
Efficient and Optimal Algorithms for Tree
Summarization With Weighted Terminologies

Xuliang Zhu , Xin Huang , Byron Choi , Jianliang Xu , William K. Cheung ,

Yanchun Zhang ,Member, IEEE, and Jiming Liu , Fellow, IEEE

Abstract—Data summarization that presents a small subset of a dataset to users has been widely applied in numerous applications

and systems. Many datasets are coded with hierarchical terminologies, e.g., gene ontology, disease ontology, to name a few. In this

paper, we study the weighted tree summarization. We motivate and formulate our kWTS-problem as selecting a diverse set of k nodes to

summarize a hierarchical tree T with weighted terminologies. We first propose an efficient greedy tree summarization algorithm GTS. It

solves the problem with ð1� 1=eÞ-approximation guarantee. Although GTS achieves quality-guaranteed answers approximately, but it is

still not optimal. To tackle the problem optimally, we further develop a dynamic programming algorithm OTS to obtain optimal answers

for kWTS-problem in Oðnhk3Þ time, where n; h are the node size and height in tree T . The algorithm complexity and correctness of OTS

are theoretically analyzed. In addition, we propose a useful optimization technique of tree reduction to remove useless nodes with zero

weights and shrink the tree into a smaller one, which ensures the efficiency acceleration of both GTS and OTS in real-world datasets.

Moreover, we illustrate one useful application of graph visualization based on the answer of k-sized tree summarization and show it in a

novel case study. Extensive experimental results on real-world datasets show the effectiveness and efficiency of our proposed

approximate and optimal algorithms for tree summarization. Furthermore, we conduct a usability evaluation of attractive topic

recommendation on ACM Computing Classification System dataset to validate the usefulness of our model and algorithms.

Index Terms—Hierarchy, tree, data summarization, optimal algorithm, top-k

Ç

1 INTRODUCTION

AHIERARCHY data model is commonly used to depict the
terminologies and their hierarchical relationships, such

as gene ontology [1], disease ontology [2], the International
Classification of diseases-9 [3], medical subject heading, sys-
tematized nomenclature of medicine-clinical terms [4], and
also the ACM Computing Classification System [5]. Beside
the topological structure of hierarchies, the terminologies
are usually associated with vertex weights in a large num-
ber of real applications. For example, in biomedicine, the
weight of terminologies obtained from literature search
tools or electronic health records (EHR) are usually aggre-
gated by events, such as the occurrences of diseases, and
the number of search terms [6], [7]; in academic, the weight
of a research topic terminology is the total number of papers
published in this topic, e.g., the number of papers published
in database venues. Such terminologies with hierarchical
structures are often modeled as trees or directed acyclic

graphs. Therefore, we consider a hierarchy data with weighted
terminologies as a weighted tree throughout this paper.

However, real-world hierarchy data is often large-scale
with numerous terminologies. For instance, as of 2011, the
systematized nomenclature of medicine-clinical terms con-
tainsmore than 311,000medical concepts [4]. This brings sig-
nificant difficulty for users to understand the essence of
terminologies, even with the aid of a direct visualization
tool. It is impossible to explore them interactively. Therefore,
it desires to design efficient and effective algorithms for data
summarization on such weighted hierarchies [6], [8], [9],
which gives a small-scale representation to summarize the
whole dataset. A good summarization ofweighted hierarchi-
cal data can benefit awide range of applications such as sum-
marized recommendation [9], visual data exploration [10],
[11], and snippet generation for information search [12].

We motivate our problem of tree summarization and
illustrate one typical application of graph visualization on
disease ontology with weighted terminologies. For instance,
Fig. 1a shows one sample example of disease ontology. The
nodes r; A; a1; . . . represent disease terminologies. The edges
represent the instance relationship, e.g., ðr; AÞ indicates that
A is an instance of r. In general, the disease (node r)
includes mental health disease (node A), syndrome disease
(node B), and cellular proliferation disease (node C). Fur-
thermore, the diseases of cellular proliferation (node C)
have one instance of cancer (node c0). In the third level, the
types of cancers (node c0) can be categorized into cells
(node c1), organ systems (node c2), and so on. Given a table
of node weights that record the occurrence of diseases in a
hospital (see the table in Fig. 1a), one may seek a summary
report that presents a clear structure of frequent diseases.

� Xuliang Zhu, Xin Huang, Byron Choi, Jianliang Xu, William K.
Cheung, and Jiming Liu are with the Department of Computer Science,
Hong Kong Baptist University, Hong Kong, China. E-mail: {csxlzhu,
xinhuang, bchoi, xujl, william, jiming}@comp.hkbu.edu.hk.

� Yanchun Zhang is with the Guangzhou University, Guangzhou 510006,
China, and also with the Victoria University, Footscray, VIC 3011, Aus-
tralia. E-mail: Yanchun.Zhang@vu.edu.au.

Manuscript received 23 June 2020; revised 28 July 2021; accepted 1 Oct. 2021.
Date of publication 19 Oct. 2021; date of current version 3 Feb. 2023.
This work was supported by HK RGC under Grants 12200021, 12202221,
12201520, 22200320, 12201119, and 12201518.
(Corresponding author: Xin Huang.)
Recommended for acceptance by P. Cui.
Digital Object Identifier no. 10.1109/TKDE.2021.3120722

2500 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0655-8809
https://orcid.org/0000-0003-0655-8809
https://orcid.org/0000-0003-0655-8809
https://orcid.org/0000-0003-0655-8809
https://orcid.org/0000-0003-0655-8809
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-8381-336X
https://orcid.org/0000-0002-8381-336X
https://orcid.org/0000-0002-8381-336X
https://orcid.org/0000-0002-8381-336X
https://orcid.org/0000-0002-8381-336X
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0002-7428-2050
https://orcid.org/0000-0002-7428-2050
https://orcid.org/0000-0002-7428-2050
https://orcid.org/0000-0002-7428-2050
https://orcid.org/0000-0002-7428-2050
https://orcid.org/0000-0002-5094-5980
https://orcid.org/0000-0002-5094-5980
https://orcid.org/0000-0002-5094-5980
https://orcid.org/0000-0002-5094-5980
https://orcid.org/0000-0002-5094-5980
https://orcid.org/0000-0002-8669-9064
https://orcid.org/0000-0002-8669-9064
https://orcid.org/0000-0002-8669-9064
https://orcid.org/0000-0002-8669-9064
https://orcid.org/0000-0002-8669-9064
mailto:csxlzhu@comp.hkbu.edu.hk
mailto:xinhuang@comp.hkbu.edu.hk
mailto:bchoi@comp.hkbu.edu.hk
mailto:xujl@comp.hkbu.edu.hk
mailto:william@comp.hkbu.edu.hk
mailto:jiming@comp.hkbu.edu.hk
mailto:Yanchun.Zhang@vu.edu.au

Obviously, if we show all diseases in the disease ontology, it
is beyond the human cognition ability to distinguish any
clear structure. Thus, we consider how to select a small set
of k (e.g., k ¼ 5) important and representative elements to
summarize the entire dataset. The simplest approach is to
pick the most frequent elements. However, as this approach
does not make use of hierarchical terminologies, we cannot
see the inter-relationships between the selected elements in
the resulted summary (see Fig. 1b). An improved approach
is to also include all the ancestors of the top-k elements in
the terminological structure (see Fig. 1c). While this
improved approach provides a more intuitive summary, it
still suffers from two drawbacks. First, the summarization
may lack diversity and miss specific but small groups (e.g.,
c1, c2, c3, and c4), which might yield inaccurate summariza-
tion for users. Second, similar elements are not summarized
in a high-level concept. Moreover, to show all ancestors of
frequent elements, a large summarization might be resulted,
e.g., Fig. 1c has 7 nodes, which is greater than the given k. In
contrast, Fig. 1d depicts a better summarization of the input
dataset that describes four types of diseases (including A,
a1, b1, and c0), where element a1 with the highest frequency
represents a large proportion of type-A diseases. This sum-
marization in graph visualization offers direct, simplified,
intuitive and human-friendly images to help users under-
stand the overview of this analyzed disease dataset.

In this paper, we investigate the problem of selecting a
diverse set of vertices to summarize a weighted tree where
vertices have non-negative weights. Formally, we formulate
the kWTS-problem, that is, given a tree T with weighted ter-
minologies and a positive integer k, finding a set of k repre-
sentative vertices to summarize the whole tree T with the
largest summary score. This new problem formulation is
based on an objective function of summary score, taking
into account the representativeness, diversity, and high-
score coverage simultaneously. We provide a novel method
of summarizing large tree datasets by reducing the original
dataset to a manageable size. It intends to depict, highlight,
and distinguish the important nodes and links within the
hierarchal structure. To find high-quality summarized
results, we propose a simple but efficient algorithm GTS.
GTS is a greedy algorithm based on a well-designed greedy
strategy that iteratively adds a representative vertex with
the largest summary contribution for the overall summary
score, until the answer has k representative vertices. The
greedy method can achieve at least ð1� 1=eÞ-approximation
of the optimal answer in terms of our objective function.

Over the conference version [13] of this manuscript, we
further investigate exact solutions to the tree summarization
problem. We propose a dynamic programming algorithm to
achieve optimal answers in Section 6. The motivation is that
although the existing greedy method GTS [13] achieves the
quality-guaranteed answers, the answers are still not opti-
mal. However, finding optimal answers brings significant
challenges. An intuitive approach is to enumerate all possi-
ble summary sets to find the best answer, which may incur
expensive computations. In fact, there exist exact polyno-
mial-time algorithms to tackle kWTS-problem. Therefore, we
propose an algorithm OTS based on dynamic programming
to optimally solve the problem. The general idea is to divide
the kWTS-problem for a tree rooted by r into multiple sub-
problems on subtrees rooted by r’s children nodes. For the
selection of root r, we have two choices of selecting r into
answers or not selecting r into answers. The optimal solution
is one of the best summary score among the above two
choices. The above step can be repeatedly enumerated for
each node as a root in a polynomial time. However, a
straightforward implementation of the above dynamic pro-
gramming algorithm may incur expensive computations.
To improve the efficiency, we develop several useful opti-
mization techniques including the using Knapsack dynamic
programming techniques to tackle the exponential division
enumeration, and reduce the number of all possible states
using the closet ancestor. The time complexity of our
dynamic algorithm OTS takes Oðnhk3Þ time in Oðnhk2Þ
space, where n; h are the node size and height in tree T ,
respectively. We also theoretically analyze the correctness
of OTS to achieve optimal answers. To summarize, we com-
pare GTS and OTS here. On one hand, GTS finds approxi-
mate answers and runs faster than OTS, which is more
particularly suitable to give quick summarization answers.
GTS supports the zoom-in and zoom-out functions by freely
adjusting the parameter k for k-sized summarization in real
time. On the other hand, OTS achieves optimal solutions by
taking more cost than GTS, which is more suitable in those
critical applications for quality-priority. Our comprehensive
solutions provide the choices to achieve a balanced trade-
off between quality and efficiency.

In addition, we further develop tree reduction techniques
to accelerate computations in Section 7, which is another
new technical contribution over [13]. The tree reduction is
based on an important observation that a large number of
vertices have zero-weights in tree T . These vertices with
zero-weights may be unimportant for tree summarization,
which can be removed from T . We then propose a tree
reduction method to delete them and shrink the whole tree
into a small tree T �, which contains a few nodes with non-
zero weights. Our OTS applied on the reduced tree T �

achieves the same optimal solution as the original tree T ,
but runs much faster in practice and also in theoretical time
complexity analysis. The efficiency and effectiveness of our
proposed tree reduction algorithm are validated by exten-
sive experiments on real-world datasets.

