graph shown in Fig. 3(a). Assume
that for cach node in the graph, cd“(v;) = cd'(v2) = 3 and
cd"(v;) = 2 (3 < i < 12). Then, it can be derived that
skd(vyy,w;) = 3. Specifically, it can be checked that given
d = 2, vy, cannot reach w; on a path p with len(p) < 2, and
each node v in the path has cd"(a:) < 2. Given d as 3, vq; can
reach w; with the edge (v;1,v2) and for the nodes va,v11,
their cd" values are not larger than 3. O

D. Computation of the Structure-Keyword Measure

In the following, we discuss the properties and the compu-
tation of the skd value for the nodes.

We focus on two aspects. The first concerns the keyword
distance with cd“(u) and the corresponding skd(u) of the
node u. The second is the relationship between skd(u) and
the keyword centric communities. For ease of illustration,
we use V< to denote the node set {ulcd“(u) < d} and

G4(V4, Ed) to denote the induced graph of V<. In this
scenario, KCH(Q, G) C G2 if KC{(Q, G) is not empty.
Comparing G2 and KC{(Q.G), if G2 is a k-core, and
each node can reach all the keywords within d. Then we
have G¢ ¢ KC{(Q. ). At the same time, according to the
previous discussion, it has KC{(Q.G) C GZ. Thus, it can be
derived that KC}(Q.G) = G<. Furthermore, if u can reach
the keyword w within d in G2 for u € V<, then there exists
a path p from u to w, on the condition that, cd"('u) < d for
each node v € p and len(p) < d. Thus we have ksd(v) < d.
Based on these observations, we have the following lemma.

Lemma 5.1: Given a graph G and a query Q, assume that
there exists an integer d such that GL(VE, EY) is a k-core.
If for each node u € V4, it has skd(u,Q,G%) < d. Then
KCHQ,G) = G O

According to Lemma 5.1, if skd(u) < d for each node
u € V4 GL is KCI(Q.G). Otherwise, there exists at least
one node v € V< such that skd(v) > d. In this scenario,
cd“(v) can be updated as skd(v) according to Theorem 5.3.
In the following, we discuss how to compute skd(u) for G<
with different d values. A straightforward solution to compute
skd(u) is to enumerate d from 0 to KwdC(Q, ), and in each
G, we check whether u can reach all the keywords within
d. However, considering skd(u, Wq, G) and skd(u, Wq, G£)
with different d values, the structure-keyword measure has the
following properties:

Property 2: skd(u, Wq, G%)
skd(u, Wq, G).

Property 3: skd(u.Wq.G%)
skd(u, Wq, G).

These properties hold because for the number d' =
skd(u, Wq, G), there exists a path p from u to the key-
words in G, such that len(p) < d’ and cd“(v) < d’ for
v € p. If d > d', p will also appear in GZ. For the case
of d < skd(u,Q,G), according to Theorem 5.3, we have
d < skd(u,Wq,G) < cd(u). Thus w cannot belong to
KCH(Q,G) with d < skd(u, Wq, G). Considering these, we
only need to consider the case of d > skd(u, Wq, G), in which
skd(u, Wq, G2) = skd(u, Wq, G).

Based on Lemma 5.1, Property 2 and Property 3, we can
compute the structure-keyword measure for every node u
iteratively in G. KC{(Q, G) will be found when for every node
u in G4, the corresponding core-based distance is not larger
than d. Otherwise, the node u with skd(u) > d will update
cd“(u). Based on these, we design the advanced approach for
the KCCS query as shown in the next subsection.

skd(u, Wq.G) if d >

A%

skd(u, Wq.G) if d <

E. Advanced Approach for the KCCS Query

Considering the analysis about keyword-structure measure
and structure-keyword measure, we design the advanced ap-
proach for the KCCS query as shown in Algorithm 2. The idea
is to compute cd(u) for nodes, and d,,,;,, is the minimum value
of d, such that KC{(Q, G) contains all the keywords in Wq.
Given a KCCS query QQ(Wq, k) for the graph G, if the k-core
of G does not contain all the keywords, there is no qualified
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Algorithm 2 Advanced Approach for the KCCS Query

