
Continuous Geo-Social Group Monitoring
in Dynamic LBSNs

Huaijie Zhu , Wei Liu , Jian Yin , Libin Zheng , Xin Huang ,

Jianliang Xu , Senior Member, IEEE, and Wang-Chien Lee

Abstract—Geo-social group queries, which return a social cohesive user group with a spatial constraint, have receive significant

research interests due to their promising applications for group-based activity planning and scheduling in location-based social

networks (LBSNs). However, existing studies on geo-social group queries mostly assume the users are stationary whereas in realistic

LBSN application scenarios all users may continuously move over time. Thus, in this paper, we investigate the problem of continuous

geo-social groups monitoring (CGSGM) over moving users. A challenge in answering CGSGM queries over moving users is how to

efficiently update geo-social groups when users are continuously moving. To address the CGSGM problem, we first propose a baseline

algorithm, namely Baseline-BB, which recomputes the new geo-social groups from scratch at each time instance by utilizing a branch

and bound (BB) strategy. To improve the inefficiency of BB, we explore a new strategy, called common neighbor or neighbor expanding

(CNNE), which expands the common neighbors of edges or the neighbors of users in intermediate groups to quickly produce the valid

group combinations. Accordingly, another baseline algorithm, namely Baseline-CNNE, is proposed. As these baseline algorithms do

not maintain intermediate results to facilitate further query processing, we develop an incremental algorithm, called incremental

monitoring algorithm (IMA), which maintains the support, common neighbors and the neighbors of current users when exploring

possible user groups for further updates and query processing. Since IMA requires many times of truss decomposition when

processing mutiple-users updates, we propose an improved incremental algorithm, called improved incremental monitoring algorithm

(IIMA), which performs truss decompostion only once. Moreover, we design algorithms for handling the social changes that result in

insertion/deletion of some edges in the social network. Owing to the challenge in setting, an appropriate monitoring distance, we further

study the topN CGSGM problem, which finds topN result groups at each time instance. Finally, we conduct extensive experiments

using four real datasets to validate our ideas and evaluate the proposed algorithms.

Index Terms—Location-based services, Geo-social group query, nearest neighbor, continuous queries, monitoring

Ç

1 INTRODUCTION

WITH the ever-growing popularity of GPS-enabled devi-
ces and online social networks, location-based social

networks (LBSNs), e.g., Foursquare, Yelp, Wechat, and
Weibo, have emerged in our social life. In all these LBSNs,

mobile users are allowed to share their check-in locations
(e.g., homes, supermarkets, offices, restaurants, and shop-
ping malls) with friends or social users. LBSNs have bridged
the gap between the physical world and the virtual world of
social networks, providing social users new applications,
such as group-based activity planning and target market-
ing [24], [25], [35], [42], [44]. For example, a hotpot restaurant
would like to push group coupons to nearby users, who are
socially connected with each other, so as to attract them to
dine at the restaurant. Accordingly, a geo-social group query
may be issued to find a socially cohesive group of users with
a spatial constraint for the application [42].

While much research attention has recently been drawn to
geo-social group queries (e.g., [15], [25], [35], [42], [44]), exist-
ingworks assume that users’ locations are fixed.Nevertheless,
we argue that users could be moving in real-life scenarios. In
other words, the user groups satisfying the query conditions
may constantly change over time. In the above restaurant
example, group coupons should be advertised by periodically
detecting user groups near the restaurant.

To make geo-social queries more realistic and useful for
location-based applications, in this paper, we introduce a
new geo-social group query, namely, continuous geo-social
groups monitoring query over moving users (CGSGM), in our
initial study [43]. Consider an LBSN represented by a graph
G. Given a CGSGM query, specified in the form hd; ql; k; p;
½t1; t2�i, the system continuously monitors all user groups of

� Huaijie Zhu, Wei Liu, Jian Yin, and Libin Zheng are with Sun Yat-Sen
University, Guangzhou, Guangdong 510275, China, and also with the
Laboratory of Big Data Analysis and Processing, Guangzhou, Guangdong
510275, China. E-mail: {zhuhuaijie, liuwei, issjyin, zhenglb6}@mail.
sysu.edu.cn.

� Xin Huang and Jianliang Xu are with Hong Kong Baptist University,
Kowloon Tong, Hong Kong. E-mail: {xinhuang, xujl}@comp.hkbu.edu.hk.

� Wang-Chien Lee is with Computer Science and Engineering, Penn State
University, State College, PA 16802 USA. E-mail: wlee@cse.psu.edu.

Manuscript received 27 February 2022; revised 28 August 2022; accepted 30
October 2022. Date of publication 2 November 2022; date of current version
21 June 2023.
This work was supported in part by the Key-Area Research and Development
Program of Guangdong Province under Grants 2020B0101100001 and
2018B01010700, in part by the National Natural Science Foundation of China
under Grants U1811264,U1811262,U1811261,U1911203,U2001211,U22B2060,
61902438, 61902439 and 62102463, in part byGuangdong Basic andApplied Basic
Research Foundation under Grants 2019B1515130001 and 2019A1515011704,
and in part by Hong Kong RGC under Grants 12202221, 12200021, C2004-21GF,
and 12201018.
(Corresponding Authors: Wei Liu and Jianliang Xu.)
Recommended for acceptance by F. Rusu.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TKDE.2022.3218844, provided by the authors.
Digital Object Identifier no. 10.1109/TKDE.2022.3218844

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023 7815

1041-4347 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8263-9032
https://orcid.org/0000-0001-8263-9032
https://orcid.org/0000-0001-8263-9032
https://orcid.org/0000-0001-8263-9032
https://orcid.org/0000-0001-8263-9032
https://orcid.org/0000-0002-8778-7082
https://orcid.org/0000-0002-8778-7082
https://orcid.org/0000-0002-8778-7082
https://orcid.org/0000-0002-8778-7082
https://orcid.org/0000-0002-8778-7082
https://orcid.org/0000-0002-1214-5384
https://orcid.org/0000-0002-1214-5384
https://orcid.org/0000-0002-1214-5384
https://orcid.org/0000-0002-1214-5384
https://orcid.org/0000-0002-1214-5384
https://orcid.org/0000-0002-9339-1949
https://orcid.org/0000-0002-9339-1949
https://orcid.org/0000-0002-9339-1949
https://orcid.org/0000-0002-9339-1949
https://orcid.org/0000-0002-9339-1949
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0002-8949-489X
https://orcid.org/0000-0002-8949-489X
https://orcid.org/0000-0002-8949-489X
https://orcid.org/0000-0002-8949-489X
https://orcid.org/0000-0002-8949-489X
mailto:zhuhuaijie@mail.sysu.edu.cn
mailto:liuwei@mail.sysu.edu.cn
mailto:issjyin@mail.sysu.edu.cn
mailto:zhenglb6@mail.sysu.edu.cn
mailto:xinhuang@comp.hkbu.edu.hk
mailto:xujl@comp.hkbu.edu.hk
mailto:wlee@cse.psu.edu
https://doi.org/10.1109/TKDE.2022.3218844
https://doi.org/10.1109/TKDE.2022.3218844

size p such that the distance of any result user to the query
location ql is not greater than d and that the users within a
group form a k-truss (i.e., a subgraph in which each edge
eðu; vÞ has at least k-2 common neighbors). An example of a
CGSGM query is illustrated in Fig. 1, where the social net-
work and user locations are respectively presented in a
social layer and a spatial layer. The top part is the social
graph where two users are connected if two users are
acquainted with each other, while the bottom part shows
users’ locations at time instances t1 and t2, respectively,
where each user ui is associated with its location pi. Suppose
there is a restaurant located at q, which aims to continuously
identifying all social cohesive groups of size 5 whose dis-
tance to the restaurant is not greater than 2km, during the
opening hours ½t1 = 5pm, t2 = 9pm]. This task can be carried
out by issuing a CGSGM query hd=2km, q, k=3, p=5, ½t1; t2�i.
The results of this CGSGM query are the groups
fu0; u2; u3; u4; u9g, fu0; u2; u3; u6; u7g, fu0; u2; u6; u7; u9g, fu0;
u3; u4; u6; u7g, and fu0; u3; u9; u6; u7g for time instance t1,
while the group results for time instance t2 are
fu0; u3; u4; u7; u5g, fu0; u3; u4; u9; u5g, fu0; u3; u9; u7; u5g, fu0;
u3; u4; u5; u8g, fu0; u3; u4; u7; u8g, fu0; u3; u9; u5; u8g, fu0;
u3; u9; u7; u8g, and fu0; u5; u7; u9; u8g. Notice that, from 5pm
to 9pm, the restaurant may obviously issue many CGSGM
queries in between moments as the potential customers
keep moving. The scenario and need mandates efficient
processing of the query in near-real time. While the afore-
mentioned problem setting is shown to be practically useful,
an potential challenge is to set an appropriate monitoring
distance d which requires some trials to set right by the res-
taurant. Thus, we propose an alrernative setting, namely
the top N CGSGM problem, which does not require a pre-
defined d, to find topN nearest groups in terms of the group
distance to the query location at a time instance.

To support CGSGM, we propose a new query processing
framework (as shown in Fig. 2), also called CGSGM for sim-
plicity. It has a central server that receives the positions of
mobile users from the position monitoring subsystem. The
CGSGM queries issued by query clients (e.g., various res-
taurants) are registered at this central server, where query
processor continuously returns query results to the query
clients, upon reception of user position updates. We pro-
pose efficient algorithms to process CGSGM queries in real
time. The server does not assume any knowledge about the
users’ moving velocities, directions, or trajectories.

A major challenge faced in processing CGSGM queries
is the need to enumerate every possible group combina-
tion to generate the result groups at each time instance. It

is easy to prove that the CGSGM query problem is NP-
hard.