To summarize, this paper makes the following
contributions:

� We motivate and formulate the problem of tree sum-
marization, which aims at selecting a diverse set of k

Fig. 1. A running example of tree summarization with weighted
terminologies.

ZHU ETAL.: EFFICIENTAND OPTIMAL ALGORITHMS FOR TREE SUMMARIZATION WITH WEIGHTED TERMINOLOGIES 2501

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

representative vertices in a weighted tree. We iden-
tify the desiderata of a good tree summarization,
admitting the representativeness, diversity, and
high-score coverage simultaneously (Section 3).

� We analyze the summary objective function. We for-
mally prove its monotonicity and submodularity
properties, which offer the prospects for developing
efficient and approximate algorithms (Section 4).

� We propose an efficient algorithm that can achieve at
least ð1� 1=eÞ of the optimal in terms of summary
objective function. Moreover, we present a graphical
visualization method to depict a hierarchical struc-
ture based on the obtained summary results, which
has been reduced from the original tree to a manage-
able size. This graphical visualization intends to
depict, highlight, and distinguish the important
nodes and links within the hierarchal structure,
which illustrates a useful application of our tree
summarization problem (Section 5).

� We develop an exact algorithm OTS based on
dynamic programming to achieve optimal solutions
for kWTS-problem. We further propose several optimi-
zation strategies for efficient implementation. We
also analyze the algorithm correctness and complex-
ity of OTS (Section 6).

� We propose a tree reduction technique to prune
zero-weighted vertices in the tree. It can significantly
reduce the tree size and generate a small new tree.
Based on the newly generated tree, OTS is guaran-
teed to achieve the same optimal answers in a faster
way (Section 7).

� We conduct extensive experiments on five real-
world datasets to validate the efficiency and effec-
tiveness of our proposed algorithm. Moreover, we
show one case study and one usability evaluation
on a real dataset of ACM Computing Classification
System, reflecting the practical usefulness of our
tree summarization model and algorithms, in terms
of graph visualization and users’ feedback
(Section 8).

We discuss related work in Section 2 and conclude the
paper in Section 9.

2 RELATED WORK

Work closely related to our paper can be categorized into
data summarization, graph visualization and interactive
search, and top-k diversification.

Data Summarization. There exist several studies on data
summarization [7], [8], [14], [15], [16], [17], [18], [19], [20].
[8] finds a set of k high-quality and diverse representatives
for a surface, which does not consider the ontology struc-
ture associated with the data. In [16], a semi-structured
framework is developed to summarize RDF graphs. A novel
sketch approach is proposed by Gou et al. [17] to summarize
the graph streams. It takes linear space and constant update
time. Both of these two works design data structures to store
and summarize graphs. Kumar and Efstathopoulos [18]
propose a method of computing utility to summarize and
compress graphs. Liu et al. [19] develops several distributed
algorithms for graph summarization on the Giraph

distributed computing framework. Most of these works use
graph compression or subgraph mining to summarize the
whole graph structural information. Different from the above
studies, our work considers the problem of data summarization
using ontology terminologies, and formulates it as an optimiza-
tion problem.In addition, several works study data summari-
zation on hierarchical data [9], [11], [21], [22], [23], [24], [25].
Agarwal et al. [21] propose the parsimonious explanation
model to summarize changes in dimension hierarchy. Kim
et al. [25] propose dynamic programming methods to cre-
ates a concise summary of hierarchical multidimensional
data. Both [21], [25] focus on the changes between two dif-
ferent hierarchies. Recently, Zhu et al. [9] studies a NP-hard
problem of top-k graph summarization on DAGs, which is a
generalization of our tree summarization problem. Different
from the heuristic graph summarization algorithms [9], we
develop an optimal algorithm for tree summarization using new
dynamic programming techniques.

Graph Visualization and Interactive Search. Many works
have been carried out on studying graph visualization [6],
[10], [26], [27], [28], [29], [30], [31], [32]. The problem of
graphical visualization using ontology terminologies is
investigated to filter the nodes whose aggregate frequencies
are less than a given threshold [6]. Perseus [26] is a large-
scale graph system developed to enable the comprehensive
analysis of large graphs and allow the user to interactively
explore node behaviors. OPAvion [10] provide scalable and
interactive workflow to accomplish complex graph analysis
tasks. Most of these works [30], [31], [32] design a graph
visualization system to analyze the large scale graphs.
Unlike the above graph visualization algorithms and systems, we
find k representative vertices to summarize the whole hierarchy.In
addition, graph interactive search [33], [34], [35] study a
crowdsourcing task to identify the target labels of a given
object in a label hierarchy, which allows asking users for a
few questions. Recently, Zhu et al. [35] propose a dynamic
programming based algorithm to ask one question with the
maximum gain based on k targets. The targets are fixed but
unknown in advance. The hierarchy has no vertex weights.
Compare with [35], although our dynamic programming techni-
ques adopt a similar idea of the Knapsack problem as [35], we
focus on a different problem of tree summarization, which finds a
k-sized summary vertex set with the largest summary score on a
weighted tree where vertices have weights. Moreover, we propose
efficient tree reduction techniques especially for tree summariza-
tion, which cannot be applied on interactive search problem.

Top-k Diversification. In the literature, a large number of
work studies the diversification of top-k query results [36],
[37], [38], [39], [40], [41], [42], [43]. A comprehensive survey
of top-k query processing can be found in [44]. A general
diversified top-k search problem is defined by Qin et al. [36],
which only considers the similarity of the search results
themselves. In [37], Ranu et al. propose an index structure
NB-Index. It can solve the top-k representative queries on
graph databases. [39] finds top-k maximal cliques which
can cover most number of vertices. These works study the
top-k diversification on graph databases, subgraph queries,
and cliques. The key distinction with these existing studies
is that our approach takes a flexible method to we investi-
gate a different problem of finding a small set of k nodes to
summarize the whole tree with weighted terminologies.

2502 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

3 PROBLEM STATEMENT

In this section, we define basic notions and formalize our
problem.

3.1 Preliminaries

We consider a finite set of n elements, V, where the elements
with inter-relations are organized into a tree-like structure.
Let a weighted tree T ¼ ðV; E; feqÞ be rooted at r 2 V, where
E � V � V is the edge set and feq is the node weight func-
tion. The tree T contains n ¼ jVj nodes and n� 1 ¼ jEj
edges. In addition, the node weight feqðvÞ 2 R�0 is a non-
negative real value, which presents the importance of node
v. We denote an important set of positive nodes as I ¼ fv 2
V : feqðvÞ > 0g � V, representing the set of all nodes v with
positive weights. For each node v in T , we respectively
denote the ancestors of node v by ancðvÞ and the set of
descendants of node v by desðvÞ. Note that, we denote that
ancðvÞ and desðvÞ always contain v throughout this paper,
i.e., v 2 ancðvÞ and v 2 desðvÞ. Furthermore, we denote the
children of node v by N�ðvÞ ¼ fu 2 V : ðu; vÞ 2 E; u =2
ancðvÞg. A children node u 2 N�ðvÞ is only one level below
the node v in tree T . A node with jN�ðvÞj ¼ 0 is called a leaf
node. Table 1 lists the frequently used notations in the paper.

Definition 1 (Node Level). Given a tree T rooted at r, the
level of a tree node v 2 V is the number of hops between v and
r, denoted by lðvÞ.
For example, consider a tree T in Fig. 1a. For node C, the

set of descendants of C is desðCÞ ¼ fC; c0; c1; c2; c3; c4g, and
the set of ancestors is ancðCÞ ¼ fr; Cg. The level of node C is
lðCÞ ¼ 1, and the level of node c2 is lðc2Þ ¼ 3.

Desiderata of a Good Summarization. Given a weighted tree
T ¼ ðV; E; feqÞ and an important set of positive nodes I �
V, our goal, intuitively, is to select a small set of elements S
from V that depicts a good summarization of the high-score
data of I by satisfying the following three criteria:

1. (Diversity) The elements of S should not be very
similar;

2. (Small-scale) The size of S is small enough to be eas-
ily understood;

3. (High-score Coverage and Correlation) A sum-
mary score function gðSÞ that measures the cover-
age and correlation of S on important nodes I , is
high.

3.2 Summary Score Function

In this subsection, we propose a summary score function
gðSÞ by formalizing the desiderata of diversity, high-
score coverage, and correlations in a unified way. We
first give the definitions of coverage and correlation
below.

Coverage. Given two nodes x; y in tree T , we say x covers
y if and only if x is one ancestor of y, i.e., y 2 desðxÞ. In the
concept tree T , x covers y, indicating that x is a more general
concept than y. This shows that x can be a summary repre-
sentative of y in a higher level of concept understanding.
For instance, in Fig. 1a, node c0 covers a set of nodes
{c1; c2; c3; c4}, which means c0 can be a good summary of all
concepts in {c1; c2; c3; c4}.

Representative Impact. Based on the definition of coverage,
we define the representative impact as follows.

Definition 2 (Representative Impact). Given two elements
x; y and y 2 desðxÞ, we define the representative impact of x on
the element y using a function repx:

repxðyÞ ¼ feqðyÞ � corxðyÞ;

where corx : V ! R�0 is the summarized relevance function.

Here, x serves as a candidate representative of y. The
summarized impact of x on y is proportional to feqðyÞ, the
node weight of y, and is discounted by corxðyÞ. Specifically,
the summarized relevance of x achieves the maximum at
y ¼ x, and decreases for y further away from x. Note that, if
x does not cover y, i.e., y =2 desðxÞ, then corxðyÞ ¼ 0 and cer-
tainly repxðyÞ ¼ 0. In this paper, we suggest one natural
choice of correlation function

corxðyÞ ¼
1

lðyÞ�lðxÞþ1 ; if y 2 desðxÞ
0; otherwise

(
: (1)

For example, consider the tree T and the weight function of
elements as feqð�Þ in Fig. 1a. For nodes B and b1 with the
level lðBÞ ¼ 1 and lðb1Þ ¼ 2, the summarized relevance of B
on b1 is corBðb1Þ ¼ 1=2, and thus representative impact of B
on b1 is repBðb1Þ ¼ feqðb1Þ � corBðb1Þ ¼ 30� 1=2 ¼ 15. On the
other hand, the summarized relevance of r on b1 is corrðb1Þ ¼
1=3, and the representative impact reprðb1Þ ¼ 10 < repBðb1Þ,
indicating that B is a better summarized representative out-
performing r, due to the more specification of B compared
to r. Our models can adopt other settings of corxðyÞ satisfy-
ing the principle of summarized relevance, and also our
proposed techniques can be easily extended to solve a vari-
ant of problems with different corxðyÞ functions.