Algorithm 3 ComputeD

Input: A Graph &, a KCCS query Q(Waq, k);
Output: The keyword-centric community of G w.r.t. Q;
1: G + CoreComp(G, k);
2: return GG if G does not contain all Wg;
3: cd“(u) «+ kdist(u, Wq, G), skd(u) < 0 for u € V(G);
4 d + KwdC(Q,G), R + 0;
5: while cd'(u) has been updated for v € V< do
6: for d’' from d to 0 do ,
7 R« Corew'ld’ar}:e‘az}‘:'((}'E Jkod' )
8: cd"(v) + max(cd“(u),d’) for v € R;
9: ComputeD(G, w;) for each w; € W,
10:  for d’ from 0 to d do ,
1 if skd(u, Wq, GZ) < & for each u € GZ then
12: d+— d';
13: cd"(u) + max(skd(u, Wq, @), cd“(u)) for u € V(G);
140 duin « d if Wq € KCHQ, G) and Wq ¢ KC{ (Q, G) for
d < d;
15: return Gmin -

keyword-centric community, and the k-core is returned (lines
1-2). After that, cd"(u) is set to kdist(u, Wq,G) (line 3).
Initially, d is set to KwdC((, (7), and R is used to keep the
removed nodes due to the structural cohesiveness condition,
and is set to empty (line 4). During the while loop, if cd"(u)
for the node u in G< will not be updated, then KC{(Q,G)
will be found as G2 (line 5). For each value d’ from d
to 0, the node set R is computed (line 7). Note that we
make a small modification to the CoreComp procedure for
the CoreMaintain procedure. In CoreMaintain(G? , k, d’), the
node u is removed from G% if cd“(u) > d’, and the k-
core of the remaining graph is G. CoreMaintain(G* , k,d’)
returns R as V(G?) — V(G1). Due to the space limit, we
do not show the details of CoreMaintain procedure. For each
node v € R, cd"(v) is updated as max(cd"(u), skd(u)) (line
8). As cd"(u) has been updated, ksd(u, Wq, G) is computed
in the ComputeD procedure, which is shown in Algorithm
3. If there exists d’ such that ksd(u, Wq,G) < d for each
u e G, then we have found KC? (Q,G), and we can only
compute KCL(Q,G) with d < d' (lines 10-12). Otherwise,
the ccl"(u) will be updated as ksd(u) (line 13). At last, dypip
is the minimum of d such that all the keywords Wq appear
in KCﬁ(Q, G) (line 14) and G%min will be returned as the
keyword-centric community.

As shown in Algorithm 2, skd(u,w,G) is computed for
each w € Wq and u € V(G). In the ComputeD procedure
shown in Algorithm 3, skd(u) is computed in ascending order
of the cd“ value. At first, N(i) keeps the node u if the
cd"(u) = i (line 1). dis(v) is the current distance between
the node v and the keyword w. It is set as 0 initially for
the nodes in V(w) and |V(G)| + 1 otherwise. Then we
enumerate different values from 0 to |V (G)|, to check whether
skd(u, w, G) is 7. At first, nodes in N(¢) are pushed into a
priority queue as P@ (line 4). The top node u in PQ should
have the smallest distance on the condition that all the nodes
on the paths from u to w have their cd" values not larger than
i. Thus, skd(u,w, G) is set as 7 (line 6). Next, dis(v) will be
computed for the neighbours of « that have not been searched.