To tackle the CGSGM problem, we propose two baseline
algorithms, Baseline-BB and Baseline-CNNE as well as an effi-
cient incremental monitoring algorithm (IMA) in [43]. IMA
includes two parts: initial result computation and multiple-
users update. When exploring possible k-truss groups at
each time instance of query processing, we maintain the
support (i.e., the number of triangles which the edge is
involved in), the common neighbors of two nodes, and the
neighbors of current users for future user updates and
query processing. Since IMA performs truss decomposition
many times when processing multiple-users updates, we
propose an improved incremental algorithm, called IIMA,
which performs truss decompostion only once when han-
dling the multiple-users updates.

To answer the top N CGSGM query, we design an algo-
rithm, namely TOP-N, by incorporating the idea of distance
ordering to explore the possible combinations of near users,
guided by the CNNE strategy explored in Baseline-CNNE
to effectively form feasible groups with small distance for
prioritized processing. For fast termination of the query
processing, we also develop an early terminate condition. In
addition, the social relationship may change for a dynamic user.
Thus, we also develop an algorithm for handling the social
changes, i.e., removing one edge and inserting one edge.

In addition to the initial results, this work also extends
our initial study in the following aspects, (1) improving the
IMA algorithm to answer the CGSGM query (Section 5); (2)
formulating and tackling the problem of processing top N
CGSGM queries and proposing an algorithm for efficient
query processing (Section 6); (3) proposing an algorithm for
handling the social changes (Section 7); (4) conducting a
more comprehensive performance evaluation which evalu-
ates the the proposed algorithms.

The contributions made in this paper are four-fold:

1. We formalize two new and realistic variant of geo-
social queries, continuous geo-social groups monitoring
(CGSGM) query and the top N CGSGM query, over
moving users.

2. We propose two baseline algorithms, namely Base-
line-BB and Baseline-CNNE, which recompute new
geo-social groups from scratch at each time instance
for CGSGM.

3. We further develop an improved incremental
algorithm for CGSGM, which performs k-truss
decomposition only once, by maintaining useful
intermediate results for further user updates and
query processing.

4. We propose an efficient algorithm, namely TOP-N,
for answering the top N CGSGM query. Moreover,
we develop an efficient update algorithm to hanlde
the social changes in a social network.

Fig. 1. An example of CGSGM query.

Fig. 2. The CGSGM framework.

7816 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

5. We conduct extensive experiments to evaluate the
proposed algorithms.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 gives some basic defini-
tions and formulates the CGSGM and top N CGSGM prob-
lem. Section 4 presents our two baseline algorithms in
detail. Section 5 proposes an improved incremental moni-
toring algorithm. Section 6 extends to process the top N
CGSGM query. Section 7 handles the changes of social net-
work. Section 8 reports the experimental results and our
findings. Finally, Section 9 concludes the paper with a dis-
cussion of future work.

2 RELATED WORK

A lot of research efforts related to our work, including Con-
tinuous Spatial Queries, and Geo-Social Group Queries, have
been made in the field of location based social network.

2.1 Continuous Spatial Queries (CSQs)

Many continuous spatial queries over spatial databases
have been studied over the years.

Since 1990s, researchers have been studying the problemof
querying moving objects [19]. Queries such as “find Alice’s
nearest petrol stations while she is driving” or “find all the
taxi cabs within 1 km from Alice” [32] are proposed for
research. As technology advances, mobile devices emerge in
our daily life, reserach attention on continuous spatial queries
(CSQs) also grows significantly in the spatial database com-
munity. A large number of studies are investigated from vari-
ous aspects of CSQs, including access methods [13], [31], [33],
query algorithms [20], [21], [28] and new query types [5], [16],
[22], just to name a few. Over the years, a CSQ has also been
called as amoving query [14], [16], [40], a (continuous) spatio-
temporal query [3], [31], [36], and a continuous location-based
(or location-dependent) query [1], [2], [18], [37], with some
minor differences in the targeted settings. The terms moving
query, spatio-temporal query, and active query are intro-
duced in part to distinguish the new functionality from that
of traditional spatial queries where the objects are static and
time-independent. The terms continuous location-based or
location-dependent query are introduced in part to empha-
size the application context of location-based service (LBS).
Xiong et al. [41] study the processing of continuous k nearest
neighbor queries in spatio-temporal databases. In their set-
ting, both the objects and continuous queries may change
their locations over time. The answer region of a query point q
is defined as the circle centered at q wtih radius best dist,
which is the distance of the kth NN to q. Mouratidis et al. [30]
propose the conceptual partitioning monitoring (CPM)
method for continuous nearest neighbor monitoring. They
define the influence region of q as the set of cells that intersect
the circle centered at qwith radius best dist. Only the updates
affecting the influence region of a query are used to invalidate
its current result. However, like many other existing works,
the two works mentioned above do not consider the social
constraint in query processing.

2.2 Geo-Social Group Queries

Various location-based social network sites allow users to
share their locations through check-ins or mentions in posts.

Over the years, the prosperity of location-based social net-
working paves the way for new applications of group-based
activity planning and marketing. As a result, a growing
number of researches on geo-social (socio-spatial) group
queries, have been explored.

For a given geo-social graph, Yang et al. [42] first propose a
geo-social group query (SSGQ) that finds a set of members
based on a fixed rally point where the aggregated spatial dis-
tance between members and the rally point is minimized
while eachmember is allowed to be unfamiliar with at most a
given number of members in that group. However, such a
social constraint may lead to a group that have very distant
or diverse social relations. Thus, Zhu et al. [44] propose a
new class of geo-social group queries with minimum acquain-
tance constraint (GSGQ), which ensures all users in the result
group to have at least a certain number of acquaintances.
GSGQ takes three parameters: query issuer, spatial con-
straint, and social constraint, where the query issuer is a
member in the given graph. Although SSGQ and GSGQ
impose a constraint on group size, they do not consider user
movements. Thus, the query results are static. Recently, the
geo-social k-cover group query for collaborative spatial com-
puting is proposed [25]. In this query, given a set of query
points and a social network, it retrieves a minimum user
group in which each user is socially related to at least k other
users such that the user-associated regions (e.g., familiar
regions or service regions) can jointly cover all the query
points. In addition, Armenatzoglou et al. [8] propose a gen-
eral framework for geo-social query processing, which sepa-
rates the social, geographical, and query processing modules
to facilitate flexible data management. Then, Shen et al. [35]
propose the multiple rally-point social spatial group query
(MRGQ) that chooses a suitable rally point from the multiple
points and the corresponding best group, byminimizing spa-
tial distance between group members to the best rally point.
Fang et al. [12] propose a spatial-aware community (SAC),
which is a connected c-core where the members in the result-
ing group are located within a spatial circle of minimum
radius. SAC also maintains the minimum acquaintance con-
straint. Furthermore, Shen et al. [39] investigate the problem
of computing the radius-bounded k-cores (RB-k-cores) that
aims to find cohesive subgraphs satisfying both social and
spatial constraints on large geo-social networks. By consider-
ing the constraint of users’ spatial information in k-truss
search, Chen et al. [10] study the co-located community
search to find the maximum co-located communities.
Although this work also uses k-truss to measure the commu-
nity, its goal is to find the maximum community. The flexible
socio-spatial group queries [15] are proposed to find the top k
groups w.r.t. multiple POIs where each group follows the
minimum social connectivity constraint. In addition, Li et al.
[23] propose to find a set of skyline cohesive groups, in which
each group cannot be dominated by any other group in terms
of social cohesiveness and spatial cohesiveness. Chen et al.
[11] propose a novel geo-social group model, equipped with
elegant keyword constraints. Luo et al. [27] study the attri-
bute constrained co-located community (ACOC) search,
which returns the smallest community that satisfies three
properties: i) structural cohesiveness; ii) spatial co-location;
and iii) attribute constraint. While the TCS-SSN [4] is pro-
posed to retrieve a maximal set with high social influence,

ZHU ETAL.: CONTINUOUS GEO-SOCIALGROUP MONITORING IN DYNAMIC LBSNS 7817

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

small traveling time, covering certain keywords, and contain-
ing a query social-network user. In addition, Almaslukh et al.
[6] retrieve the most recent k objects that are posted within
spatial range R and are posted by u’s friends or friends of
friends based on a discrete social distance. The k objects are
ranked based on the time to retrieve the most recent objects
from u’s direct friends. Apon et al. [7] investigate the top-k
flexible socio-spatial keyword-aware group query, which
finds the best k groups of varying sizes around different
points of interest (POIs), where the groups are ranked based
on the social and textual cohesiveness among members, spa-
tial closeness with the corresponding POI, and the group
size. In addition, a social group query problem is proposed to
consider the trust among the members of the group [26]. To
solve this problem, a multi fuzzy-constrained strong simula-
tion matching model is designed based on multi-constrained
simulation.

In summary, the problem settings of the aforementioned
existing works are different from CGSGM. In particular,
they do not study the dynamic change of the query results
caused by the movements of users, which is the main focus
of this work. Although Almaslukh et al. [6] study the
dynamic change of the query results, it returns the most
recent k objects instead of the the social group, which is dif-
ferent from our work. Moreover, the size of geo-social
groups returned by CGSGM is fixed, which introduces sig-
nificant challenges to our work.

3 PRELIMINARIES

Given a location-based social network (LBSN), we focus on
continuously finding geo-social groups of moving users
located in monitored spatial regions, where each user may
be continuously moving. In this paper, we assume an envi-
ronment where each of the moving objects is equipped with
a location detection device, e.g., a smart phone with GPS.
The moving users report their locations periodically. With
respect to the spatial constraint, we denote the euclidean
distance between a user u and a query location ql by
disðu; qlÞ. For continuous evaluation of spatio-temporal
queries on moving users, where user locations may change
constantly, two models may be considered: (1) updates are
pushed into the query processor as soon as they are avail-
able (e.g., as in [28]); (2) the query processor periodically
pulls the current locations of the objects for query process-
ing in order to update the query answer [29]. In this paper,
we adopt the second model and assume that the query pro-
cessor pulls the current locations of the objects at a sched-
uled time instance to generate/update the query answer for
the query issuer.1

In order to find a social cohesive group of users in a
social network, similar to other related works on geo-social
network, CGSGM uses k-truss [34] as the basis of social con-
straint to restrict the result group. In this section, we first
introduce the related definitions and properties of k-truss,
based on which the CGSGM problem is formulated.