Summary Score. Given a set S � V of representative ele-
ments, we define the summary score of S on an input ele-
ment y 2 V, denoted by smySðyÞ, as the maximum impact y
among all individual representatives

TABLE 1
Frequently Used Notations

Notation Description

feqðvÞ the importance of vertex v
I the set of vertices with feqðvÞ > 0
ancðvÞ/desðvÞ the set of ancestors/descendants of

vertex v
N�ðvÞ the set of children of vertex v
ðvÞ the level of vertex v
coruðvÞ the correlation impact of u on v
repuðvÞ the representative score of u on v
gðSÞ the summary score of S for all vertices
smySðvÞ the summary score of S on the vertex v
~gðxjSÞ ~gðxjSÞ ¼ gðS [fxgÞ � gðSÞ
Tu the subtree rooted with u
Sk
u the summary set of selecting k vertices

in Tu

OTSðu; k; SÞ the largest summary score gðSk
u [SÞ in Tu

Yðu; k; SÞ/N
ðu; k; SÞ

OTSðu; k; SÞwith/without selecting u
in Sk

u

ZHU ETAL.: EFFICIENTAND OPTIMAL ALGORITHMS FOR TREE SUMMARIZATION WITH WEIGHTED TERMINOLOGIES 2503

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

smySðyÞ ¼ max
x2S\ancðyÞ

repxðyÞ: (2)

Intuitively, each input element y is to be represented by
some ancestor of y that appears in S (a.k.a. x 2 S \ ancðyÞ)
and has the maximum summary impact on y. Based on the
definition of summary score, the total summary impact of S
on all elements of I is defined as

gðSÞ ¼
X
y2I

smySðyÞ ¼
X
y2I

max
x2S\ancðyÞ

ðfeqðyÞ � corxðyÞÞ: (3)

To recap, the problem of tree summarization with
weighted terminologies (kWTS-problem) studied in this
paper can be formally formulated as follows.

kWTS-Problem. Given a weighted tree T ¼ ðV; E; feqÞ, an
important set of positive nodes I � V, and an integer k 2
Zþ, the problem is to find a set of representative nodes S �
V, such that S achieves the maximum score gðSÞ with
jSj ¼ k.

Example 1. We use the example in Fig. 1 to illustrate our
kWTS-problem and set k ¼ 5. To summarize the tree with
important set I ¼ fA; a1; a2; a3; b1; r; c0; c1; c2; c3; c4g in
Fig. 1a, an optimal solution is the summary graph S ¼
fr; A; a1; b1; c0g in Fig. 1d. For node a1 2 I , the best repre-
sentative of S is a1 and the summary score of S on a1 is
smySða1Þ ¼ 40� 1 ¼ 40. Overall, the total summary score
of S is gðSÞ ¼P

x2I smySðxÞ ¼ repAðAÞ þ repa1ða1Þþ
repAða2Þ þ repAða3Þ þ repb1ðb1Þ þ reprðrÞ þ repc0ðc0Þ þ repc0ðc1Þ þ repc0ðc2Þþ repc0ðc3Þ þ repc0ðc4Þ ¼ 30þ 40þ 10þ 10þ
30þ 10þ 10þ 5þ 5þ 5þ 5 ¼ 160.

4 PROBLEM ANALYSIS

In this section, we analyze the properties of the objective
score function of our problem.

Monotonity and Submodularity. A set function f : 2U !
R�0 is said to be submodular provided for all sets S 	 T 	
U and element x 2 U n T , fðT [fxgÞ � fðT Þ
 fðS [fxgÞ �
fðSÞ, i.e., the marginal gain of an element has the so-called
“diminishing returns” property.

Lemma 1. g is monotone, i.e., for all S1; S2 � V such that S1 �
S2, we have gðS1Þ
 gðS2Þ.

Proof. Since S1 � S2, for any element y 2 I , maxx2S2
corxðyÞ � maxx2S1corxðyÞ, which is trival. Now, we have
gðS2Þ � gðS1Þ ¼

P
y2I ðmaxx2S2ðfeqðyÞ � corxðyÞÞÞ �

P
y2I

ðmaxx2S1ðfeqðyÞ � corxðyÞÞÞ ¼
P

y2I feqðyÞ � ðmaxx2S2 corxðyÞ
�maxx2S1corxðyÞÞÞ � 0. As a result, gðS1Þ
 gðS2Þ holds. tu
Given a summary node x 2 S, let the set of nodes that

take x as their summary node, denoted by fSðxÞ ¼ fy 2
desðxÞ : smySðyÞ ¼ repxðyÞg.
Lemma 2. g is submodular.

Proof. Give two sets S 	 T 	 V and an element x 2 V n T ,
let T 0 ¼ T [fxg and S0 ¼ S [fxg. We establish the cor-
rectness of Lemma 2 by following three facts below.

First, for any element y 2 V, smyT ðyÞ � smySðyÞ and
smyT 0 ðyÞ � smyS0 ðyÞ holds. Second, fT 0 ðxÞ � fS0 ðxÞ. Since
8y 2 fT 0 ðxÞ, we have repxðyÞ ¼ smyT 0 ðyÞ � smyS0 ðyÞ and
repxðyÞ
 smyS0 ðyÞ for x 2 S0. As a result, we obtain

repxðyÞ ¼ smyS0 ðyÞ and y 2 fS0 ðxÞ. Therefore, fT 0 ðxÞ �
fS0 ðxÞ holds. Third, we have gðT 0Þ � gðT Þ ¼P

y2V
ðsmyT 0 ðyÞ � smyT ðyÞÞ ¼P

y2fT 0 ðxÞðrepxðyÞ � smyT ðyÞÞ.
Thus, we can obtain gðS0Þ � gðSÞ¼P

y2fS0 ðxÞ ðrepxðyÞ �
smySðyÞÞ�

P
y2fT 0 ðxÞÞ ðrepxðyÞ � smySðyÞÞ�

P
y2fT 0 ðxÞÞðrepxðyÞ � smyT ðyÞÞ¼ gðT 0Þ � gðT Þ. As a result, gðS0Þ �

gðSÞ � gðT 0Þ � gðT Þ. tu
In view of the fact that g is monotone and submodular, we

infer that the prospects for developing an efficient approxi-
mation algorithm using greedy strategies are promising.

5 GTS ALGORITHM

Algorithm 1. GTS (T , I , k)
Input: A tree T ¼ ðV; E; feqÞ, an important node set I � V , a

number k.
Output: A set of k summary elements S.
1: Let S ;;
2: while jSj < k do
3: x� argmaxx2V=S~gðxjSÞ;
4: S S [fx�g;
5: return S;

In this section, we present a greedy algorithm that can pro-
duce a solution achieving at least ð1� 1=eÞ � 62% of the
optimal score gðS�Þ. In the following, we first give the
framework of our greedy algorithm called GTS. Then, we
show its approximation guarantee and present several tech-
niques for improving its efficiency. Finally, we discuss how
to use the answer of selected vertices by GTS to represent
the whole tree T .

5.1 A Greedy Algorithm GTS

Marginal Gain. We begin with marginal gain. Monotonicity
of function g implies that for any S � V and x 2 V, we
have ~gðxjSÞ ¼ gðS [fxgÞ � gðSÞ � 0. The term ~gðxjSÞ is
called the marginal gain of x to the set S. We would like to
add the node with the largest marginal gain into the
answer. This greedy strategy motivates the following algo-
rithm GTS.

Algorithm Overview. GTS starts out with an empty solu-
tion set S ¼ ;. In each subsequent iteration, GTS iteratively
adds one more summary node x� to solution S, which
grows the answer set by one. This summary node x� is cho-
sen from the remaining candidate elements V=S such that it
achieves the largest marginal gain, i.e., x� argmaxx2V=S
~gðxjSÞ. Finally, GTS returns S after jSj ¼ k. The detailed
description is presented in Algorithm 1.

Computing ~gðxjSÞ. We present an efficient algorithm
(Algorithm 2) for computing the marginal gain ~gðxjSÞ.
Let S0 ¼ S [fxg, and Tx be a subtree of T rooted at x
(lines 1-2). The procedure computes fS0 ðxÞ by performing
one traversal of tree Tx and finding all nodes regarding x
as its new summary node. Afterwards, if we can find the
nearest ancestor z of x in S, i.e., ancðxÞ \ S 6¼ ;, and cal-
culate the marginal gain ~gðxjSÞ ¼

P
y2fS0 ðxÞðrepxðyÞ �

repzðyÞÞ; otherwise, if such an ancestor z does not
exist, the algorithm directly returns ~gðxjSÞ ¼P

y2fS0 ðxÞ repxðyÞ.

2504 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2. Computing~gðxjSÞ
Input: A tree T , an important node set I , a summary set S, a

node x 2 V.
Output:~gðxjSÞ.
1: S0 S [fxg;
2: Compute fS0 ðxÞ ¼ fy 2 desðxÞ : smyS0 ðyÞ ¼ repxðyÞg;
3: if anc (x) \S 6¼ ; then
4: Let z 2 S be the nearest ancestor of x;
5: ~gðxjSÞ ¼

P
y2fS0 ðxÞðrepxðyÞ � repzðyÞÞ;

6: else
7: ~gðxjSÞ ¼

P
y2fS0 ðxÞ repxðyÞ;

8: return~gðxjSÞ;

Approximation Analysis. [45] shows that a greedy algo-
rithm provides a ð1� 1=eÞ�approximation for maximizing
a monotone submodular set function with cardinality con-
straint. Our method GTS is one instantiation of this algo-
rithm for kWTS-problem.

Theorem 1. Let S be the answer obtained by GTS, and S� be the
optimal answer, gðSÞ � ð1� 1

eÞ � gðS�Þ holds.
Complexity Analysis. Assume that the height of tree T is h.

A subtree of T rooted at x 2 V is denoted as Tx. The compu-
tation of marginal gain ~gðxjSÞ first takes OðjTxjÞ time for
the subtree traversal of Tx. Then, it takes OððxÞÞ time to find
the ancestors of x. Hence, the computation of ~gðxjSÞ takes
OðjTxj þ ðxÞÞ time in total. At each iteration, Algorithm 1
selects a node with the maximum marginal gain, which
needs to compute ~gðxjSÞ for all nodes x in worst. To select
a summary vertex, it costs OðPx2V jTxj þ

P
x2V ðxÞÞ ¼

Oð2Px2V ðxÞÞ � OðnhÞ. As a result, the time complexity of
Algorithm 1 is OðnhkÞ time. The space complexity of Algo-
rithm 1 is OðnÞ.

5.2 Graph Visualization Based on Summary
Answers

In this section, we discuss how to use the obtained answer S
to summarize the whole tree T in graph visualization. Based
on the obtained k representative vertices, it is ready to gen-
erate a small summary tree for graph visualization. We first
create a virtual root r. We then start from each vertex v 2 S
and add an edge path between v to the lowest ancestor in S;
If such an ancestor does not exist, we add an edge path
between v and the virtual root.

Example 2. We use the tree T in Fig. 1a to illustrate the run-
ning steps of GTS algorithm and graph visualization
using summary answers. Suppose that k ¼ 5. We apply
Algorithm 1 on T . Table 2 shows the marginal gains
~gðxjSÞ of vertices x 2 V without c1; c2; c3 and c4. At the
first step, we calculate ~gðxjSÞ of all vertices in T and
then choose the vertex A with the largest marginal gain
~gðAjSÞ ¼ 70 for S ¼ ;. Next, we update the ~gðxjSÞ for
remaining vertices and choose the vertex r with the larg-
est marginal gain ~gðrjSÞ ¼ 33:3 for S ¼ fAg at the sec-
ond step. Similarly, we select other three vertices a1; b1; c0
as answers and the summary set is S ¼ fA; r; a1; b1; c0g.
Finally, we use five representative vertices S to depict the
summarized graph visualization as shown in Fig. 1d. We
connect vertex a1 to vertex A by adding an edge ðA; a1Þ as
A is the lowest ancestor of a1 in S. Similarly, we connect

three vertices A; b1; c1 to root r by adding edges and skip
their connections to vertices B;C that do not belong to
the answer S.