Input: A Graph G, a keyword w;
Output: The skd(u, w, G) for u € V(G);
10 N(i) < u if cd"(u) = i for u € V(w);
2: dis(v) + 0 for v € V(w), dis(v) + |V(G)|+ 1 for v ¢ V(w);
3: for i from 0 to |[V(G)| do
4 initialize a priority queue P based on dis and push the
unsearched node u € N(i) into PQ if cd“(u) < i;

5 while P() is no empty do

6: u + Pop(Q), skd(u,w,G) + i;

7. for each node v € nbr(u) that has not been searched do
8: dis(v) + min(dis(v), dis(u) + 1);

9: if dis(v) < i then

10: push v into PQ;

11: else

12: push v into N(i+ 1);

13: return skd(u) for each node u € V(G);

TABLE 11
ILLUSTRATION FOR ALGORITHM 2
V(G) | cd -initially | cd -Ist | skd-1st

[T 2 3 3
Ta 3 3 3
vy 2 2 3
vy 2 2 2
5 1 1 1
UG 1 1 1
vy 1 1 1
Ug 1 1 1
Vg 1 1 1
10 0 1 1
1 2 2 3
o 2 2 2

If dis(v) < 4, v is pushed into PQ (lines 9-10). Otherwise, it
indicates that v can reach w within ¢ 4 1 on the condition that
the cd" value for the nodes on the paths are not larger than i.
In this scenario, v is inserted into N (i + 1) (line 12). At last,
ksd(u) will be returned for u € V(G) (line 13).

Example 5.2: Consider the graph G shown in Fig. 3(a)
and the query Q = {{wi,w2},3}. The cd"(u) value for
each node u is shown in Table IL Initially, cd“(u) is set
as kdist(u, Wq. G). For all nodes in Fig. 3(a), kdist(vo) is
the largest, and it equals KwdC(Q,G) as 3. In the first
iteration, vy,wvo are inserted into R when the procedure
CoreMaintain(G*,3,3) is called, because deg(v,) = 2 after
removing ve. Thus ch('Ug) is updated as 3. Similarly, when
CoreMaintain(G*,3,1) is called, it has vjy € R, and then
cd“(v10) is updated as 1.

In the ComputeD procedure, we use the keyword w; as
an example. Initially, we have N (1) = {vs, vi0}, N(2) = 0,
N(3) = {v1,v2}. When 7 = 1 as shown in line 3, the nodes
in N (1) will be pushed into PQ. When dealing with vy from
PQ, the dis values of vs, vg, v7, v9 Will be updated as 1, and
these nodes are inserted into P(). Such a procedure carries on.
When dealing with the node v, which is the neighbor of vs,
dis(vy) is updated as 2. Thus, v; will be pushed into N(2).
After processing N(1), N(2) contains the nodes v3, vy, v12.
Similarly, for vq1, dis(vy1) is set to 3, and it is inserted into
N(3). Thus skd(vy1) = 3. The skd values for the nodes are
shown in the skd-1st column in the table.
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After computing the skd values for the nodes, consider d’
as 1 as shown in line 10 in Algorithm 2. It can be found
that, for the nodes vs, vg, v7, Us, Vg, V10, their cd values are
not larger than 1 and have not been updated. Then according
to Algorithm 2, skd(v;, Q,GL) < 1 for v; € VL Thus, d is
set as | directly. In this scenario, the graph that needs to be
considered is shown in Fig. 3(d). Then, it can be checked that
the graph in Fig. 3(d) is the result of this KCCS query. O

F. Complexity Analysis

Given a KCCS query QQ(Wq, k) and the graph G, assume
that KCﬁ”‘”‘ (Q.G) is the keyword-centric community. As
shown in Algorithm 1, the basic approach is to iteratively
compute kdist(u, (), G) for each node u in descending order
of KwdC(Q,G) value. However, removing the node u with
the largest kdist value does not always reduce KwdC(Q, G).
It is possible that, after removing some nodes, the largest
distance among all the shortest paths increases. Assume that it
needs to scan the graph ¢, times to achieve the graph G’, with
KwdC(Q,G’) = d. Then given a graph G and a query @, the
number of iterations in Algorithm 1 would be Zf:jif?(’) ti.