Consider an undirected graph G ¼ ðV;EÞ, where V is the
set of vertices and E is the set of edges. A triangle in G is a

cycle of length 3. Let u; v; w 2 V be the three vertices on the
triangle, denoted by 4uvw. We first define the notion of
common neighbor and support of an edge, respectively.

Definition 1. (COMMON NEIGHBOR). Given an edge
eðx; yÞ, we say z is the common neighbor to eðx; yÞ iff eðx; zÞ
and eðy; zÞ 2 E. In other words, x; y; z form a triangle.

Definition 2. (SUPPORT). The support of an edge eðu; vÞ 2 E
in G, denoted by supðe;GÞ, is defined as jf4uvw : w 2 V gj.
When the context is obvious, we replace supðe;GÞ by supðeÞ.
Since w is a common neighbor of (u; v), the support of eðu; vÞ is
the total number of common neighbors to eðu; vÞ.
With the definition of support, k-truss [9] is defined as

follows. Intuitively, a k-truss is subgraph in which each
edge eðu; v) has at least k-2 common neighbors. Let G½W �
denote a subgraph induced by a group setW � V .

Definition 3. (k-TRUSS GROUP.) Given a group setW and an
integer k � 2, W is a k-truss group, if there exist at least one
induced subgraphG½W � satisfying the following two conditions:

1) k-truss. G½W � is a subgraph of G, denoted as G½W � �
G, such that 8e 2 EðG½W �Þ, supðe;G½W �Þ � ðk� 2Þ;

2) Connected. G½W � is connected.
For example, as shown in Fig. 1, group {u0; u1; u2; u9; u7;

u8; u5} is 4-truss group. Notice that the support of edges in its
induced graph are not less than 2 except the edge eðu5; u9)
whose support is 1. By removing edge eðu5; u9), the subgraph
is still is connected and satisfied as a 4-truss. Based on the
observation, we devise an algorithm to check whether a
group is k-truss. The main idea is to remove an edge whose
support is less than k-2 iteratively until we find the induced
subgraph is a k-truss or at least one node is disconnected
from other nodes. That is, if there exists one node discon-
nected from other nodes, such a group is not a k-truss group.

To facilitate our discussion, we define the trussness of a
subgraph, an edge, and a vertex as follows.

Definition 4. (SUBGRAPH TRUSSNESS). The trussness of a
subgraph H � G is the minimum support of edges in H,
denoted by tðHÞ = min{supðe;HÞ : e 2 EðHÞ}.

Definition 5. (EDGE TRUSSNESS). The trussness of an edge
e 2 EðGÞ is the maximum trussness of e in all the subgraphs,
i.e., tðeÞ ¼ maxH�GfftðHÞ : e 2 EðHÞ}.

Definition 6. (VERTEX TRUSSNESS). The trussness of a ver-
tex v 2 V ðGÞ is the maximum trussness of v in all the sub-
graphs, i.e., tðvÞ ¼ maxH�GfftðHÞ : v 2 V ðHÞ}.
The social cohesiveness group defined by k-truss can

be generalized using other dense subgraph definitions,
such as the k-core group, and k-edge-connected compo-
nent community.

3.1 Problem Formulation

In this section, we formally define the CGSGM query.
Problem Statement 1. CGSGM Given a social graph G =

(V;E), where each vertex v 2 V is a candidate attendee whose
location at time instance ti (where ti 2 ½t1; t2�) and any two mutu-
ally acquainted vertices u and v are connected by an edge eu;v. A

1. Note that the updates could be very frequent (i.e., near real time)
to meet the needs of the clients.

7818 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

continuous geo-social group monitoring query CGSGM over
moving users hd; p; ql; ki continuously monitors all the k-truss
groups of size p from G between time instance t1 and time
instance t2 where the distance of every result user to the query
location ql is less than d, i.e., 8v; disðv; qlÞ � d.

Theorem 1. The CGSGM query is NP-hard.

Proof: For each time instance, we return all the k-truss
groups with a fixed size p. We prove the NP-hardness of
our CGSGM problem by reducing from a decision version
of the well-known NP-hard Maximum Clique problem, that
is, checking whether there exists a non-empty k-clique in
graph GðV;EÞ. We construct an instance of CGSGM for
graph GðV;EÞ with moving users hd; p; ql; ki, by setting the
parameters k ¼ p and d ¼ þ1 such that every user v 2 V
satisfies disðv; qlÞ � d. A k-truss of size p ¼ k is a k-clique,
because every edge ðv; uÞ 2 E has exactly k� 2 triangles
and thus each vertex v has k� 1 neighbors. Thus, the deci-
sion problem of Maximum Clique is a Yes-instance if and
only if the corresponding of our CGSGM is also a Yes-
instance. This completes the proof.

Since an appropriate monitoring distance may not easy
to be decided by a restaurant, we further study the top N
CGSGM problem, which finds top N result groups at each
time instance. To rank the result groups, we first define the
group distance for a group as the measure below.

Definition 7. (GROUP DISTANCE). Given a k-truss group g
of size p, we denote maxdisðg; qlÞ as the group distance to
query location ql, and maxdisðg; qlÞ ¼ disðv; qlÞ iff 8v0 2 g,
disðv; qlÞ � disðv0; qlÞ where v 6¼ v0.

Problem Statement 2. Top N CGSGM query. Given a social
graph G = (V;E), where each vertex v 2 V is a candidate attendee
whose location at time instance ti (where ti 2 ½t1; t2�) and any two
mutually acquainted vertices u and v are connected by an edge
eu;v. The top N CGSGM query over moving users hN; p; ql; ki
continuously monitors top N k-truss groups RG of size p from G
between time instance t1 and time instance t2 such that each result
group g 2 RG;maxdisðg; qlÞ � maxdisðg0; qlÞ where g0 =2 RG.

Note that the social changes may occur during the query
monitoring period. For simplicity, we first address the prob-
lems without social changes and then handle the social
changes of the social network (see Section 7).

3.2 K-Truss Index

In this section, we first introduce a k-truss index from [17]
by maintaining the truss information to check whether a
user is qualified to be a result user by its corresponding
edge’s trussness.

We first apply a truss decomposition algorithm [38] on
the graph G, which computes the trussness of each edge,
denoted as tðeðu; vÞÞ. For each vertex v 2 V , we sort its
neighbors N(v) in descending order of the edge trussness
tðeðu; vÞÞ for u 2 NðvÞ and set the maximum edge trussness
as the v’s trussness. For each distinct trussness value k � 2,
we mark the position of the first vertex u in the sorted adja-
cency list where tðeðu; vÞÞ ¼ k. This supports efficient
retrieval of v’s incident edges with a certain trussness value.
We also use a hash table to keep all the edges and their
trussness values. This is the k-truss index.

4 BASELINE FOR CGSGM

To address the CGSGM problem, which is to find all the
k-truss groups of size p corresponding to the query position
ql and query distance threshold d, an idea is to first obtain
the users inside the circle with the radius d centered at ql,
called monitoring circle (denoted as Cm), and then perform
k-truss decomposition (called KTD) [38] to obtain the quali-
fied users at a scheduled time instance, and finally eumerate
all the possible groups of size p from these qualified users to
return all the k-truss result groups.

Before proposing the baseline, we first discuss how to
compute the initial results efficiently.

4.1 The Initial Results Computation

Given a CGSGM hd; ql; k; pi query at the initial time instance,
a natural idea is to first scan all the users to obtain a set of can-
didate users Scan. A candidate’s distance to query location ql
should be no greater than d, while her trussness is also not
less than k. The trussness of users may be exploited to filter
unqualified users, termed as vertex trussness filtering, is pre-
sented in Lemma 1. To efficiently utilize this vertex trussness
filtering, we should precompute the trussness for each user
before the query is processed, as stored in our k-truss index.
After that, we invoke the k-truss decomposition function to
remove the users who can not be a member of k-truss. This is
called k-truss decomposition filtering, as depicted in Lemma 2.
Notice that KTD is implemented by revising the truss
decomposition algorithmwhen setting the initial truss value
as k. After obtaining the qualified users (i.e., the maximal
k-truss), a basic idea is to enumerate candidate groups of size
p by invoking a branch and bound (BB) algorithm.

Lemma 1. Vertex trussness filtering. Given a CGSGM query
hd; p; ql; ki, the current feasible solution UI , a new user u can
be safely filtered iff its trussness is less than k.

Proof: The lemma holds since the vertices with truness <
k do not meet the requirement of k-truss in Definition 3.

Lemma 2. Maximal k-truss filtering. Given a user u and the
maximal k-trussMT , u is qualified as a member of k-truss of size
p (� jMT j) iff u 2MT . That is, if u is not inMT , it can be safely
filtered from the group combination for forming the k-truss.

Proof: The lemma holds since the vertices that are not a
part of the maximal k-truss clearly cannot meet the struc-
tural cohesiveness requirement in Definition 3.

Through analysis, the branch and bound idea explores
many invalid combinations, thus it is inefficient to answer
the CGSGM query.

Improvement by the CNNE strategy. We argue that BB is
not efficient to form a valid combination by fetching a user
randomly. Thus, we propose a new expanding strategy,
common neighbor or neighbor expanding (CNNE), to quickly
produce the feasible solutions, which also explores some
effective pruning and filtering techniques.

For the sake of expanding a valid common neighbor, we
introduce the edge trussness filtering as follows.