6 OTS ALGORITHM

In this section, we introduce an exact algorithm for tree
summarization, which finds an optimal answer S� of k rep-
resentative nodes to achieve the maximum summary
impact, i.e., S� ¼ argmaxS�V;jSj¼kgðSÞ. To this end, we pro-
pose a dynamic programming algorithm OTS and develop
several optimization techniques to accelerate the search pro-
cess. Furthermore, we also analyze the complexity and cor-
rectness of OTS.

6.1 Solution Overview

We first use a toy example to show the limitation of greedy
algorithm GTS, which is still far from the optimal answer.
Consider the tree T in Fig. 2 and assume k ¼ 2. The GTS

algorithm first selects the vertex v2 with the maximum mar-
gin of 43 and second selects the vertex v4. GTS generates the
answer S ¼ fv2; v4g, which achieves the summary score
gðSÞ ¼ 64. However, this answer gðSÞ ¼ 64 is not optimal.
The best answer is S� ¼ fv3; v4g with the summary score
gðS�Þ ¼ 81. Actually, after selecting the vertex v4, the mar-
ginal gain of v2 is reduced and the vertex v3 becomes a bet-
ter selection. To dismiss the limitation of local optimality by
greedy algorithm, we consider an alternative method of
dynamic algorithm in terms of global optimality.

Fig. 3 shows an overview framework of our dynamic
programming algorithm OTS. As shown in the above exam-
ple, although GTS is an efficient and approximate algorithm,
it cannot find the optimal solution in some cases due to its
local optimality. To find the global optimality, OTS consid-
ers a subproblem of finding k0
 k representative nodes
optimally in a subtree Tu rooted by a vertex u 2 desðrÞ as

TABLE 2
The Running Steps of GTS Applied on Tree T in Fig. 1a

Step r A B C a1 a2 a3 b1 c0

Step1 65 70 15 18.3 40 20 20 30 30
Step2 33.3 / 15 18.3 20 10 10 30 30
Step3 / / 5 5 20 10 10 20 16.6
Step4 / / 5 5 / 10 10 20 16.6
Step5 / / 5 5 / 10 10 / 16.6

It shows the marginal gains~gðxjSÞ for partial vertices in T .

Fig. 2. A motivation example of comparing different answers between
GTS and OTS. For the same tree T in Fig. 2a, GTS generates an answer
S ¼ fv2; v4g with gðSÞ ¼ 64 in Fig. 2b, which is worse than the optimal
answer S� ¼ fv3; v4g with gðS�Þ ¼ 81 in Fig. 2c.

ZHU ETAL.: EFFICIENTAND OPTIMAL ALGORITHMS FOR TREE SUMMARIZATION WITH WEIGHTED TERMINOLOGIES 2505

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

shown in Fig. 3. Moreover, we consider to have an existing
partial answer S already and combine S with another set
Sk0
u of k0 nodes to form a globally optimal answer, i.e., jS [

Sk0
u j ¼ k. Obviously, let S ¼ ;, u ¼ r, and k0 ¼ k, thus this

subproblem is the same as the original kWTS-problem. Thus,
the problem is how to find additional k0 optimal vertices in
the subtree with selected set S. We consider two cases of
whether we select vertex u or not. On one hand, if we select
vertex u into the answer S, for each children node
v1; v2 . . . ; vx, the sub-problem is how to find additional kx
optimal vertices in the subtrees rooted by vx with an exist-
ing answer S [fug and P

kx
 k0 � 1; On the other hand, if
we do not select vertex u into the answer S, for each chil-
dren node v1; v2 . . . ; vx, the sub-problem is how to find addi-
tional kx optimal vertices in Tvx with an existing answer S
and

P
kx
 k0. The optimal answer is the best solution

among the above two answers.

6.2 Dynamic Programming Algorithm

In the following, we give the detailed formulations of states,
sub-problems and the algorithm.

States. We begin with a definition of state OTSðu; k; SÞ in
dynamic programming. Given a tree T , a vertex u 2 V , a
number k, and a set of summary vertices S � V ,
OTSðu; k; SÞ represents an optimal solution of the
kWTS-problem in a tree Tu. That is selecting the additional k
summary vertices Sk

u from Tu into S to achieve the largest
summary score gðSk

u [SÞ in the tree Tu. Note that Sk
u �

desðuÞ and S \ desðuÞ ¼ ;. An optimal answer of the
kWTS-problem in T is OTSðr; k; ;Þ, where r is the root of T .

Divide a State Into Sub-Problems. For the state OTSðu; k; SÞ,
we divide it into two sub-problems. For the root vertex u,
we have the choice of two cases: Yes-case andNo-case. Gener-
ally, the choice of Yes-case is selecting u into the existing
answer S, denoted as Yðu; k; SÞ; the other choice of No-case
is not selecting u into S, denoted as Nðu; k; SÞ. Intuitively,
the best answer of OTSðu; k; SÞ should be one between Yes-
case and No-case, i.e.,

OTSðu; k; SÞ ¼ maxfYðu; k; SÞ;Nðu; k; SÞg; (4)

where Yðu; k; SÞ and Nðu; k; SÞ are respectively shown in
Eqs. (5) and (6).

For Yðu; k; SÞ, it adds u into S and has a new summary
set S [fug. Thus, the summary score for vertex u is obvi-
ously feqðuÞ, as shown in the first term of Eq. (5). In addi-
tion, the number of candidate representative vertices
decreases by one, i.e., k� 1. The optimal solution of
Yðu; k; SÞ needs to explore all possible assignments of k� 1

representative vertices into the trees rooted by u0s out-
neighbors (a.k.a. children), as shown in the second term of
Eq. (5). Specifically, we have

Yðu; k; SÞ ¼ feqðuÞ þmax
X

x2N�ðuÞ
OTSðx; kx; S [fugÞ

8<
:

9=
;

subject to
X

x2N�ðuÞ
kx ¼ k� 1:

(5)

For Nðu; k; SÞ, it does not choose u and has an
unchanged summary set S. Thus, the summary score for
vertex u by S is calculated as smySðuÞ, as shown in the first
term of Eq. (6). The number of candidate representative ver-
tices is still k. The optimal solution of Nðu; k; SÞ needs to
explore all possible assignments of k representative vertices
into the trees rooted by x 2 N�ðuÞ, as shown in the second
term of Eq. (6). Specifically, we have

Nðu; k; SÞ ¼ smySðuÞ þmax
X

x2N�ðuÞ
OTSðx; kx; SÞ

8<
:

9=
;

subject to
X

x2N�ðuÞ
kx ¼ k:

(6)

OTS Algorithm. Algorithm 3 implements a dynamic pro-
gramming algorithm for the kWTS-problem in a weighted
tree T . The algorithm computes an optimal summary score
gðu; k; SÞ for the state OTSðu; k; SÞ, which is recorded to con-
veniently use and avoid recomputing. If gðu; k; SÞ has been
computed before, the score gðu; k; SÞ can be directly
returned (line 8); Otherwise, it computes the state
OTSðu; k; SÞ dynamically (lines 2-7). The algorithm first
checks the number k. If k � 1, it explores to select k repre-
sentative vertices in subtree Tu via Eq. (4) (line 3), by invok-
ing two procedures of Yðu; k; SÞ in Eq. (5) (lines 9-12) and
Nðu; k; SÞ in Eq. (6) (lines 13-16); Otherwise, for k ¼ 0, Algo-
rithm 3 then computes the summary score equals smySðuÞ þP

x2N�ðuÞ OTSðx; k; SÞ, which is the representative score
smyðS; uÞ add the sum of the summary score in trees rooted
by u’s children (lines 5-7). Computing OTSðr; k; ;Þ by Algo-
rithm 3 produces an optimal answer gðr; k; ;Þ for T . Note
that Sk

u is the union of all the selection sets Skx
x for

x 2 N�ðuÞ.
Example 3. Fig. 2c shows an example of applying OTS algo-

rithm with k ¼ 2 on T in Fig. 2a. Table 3 shows the value
and the selection set of some OTS state. The max value of
OTSðv1; 2; ;Þ ¼ OTSðv2; 2; ;Þ ¼ OTSðv3; 1; ;Þþ OTSðv4; 1; ;Þ

Fig. 3. A solution overview of OTS algorithm.

TABLE 3
The DP States of OTSðu; k; SÞ in Algorithm 3

u k S Yðu; k; SÞ N ðu; k; SÞ OTS (u, k, S) Sk
u

v7 0 fv3g / 3 3 ;
v6 0 fv3g / 3 3 ;
v5 0 fv3g / 9 9 ;
v4 1 ; 42 0 42 fv4g
v3 1 ; 39 9 39 fv3g
v2 2 ; 64 81 81 fv3; v4g
v1 2 ; 57.5 81 81 fv3; v4g

2506 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

¼ ðfeqðv3Þ þ OTSðv5; 0; fv3gÞ þ OTS ðv6; 0; fv3gÞ þ OTSðv7;
0; fv3gÞÞ þ 42 ¼ 24þ 9þ 3þ 3þ 42 ¼ 81. The selection
set S2

1 ¼ S2
2 ¼ S1

3 [S1
4 ¼ fv3g [fv4g ¼ fv3; v4g.

6.3 Implementing Optimizations

In this section, we propose several useful optimizations to
improve the efficiency of Algorithm 3. This is because a
straightforward implementation of Algorithm 3 takes
OðPv2V k �#k-assign �#SÞ � OðPv2V k � kjN�ðuÞj � n

k

� �Þ time.
For procedures Yðu; k; SÞ and Nðu; k; SÞ, it takes
Oð#k-assignÞ ¼ OðkjN�ðuÞjÞ time to enumerate the choices of
dividing k values into jN�ðuÞj buckets. Moreover, for the
enumeration of all possible answers S, it takes Oð n

k

� �Þ time.
In the following, we optimize the#k-assign and#S.