In contrast to the basic approach, Algorithm 2 computes
skd(u), and updates the pruning bound of cd(u), for all
the nodes in one iteration. In this scenario, the number of
iterations needed to compute KC‘,ﬁ would be max(t;) for
Amin < 1 < KWdC(Q G) Compdring, the cost of the
advanced apjjroach with the basic approach, the cost is reduced
from @, G)r ) X (n+m) to max(t;) x (n +m) for

? dynin

d‘mt'n S 7 < KWd (Q C)

Also, in the advanced approach, the graph GZ=:x in the first
iteration would include all the nodes with kdlst(u) < dpin
for v € V(G). In each of the following iterations, at least
one node v € V(Gdmin) — V(KC ) would have skd(v) >
dpmin. The reason is that, if there is no such node v with
skd(v) < dpmin in the previous iteration and skd(v) > dpin
in the following iteration, according to Lemma 5.1, it can be
derived that KC{™" C GZ=:i» On the other hand, for each
node u € Glmin the keyword distance is not larger than dmm,
and Gdmiz js a k-core. In this scenario, Gdmin KC‘ min
Thus G4=iz s the KCd”” In summary, in each iteration, at
least one node in V(Gd"”") — V(KC‘I. ") is removed.

VI. OPTIMIZATIONS

In this section, we introduce optimizations of our ap-
proaches, which rely on keyword set reduction and indexing.

A. Keyword Set Reduction

According to Algorithm 2, given a query Q(Wq, k), it
needs to call the ComputeD procedure [Wq| times to compute
skd(u, w, G) for each w € Wgq. Therefore, the cost of the
advanced approach is proportional to the number of keywords
in Q. Thus, reducing the number of keywords in the query
improves the efficiency of the algorithm. Our optimization
of keyword set reduction is based on the observation that
for two keywords w,w’, if V(w) C V(w'), then it can be
derived that kdist(u,w,G) > kdist(u,w’,G) for each node

u € V(G). The reason is that each shortest path from the
node u to w is also a path from = to w’. Furthermore,
according to the definition of skd(u), it can be derived that,
skd(u, w’, G) = skd(u,w,G). As for the node v and a KCCS
query Q(Waq, k), skd(u, Wq, @) = max(skd(u, w;, G)) for
w; € Wq, there is no need to consider w; if there exists a
keyword w; € Wq and V(w;) C V(w;).

B. Indexing

For the KCCS query, we use three different kinds of indexes.
First of all, for the keywords in the graph, we use the inverted
index. That is, given a graph G, for each label w in (G), we
construct a linked list as TnvertI(w) = {uy,ug, - ,ux}, if
w appears in the label of u; € V(G). Secondly, we use the
core-index for each node w. That is, for each node u in the
k-core of G, we keep the core number as C(u) = k. Thus the
nodes in the k-core can be computed by accessing every node
u with C(u) > k. We also use Corel(k) to keep the nodes,
whose core number is k. As these indexes are commonly used,
we omit their details here.

In addition, we construct a core-based inverted index. That
is, given a graph G(V, E, L), for each label w in G, we use
CI(w, k) to keep the set of nodes such that, for each node
w € CI(w, k), w appears in £(u) and C(u) = k. Given a
keyword w and an integer k, all the nodes with the keyword
w in the k-core can be accessed as the union of the nodes in
CI(w, k") with k' > k.