Lemma 3. Edge Trussness filtering. Given a CGSGM query
hd; p; ql; ki, a new edge can be safely filtered iff its trussness is
less than k.

ZHU ETAL.: CONTINUOUS GEO-SOCIALGROUP MONITORING IN DYNAMIC LBSNS 7819

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

Assume that one common neighbor v for edge eðx; y) is
considered for expansion. According to the edge trussness
filtering, if the truss of one edge eðv; x) (or eðv; y)) is less than
k, such a common neighbor v is not valid for expansion.

The CNNE strategy. To quickly form a feasible truss
group, it is a natural idea to use one edge’s common neigh-
bor to expand the current group so that this can increase
this edge’s support. For introducing this idea in detail, let’s
reconsider Example 1. Similarly, we first compute the maxi-
mum 3-truss set Scan ¼ {u0, u2, u3, u4, u6, u7 u9} for the initial
time instance. After that, group combination exploration is
performed. We also choose the user u0 in the running exam-
ple. Then one u0’s neighbor u2 whose edge trussness is
greater than k is selected according to the property of a con-
nected k-truss. After that, we may select the common neigh-
bor of edge eðu0; u2Þ in the intermediate set UI to expand UI .
Continue with these steps until all the possible combina-
tions are enumerated. However, two key questions may
arise during expanding UI :

� Which edge should be first selected to expand its
common neighbors when there are many edges in
UI?

� Is it correct to always select a common neighbor to
expand UI?

To answer these two questions, let’s show an example in
Fig. 1. Give a CGSGM query hd, ql, 3, 5i at time instance t1.
For this query, we first select u0 and its neighbor, e.g., u2. At
this time, for branch (u0, u3) to become a 3-truss, the support
of edge eðu0, u3) should be at least 1. Thus, at least one com-
mon neighbor of eðu0, u3) should be added to the group to
support this edge. Since the common neighbors of edge
eðu0; u2) are u3 and u9. At this moment, we have two choices
to expand UI=fu0; u3g. If we select u3, then UI becomes
fu0; u2; u3g, which has three edges. Notice that the support
of all these three edges is not less than 1. Now, we should
decide how to expand UI to be a 3-truss of size 5. If we
always continue to expand one edge’s common neighbor,
e.g., u9; u4, we can find only one feasible group fu0; u2; u3;
u4; u9g. However, group fu0; u2; u3; u7; u6g is missing in the
final results since both u7 and u6 are not the common neigh-
bor of any edge in fu0; u2; u3g.

From the above example, we can see that it is not a good
idea to always select a common neighbor to expand the
intermediate group. Thus, we develop Lemma 4, for one
edge’s support w.r.t the current UI .

Lemma 4. Given an intermediate set UI , if the support of an edge
e, denoted as sup(e), is less than k-2, UI may be expanded as a
feasible solution only if there are at least k-2-supðeÞ common
neighbors to be added to UI ; Otherwise, this branch can be
safely pruned.

To answer these two questions, we observe that there
exist two cases with respect to edges’ support for an inter-
mediate solution set UI where jUI j is smaller than p.

� Case 1. All edge’s support is not less than k� 2.
� Case 2. There exist at least one edge with support

less than k� 2.
Accordingly, in order to efficiently expand one branch, we

propose a new expanding scheme, called edge support based

decision (ESD) scheme, which mainly chooses the common
neighbors of the edge whose support is less than k-2 or the
neighbors of users when all the edge’s support is equal or
larger than k-2 w.r.t jUI j, to expand the intermediate solution
set UI iteratively. Thus, the above two cases are addressed as
follows.

(i) For the first case, we have two situations: (1) if the size
of UI is p-1, we follow Lemma 5 below; (2) otherwise, we
should fetch the neighbors of users instead of the common
neighbors to expand current UI .

Lemma 5. Given an intermediate set UI of size p-1, the support
of all the edges is not less than k-2. The seed UI can expand as a
feasible solution only if there must be one common neighbor of
one edge for adding to UI .

However, for the second situation, many neighbors of UI

should be explored to expand the current group and a lot of
branches are produced. However, some branches are invalid.
To reduce these invalid branches, we propose Lemma 6 to
check whether a given neighbor is valid to form a feasible
branch.

Lemma 6. Consider an intermediate set UI where the support of
all the edges is not less than k-2 and one new user v is one
neighbor of UI . UI [fvg is qualified as a feasible solution only
if there exists one edge eðv; xÞ (x 2 UI) whose trussness is not
less than k.

In Fig. 1, give a CGSGM query hd; ql; 3; 4i and current
UI= fu0; u3; u4g. Since the size of UI is 3, if we expect
fu0; u3; u4g to become a 3-truss of size 4, we can’t add
one neighbor of nodes, e.g., u7, u8, according to Lemma 3.
We should add one common neighbor of edge eðu0; u3),
e.g., u2, u9 and u1, to be a 3-truss of size 4, while there is
no commnon neighbor for edges eðu0; u4) and eðu3; u4).

(ii) With regard to the second case, since there may exist
several edges whose support is smaller than k-2, it is neces-
sary to design a scheme to decide an appropriate edge e for
expanding its common neighbors.

Deciding an Appropriate Edge. For efficient expanding one
branch, it is involved in two aspects: (1) if one branch can
not produce a good feasible solution, it is necessary to ter-
minate this branch quickly; and (2) otherwise, it is impor-
tant to produce the good feasible solution earlier.

With regard to the first aspect (i.e., terminate this
branch quickly), the size of the valid common neighbors
of the edge e, denoted as jCNðeÞj, is essential for expand-
ing one branch. That is, if that size is smaller, the num-
ber of combinations to be examined is less. Thus if we
select the edge whose common neighbor size is small to
expand current branch, we can reduce the number of
combinations exploration. For example, given the current
UI= fu0; u8; u9g, the common neighbors of eðu0; u9Þ are
fu5; u1; u2; u3g, while the common neighbors of eðu8; u9Þ
only contains u5. Thus for this, we choose to use u5 for
edge eðu8; u9Þ as the expanding user and quickly deter-
mine fu0; u8; u9; u5g as a feasible group by only checking
one combination. In contrast, if we decide eðu0; u9Þ as the
expanding edge, the number of combinations checking is
4, that requires to check more combinations than using
edge eðu8; u9Þ.

7820 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

Moreover, it is vital for considering the remaining support
of one edge as defined in Definition 8 for the first aspect.

Definition 8. (REMAINING SUPPORT.) Given a sub-graph
G0 and social constraint c, we say the remaining support of
edge e, denoted as dsupðeÞ, is k� 2� sup0GðeÞ, where sup0GðeÞ
is the support of e with respect to G0 and is smaller than k-2.
Notice that if the support of e with respect to G0 is not less than
k-2, then dsupðeÞ=0.

The idea behind remaining support is that we need to add
dsupðeÞ commnon neighbors to support this edge to be a

k-truss. Thus, we have a lemma, denoted as support pruning.

Lemma 7. Given an intermediate set UI , if the size of one edge’s

common neighbors is smaller than dsupðeÞ, UI can be safely
pruned.

If the remaining support of one edge in UI is smaller, we
require to expand less users for supporting such an edge.
Thus, this can reduce the number of combinations examina-
tion. Therefore, according to the size of valid common
neighbors (jCNðeÞj) and remaining support (dsupðeÞ), we
give priority to selecting the edge whose dsupðeÞ is smaller
than jCNðeÞj for expansion. This is because the k value in a
query is always very small, while the size of common neigh-
bors may be very large.

From the above CNNE strategy, however, there is one
case that current branch combining the common neighbor
may not produce one feasible solution. For example, con-
sider a CGSGM query hd, ql, 4, 4i and the current intermedi-
ate result UI ¼ fu0; u2; u3g generated by the CNNE strategy.
If we choose to use the common neighbor u4 to expand, we
can not produce a feasible solution finally. The main reason
is that the diameter of fu0; u2; u3; u4g is 2, which can not sat-
isfy the diameter property of a connected k-truss below.
Thus, we also propose a more effective pruning strategy, as
shown in Lemma 8, by exploiting this diameter property.

Property 1. The structural diameter of a connected k-truss with
n vertices is no more than b2�n�2k c [10].

Lemma 8. Given a social graph G, and an intermediate set UI �
G of size n, for vertex v, u 2 UI , UI becomes a connected
k-truss only if gd(v; u;GÞ � b2�n�2k c, where gd(v; u;G) denotes
the graph distance between u and v in G.

For obtaining the common neighbors for one edge eðx; y),
we have two ways: (1) online computing the common
neighbors, which checks the neighbors of one vertex x
whose trussness is larger than k and also check the neighbor
with y is also edge connected and the corresponding truss-
ness is also larger than k; (2) offline precomputing the com-
mon neighbors with the minimal truss since we do not
know the k value before the query comes. Moreover, during
the query processing, we just choose the common neighbors
whose trussness is larger than k online.

This common neighbor expanding is mainly dependent
on the support of the edge. If the support does not satisfy,
we continue to add the nodes to satisfy the support of this
edge.

Different from the branch and bound by randomly fetch-
ing users to form the combinations, the common neighbor

or neighbor expanding (CNNE) strategy mainly explores
the group combinations by expanding the common neigh-
bors of edges or neighbors of users in UI in each iteration
with the help of ESD scheme and utilizing effective filtering
strategies (i.e., Lemma 4, 5 and 6). The pseudo-code is
shown in Algorithm 3. Similar to the BB strategy, our
CNNE mainly expands the branch by fetching the neigh-
bors or the common neighbors from the remaining users set
UR to form the intermediate solution set UI . UR is initialized
with the maximal k-truss MT . For the expanding process,
we first use the ESD scheme to just check whether all the
edges’ support in UI is not less than k-2. In the sequel,
CNNE expands the current UI by selecting one user from
remaining users UR according to the e status. For each user
in UR, we check whether it is common neighbor or neighbor
according to whether e exists and continue to expand the
branch. If for current jUI j, there is no valid user for expand-
ing, i.e., isExpanding ¼ false, we just terminate this branch.