Algorithm 3. OTS ðu; k; SÞ
Input: A tree T ¼ ðV; E; feqÞ, an important node set I , a vertex

u 2 V, a number k, a set of summary vertices S.
Output: An optimal summary score gðu; k; SÞ.
1: if gðu; k; SÞ has not been computed then
2: if k � 1 then
3: gðu; k; SÞ maxfYðu; k; SÞ;Nðu; k; SÞg;
4: else
5: gðu; k; SÞ smySðuÞ;
6: for vertex x 2 N�ðuÞ do
7: gðu; k; SÞ gðu; k; SÞ þ OTSðx; k; SÞ;
8: return gðu; k; SÞ;
9: procedure Yu; k; S

//Yes-case: the answer SY contains u.
10: kY k� 1; SY S [fug;
11: Enumerate the assignment of kx for all vertices x 2

N�ðuÞ such that
P

x2N�ðuÞ kx ¼ kY to achieve the following
optimization via Eq. (5):
OPTY maxfPx2N�ðuÞ OTSðx; kx; SYÞg;

12: returnfeqðuÞ þOPTY ;
13: procedure Nu; k; S

//No-case: the answer SN contains no u.
14: kN k; SN S;
15: Enumerate the assignment of kx for all vertices x 2

N�ðuÞ such that
P

x2N�ðuÞ kx ¼ kN to achieve the following
optimization via Eq. (6):
OPTN maxfPx2N�ðuÞ OTSðx; kx; SN Þg;

16: return smySðuÞ þOPTN ;

Reduce #k-Assign by Knapsack Dynamic Programming. We
propose to use Knapsack dynamic programming techniques
[46] to tackle the exponential enumeration in division. We
reformulate the enumeration problem in procedure
Yðu; k; SÞ (line 11 of Algorithm 3) and Nðu; k; SÞ (line 15 of
Algorithm 3) as the Knapsack problem. Assume that a num-
ber k represent the total capacity. Given a set of vertices
N�ðuÞ ¼ fx1; . . . ; xlg, for each vertex xi where 1
 i
 l,
OTSðxi; kxi ; SÞ represents an item having an item value of
gðxi; kxi ; SÞ and an item volume of kxi
 k. We assume that
F ði; k0Þ is the state that the max value of the first i items
with a total of k0 capacity. The equation of state transforma-
tion is shown as follows:

F ði; k0Þ ¼ max
0
j
k0

ðF ði� 1; k0 � jÞ þ OTSðxi; j; SÞÞ:

For initialization, we set F ði; 0Þ ¼ 0 for 1
 i
 l. Moreover,
F ðl; kÞ ¼ maxfPx2N�ðuÞ OTSðx; kx; SÞg with the constraintP

x2N�ðuÞ kx ¼ k, is the largest summary score for a subtree
rooted by u with parameters S and k. Hence, we can just
enumerate each node xi in the set N�ðuÞ for 1
 i
 l and
0
 k0
 k to find the maximum summary impact value.
This method of dynamic programming can reduce the time
complexity from Oðk � kjN�ðuÞjÞ to OðjN�ðuÞjk2Þ.

Reduce the Number of States. We reduce the number of all
possible answers S in OTSðu; k; SÞ from Oð n

k

� �Þ to OðhÞ,
where h is the height of T . Given a summary set S and a
tree Tu rooted by u, for each vertex v 2 Tu, the score of
smyðS; vÞ only depends on the nearest ancestor of u in S,
denoted as nauðSÞ ¼ argminfdisthv; ui : v 2 ancðuÞ \ Sg.
There exist at most jancðuÞj different ancestors. Instead of
OTSðu; k; SÞ, we reformulate the state as OTSðu; k; nauðSÞÞ.
This reduces #S from Oð n

k

� �Þ to OðhÞ. Thus, the total num-
ber of OTSðu; k; nauðSÞÞ states is OðnkhÞ.

6.4 Correctness and Complexity

In this section, we prove the correctness of Algorithm 3,
which shows that OTS always finds an exact optimal solu-
tion. Moreover, we analyze the time and space complexity
of Algorithm 3.

Correctness Analysis. We use the induction idea to prove
the correctness of OTS algorithm. Consider a subtree Tu

rooted by u, we first assume that the optimal solution of its
children x 2 N�ðuÞ in the sub-problem is OTSðx; k; SÞ and
the optimal selection is denoted by S�;ku in all the following
lemmas. Based on these lemmas, we can derive the theorem
of algorithm correctness.

Lemma 3. Give a subtree Tu rooted by u, a summary set S, which
satisfies S \ desðuÞ ¼ ; and a number k, we choose additional
k� 1 summary vertices Sk�1

u � desðuÞ n fug. The largest sum-
mary score is gTuðS [fug [S�;k�1u Þ ¼ Yðu; k; SÞ.

Proof. Assume S�;k�1u is the optimal selection of summary
subproblem on a subtree Tu. First, gTuðS [fug [Sk�1�

u Þ �
Yðu; k; SÞ due to the optimal answer S�;k�1u . Next, we
decompose the vertex set S�;k�1u into multiple subsetsS

x2N�ðuÞS
�;kx
x for each children x 2 N�ðuÞ. In this way,

gTuðS [fug [S�;k�1u Þ ¼ feqðuÞ þP
x2N�ðuÞ gTxðS[fug [

S�;kxx Þ
 feqðuÞ þP
x2N�ðuÞ OTSðx; kx; S [fugÞ
 feqðuÞþ

maxfPx2N�ðuÞ OTSðx; kx; S [fugÞg ¼ Yðu; k; SÞ. Thus, gTu
ðS [fug [S�;k�1u Þ ¼ Yðu; k; SÞ holds. tu

Lemma 4. Give a subtree Tu rooted by u, a summary set S, which
satisfies S \ desðuÞ ¼ ; and a number k, we choose additional
k summary vertices Sk

u � desðuÞ n fug. The largest summary
score is gTuðS [Sk�

u Þ ¼ N ðu; k; SÞ.
Proof. Assume S�;ku is the optimal selection of summary

subproblem on a subtree Tu. First, gTuðS [S�;ku Þ �
N ðu; k; SÞ due to the optimal answer S�;ku . Next, we
decompose the vertex set S�;ku into multiple subsetsS

x2N�ðuÞS
�;kx
x . for each children x 2 N�ðuÞ. As a result,

gTuðS [S�;ku Þ ¼ smySðuÞ þ
P

x2N�ðuÞ gTxðS [S�;kxx Þ
 smyS
ðuÞ þP

x2N�ðuÞ OTSðx; kx; SÞ
 smySðuÞ þmaxfPx2N�ðuÞ
OTSðx; kx; SÞg ¼ N ðu; k; SÞ. Overall, gTuðS [S�;ku Þ ¼ N ðu;
k; SÞ holds. tu

ZHU ETAL.: EFFICIENTAND OPTIMAL ALGORITHMS FOR TREE SUMMARIZATION WITH WEIGHTED TERMINOLOGIES 2507

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

In the following, we prove the initialization cases of
gTuðS [Sk

uÞ ¼ OTSðu; k; SÞ for leaf nodes u with k ¼ 0 and
k ¼ 1.

Lemma 5. Give a subtree Tu rooted by a leaf node u, a summary
set S, which satisfies S \ desðuÞ ¼ ; and a number k
 1, we
choose additional k summary vertices Sk

u � desðuÞ. The largest
summary score is gTuðS [S�;ku Þ ¼ OTSðu; k; SÞ.

Proof. We consider two cases of k ¼ 0 and k ¼ 1. For k ¼ 1,
gTuðS [S�;ku Þ ¼ gTuðS [fugÞ ¼ feqðuÞ ¼ OTSðu; k; SÞ; For
k ¼ 0, gTuðS [S�;ku Þ ¼ gTuðSÞ ¼ smySðuÞ ¼ OTSðu; k; SÞ.
Therefore, gTuðS [S�;ku Þ ¼ OTSðu; k; SÞ holds for leaf node
uwith k ¼ 1 and k ¼ 0. tu

Theorem 2. Give a tree T rooted by r and a number k, we choose
k summary vertices Sk

r by Algorithm 3. The largest summary
score is gðS�;kr Þ ¼ OTSðr; k; ;Þ.

Proof. Based on Eq. (4), Lemmas 3 and 4, we obtain
OTSðu; k; SÞ ¼ maxfYðu; k; SÞ;Nðu; k; SÞg ¼ gTuðS [S�;ku Þ.
In addition, based on the induction idea and exact initiali-
zation cases in Lemma 5, our answer of OTSðr; k; ;Þ ¼
gð; [S�;kr Þ ¼ gðS�;kr Þ is the optimal solution. tu
Complexity Analysis. The total number of states is OðnhkÞ

where h is the height of T and the transfer equation takes
jN�ðuÞj � k2. So, the time complexity of OTS in Algorithm 3
is OðPu2V jN�ðuÞj � k3 � hÞ � Oðnhk3Þ. If T is a complete
binary tree with a height of h 2 OðlognÞ, it takes O(nlognk3)
time. Moreover, each state takes OðkÞ memory to store the
selected set, so the space complexity is Oðnhk2Þ.

7 TREE REDUCTION FOR FAST SUMMARIZATION

In this section, we propose a tree reduction method Vtree to
accelerate summarization process and achieve optimal
answers. Vtree removes the useless nodes from tree T and
generate a small tree T � with jT �j
 jT j. We also analyze the
correctness and complexity of Vtree.

Overview. We observe that there exist several vertices
could not be answer candidates. We can remove useless ver-
tices from tree T based on the vertices with positive weights
in the important node set I . Specifically, those useless verti-
ces satisfy two conditions at the same time. First, each use-
less vertex u has zero weights, i.e., feqðuÞ ¼ 0. Second, each
useless vertex u is not a lowest common ancestor for any
vertex subset I0 � I . In this way, we can remove all these
useless vertices from T and generate a new tree T �ðV �; E�Þ,
which significantly reduces the size of tree T ðV;EÞ. In many
real applications, a large number of vertices have zero-
weights in tree datasets as shown in Section 8.

To understand the correctness of our removal strategy,
we show that Algorithm 3 achieves the same answers S� on
original tree T and reduced tree T �. In other words, the use-
less vertices that are removed based on the above two con-
ditions, do not appear in the answer S�. Let us consider a
deleted vertex v 2 V and v =2 V �.

First, there exists another vertex u 2 V � no worse than v
for the summary answers. Alternatively, the representative
impact score of u is no less than the representative impact
score of vwith regard to any vertex x 2 desðvÞ, i.e., repuðxÞ �
repvðxÞ. The rational reasons are as follows. Assume that an

non-empty set I0 ¼ I \ desðvÞ and u ¼ LCAðI 0Þ 2 V �. Based
on u is the least common ancestor, v is an ancestor of u, so
repuðxÞ � repvðxÞ for each x 2 I0. Hence, in whatever cases, u
is a better choice than v in the subtree Tv. Next, we analyze
the correctness of OTS algorithm in the new tree T �. For each
vertex v =2 V �, it can be replaced by a better vertex u 2 V �.
Thus, it wouldn’t be selected as an answer in sub-problems
byOTS. Thus,OTS finds the optimal answers in T � as in T .

Algorithm 4. Vtree

Input: A tree T ¼ ðV;E; feqÞ, an important node set I .
Output: A reduced tree T � ¼ ðV �; E�Þ.
1: V � I [frg;
2: Apply the preorder traversal on tree T [47];
3: Obtain a sequenced list of vertices P ¼ fvi 2 Ig where vi is

visited earlier than vj in preorder traversal for i
 j;
4: for i 1 to jI j � 1 do
5: V � V � [fLCAðvi; viþ1Þg ;
6: T � ¼ ðV �; connectðV �; T ÞÞ;
7: return T �

However, identifying all Lowest Common Ancestors
(LCA) [47] of any vertex subset I0 � I , is very time consum-
ing. Given three vertices x; y; z, we denote LCAðx; y; zÞ and
LCAðx; yÞ by the LCAs of vertices fx; y; zg and fx; yg respec-
tively. We use the preorder traversal (Euler tour [47]) of a
tree to optimize the Vtree algorithm. Similar as preorder tra-
versal in a binary tree, preorder traversal in general tree tra-
verses root first and then traverses the children from left to
right. In the preorder traversal, we call u is before v if a ver-
tex u is traversed before v, denoted by u < v. We also define
a sequenced list of vertices P ¼ fv1; v2; . . . ; vjI jjvi 2 Ig
sorted by the preorder traversal. Based on the preorder
ranking of vertices, we introduce the following lemma.

Lemma 6. For 8x; y; z 2 V , if x < y < z, we have one and only
one of two following cases: either LCAðx; y; zÞ ¼ LCAðx; zÞ ¼
LCAðx; yÞ or LCAðx; y; zÞ ¼ LCAðx; zÞ ¼ LCAðy; zÞ holds.