Example 6.1: Consider the graph shown in Fig. 2. The
whole graph is a 2-core and the remaining graph except
v13 is a 3-core. So Corel(2) = {v13} and Corel(3) =
{v1,v2, -+ ,v12}. Also, it can be found that CI(3,w;) =
{'U],'Ug,'i)g,?.)l()} because vy, wvs,vg,v19 contain the keyword
wy and belong to a 3-core. Similarly, we have CI(2,w;) =
{vis}, CI(3,w2) = {v7,v10}, CI(3,w3) = {va,v7,v10}.
Given the KCCS query @ with k = 3 and Wq = {w;, w2, w3},
it can be derived that V(wz) = {wvr,vi0} which contains
all the nodes with the keyword ws in the 3-core. Similarly,
V(ws) = {ve,v7,v10}. Thus, V(ws) C V(ws) and wz does
not need to be considered. Overall, v,3 is removed from &
and w3 is removed from Q. m]

VII. PERFORMANCE EVALUATION

In this section, we show the experimental results by com-
paring the basic approach shown in Algorithm 1, our advanced
approach shown in Algorithm 2, and the advanced approach
with optimizations. We show the results of our approaches in
two aspects. The first concerns the effectiveness of the KCCS
queries for finding the communities. For the effectiveness, we
show that the results of the query containing the cohesive
structure of the query keywords. The other concerns the
efficiency of the comparison the basic and the advanced
approaches.

Datasets: We compare our approaches using two real datasets,
DBPedia and DBLP. The DBPedia knowledge graph is ex-
tracted from Wiki and contains 4.56 million nodes with 35.17
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Fig. 5. The KCCS and r-clique found in DBLP citation network

million edges. In the DBLP datasets, there are four tables:
papers, conferences, authors and citations. Each tuple in these
tables is modeled as one node in the graph with the publication
information as the labels and the edges between them are based
on the foreign key reference. The corresponding graph has
6.07 million nodes with 9.77 million edges.

A. Effectiveness Testing

In order to demonstrate the effectiveness of the KCCS
queries, we show and analyze 3 representative queries.

Q@1: Given the KCCS query as @ = ({“protein”, “inter-
action”, “network”, “topology”, “algorithm”}, 8), we aim to
find the interdisciplinary papers working on the research of
the topological structure analytic algorithms and the protein-
protein interactions in the DBLP citation network. As the
traditional keyword search methods also generate the results
with keywords, we compare our model with the representative
keyword search semantics r-clique [12]. The r-clique method
finds a group of nodes that cover all the query keywords and
the distance between each two nodes is no greater than r. We
apply r-clique to the DBLP citation network using the same
set of the keywords in ). We set the parameter » = 2, which
achieves the same keyword distance as our KCCS method. Due
to the expensive candidate enumerations of all the r-cliques
by an exact method (not finished within 48 hours), we treated
all output r-cliques in 48 hours as candidates, and computed
the answer with the largest density. The results are shown in
Figure 5. The following observations are made:

o Community Cohesiveness. Our KCCS method finds a
community H. with 146 nodes, 1,181 edges, and a
graph density of 8.09 (for illustration, part of H. is
shown in Figure 5(a)). The keyword closeness of H. is
KwdC(Wq, H.) = 2, which indicates that each node can
reach any keyword within 2 hops. In contrast, the result
obtained by the r-clique method is shown in Figure 5(b),
where the graph H, has 11 nodes, 19 edges, and a graph
density of 1.73. Clearly, compared with H,, H. has a
more cohesive structure. The nodes in H., which are
densely connected, naturally form a community, whereas
the nodes in H,. are very loosely connected.

o Relevance to Query Keywords. In Figure 5(a), the
large dark nodes represent the papers containing some
of the query keywords, such as “Nemofinder: Dissecting
Genome-wide Protein-protein Interactions with Meso-
scale Network Motifs”. The blue nodes represent the

431

Fig. 6. The KCCS found in DBLP data set for Q2

papers not containing any query keyword in the title.
But, indeed these papers are a set of representative
papers working on “topology graph analysis algorithms”
for “protein-protein-interaction network”. One example
of the blue nodes is “Gspan: Graph-based Substructure
Pattern Mining”, which is an important work for frequent
subgraph mining in graph databases for biological and
chemical applications. This paper is highly cited with a
very high of degree in Figure 5(a). This suggests that
our KCCS model is capable to find a group of papers
working on the same topic such that they are highly
cited in a densely connected structure and all of them are
close to the query keywords. In contrast, in Figure 5(b),
the large dark nodes represent the papers containing
some of the query keywords, such as “A Comparative
Study on Network Motif Discovery Algorithms” and
“Frequent Subgraph Mining on a Single Large Graph
using Sampling Techniques”. These papers cover the
query keywords independently and may be working on
totally different topics.