Fig. 3 shows an example for illustrating the CNNE strat-
egy. Give a CGSGM queryhd, ql, 3; 5i for time instance t1.
According to the order in UR ¼{u0, u2, u3, u4, u6, u7, u9} ini-
tialized with the maximal 3-truss set, u0 and u2 are first
fetched to form current UI . By selecting a vertex from UR to
combine {u2, u0} according to the CNNE strategy, we first
consider the common neighbor u3 of eðu0; u2) and the inter-
mediate solution UI becomes fu2, u0, u3g. At this time, the
support of all the edges (i.e., eðu0; u2), eðu0; u3) and eðu3; u2)
) is 1 and satisfy the truss condition. Thus, we need to get
one neighbor of UI to expand and u4 is selected to form UI ¼
fu0, u2, u3; u4g. Also for current UI , the support of all edges
is 1. According to Lemma 5, since the size of UI is 4 (i.e.,
p-1), we should combine a common neighbor of one edge
and only u9 is the common neighbor of the edges. Thus u9 is
examined to combine UI which becomes fu0, u2, u3, u4 u9g.
Now, the size of UI is 5, so we check whether UI is a con-
nected 3-truss and find fu0, u2, u3, u4, u9g as a result group.
After that, we go back to branch fu0, u2, u3g and consider
another neighbor u6 and UI becomes fu0, u2, u3, u6 g. Now,
only the support of edge eðu0; u6) is 0, so we add the comm-
non neighbor of this edge to support this edge. Accordingly,
u7 is inserted into UI . Similarly, another result group fu0, u2,
u3, u6, u7g is found. In the sequel, we continue to combine
neighbor u7 and u9 for current UI= fu0, u2, u3g, but we find
that these two neighbors can not produce a valid branch.
Continue with the above steps using CNNE until UR

becomes empty and the algorithm safely terminates.

Fig. 3. An example of CNNE.

ZHU ETAL.: CONTINUOUS GEO-SOCIALGROUP MONITORING IN DYNAMIC LBSNS 7821

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

4.2 The Baseline Algortihm

For each time instance, we compute the CGSGM query from
stratch using the initial result computation algorithms.
Based on the above two initial result computation algo-
rithms, our baseline has two algorithms, namely Baseline-
BB and Baseline-CNNE.

In fact, during the query processing, the baseline recom-
putes the support of all users from scratch when users are
moving into or move out of the monitor circle, i.e., the circle
centered at ql of radius d, which do not exploit the interme-
diate results to help further query processing. Thus, a natu-
ral idea is to strike for an efficient way to maintain some
intermediate results to accelerate the following query proc-
essing for the new time instance. Motivated by this, our
idea is to design an incremental algorithm by maintaining
the neighbors of users and edge’s common neighbors inside
the monitor circle in each time instance.

5 IMPROVED INCREMENTAL MONITORING

ALGORITHM FOR CGSGM

In this section, we propose an improved incremental moni-
toring algorithm, namely IIMA, consisting of initial result
computation and improved processing of multiple users
update. For the initial result computation, we employ the
baseline with CNNE to compute the initial result with the
candidate users Scan, at the same time we maintain the sup-
port, common neighbors and neighbors under the current
users inside the monitoring circle Cm. Thus, our main task
is to efficiently process the users updates.

In the monitor framework, only the users are moving. We
assume that the query position is static. For simplicity, we
first analyze the case where only one user moves/updates.
Next, we discuss the general cases where multiple users
update/move simultaneously.

5.1 Processing of One User Update

For one user update, there are two scenarios with respect to
the monitor circle Cm, i.e., the user is outside of the circle
and inside the circle. For a user, the user is already a result
user or an non-result user. A user update contains the user
id u:id, and its old and new coordinates. Thus, there are
four cases.

(1) An inside user moves out of (leave) the circle Cm. For
this case, it invalidates some result groups and thus does
not produce any new connected k-truss. If the trussness of
this user is smaller than k, we need do nothing. Otherwise,
we need to remove this user from Scan and update the sup-
port, the common neighbors to the edges whose trussness
under G is not less than k, neighbors of the users in Scan.

Algorithm 1. Delete One User (DU)

Input: The previous users set Scan, a query CGSGM hd; ql; k; pi,
and one leaving user u

1 if tðuÞ < k then
2 return;//This user never changes the results;
3 US(sup; u);
4 Update the neighbors of w and common neighbors for each

w 2 ðNGðuÞ \ ScanÞwith u;

(2) An outside user still moves outside the monitoring
circle. This case does not alter any result.

(3) An inside user is still moving into the circle Cm. For
this case, the query result does not change and we need not
do anything.

(4) An outside user moves into the circle Cm. For this
case, new k-truss groups may be generated due to the
new users adding if the trussness of this user is not less
than k. To efficiently decide whether the new user can
produce a new k-truss group with the original users, we
propose an algorithm for adding one new user. When a
new user u is moving into the circle, first we need to
check its truss value is no less than k. If it is not, this user
can not produce a connected k-truss and we terminate the
query processing. Otherwise, we need to update the sup-
port, common neighbors and neighbors of u. If the maxi-
mal support among these egdes involved in u is less than
k-2, adding this user also does not produce a new k-truss.
After that, we invoke the k-truss decomposition function
to get the maximum k-truss and check whether the maxi-
mum k-truss contains u. If it does not, adding u does not
produce a new connnected k-truss and we terminate the
query process. Otherwise, we invoke CNNE by initiating
UI with u to get all the k-truss groups including u of size
p from the maximum k-truss. Finally, we return all the
result groups in Skt.

Algorithm 2. Add New User (AU)

Input: The current users set Scan, a query CGSGM hd; ql; k; pi,
and one adding user u

Output: The new connnected k-truss groups
1 if tðuÞ < k then
2 return;//This user never changes the results;
3 UpdateSupport(sup; u);
4 Update the neighbors of w and corresponding common

neighbors for each w 2 NGðuÞ \ Scan with u;
5 ifmaxfsupðv; uÞgjv 2 V Þ < ðk� 2Þ then
6 return ? ;
7 MK KTD(u; Scan);
8 ifMK does not contain u then
9 return ? ;
10 Skt CNNE(u,MK, k);
11 return Skt;

The basic idea of update support (US) function is to first
check whether this new user is deleted from or added to the
monitoring circle. If this user is deleted from Scan, we check
each edge eðx; yÞ to see whether it may form a triangle with
u. If it is, the support of eðx; yÞ minus one and other two
edges are deleted. While for adding user u, we also check
each edge eðx; yÞ to see whether it may form a triangle with
u. If it is, each support of three edges is added by one.

5.2 Improved Processing of Multiple-Users Update

So far we have considered each type of updates individu-
ally. In this section we deal with concurrency issues that
may arise in the general case, where updates of all four
types arrive simultaneously at the system for multiple
users. Our aim is to process the updates in a batch to save
as much computation as possible.

7822 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

A direct idea is processing the updates one by one in cer-
tain order. Consider the example in Fig. 4 to show multiple
users’ updates for query hd, ql, 3; 5i. The previous candidate
users set Scan is fu0, u2, u3, u4, u6, u7; u9; u11g. For those
updates with red arrows shown in the figure, e.g., u8 moves
into the circle and u2 moves out of (leave) the circle, if we
process the update of u8 first (case 4), a new user u8 is added
and the AU algorithm is invoked to check whether there is a
new connected 3-truss to be generated. Accordingly, we
find a new connected 3-truss group including u2. However,
this new group is not a valid 3-truss, since u2 moves outside
the circle at the same time. On the other hand, if we process
the updates of u2 and u6 first by deleting these two users,
then process the update of u8. This processing order produ-
ces two new connected 3-trusses fu0; u3; u7; u8; u9g and
fu0; u3; u4; u8; u9g, which are valid. Although a new user u5
is also moving into the circle, we can find the new 3-truss
group by including u8 and u5 after processing u8. Thus,
selecting a good order to process the updates is very essen-
tial for the query processing.

Motivated by the above example, we decide the order to
process location updates based on whether the user updates
affect the group generation. One feasible idea is processing
the leaving users first and then processing the adding users.
Moreover, regarding the IMA algorithm, it spends many
time’s k-truss decomposition for adding each user. Based
on this, we propose an improved multiple user update algo-
rithm, which only does the k-truss decomposition for add-
ing all users.

Algorithm 3. The Improved Multiple Users Update
Algorithm

Input: A social graph G ¼ ðV;EÞ, a query CGSGM hd; ql; k; pi,
and previous candidate users set Scan

Output: The new k-truss groups
1 for each moving user u do
2 if u 2 Scan then
3 if disðu; qlÞ > d then
4 DU(Scan; u);
5 else
6 if disðu; qlÞ � d and tðuÞ � k then
7 insert u into Snew;
8 for each user u 2 Snew do
9 UpdateSupport(sup; u);
10 Update the neighbors of w and corresponding common

neighbors for each w 2 NGðuÞ \ Scan with u;
11 MK KTD(Snew; Scan);
12 for each user u 2 ðSnew \MKÞ do
13 Skt CNNE(u, ðMK n SnewÞ, k);
14 insert u into ðMK n SnewÞ;
15 return Skt;

Our idea is processing the updates simultaneously. We
first check which case each moving user belongs to. Accord-
ing to the four cases, to delete a user who is in Scan, we
remove this user from Scan and update the supports of
involved edges, common neighors and neighbors. With
regard to adding user whose truss value is greater than k
and who is also not in Scan, we insert it into adding user set
Snew. After that, we update the supports of involved edges,
common neighors and neighbors for those users in Snew.

Then obtain the maximal truss MK by performing k-truss
decomposition using Snew and Scan. Notice that we perform
k-truss decomposition only once instead of many times of
truss decomposition in IMA [43]. Finally, we explore the
possible combinations of each user in ðSnew \MKÞ with
ðMK n SnewÞ by invoking CNNE funtion.