Proof. The proof can be similarly done as [47]. tu
Based on the Lemma 6, for each subset I0 � I , the

LCAðI 0Þ equals the LCA of the first vertex v01 and last vertex
v0jI 0j in the ordered set PI0 , i.e., LCAðI 0Þ ¼ LCAðv01; v0jI 0jÞ. It
also equals the LCA of two neighbor vertices in ordered set
PI , i.e., LCAðv01; v0jI 0jÞ 2 fLCAðv1; v2Þ; . . . ; LCAðvjI j�1; vjIjÞg. So,
instead of finding all the LCAs of each subset of I, we can
only identify the LCAs of two neighbor vertices in the
ordered set P . It reduces the number of LCA calculations
from OðjIj2Þ to OðjIjÞ. Thanks to it, we get the upper bound
of the size of T � as follows.

Theorem 3. The tree size of T � is jV �j
 2jI j þ 1.

Proof. Based on the optimization, the number of additional
vertices is not greater than jI j. So, jV �j
 jI [frgj þ jIj
¼ 2jI j þ 1. tu
Vtree Algorithm. Algorithm 4 shows the pseudo code of

tree reduction method. First, we collect all vertices with pos-
itive weights and the root r into a set V � ¼ I [frg (line 1).
Then, we apply preorder traversal on the tree T by depth-
first search (DFS) and sort vertices in the set I(lines 2-3).

2508 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

Next, we construct a tree T � consisted of vertices in V �. For a
vertex u with feqðuÞ ¼ 0, u can be added into T �, only when
u is the LCA of two neighbor vertices in preorder I (lines 4-
5). Finally, we add edges between the nodes in V �. We
assign an edge weight between u and v as jðuÞ � ðvÞj in T
(line 6).

Example 4. Consider the tree T shown in Fig. 4a. The gray
nodes have non-zero weights and belong to the important
node set I ¼ fv7; v9; v6g. The white nodes have zero
weights, e.g., v1, v2, and so on. We apply the Vtree algo-
rithm to reduce this tree T . The important steps are
shown in Fig. 4. The algorithm gets all the LCA of the
nodes following preorder traversal v7; v9; and v6. Thus,
we consider two pairs of nodes, i.e., ðv7; v9Þ and ðv9; v6Þ.
First, it identifies the LCA of v7 and v9 as v2, i.e.,
LCAðv7; v9Þ ¼ v2, and then identifies LCAðv9; v6Þ ¼ v1,
which are colored in gray in Fig. 4b. Next, Vtree removes
from tree T all nodes that have zero-weights and are not
identified as the qualified LCAs. It adds edges between the
remaining nodes in the new tree T � and assigns the corre-
sponding edge weights in Fig. 4c. The weight between v2
and v7 is wðv2; v7Þ ¼ 2, due to that the level difference
between v2 and v7 is 2 in the original tree T in Fig. 4a.

Complexity Analysis. Based on [47], each LCA calculation
takes OðloghÞ time and OðnloghÞ space. Thus, the Vtree in
Algorithm 4 takes OðjIjloghÞ time and OðnloghÞ space.
Based on Theorem 3, the size of new tree T � is jV �j

2jI j þ 1. As a result, OTS takes OðjIjhk3 þ jIjloghÞ �
OðjIjhk3Þ time and OðjIjhk2 þ nloghÞ space. Note that OTS

applied on the reduced tree T � achieves the same optimal
solution as the original tree T , but runs much faster due to a
smaller tree with jI j � n in practice.

8 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the performance of our proposed methods. All algorithms
are implemented in C++. The source codes are publicly
available.1

Datasets. We use five real-world datasets of hierarchical
tree T containing weighted terminologies, whose detailed
statistics are summarized in Table 4. First, LATT and LNUR

are extracted from the Medical Entity Dictionary (MED) [6].
The tree contains 4,226 nodes. Each node represents a MED
term. In addition, we use two datasets of I , where the data-
set LATT contains the information about how physicians query

online knowledge resources, and the other dataset LNUR con-
tains the query information of nurses. These two datasets con-
tain 960 records and 771 records, respectively. Each record
consists of a MED term with a frequency count of its occur-
rence, representing its node weight. The third dataset, ANIM, is
extracted from the “Anime” catalog in Wikipedia [48]. The
ANIM tree contains 15,135 vertices. Each vertex represents the
animationwebsites or superior categories. Theweight of a ver-
tex is the number of page-views on this vertex catalog within
one month. The fourth dataset, IMAGE, is extracted from the
Image-net [49]. The IMAGE tree contains 73,298 vertices. Each
synset tag represents a vertex, whose id is given in the wnid
attribute of the tag. We choose 5,000 random catalogs contain-
ing images as the set I . The frequency of each catalog is the
number of images in the catalog. Last, the fifth dataset, YAGO,
is extracted from the ontology structure yagoTaxonomy in
multilingual Wikipedias [50], [51]. The YAGO tree contains
493,839 taxonomy vertices. An edge represents that the child
vertex is a “subClassOf” the parent vertex. The frequency of
each taxonomyvertex is the number of objects fromyagoTypes
belong to this taxonomy.

Compared Methods. To evaluate the effectiveness of our
modeling problem kWTS, we evaluate and compare four
competitive approaches – FEQ [6], AGG [6], CAGG [6], and
HDS [25].

� FEQ : is a baseline approach, which selects k nodes
with the highest frequencies [6].

� AGG : picks a set of k nodes with the highest aggre-
gate frequencies, where the aggregate frequency of a
node x is defined as AF ðvÞ ¼P

y2desðxÞ feqðyÞ.
� CAGG : is a variant method of AGG using another

metric of contribution ratio. For a node x, the contri-
bution ratio of x is defined by RðvÞ ¼ AF ðxÞ

AF ðyÞ where y is
the parent of x. Given a ratio threshold u, CAGG

selects the k nodes that have the highest aggregate
frequencies and the contribution ratio no less than u.
We set u ¼ 0:4 by following [6].

� HDS : is the state-of-the-art method of Hierarchical
Data Summaries, which creates a concise summary
of similar weights in hierarchical multidimensional
data [25]. To make a comparison, we use the 1-
dimensional hierarchical data and a variant method
to select exact k summary vertices as the answer.

Furthermore, we evaluate the effectiveness and efficiency
of our algorithms GTS (Algorithm 1) and OTS (Algorithm 3),
which respectively solve kWTS-problem approximately and
optimally. We compare them with Baseline greedy method
and Brute-Force. Baseline greedy method gets the same solu-
tion as GTS. Furthermore, Baseline takes Oðn2Þ time to

Fig. 4. An example of tree reduction on T with I ¼ fv6; v7; v9g. A reduced
tree T � of T is shown in Fig. 4c.

TABLE 4
The Statistics of Tree Datasets

Name n jI j Height

LATT 4,226 960 22
LNUR 4,226 771 22
ANIM 15,135 4,350 11
IMAGE 73,298 5,000 20
YAGO 493,839 10,000 17

1. https://github.com/csxlzhu/TKDE_OTS

ZHU ETAL.: EFFICIENTAND OPTIMAL ALGORITHMS FOR TREE SUMMARIZATION WITH WEIGHTED TERMINOLOGIES 2509

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

https://github.com/csxlzhu/TKDE_OTS

compute ~gðxjSÞ. Thus, the total time complexity of
Baseline is Oðn3kÞ. On the other hand, Brute-Force achieves
the same answer as OTS, which takes the exponential time
w.r.t. the size of tree jT j and k.

Evaluation Metrics. To evaluate the quality of summary
result S found by all models, we use three metrics, i.e., the
closeness distance CDðI ; SÞ [13], the average level difference
ALDðI ; SÞ [9], and also the weighted coverage WCðI ; SÞ [9],
[37].

1. The closeness distance CDðI ; SÞ is defined as the sum
of weighted distance between S to I , denoted by

CDðI ; SÞ ¼
X
y2I

min
x2S

distT ðx; yÞ � feqðyÞ;

where distT ðx; yÞ is the distance between x and y in T .
The smaller is CDðI ; SÞ, the better is the summary
quality.

2. The average level difference ALDðI ; SÞ is a distance-
based metric proposed in [9]. ALDðI ; SÞ is defined as
the average level difference between summary ver-
tex and weighted vertex, denoted by

ALDðI ; SÞ ¼
P

y2I minx2S\ancðyÞððyÞ � ðxÞÞ � feqðyÞP
y2I feqðyÞ

:

Note that we consider minx2;ððyÞ � ðxÞÞ ¼ ðyÞ. The
ALDðI ; SÞmetric takes into account both the level dif-
ference of summary results and the vertex weight.

The smaller is ALDðI ; SÞ, the better is the summary
quality.

3. The weighted coverage WCðI ; SÞ is defined as the
total weight of the vertices within summary set S or
their children, denoted by

WCðI ; SÞ ¼
X

x2I\CðSÞ
feqðxÞ;

where CðSÞ ¼ S [S
x2SN

�ðxÞ. The WCðI ; SÞ metric
evaluates the coverage of important vertices with
large weights. The larger is WCðI ; SÞ, the better is
the result.

Generally, both CDðI ; SÞ and ALDðI ; SÞ measure the dis-
tance between selection answer S and important vertices I .
The smaller is the value, the better is the summary quality.
Overall, these three evaluation metrics quantify the desider-
ata metrics of a good summarization in Section 3.1. In addi-
tion, to evaluate the effectiveness of algorithms, we also use
summary score gðSÞ to compare the results. The larger is
gðSÞ, the better is the solution. Furthermore, to evaluate the
efficiency, we report the running time of different summari-
zation algorithms. Note that we treat the running time as
infinite if the algorithm run exceeds 3 hours.

8.1 Effectiveness Evaluation

Exp-1: Quality Comparison of Different Summarization Models.
We compare the summarization quality of five different
models kWTS, FEQ, AGG, CAGG, and HDS. Figs. 5, 6 and 7

Fig. 6. Average level difference of different models on all datasets.

Fig. 7. Weighted coverage of different models on all datasets.

Fig. 5. Closeness distance of different models on all datasets.

2510 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

show the results of competitive methods on all real-world
datasets, in terms of the closeness distance, the average level
difference, and the weighted coverage, respectively. Note
that we use OTS algorithm for kWTS model, which achieves
the optimal solution. The size of summary set k varies from
10 to 90. All models achieve smaller closeness distance,
average level difference and larger weighted coverage with
the increased k. On the other hand, our method kWTS can
target these key vertices to obtain small closeness distances
even when a small value k ¼ 10, reflecting a superiority of
kWTS against AGG. Figs. 7d and 7e show that kWTS has
much more substantial advantages than other methods, as
the synthetic weighted nodes are more likely to locate at the
bottom of tree in IMAGE and YAGO. Furthermore, our
model kWTS is a clear winner of all competitors, consistently
achieving the smallest closeness distance, the smallest aver-
age level difference, and also the largest weighted coverage
in Figs. 5, 6 and 7. It significantly outperforms the other
methods for a smaller k, which is a great help to shrink large
datasets for tree summarization.