« Efficiency. The processing time of the KCCS query is
69.9s, which is much faster than the r-clique keyword
search method.

In addition, we have implemented another community
model based on keyword coverage. The keyword-coverage
community model adopts the same k-core structure as KCCS
and requires to cover all the query keywords. It differs from
KCCS in that the keyword distance is not considered. The
resulting subgraph contains more than 227,000 nodes, and it is
difficult to make sense out of the discovered “community”. The
maximum distance between the nodes and the query keywords
is 6, which also suggests a weak keyword closeness.

Overall, our KCCS method is more efficient and can find
a more interesting community highly related to the query
keywords.

Q2: Given that the KCCS query @ = ({“privacy”, “preserv-
ing”, “publish”}, 6) on the DBLP dataset, the query aims to
find the works on publishing data with privacy preserving
guarantees. We aim to find the subgraph in which, the authors
who have published at least six related papers or the papers
have been cited at least six times. In the result graph of @,
denoted as G, we have KwdC(Q,G) = 2. In other words,
there is a 6-core graph if the distance bound between nodes
and keywords is 2. One connected component of the 6-core
is shown in Fig. 6. The green node represents the researcher
“Ke Wang” and the purple node represents the researcher “Jian
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Pei”. They have worked extensively on privacy preserving
data mining. One example is represented as the node colored
orange, which represents the paper “Minimality attack in
privacy preserving data publishing”. This paper has been cited
296 times.

Q@3: Assume that the KCCS query is @ = ({“Stephen
Curry”, “Basketball”, “Players”},4) on the DBPedia dataset.
The query aims to find information about the famous bas-
ketball player named “Stephen Curry”. The result G has
KwdC(Q@,G) = 2. For the nodes in the community, most
nodes have the labels as “NBA” and “Lebron James”. “NBA”
is the American basketball association and “Lebron James” is
another famous basketball star who has collaborated multiple
times with “Stephen Curry” in Olympic teams.

B. Efficiency Testing

In this section, we show the efficiency of our approaches.
We compare between the basic approach (Algorithm 1), the
advanced approach (Algorithm 2), and the advanced approach
with the optimizations. For the inverted index, the core-index
and the core-based inverted index introduced in Section VI, the
construction time cost for the DBLP dataset is 5.52s, 57.80s,
64.57s, respectively, and for the DBPedia dataset, the time is
6.73s, 17.30s, 17.61s, respectively. We test the efficiency by
varying the number of keywords and the core number in the
query. To test scalability, we vary the graph data size.

Query Generation: We randomly generate a total of 100
queries according to DBLP’s and DBPedia’s vocabularies. The
number of the keywords in Wq of each @) ranges from 2 to
6. The criterion of selecting the keywords is as follows. We
randomly select the first keyword w; from the dataset’s label
set. After that, we find all the nodes V' (w;) that contain the
keyword w; and also mark all the nodes w if it is within 2-hop
from v € V(w;). Then we select other keywords randomly
from all the keywords appearing in the labels of the nodes
marked. We report the average execution time of each data
set for different approaches.

Varying the Number of Keywords: We vary the total number
of keywords in each query from 2 to 6. The time costs of
executing the KCCS queries in DBLP and DBPedia are shown
in Fig. 7(a) and Fig. 7(b) respectively.