An example of improved processing of multiple user
updates for query hd, ql, 3; 5i is shown in Fig. 4. The previ-
ous candidate users set Scan is fu0, u2, u3, u4, u6 u7; u9; u11g.
Then we process each moving user one by one. As the
updates of u0 and u3 do not alter anything, we skip those
updates. For the updates of u2 and u6, since they move out
of monitoring circle, we need to delete them and update the
corresponding support, neighbors and the common neigh-
bors. While for u5 and u8, they are added to Snew. Thus, we
need to combine these two users with the users in MK n
Snew. Instead of doing k-truss decomposition with u5, u8,
respectively (see IMA algorithm in [43]), we do k-truss
decompostion with u5, u8 together and get the maximal 3-
truss MK ¼ { u0, u3, u4, u5, u8, u9}. We first combine u5 with
ðMK n SnewÞ ¼ f u0, u3, u4; u7, u9} by invoking the CNNE
function. For this, we get three result groups fu0,
u3; u4; u7; u5g, fu0, u3; u4; u9; u5g and fu0, u3; u9; u7; u5g of
size 5. After that, u8 is explored, we also obtain five 3-truss
groups fu0, u3; u4; u5; u8g, fu0, u3; u4; u7; u8g, fu0, u3; u9;
u5; u8g, fu0, u3; u9; u7; u8g and fu0, u5; u7; u9; u8g and the
query processing terminates.

6 EXTENSION TO TOP N CGSGM QUERY

In this section, we propose the approach to monitor the top
N geo-social groups, which includes initial result computa-
tion and query processing for a new time instance.

6.1 Initial Result Computation

Since the top N geo-social group monitoring returns the top
N k-truss groups according to the group distance, obtaining
the feasible groups with small distance earlier is a desired
way to filter many unqualified groups a lot. For accelerating
the exploration of the possible result groups, we design a
distance ordering to explore the combinations which is also
guided by the CNNE strategy to effectively form the feasi-
ble groups with small distance earlier. The main idea of dis-
tance ordering is to explore the combinations of users by
one user at a time according to the distance ordering.

With regard to the distance ordering, we also propose an
early termination condition as follows. Let max dis be the
maximal distance of users in the top N k-truss groups

Fig. 4. An example of multiple-users update.

ZHU ETAL.: CONTINUOUS GEO-SOCIALGROUP MONITORING IN DYNAMIC LBSNS 7823

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

(denoted by Skt) to query location, i.e., max dis =Max(dis
(u; ql), u 2 Skt).

Early Terminate Condition. For the current top N result
groups achieved so far with the maximal distance max dis
and the current visiting user u, the query process can safely
terminate iff dis(u; ql) is greater thanmax dis.

The pseudo-code is shown in Algorithm 4. Similar to the
initial results computation in Baseline, we filter those
unqualified users and sort the remaining users according to
their distance to query location in ascending order. After
that, we also invoke the k-truss decomposition function and
obtain the sorting users of the maximal k-truss stored in a
min-heap H MT (Line 4). Let UV denote the visited users
set. When a new user e is coming, we first check whether its
distance to query location is greater than max dis. If it is,
the query processing terminates. Otherwise, we continue to
check whether the size of UV is equal to p-1. If it is, e is
inserted into UV . Then we check whether UV is a k-truss and
update the result if possible (Lines 9-12). If the size of UV is
smaller than p-1, we put e into UV (Lines 13-14). Otherwise,
we invoke function CNNE, to explore the combinations of
the new user (i.e., e) with the users in UV (Lines 15-17).

Algorithm 4. Initial Result Computation for TOP-N
(IRC_TOP-N)

Input: A social graph G ¼ ðV;EÞ, a query CGSGM hn; ql; k; pi,
users’ location array Aloc at the initial time instance,

Output: The top n k-truss groups Skt

1 for each user u 2 Aloc do
2 if tðuÞ � k then
3 Insert u into sorted candidate set sortingScan;
4 H MT KTD(sortingScan, k);
5 whileH MT 6¼ ? do
6 de-heap the top entry (e; key) ofH MT ;
7 if distðe; ql) �max dis then
8 break;
9 if jUV j ¼¼ p� 1 then
10 trus insert e into UV ;
11 if UV is a k-truss then
12 updateRS(Skt,max dis, UV);
13 else if jUV j < p-1 then
14 insert e into UV ;
15 else
16 CNNE(e, UV);
17 insert e into UV ;
18 return Skt;

Fig. 5 shows an example for illustrating the IRC_TOP-N
algorithm for query h2, ql, 3, 5i. From Fig. 1, we get the
sorted maximal 3-truss is {u0, u9, u7, u3, u4, u6, u11, u2, u1, u5,
u8, u10}. According to the distance ordering, we first fetch

the top 5 users UV ={u0, u9, u7, u3, u4} and we check whether
UV is a 3-truss. Unfortunately, UV is not a 3-truss. After that,
u6 is examined. Different from the Baseline, we explore the
combinations of u6 with the current UV using CNNE func-
tion. By selecting a vertex from UV to combine u6 according
to the CNNE strategy, we first consider the neighbor u0 of
u6, and the intermediate solution UI becomes fu0; u6g. Then
we use CNNE to decide a common neighbor of e(u0, u6),
and u7 is selected. Now UI becomes fu0; u6; u7g. At this
time, all the edges’ support is not less than 1. In the sequel,
we select one neighbor u9 of fu0; u6; u7g and UI becomes
fu0; u6; u7; u9g. After that, we choose one common neighbor
of e(u0, u9), i.e., u3, and we find the 1st top result group
fu0; u6; u7; u9; u3g. Similarly, we find the 2nd top result
group fu0; u6; u7; u3; u4g with the maximal distance
max dist = dis(u6, ql). According to the distance ordering,
u11 is coming and the distance of u11 to ql is greater than
max dist. The query processing terminates.

6.2 Top N Group Monitoring for a New
Time Instance

Different from IMA to handle CGSGM query, we maintain
the support, common neighbor, neighbor of users in the cir-
cle centered at query location with the radius max dist,
which is the maximal distance of users in the top N geo-
social groups at the previous time instance.

When updating the query results for a new time instance,
we first utilize the IIMA algorithm to find the result groups.
However, there will be two cases after invoking IIMA algo-
rithm. (1) Top N result groups have been found. For this
case, the query processing terminates. (2) We have not
found N result groups. With regard to this case, we con-
tinue to examine the users outside the circle to explore the
possible result groups according to the distance ordering.
Take Fig. 6 as an example. Similarly, we utilize the IIMA
algorithm to find one result group fu0; u3; u8; u4; u7g for
query h2, ql, 3, 5i. Since there is no enough groups for query,
we continue to examine user u11 according to this distance
ordering to query location. Since there is no vaid common
neighbor of e(u0, u11), we terminate the combination of u11.
Then, u5 is examined. We find top 2 result group
fu5; u0; u8; u3; u4g. At this time, we can safely terminate the
query processing since the group distance of the remaining
combinations will be not less than dis(u5, ql).

7 HANDLING THE CHANGES OF SOCIAL NETWORK

For dealing with a more general case that the social network
may change over time, we discuss two main operations,
namely removing one edge (not friend any more) and

Fig. 5. An example of the IRC_TOP-N algorithm.
Fig. 6. An example of multiple-users update for top N Geo-social group
monitoring.

7824 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

inserting one edge (new friend). Since deleting one node can
be divide into deleting the neighbor edges of the node and
adding one node can be regarded as inserting the neighbor
edges and adding one node’s information, we here omit to
discussing adding/deleting nodes. For these two opera-
tions, we first discuss how to update the k-truss index.
Then, we study how to update the maintained information.

7.1 Updating the k-Truss Index

For one edge to be removed, we remove it from the hash
table and find its all common neighbors. Then we update
the support of the common neighbors by reducing one.
However, updating the trussness of one edge is complex.
First, we should decide which edges’ trussness is affected
when removing one edge. According to the trussness defini-
tion, only the edges whose trussness is less than the truss-
ness of the removed edge (denoted as tðeremoveÞ) are affected
because only the edges whose trussness greater than k are
kept during doing k-truss decomposition. A feasible way is
to do the truss decomposition from k=3 to tðeremoveÞ to
update the edges’ trussness.

In contrast, for one edge to be added, we add it into the
hash table and also find its common neighbor, update the
support of the new edge by assigning the number of com-
mon neighbors (denoted as supðenewÞ) and the support of
other two edges is added by one. For the trussness of the
new edge, it can be at most supðenewÞ+2. Thus, only the edges
whose trussness is less than supðenewÞ+2 are affected after
adding this new edge. Then we do the truss decomposition
from k=3 to supðenewÞ+2 to update the edges’ trussness.

7.2 Updating the Maintained Information

For one edge to be removed, there are three cases. i) Both the
two nodes of the edge are in the maintained information
(e.g., eðu7; u0Þ), we remove it from the maintained informa-
tion and update the neighbors and common neighbors.
Then we also find the edge’s commnon neighbors in the
maintained information and update the corresponding sup-
port. ii) Both the two nodes of the edge are not in the main-
tained information (e.g., eðu1; u2Þ). Since deleting one edge
may affect the support of other edges and vertex in the
maintained information, we check whether their support is
not less than k-2 and remove the invalid edges and vertexes.
iii) One node vs of the edge is in the maintained infromation,
while the other node vd of the edge is not (e.g., eðu1; u3Þ).
While for adding one edge, we first check whether its two
nodes are in the maintained information. If it is, we find all
the common neighbors in the maintained information and
assign the support of this edge as the number of common
neighbors. At the same time, we update the support of the
common neighbors and the corresponding edges. Otherwise,

the nodes of this edgemay be invalid. After adding this edge,
we check whether they become valid (i.e., support no less
than k-2).