Remark. Note that the closeness distance of AGG has a
sudden drop on LATT and LNUR from k ¼ 10 to 30 as shown
in Figs. 5a and 5b. This is caused by that the key vertices for
tree summarization are selected by AGG when a large sum-
marization answer for k ¼ 30 but not a small answer for k ¼
10. Correspondingly, the closeness distance of AGG reduces
significantly. Moreover, HDS performs worse than kWTS in
Figs. 5, 6 and 7, due to that its objective is summarizing the
changes between two trees but not exactly as our problem
for a single tree.

Exp-2: Summary Score Comparison of Greedy and Optimal
Algorithms. We next conduct the effectiveness evaluation of
our algorithm GTS and OTS. Table 5 shows the summary
scores of GTS and OTS on five datasets. The exact algorithm
OTS consistently outperforms GTS on all datasets except
LNUR, verifying the effectiveness of our optimal solution
against the greedy approach.

Exp-3: Approximation Evaluation on Small Synthetic Data-
sets. In this experiment, we evaluate the approximation of
our algorithms w.r.t. the optimal answers. We randomly
generate 200 small-scale trees with 20 nodes. We com-
pare three methods of GTS, OTS, and Brute-Force. Note
that GTS produces no optimal solution in these cases.
OTS and Brute-Force always produce optimal answers.
Fig. 8a shows the summary score of three methods on
200 cases. OTS gets the same solution of Brute-Force,
which verify the correctness of OTS. As we can see that
OTS wins the GTS in all cases and GTS achieves the aver-
age 95%-approximation of optimal solutions. Fig. 8b
shows the running time of three methods on all cases.
GTS and OTS run much faster than Brute-Force, and GTS

is the winner.

8.2 Efficiency Evaluation

Exp-4: Efficiency Evaluation. We evaluate the running time of
four methods GTS, OTS, Baseline, and Brute-Force on all five
datasets. OTS and Brute-Force are optimal methods. GTS and
Baseline are approximate methods. Fig. 9 shows running
time of all methods when varying k. GTS runs the fastest
among them, which adopts an easy-to-compute greedy
strategy. Interestingly, the efficiency of OTS is close to GTS

for small k values. For the optimal methods, OTS runs much
faster than Brute-Force. Note that the running time results of
GTS and OTS are similar and scale well on large-scale tree
datasets IMAGE and YAGO, as we invoke the Vtree algorithm
to reduce the tree size of IMAGE and YAGO into a very small
one in OðjIjÞ.

Fig. 8. Evaluation on 200 small synthetic datasets.

Fig. 9. Running time of different methods on all datasets.

TABLE 5
Summary Scores of greedy and DP for k ¼ 25

Datasets LATT LNUR ANIM IMAGE YAGO

GTS 4,071 5,048 18,628 542,872 1,492,101
OTS 4,111 5,048 18,786 546,368 1,495,580

ZHU ETAL.: EFFICIENTAND OPTIMAL ALGORITHMS FOR TREE SUMMARIZATION WITH WEIGHTED TERMINOLOGIES 2511

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

Exp-5: The Size of Reduced Tree by Vtree. To verify the effec-
tiveness of Vtree in Algorithm 4, we report the size of new
trees T � reduced from T on all real-world datasets. Table 6
shows the size of original tree as jT j, the number of nodes
with positive weights as jI j, and the size of new tree jT �j by
Vtree. The size of new tree jT �j is much smaller than the orig-
inal tree size jT j. jT �j is also smaller than two times of jI j,
which confirms the results of Theorem 3.

Exp-6: Scalability Test. In this experiment, we evaluate the
scalability of GTS and OTS by varying the size of tree jV j.
We randomly generate 5 trees with size varying from 105 to
106, whose data statistics follow the real dataset LATT. We
set the parameter k ¼ 10. First, we test the scalability of
computing~gðxjSÞ. Note that the operation of~gðxjSÞ is to
compute the marginal gain of summary scores, which is
only used in greedy algorithms but not the global optimal
OTS method. Thus, we only compare two greedy methods
Baseline and GTS here. The running time results of comput-
ing ~gðxjSÞ by Baseline and GTS are shown in Fig. 10a. As
we can see, GTS is scalable very well with the increased size
of tree nodes jV j. Moreover, GTS is much more efficient
than Baseline, which verifies the efficiency of fast computing
~gðxjSÞ in Algorithm 2. Next, we evaluate the scalability of
tree summarization by GTS and OTS. Fig. 10b reports the
running time results on the increased tree datasets. As
expected, GTS and OTS take longer time with the increasing
jV j stably, indicating that both methods scale well with a
larger jV j.

8.3 Case Study and Usability Evaluation

In this experiment, we conduct one case study and one
usability evaluation to validate the practical usefulness of
our tree summarization model and algorithms. We con-
struct a new real-world dataset with weighted terminolo-
gies from the ACM Computing Classification System (ACM
CCS) [5], as shown in Fig. 11a. The hierarchical tree has 17
vertices, where each vertex represents a topic. An edge
between two topics represents that the parent vertex is a
generalized concept of its children topics; A child vertex is
an instance concept of its parent topic. For example, the

“computing methodology” topic (denoted as T1) general-
izes two subcategories of ‘Artificial Intelligence’ (denoted as
T4, ‘AI’) and ‘Machine Learning’ (denoted as T5, ‘ML’).
Moreover, each vertex is associated with a weight, repre-
senting the cumulative number of papers published under
its topic in ACM DL [5] from 2011 to 2021. For example,
there exist 60,842 published papers related to ‘Computer
Version’ topic (denoted as T12, ‘CV’), i.e., feqðT12Þ ¼ 61k.
The higher the vertex weight, the more attractive the topic.

Exp-7: Case Study of Summary Topics in Graph Visualiza-
tion. We apply our summarization methods GTS and OTS

on the constructed ACM CCS dataset above. We set a small
parameter k ¼ 5 to use only 5 topics to summarize the
whole topic tree. Figs. 11b and 11c show the topic selections
of GTS and OTS, respectively. OTS selects five vertices T1,
T2, T3, T5, and T12, which cover three general attractive
topics ‘computing methodology’, ‘information system’,
‘security & privacy’, and two attractive topics ‘ML’ and
‘CV’. Note that we add a virtual root to connect with three
vertices T1, T2, and T3, which follows the methodology of
graph visualization in Section 5.2. On the other hand, GTS

selects a different answer of five vertices T0, T5, T6, T7, and
T12 as shown in Fig. 11b. This greedy method always first
selects T0 no matter what kinds of parameter setting on k.
The greedy summary result in Fig. 11b has one obvious
shortcoming that cannot cover the topic of ‘security &
privacy’ (denoted as T3). In addition, the summary score of
GTS is 253,079, which is smaller than the answer of OTS

with gðSÞ ¼ 257; 756. Thus, the greedy selection is worse
than the optimal answer in Fig. 11c, which has a more
diverse coverage of different important topics and a larger
summarization score.

Exp-8: Usability Evaluation of Summary Topics.We conduct
the usability evaluation for top-k attractive topic recommen-
dation, which selects k topics to summarize attractive topics
in ACM CCS dataset. We apply five methods OTS, GTS,
AGG, FEQ, and HDS on ACM CCS dataset. Note that AGG

and CAGG select the same topics, thus only the topic selec-
tions of AGG are reported here. We set k ¼ 5 and conduct a

TABLE 6
The Size of New Tree T � Reduced by Vtree

Datasets LATT LNUR ANIM IMAGE YAGO

jT j 4,226 4,226 15,135 73,298 493,839
jI j 960 771 4,350 5,000 10,000
jT �j 1,233 994 4,373 6,402 14,131

Fig. 10. Scalability test on large synthetic datasets for k ¼ 10.

Fig. 11. A case study of tree summarization in ACM Computing Classifi-
cation System dataset. The vertex weight is the cumulative number of
papers published under the corresponding topic. The topic that has
more than 20,000 papers, is depicted in red bold. Figs. 11b and 11c are
graph visualization of top-k summarization results by GTS and OTS,
respectively. Here, k ¼ 5.

2512 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

survey investigation. Specifically, we ask 20 users, who are
familiar with academic research and computer science
topics. We request them to recommend top-5 most attractive
topics of ACM CCS dataset in Fig. 11a. We evaluate an accu-
racy rate of matching topics between the users’ choices and
the methods’ selections. Fig. 12 reports the average accu-
racy rates for all methods. Our method OTS achieves an
accuracy rate of 82.5%, which is the best performance
among all methods. GTS achieves the accuracy of 55%,
while other methods achieve no greater than an accuracy
of 42.5%. This usability evaluation validates the useful-
ness of our methods in attractive topics summarization
on ACM CCS dataset.

9 CONCLUSION AND FUTURE WORK

In this paper, we motivate and study the tree summariza-
tion problem to select k representative vertices to summa-
rize a weighted tree. We first propose an efficient greedy
algorithm GTS with quality guarantee. In addition, we
develop an optimal algorithm OTS based on dynamic pro-
gramming techniques to find exact answers in polynomial
time. We also propose an efficient tree reduction technique
to improve efficiency of both GTS and OTS. Extensive
experiments on real-world datasets demonstrate the superi-
ority of our proposed algorithms against state-of-the-art
methods. This paper also opens up several interesting prob-
lems. One challenging direction is how to generate the node
weights in a hierarchy for tree summarization. In the appli-
cation of terminology search, the node weight is regarded
as the occurrence of a certain terminology. However, users
may not input an exact terminology every time. Such
unmatching terminologies and alternative names desire to
be resolved by string matching and semantic matching.

REFERENCES

[1] Jul. 2020. [Online]. Available: http://www.geneontology.org
[2] Jul. 2020. [Online]. Available: http://disease-ontology.org
[3] Jul. 2020. [Online]. Available: https://www.cdc.gov/nchs/icd/

icd9cm.htm
[4] Jul. 2020. [Online]. Available: https://en.wikipedia.org/wiki/

SNOMED_CT
[5] Jul. 2020. [Online]. Available: https://dl.acm.org/ccs
[6] X. Jing and J. J. Cimino, “Graphical methods for reducing, visualiz-

ing and analyzing large data sets using hierarchical terminologies,”
inProc. AMIAAnnu. Symp., 2011,pp. 635–643.

[7] X. Jing, J. Cimino et al., “A complementary graphical method for
reducing and analyzing large data sets,”Methods Inf. Med., vol. 53,
no. 3, pp. 173–185, 2014.

[8] Y. Wu, J. Gao, P. K. Agarwal, and J. Yang, “Finding diverse, high-
value representatives on a surface of answers,” Proc. VLDB
Endowment, vol. 10, no. 7, pp. 793–804, 2017.

[9] X. Zhu, X. Huang, B. Choi, and J. Xu, “Top-K graph summariza-
tion on hierarchical dags,” in Proc. ACM Int. Conf. Inf. Knowl. Man-
age., 2020, pp. 1903–1912.

[10] L. Akoglu, D. H. Chau, U. Kang, D. Koutra, and C. Faloutsos,
“OPAvion: Mining and visualization in large graphs,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2012, pp. 717–720.

[11] X. Zhu, X. Huang, J. Huang, B. Choi, and J. Xu, “HDAG-explorer:
A system for hierarchical DAG summarization and exploration,”
Proc. VLDB Endowment, vol. 13, no. 12, pp. 2973–2976, 2020.

[12] G. Fakas, Z. Cai, and N. Mamoulis, “Diverse and proportional
size-l object summaries for keyword search,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2015, pp. 363–375.