For the KCCS query processing, as the figures show, the
execution time for each query increases as the number of
keywords increases. The reason is that, with more keywords,
the number of nodes containing the keywords also increases.
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Thus, more iterations are needed to find the shortest distance
between each node and each keyword. Also, during the
query processing, the maximum shortest distance among all
the keywords is computed. With more keywords, computing
KwdC(u, @, G) for each node u costs more time.

Our advanced approaches always perform much better than
the basic one. The reason is that, after removing the nodes
with the largest kdist(u, Wq), the basic approach needs to
update the shortest distance for each keyword. With more
keywords in the query, the cost increases significantly. Our
advanced approaches are based on the skd(u) and ksd(u).
By comparing skd(u) and cd"(u), KCZ(Q,G) can be found
directly. Thus, the advanced approaches need fewer iterations
to find the results of the query, because more nodes can be
removed earlier. With fewer number of iterations and lower
cost in each iteration, the advanced approaches perform 3-5
times faster than the basic approach.

The approach with optimizations and indexes offers the best
performance. Also, with larger [Wq| in @, the benefits of using
optimizations and indexes become larger. The reason is that,
during the processing, the existence of all the keywords in the
k-core must be identified, because some nodes are removed.
The index saves on time cost in this operation. Also, with more
keywords, there is a higher possibility that some keywords can
be removed from () according to the discussion in Section
VI-A, and the performance can be improved.

Varying the Core Number: We vary the core number for each
query from 2 to 6. The time costs of executing the queries
in DBLP and DBPedia are shown in Fig. 8(a) and Fig. 8(b)
respectively.

With a larger core number, the time cost of all the ap-
proaches for the KCCS queries decreases. This is because
given the KCCS query, the corresponding k-core in the datasets
is smaller with a larger k. Thus the remaining graph for
consideration becomes smaller. In this case, the cost of both
the basic and advanced approaches is reduced. The reason
is that, a k-core with a larger k£ indicates that there are a
fewer number of nodes containing the keywords in ). Thus,
KwdC(Q, G) becomes larger and fewer iterations are needed
during the computation.

Compared the performance between DBLP and DBPedia,
even if DBPedia has larger nodes and edges, the time cost for
the query in DBPedia is much smaller than that in DBLP. The
reason is as follows. DBPedia is a knowledge graph and for
the subgraph related to one area, the shortest distance between
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nodes is much smaller. Thus, given a KCCS query Q(Wq, k)
and assuming that G}, is the k-core of the initial graph, the
KwdC(Q, Gi) in DBPedia is much smaller than that in DBLP.
Thus, DBPedia needs fewer iterations to find the result with
the minimum KwdC value, even if it has about 25 million
more edges than DBLP.

Varying the Graph Size: In order to show the scalability of
our approaches, we vary the graph size in this experiment. We
randomly select a subset of edges from the whole graph and
the number of selected edges ranges from 20% to 100% for
DBLP and DBPedia. The results for DBLP and DBPedia are
shown in Fig. 9(a) and Fig. 9(b) respectively.

With a larger graph size, the time cost of all the approaches
increases. The increasing rate of our advanced approaches is
much slower than the basic approach. As with a larger edge
set, the initial k-core contains more nodes and edges. Thus,
computing the shortest distance and k-core in each iteration
costs more in the basic approach. Instead of updating the
shortest distance between nodes and keywords, our advanced
approaches consider k-core computation and the shortest dis-
tance computation at the same time. Thus, for a node with
smaller distance to the keyword, it is possible that due to the k-
core condition, its KwdC(u, @) is quite large. Our approaches
can remove such nodes in earlier iterations and reduce the
graph sizes significantly.

VIII. CONCLUSIONS

In this paper, we have studied the novel problem of keyword-
centric community search over attributed graphs, to find a
keyword-centric community with a densely connected struc-
ture while achieving the strongest keyword closeness w.r.t.
the query. We propose efficient algorithms as well as the
optimizations and indexes. Extensive experiments on large real
networks demonstrate the superiority of our methods in terms
of both effectiveness and efficiency.
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