8 EXPERIMENTS

In this section, we evaluate the performance of the proposed
algorithms for the CGSGM query. All the algorithms are
implemented in C++, while the experiments are conducted
on an Intel Core i5 2.3 GHz PC with 16GB RAM.

We conduct experiments on four real datasets. We simu-
late the user movements based on these datasets.

� Gowalla. It consists of 196,585 nodes and 138,337
edges for the social network. The percentage of mov-
ing users is 4.89% per minute.2

� Brightkite. It contains 58,228 users and 214,078
edges. The percentage of moving users is 6.86% per
minute.2

� Foursquare. It consists of 2,146,576 nodes and
8,919,127 edges for the social network. The percent-
age of moving users is 5.46% per minute.2

� Flickr. It consists of 214,698 nodes and 2,096,306
edges for the social network. The percentage of mov-
ing users is 6.98% per minute.3

We conduct a performance evaluation on the efficiency of
the CGSGM algorithms – we compare the latency of the pro-
posed CGSGM algorithms under various parameters (sum-
marized in Table 1, numbers in bold are the default
settings). The parameters are set according to a typical res-
taurant marketing application, where the group size is no
more than 8, the social constraint is no more than 7, and the
distance constraint is no farther than 2 km. We measure the
average latency at the time of user updates (i.e., total time/
number of time-points) as the performance metric corre-
sponding to five different parameters: (a) query distance d;
(b) group size p; (c) social constraint k; and (d) interval of
time instances. We randomly generate three groups of
CGSGM queries corresponding to each dataset where each
group consists of 100 CGSGM queries. In each experiment,
we test one parameter at a time (by fixing other parameters
at their default values). The location update is reported to
the server once per time instance. The average moving
speed is about 42km per hour. The distance of each location
update varies from 0 to 1.29km. The reported experimental
results are obtained by averaging the processing time of
queries.

TABLE 1
Parameter Ranges and Defaults Values

Parameters Range

] of selected users (p) 3, 4, 5, 6, 7, 8
] of social constraint (k) 3, 4, 5, 6, 7
distance constraint (d, km) 0.125, 0.25, 0.5, 1, 2
interval of time instances (minutes) 0.5, 1, 2, 4, 8

Fig. 7. Performance versus query distance d.

2. https://snap.stanford.edu/data/index.html.
3. https://www.comp.hkbu.edu.hk/db/book/community_search.

html.

ZHU ETAL.: CONTINUOUS GEO-SOCIALGROUP MONITORING IN DYNAMIC LBSNS 7825

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

8.1 Efficiency of CGSGM Algorithms

In this section, we compare the efficiency of the proposed
IMA and its imrpoved version (IIMA) with two baseline
algorithms, Baseline-BB and Baseline-CNNE, as well as
the top N algorithm (TOP-N) by setting N=5 in default.
Accordingly, we test the four CGSGM algorithms using
different datasets as described above. We take an offline
approach to obtain the common neighbors for each edge in
our implementation.

Effect of Distance Threshold. We first test the performance
of the four algorithms by varying query distance d. Fig. 7
shows the results of the three algorithms on Gowalla and
Brightkite dataset. As expected, when increasing the query
distance on Gowalla dataset, the query time becomes lon-
ger. This is because there will be more users to be examined
as the truss result when increasing the query range distance.
In addition, our IMA outperforms the two baseline algo-
rithms a lot because our IMA incrementally maintains some
intermediate results, e.g., trussness and common neighbors,
which can save some query process cost. The similar results
are displayed on Brightkite dataset. Since the query time of
Baseline-BB is very long, we will not show the time of Base-
line-BB in the remaining query results.

Effect of p Value. We then compare the average running time
of IMA, IIMA, Baseline-CNNE and TOP-N for processing
CGSGM queries by increasing the group size p. Fig. 8a shows
the result on the Gowlla dataset. As shown, IMA performs
much better than Baseline-CNNE because IMA maintains the

intermediate results, e.g., the support and the common neigh-
bor at each time instance to accelerate the further query proc-
essing, which reduces the time of k-truss decomposition and
the number of combinations examination.Moreover, IIMAout-
performs IMA with 10%, improvement. When the p value
increases, the query time becomes longer, as more users need
to be examined and the number of combinations becomes
larger. Note that IIMA and IMA scale better than Baseline-
CNNE by increasing the group size. The results on other three
datasets are similar to that on theGowalla dataset.

Effect of Social Constraint k. Fig. 9 compares the perfor-
mance of three CGSGM algorithms and the TOP-N algo-
rithm by varying k. For the Gowalla dataset, IMA
outperforms Baseline-CNNE significantly under various k
values because IMA incrementally examines the group com-
binationswhich avoids some redundant group combinations
compared to Baseline-CNN. IIMA is faster than IMAbecuase
IMA requires to perform many time’s k-truss decompositon
for all the adding users while IIMA does the k-truss decom-
positon only once for all adding users, which saves a lot of
time. Moreover, the processing time of both four algorithms
decreases as the k value increases. This is because there are
less valid users with trussness � k when k becomes larger.
The results on the Brightkite dataset in Fig. 9b, Flicker dataset
in Fig. 9d and Foursquare dataset in Fig. 9c show the similar
trendwith the result on the Gowalla dataset.

Effect of Interval of Time Instances. In addition, we compare
the four CGSGM algorithms by varying the interval of time

Fig. 8. Performance versus query group size p.

Fig. 9. Performance versus social constraint k.

Fig. 10. Performance versus interval of time instances.

7826 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

instances and show the results in Fig. 10. The number of user
updates in different duration is different. If the interval is lon-
ger, it is involved in more user updates. For the Gowalla data-
set, the results in Fig. 10a show the superiority of IIMA and
IMA over the Baseline-CNN algorithm. The search time of
both IMAand IIMAonly takes less than 1000ms, but the Base-
line-CNN algorithm takes more than 3000 ms, because IMA
maintains the support, common neighbors effectively to help
accelerate the query processing. Moreover, when the interval
of time instances becomes longer, which means more user
updates, the query time of IIMA, IMA and Baseline-CNN
becomes longer. Similar results on Brightkite and Foursquare
dataset are observed in Figs. 10b and 10d.

Effect of Handling Social Changes and Varying N Values. At
last, we also do the experiments to test the updating time of
handling the social changes including inserting one edge
and removing one edge on four datatsets. The social net-
work changes apply to both of the two problems. At each
time instance, we first handle the social changes and then
processing the query. During the query processing, we
assume the social network is static. Thus, handling social
changes only updates the k-truss index and maintained
information. The corresponding results are shown in
Fig. 11a. As shown, the updating time for removing one
edge takes longer than the time for inserting one edge on
each dataset because removing one edge involves in more
edges to be updated. Fig. 11b shows the results by varying
N value to test the Top-N algorithm on three datasets. As
expected, when the N value becomes larger, the algorithm
requires more time to return the topN result groups.

9 CONCLUSION

In this paper, we formulate a new query, namely, continuous
geo-social groups monitoring (CGSGM) over moving users,
aiming to identifying continuously all the social groups
appearing within a monitored geographical area. Based on
different expanding strategies, i.e., BB and CNNE, we first
propose two baseline algorithms to tackle the CGSGM prob-
lem. To address the shortcomings of the baseline algorithms,
we then propose an improved incremental algrithm, namely
IIMA, which maintains the support, common neighbors and
neighbors of the current userswhen exploring possible k-truss
groups at the time of query processing for future query proc-
essing upon new user position updates. We also formalize
and investigate the top N CGSGM query. Moreover, for han-
dling the social changes in a social network, we develop the
corresponding algorithm. At last, we conduct a comprehen-
sive performance evaluation using three real datasets to vali-
date our ideas and compare the proposed algorithms.

REFERENCES

[1] I. Afyouni and C. Ray, “A postgreSQL extension for continuous
path and range queries in indoor mobile environments,” Pervasive
Mob. Comput., vol. 15, pp. 128–150, 2014.

[2] I. Afyouni, C. Ray, S. Ilarri, and C. Claramunt, “Algorithms for
continuous location-dependent and context-aware queries in
indoor environments,” in Proc. 20th Int. Conf. Adv. Geographic Inf.
Syst., 2012, pp. 329–338.

[3] P. K. Agarwal, L. Arge, and J. Erickson, “Indexing moving
points,” J. Comput. Syst. Sci., vol. 66, no. 1, pp. 207–243, 2003.

[4] A. Al-Baghdadi and X. Lian, “Topic-based community search
over spatial-social networks,” Proc. VLDB Endow., vol. 13, no. 11,
pp. 2104–2117, 2020.

[5] M. E. Ali, E. Tanin, R. Zhang, and L. Kulik, “A motion-aware
approach for efficient evaluation of continuous queries on 3D
object databases,” VLDB J., vol. 19, no. 5, pp. 603–632, 2010.

[6] A. Almaslukh, Y. Kang, and A. Magdy, “Temporal geo-social per-
sonalized keyword search over streaming data,” ACM Trans. Spa-
tial Algorithms Syst., vol. 7, no. 4, pp. 20:1–20:28, 2021.

[7] S. H. Apon, M. E. Ali, B. Ghosh, and T. Sellis, “Social-spatial group
queries with keywords,” ACM Trans. Spatial Algorithms Syst.,
vol. 8, no. 1, pp. 1–32, 2022.

[8] N. Armenatzoglou, S. Papadopoulos, and D. Papadias, “A general
framework for geo-social query processing,” Proc. VLDB Endow-
ment, vol. 6, no. 10, pp. 913–924, 2013.

[9] B. Balasundaram, S. Butenko, and I. V. Hicks, “Clique relaxations
in social network analysis: The maximum K-plex problem,” Oper-
ations Res., vol. 59, no. 1, pp. 133–142, 2011.