[13] X. Huang, B. Choi, J. Xu, W. K. Cheung, Y. Zhang, and J. Liu,
“Ontology-based graph visualization for summarized view,” in
Proc. ACM Int. Conf. Inf. Knowl. Manage., 2017, pp. 2115–2118.

[14] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for
graph summarization,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2008, pp. 567–580.

[15] S. Noel and S. Jajodia, “Managing attack graph complexity
through visual hierarchical aggregation,” in Proc. ACM Workshop
Vis. Data Mining Comput. Secur., 2004, pp. 109–118.

[16] �S. �Cebiri�c, F. Goasdou�e, and I. Manolescu, “Query-oriented sum-
marization of RDF graphs,” Proc. VLDB Endowment, vol. 8, no. 12,
pp. 2012–2015, 2015.

[17] X. Gou, L. Zou, C. Zhao, and T. Yang, “Fast and accurate graph
stream summarization,” in Proc. IEEE 35th Int. Conf. Data Eng.,
2019, pp. 1118–1129.

[18] K. A. Kumar and P. Efstathopoulos, “Utility-driven graph summa-
rization,” Proc. VLDBEndowment, vol. 12, no. 4, pp. 335–347, 2018.

[19] X. Liu, Y. Tian, Q. He, W.-C. Lee, and J. McPherson , “Distributed
graph summarization,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2014, pp. 799–808.

[20] X. Yang, C. Procopiuc, and D. Srivastava, “Summary graphs for
relational database schemas,” Proc. VLDB Endowment, vol. 4, no.
11, pp. 899–910, 2011.

[21] D. Agarwal, D. Barman, D. Gunopulos, N. E. Young, F. Korn, and
D. Srivastava, “Efficient and effective explanation of change in
hierarchical summaries,” in Proc. 13th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2007, pp. 6–15.

[22] R. Jin, Y. Breitbart, and R. Li, “A tree-based framework for differ-
ence summarization,” in Proc. IEEE Int. Conf. Data Mining, 2009,
pp. 209–218.

[23] H. Karloff, F. Korn, K. Makarychev, and Y. Rabani, “On parsimoni-
ous explanations for 2-D tree-and linearly-ordered data,” in Proc.
STACSConf. Symp. Theor. Aspects Comput. Sci., 2011, pp. 332–343.

[24] M. Ruhl, M. Sundararajan, and Q. Yan, “The cascading analysts
algorithm,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2018,
pp. 1083–1096.

[25] A. Kim, L. V. Lakshmanan, and D. Srivastava, “Summarizing hier-
archical multidimensional data,” IEEE 36th Int. Conf. Data Eng.,
2020, pp. 877–888.

[26] D. Koutra, D. Jin, Y. Ning, and C. Faloutsos, “Perseus: An interac-
tive large-scale graph mining and visualization tool,” Proc. VLDB
Endowment, vol. 8, no. 12, pp. 1924–1927, 2015.

[27] M. Krommyda, V. Kantere, and Y. Vassiliou, “IVLG: Interactive
visualization of large graphs,” in Proc. IEEE Int. Conf. Data Eng.,
2019, pp. 1984–1987.

[28] Y. Wu, B. Harb, J. Yang, and C. Yu, “Efficient evaluation of object-
centric exploration queries for visualization,” Proc. VLDB Endow-
ment, vol. 8, no. 12, pp. 1752–1763, 2015.

[29] S. Hasani, N. Yan, and C. Li, “TableView: A visual interface for
generating preview tables of entity graphs,” in Proc. IEEE Int.
Conf. Data Eng., 2018, pp. 1617–1620.

[30] Y. Jiang, X. Huang, H. Cheng, and J. X. Yu, “VizCS: Online search-
ing and visualizing communities in dynamic graphs,” in Proc.
IEEE Int. Conf. Data Eng., 2018, pp. 1585–1588.

[31] S. S. Bhowmick, B. Choi, and C. Li, “Graph querying meets HCI:
State of the art and future directions,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2017, pp. 1731–1736.

[32] P. Yi, B. Choi, S. S. Bhowmick, and J. Xu, “Autog: A visual query
autocompletion framework for graph databases,” VLDB J., vol. 26,
no. 3, pp. 347–372, 2017.

[33] A. Parameswaran, A. D. Sarma, H. Garcia-Molina , N. Polyzotis,
and J. Widom, “Human-assisted graph search: It’s okay to ask
questions,” Proc. VLDB Endowment, vol. 4, no. 5, pp. 267–278, 2011.

[34] Y. Tao, Y. Li, and G. Li, “Interactive graph search,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2019, pp. 1393–1410.

Fig. 12. Usability evaluation of different methods for top-k attractive topic
recommendation on ACM CCS dataset in Fig. 11.

ZHU ETAL.: EFFICIENTAND OPTIMAL ALGORITHMS FOR TREE SUMMARIZATION WITH WEIGHTED TERMINOLOGIES 2513

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

http://www.geneontology.org
http://disease-ontology.org
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://en.wikipedia.org/wiki/SNOMED_CT
https://en.wikipedia.org/wiki/SNOMED_CT
https://dl.acm.org/ccs

[35] X. Zhu, X. Huang, B. Choi, J. Jiang, Z. Zou, and J. Xu, “Budget con-
strained interactive search for multiple targets,” Proc. VLDB
Endowment, vol. 14, no. 6, pp. 890–902, 2021.

[36] L. Qin, J. X. Yu, and L. Chang, “Diversifying top-K results,” Proc.
VLDB Endowment, vol. 5, no. 11, pp. 1124–1135, 2012.

[37] S. Ranu, M. Hoang, and A. Singh, “Answering top-K representa-
tive queries on graph databases,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2014, pp. 1163–1174.

[38] Z. Yang, A. W.-C. Fu, and R. Liu, “Diversified top-K subgraph
querying in a large graph,” in Proc. ACM SIGMOD Int. Conf. Man-
age. Data, 2016, pp. 1167–1182.

[39] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “Diversified top-
K clique search,” VLDB J., vol. 25, no. 2, pp. 171–196, 2016.

[40] I. Catallo, E. Ciceri, P. Fraternali, D. Martinenghi, and M. Taglia-
sacchi, “Top-K diversity queries over bounded regions,” ACM
Trans. Database Syst., vol. 38, no. 2, 2013, Art. no. 10.

[41] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling,
and Y.-C. Zhang, “Solving the apparent diversity-accuracy
dilemma of recommender systems,” Proc. Nat. Acad. Sci. USA,
vol. 107, no. 10, pp. 4511–4515, 2010.

[42] W. Fan, X. Wang, and Y. Wu, “Diversified top-K graph pattern
matching,” Proc. VLDBEndowment, vol. 6, no. 13, pp. 1510–1521, 2013.

[43] R.-H. Li, J. X. Yu, X. Huang, H. Cheng, and Z. Shang, “Measuring
robustness of complex networks under MVC attack,” in Proc.
ACM Int. Conf. Inf. Knowl. Manage., 2012, pp. 1512–1516.

[44] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-K
query processing techniques in relational database systems,”
ACM Comput. Surv., vol. 40, no. 4, 2008, Art. no. 11.

[45] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions-I,”
Math. Program., vol. 14, no. 1, pp. 265–294, 1978.

[46] D. Pisinger, “Algorithms for knapsack problems,” 1995. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?

[47] M. A. Bender and M. Farach-Colton , “The LCA problem revis-
ited,” in Latin Amer. Symp. Theor. Informat., 2000, pp. 88–94.

[48] Jul. 2020. [Online]. Available: https://en.wikipedia.org/wiki/
Animation

[49] Jul. 2020. [Online]. Available: http://image-net.org/download-API
[50] Jul. 2020. [Online]. Available: https://www.mpi-inf.mpg.de/

departments/databases-and-information-systems/research/
yago-naga/yago

[51] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “Yago3: A knowl-
edge base from multilingual wikipedias,” in Proc. Conf. Innov.
Data Syst. Res., 2015. [Online]. Available: https://dblp.dagstuhl.
de/rec/conf/cidr/MahdisoltaniBS15.html

Xuliang Zhu received the BS degree in mathe-
matics from East China Normal University in
2019. He is currently working toward the PhD
degree with the Department of Computer Sci-
ence, Hong Kong Baptist University. His research
interests include hierarchical graph summariza-
tion and graph data mining.

Xin Huang received the PhD degree from the
Chinese University of Hong Kong in 2014. He is
currently an assistant professor with the Depart-
ment of Computer Science, Hong Kong Baptist
University. His research interests include graph
data management and mining.

Byron Choi received the Bachelor of Engineer-
ing degree in computer engineering from the
Hong Kong University of Science and Technology
in 1999 and the MSE and PhD degrees in com-
puter and information science from the University
of Pennsylvania in 2002 and 2006, respectively.
He is currently an associate professor with the
Department of Computer Science, Hong Kong
Baptist University.

Jianliang Xu is currently a professor with the
Department of Computer Science, Hong Kong
Baptist University. He has authored or coauthored
more than 200 technical papers in these areas,
with an h-index of 52. His research interests
include data management, blockchain, mobile
computing, and data security and privacy. He was
an associate editor for the IEEE Transactions on
Knowledge and Data Engineering and the Pro-
ceedings of VLDB.

William K. Cheung received the PhD degree in
computer science from the Hong Kong University
of Science and Technology, Hong Kong, in 1999.
He is currently a professor with the Department
of Computer Science, Hong Kong Baptist Univer-
sity, Hong Kong. His current research interests
include artificial intelligence, data mining, collabo-
rative information filtering, social network analy-
sis, and healthcare informatics. He was the co-
chairs and program committee members for a
number of international conferences and work-

shops, and the guest editors of journals on areas including artificial intel-
ligence, Web intelligence, data mining, Web services, e-commerce
technologies, and health informatics. From 2002-2018, he was on the
Editorial Board of IEEE Intelligent Informatics Bulletin. He is currently a
track editor of Web Intelligence Journal and an associate editor for the
Journal of Health Information Research and the Network Modeling and
Analysis for Health Informatics and Bioinformatics.

Yanchun Zhang (Member, IEEE) received the
PhD degree in computer science from the Uni-
versity of Queensland, Australia, in 1991. He is
currently an emeritus professor with Victoria Uni-
versity, Australia and a professor with Guangz-
hou University, China. His research interests
include database and information systems, Web
data management, and data mining and health
information sciences. He is currently the editor-
in-chief of the World Wide Web Journal and the
Health Information Science and Systems Journal
from Springer.

Jiming Liu (Fellow, IEEE) received the MEng
and PhD degrees from McGill University. He is
currently the chair professor of computer science
with the Hong Kong Baptist University. His
research interests include data analytics, data
mining and machine learning, complex network
analytics, data-driven complex systems model-
ing, and health informatics. He was the editor-in-
chief of Web Intelligence Journal (IOS) and an
associate editor for the Big Data and Information
Analytics , IEEE Transactions on Knowledge and

Data Engineering, IEEE Transactions on Cybernetics, and the Computa-
tional Intelligence (Wiley), among others.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2514 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, MARCH 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 02:36:43 UTC from IEEE Xplore. Restrictions apply.

http://citeseerx.ist.psu.edu/viewdoc/summary?
https://en.wikipedia.org/wiki/Animation
https://en.wikipedia.org/wiki/Animation
http://image-net.org/download-API
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
https://dblp.dagstuhl.de/rec/conf/cidr/MahdisoltaniBS15.html
https://dblp.dagstuhl.de/rec/conf/cidr/MahdisoltaniBS15.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