[10] L. Chen, C. Liu, R. Zhou, J. Li, X. Yang, and B. Wang, “Maximum
co-located community search in large scale social networks,”
PVLDB, vol. 11, no. 10, pp. 1233–1246, 2018.

[11] L. Chen, C. Liu, R. Zhou, J. Xu, J. X. Yu, and J. Li, “Finding effec-
tive geo-social group for impromptu activities with diverse
demands,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2020, pp. 698–708.

[12] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu, “Effective community
search over large spatial graphs,” Proc. VLDB Endowment, vol. 10,
pp. 709–720, 2017.

[13] B. Gedik and L. Liu, “MobiEyes: Distributed processing of contin-
uously moving queries on moving objects in a mobile system,” in
Proc. Int. Conf. Extending Database Technol., 2004, pp. 67–87.

[14] B. Gedik and L. Liu, “Mobieyes: A distributed location monitoring
service using moving location queries,” IEEE Trans. Mobile Com-
put., vol. 5, no. 10, pp. 1384–1402, Oct. 2006.

[15] B. Ghosh, M. E. Ali, F. M. Choudhury, S. H. Apon, T. Sellis, and
J. Li, “The flexible socio spatial group queries,” Proc. VLDB
Endowment, vol. 12, pp. 99–111, 2018.

[16] W. Huang, G. Li, K. Tan, and J. Feng, “Efficient safe-region con-
struction for moving top-k spatial keyword queries,” in Proc. 21st
ACM Int. Conf. Inf. Knowl. Manage., 2012, pp. 932–941.

[17] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying
k-truss community in large and dynamic graphs,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2014, pp. 1311–1322.

[18] S. Ilarri, E. Mena, and A. Illarramendi, “Location-dependent
queries in mobile contexts: Distributed processing using mobile
agents,” IEEE Trans. Mobile Comput., vol. 5, no. 8, pp. 1029–1043,
Aug. 2006.

[19] T. Imielinski and B. R. Badrinath, “Querying in highly mobile dis-
tributed environments,” in Proc. 18th Int. Conf. Very Large Data
Bases, 1992, pp. 41–52.

[20] G. S. Iwerks, H. Samet, and K. P. Smith, “Continuous k-nearest
neighbor queries for continuously moving points with updates,”
in Proc. 29th Int. Conf. Very Large Data Bases, 2003, pp. 512–523.

[21] D. V. Kalashnikov, S. Prabhakar, S. E. Hambrusch, and W. G. Aref,
“Efficient evaluation of continuous range queries onmoving objects,”
inProc. Int. Conf. Database Expert Syst. Appl., 2002, pp. 731–740.

[22] J. Lee, S. Kang, Y. Lee, S. J. Lee, and J. Song, “BMQ-processor: A
high-performance border-crossing event detection framework for
large-scale monitoring applications,” IEEE Trans. Knowl. Data
Eng., vol. 21, no. 2, pp. 234–252, Feb. 2009.

[23] Q. Li, Y. Zhu, and J. X. Yu, “Skyline cohesive group queries in
large road-social networks,” in Proc. IEEE 36th Int. Conf. Data
Eng., 2020, pp. 397–408.

[24] Y. Li, R. Chen, L. Chen, and J. Xu, “Towards social-aware ride-
sharing group query services,” IEEE Trans. Serv. Comput., vol. 10,
no. 4, pp. 646–659, Jul./Aug. 2017.

Fig. 11. Performance of handling social changes and varying N values.

ZHU ETAL.: CONTINUOUS GEO-SOCIALGROUP MONITORING IN DYNAMIC LBSNS 7827

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

[25] Y. Li, R. Chen, J. Xu, Q. Huang, H. Hu, and B. Choi, “Geo-social
K-cover group queries for collaborative spatial computing,” IEEE
Trans. Knowl. Data Eng., vol. 27, no. 10, pp. 2729–2742, Oct. 2015.

[26] G. Liu, L. Li, G. Liu, and X. Wu, “Social group query based on
multi-fuzzy-constrained strong simulation,” ACM Trans. Knowl.
Discov. Data, vol. 16, no. 3, pp. 54:1–54:27, 2022.

[27] J. Luo, X. Cao, X. Xie, Q. Qu, Z. Xu, and C. S. Jensen, “Efficient
attribute-constrained co-located community search,” in Proc. IEEE
36th Int. Conf. Data Eng., 2020, pp. 1201–1212.

[28] M. F. Mokbel andW. G. Aref, “SOLE: Scalable on-line execution of
continuous queries on spatio-temporal data streams,” VLDB
J., vol. 17, no. 5, pp. 971–995, 2008.

[29] M. F. Mokbel, X. Xiong, and W. G. Aref, “SINA: Scalable incre-
mental processing of continuous queries in spatio-temporal data-
bases,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2004,
pp. 623–634.

[30] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual
partitioning: An efficient method for continuous nearest neighbor
monitoring,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2005,
pp. 634–645.

[31] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches to
the indexing of moving object trajectories,” in Proc. 26th Int. Conf.
Very Large Data Bases, 2000, pp. 395–406.

[32] J. Qi, R. Zhang, C. S. Jensen, K. Ramamohanarao, and J. He,
“Continuous spatial query processing: A survey of safe region
based techniques,” ACM Comput. Surveys, vol. 51, no. 3,
pp. 64:1–64:39, 2018.

[33] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. L�opez,
“Indexing the positions of continuously moving objects,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2000, pp. 331–342.

[34] S. B. Seidman, “Network structure and minimum degree,” Social
Netw., vol. 5, no. 3, pp. 269–287, 1983.

[35] C. Shen, D. Yang, L. Huang, W. Lee, and M. Chen, “Socio-spatial
group queries for impromptu activity planning,” IEEE Trans.
Knowl. Data Eng., vol. 28, no. 1, pp. 196–210, Jan. 2016.

[36] Y. Tao and D. Papadias, “Time-parameterized queries in spatio-
temporal databases,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2002, pp. 334–345.

[37] H.Wang andR. Zimmermann, “Processing of continuous location-
based range queries on moving objects in road networks,” IEEE
Trans. Knowl. Data Eng., vol. 23, no. 7, pp. 1065–1078, Jul. 2011.

[38] J. Wang and J. Cheng, “Truss decomposition in massive
networks,” VLDB, vol. 5, no. 9, pp. 812–823, 2012.

[39] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin, “Efficient comput-
ing of radius-bounded K-cores,” Proc. IEEE 36th Int. Conf. Data
Eng., 2018, pp. 233–244.

[40] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, “Efficient continu-
ously moving top-K spatial keyword query processing,” in Proc.
IEEE 36th Int. Conf. Data Eng., 2011, pp. 541–552.

[41] X. Xiong, M. F. Mokbel, and W. G. Aref, “SEA-CNN: Scalable
processing of continuous K-nearest neighbor queries in spatio-
temporal databases,” in Proc. IEEE 21st Int. Conf. Data Eng., 2005,
pp. 643–654.

[42] D. Yang, C. Shen, W. Lee, and M. Chen, “On socio-spatial group
query for location-based social networks,” Proc. 18th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2012, pp. 949–957.

[43] H. Zhu et al., “Continuous geo-social group monitoring over mov-
ing users,” in Proc. IEEE 36th Int. Conf. Data Eng., 2022, pp. 312–324.

[44] Q. Zhu, H. Hu, C. Xu, J. Xu, and W. Lee, “Geo-social group
queries with minimum acquaintance constraint,” VLDB J., vol. 26,
no. 5, pp. 709–727, 2017.

Huaijie Zhu received the BSc degree from the
Information Science Department, Kunming Univer-
sity of Science and Technology, the MSc degree
from the Computer Science Department, North-
eastern University, and the PhD degree in com-
puter science from Northeastern University, China,
in 2018. He is currently an associate professor with
Sun Yat-Sen university. His research interests
include spatial database, and data privacy.

Wei Liu received the BS degree in computer sci-
ence from Shanghai University, in 2010, the MS
degree in computer science from the South China
University of Technology, in 2013, and the PhD
degree in computer science from Sun Yat-Sen Uni-
versity, China, in 2018. He is doing a postdoctoral
fellow with Sun Yat-sen University from 2018. His
current research interests include the areas of rec-
ommendation system, and user behavior learning in
location-based social network.

Jian Yin received theBS,MS, and PhD degrees in
computer science from Wuhan University, China,
in 1989, 1991, and 1994, respectively. He is a pro-
fessor with Data and Computer Science School.
He has published more than 100 refereed journal
and conference papers. His current research inter-
ests include the areas of data mining, artificial
intelligence, and machine learning. He is a senior
member of ChinaComputer Federation.

Libin Zheng received the BS degree in computer
science and engineering from the South China
University of Technology, China, in 2015. He
is now associate professor with Sun Yat-sen
University. His research interests include spa-
tial crowdsourcing, shared-mobility, and clas-
sification crowdsourcing.

Xin Huang received the PhD degree from the
Chinese University of Hong Kong (CUHK), in
2014. He is currently an assistant professor with
Hong Kong Baptist University. His research inter-
ests include mainly focus on graph data manage-
ment and mining.

Jianliang Xu (Senior Member, IEEE) received
the BEng degree in computer science and engi-
neering from Zhejiang University, Hangzhou,
China, in 1998, and the PhD degree in computer
science from the Hong the Kong University of Sci-
ence and Technology, in 2002. He is a professor
with the Department of Computer Science, Hong
Kong Baptist University. He is an associate editor
of IEEE Transactions on Knowledge and Data
Engineering (TKDE).

Wang-Chien Lee received the BSc degree from
the Information Science Department, National
Chiao Tung University Taiwan, the MSc degree
from the Computer Science Department, Indiana
University, Bloomington, and the PhD degree from
the Computer and Information Science Depart-
ment, Ohio State University. He is an associate
professor of computer science and engineering
with Pennsylvania State University, leading the
Pervasive Data Access research group.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

7828 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:34:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

