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Community Detection via Autoencoder-Like
Nonnegative Tensor Decomposition

Jiewen Guan", Bilian Chen™, and Xin Huang

Abstract— Community detection aims at partitioning a
network into several densely connected subgraphs. Recently,
nonnegative matrix factorization (NMF) has been widely adopted
in many successful community detection applications. How-
ever, most existing NMF-based community detection algorithms
neglect the multihop network topology and the extreme spar-
sity of adjacency matrices. To resolve them, we propose a
novel conception of adjacency tensor, which extends adjacency
matrix to multihop cases. Then, we develop a novel ten-
sor Tucker decomposition-based community detection method—
autoencoder-like nonnegative tensor decomposition (ANTD),
leveraging the constructed adjacency tensor. Distinct from simply
applying tensor decomposition on the constructed adjacency
tensor, which only works as a decoder, ANTD also introduces
an encoder component to constitute an autoencoder-like archi-
tecture, which can further enhance the quality of the detected
communities. We also develop an efficient alternative updat-
ing algorithm with convergence guarantee to optimize ANTD,
and theoretically analyze the algorithm complexity. Moreover,
we also study a graph regularized variant of ANTD. Extensive
experiments on real-world benchmark networks by comparing
27 state-of-the-art methods, validate the effectiveness, efficiency,
and robustness of our proposed methods.

Index Terms— Community detection, graph clustering, non-
negative tensor decomposition, optimization.

I. INTRODUCTION

ETWORKS are prevalent on modeling entities and their

mutual relationships in many scientific areas [1], [2].
Communities, in which nodes are densely connected but
between which nodes are sparsely connected, naturally exist
as functional modules in many real-world networks, such as
collaboration networks, social networks, biological networks,
just to name a few [3]. Revealing the community structure
of a network, namely community detection, which serves as
a fundamental analysis tool for analyzing and understanding
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complex networks [4], is an important but difficult problem.
Recently, community detection has been widely applied into
many real-world applications, such as promoting trust-aware
recommender systems [5], analyzing COVID-19 data [6], and
SO on.

Detecting communities in complex networks has been
extensively investigated in the last few decades, and numerous
methods have been proposed. Since there is no consensus in
academia about the strict definition of community detection,
traditional community detection algorithms mainly focus on
partitioning a graph under different heuristic criteria, such as
optimizing modularity [7], minimizing the description length
of random walks [8], and iteratively removing edges with max-
imum betweenness [3]. However, these methods use heuristic
strategies to optimize structural objectives only. Moreover,
these methods are unable to detect overlapping communities,
which are common and natural in reality. Recently, nonnega-
tive matrix factorization (NMF) [9] has been widely adopted
for detecting communities due to its good interpretability
derived from its nonnegative nature, wide applicability to both
disjoint and overlapping community detection tasks, and great
versatility to detect any specific number of communities. NMF
aims to factorize the adjacency matrix into two nonnegative
factor matrices, where one represents the centers of communi-
ties and the other represents the soft community assignments
of nodes. In view of this, the underlying community structure
can be determined in both disjoint and overlapping manner
according to the community assignment matrix.

Nevertheless, there are two main issues inherently lie in
existing NMF-based community detection methods. On the
one hand, the adjacency matrix is extremely sparse. Generally,
for real-world networks, over 99% elements of the adjacency
matrix are zeros. However, although the sparsity of the adja-
cency matrix can alleviate data storage burden, such zero
elements provide almost no information about the underlying
community structure. When this fact has been neglected,
as what existing NMF-based methods do, zero entries will
dominate the iterative optimization process and eventually
cause the detected community structure less reliable. On the
other hand, the adjacency matrix only contains one-hop rela-
tionships between nodes, lacking explicit higher-order ones.
As pointed out in [10] and [11], the higher-order structural
information is critical for uncovering the community structure
in complex networks. However, most existing NMF-based
community detection methods only deal with the adjacency
matrix, which restricts the quality of the detected communities.
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Fig. 1.  Workflow of ANTD-based community detection.

To tackle the above limitations, in this article, we first
propose a novel concept of adjacency tensor, which uniformly
resolves the aforementioned two issues in adjacency matrix.
Then, we propose a novel tensor Tucker decomposition
[12] based community detection method named
autoencoder-like nonnegative tensor decomposition (ANTD)
based on the proposed adjacency tensor, which fully
considers the higher-order connectivity patterns of a network.
Specifically, the adjacency tensor is constructed by stacking
normalized powers of the adjacency matrix in order. Since
the kth power of the adjacency matrix gives the number of
k-length paths connecting the vertex pairs in the network [13],
the higher-order structural information can be integrated into
the adjacency tensor, which resolves the information
scarcity issue. Besides, in general, as the power of the
adjacency matrix gets higher (i.e., the allowed length of
walks becomes longer), the possibility of two nodes get
connected becomes larger, and hence the stacked adjacency
tensor becomes denser, which resolves the zero overload issue.
For processing the constructed adjacency tensor, we propose
the ANTD method. Instead of directly applying tensor
decomposition on the constructed adjacency tensor, which
only works as a decoder, our proposed ANTD method has an
autoencoder-like architecture, which is proven to be critical
for community detection [14], [15]. Specifically, the decoder
component aims to reconstruct the adjacency tensor by node
and community representations, in which node-community
memberships and community—community interactions are
embedded, respectively. The encoder component is dual with
the decoder component and is responsible for mapping the
original adjacency tensor into the community interaction
space with the aid of node representations. As a result,
the autoencoder-like architecture of ANTD endows the
community membership matrix with implicit orthogonality,
which increases its quality and thereby leads to a better
community detection performance. Fig. 1 describes the
schematic workflow of the whole ANTD-based community
detection process.

In summary, we highlight our contributions as follows.

1) We propose a novel concept of adjacency tensor, which
is an extension of adjacency matrix, to depict multihop
topological structures in a network. The good side is that
our proposed adjacency tensor is relatively denser than
the original adjacency matrix.

2) We propose a novel community detection method
ANTD, which is built upon the proposed adjacency
tensor and thus has the capacity to incorporate multihop
relational information. Besides, we also study a variant
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of ANTD, namely ANTDg, which imposes a graph
regularizer on top of ANTD.

3) We derive an efficient iterative optimization algorithm
with convergence guarantee to optimize our proposed
ANTD method. The computational complexity of our
proposed algorithm scales quadratically instead of cubi-
cally with the number of nodes in the network, which is
the same as many existing NMF-based algorithms and
thus guarantees its efficiency. Moreover, we also design
and analyze an optimization algorithm for ANTDg.

4) We conduct extensive experiments to test the ANTD and
ANTDg methods. Specifically, on a variety of real-world
benchmark networks, we compare them with the state of
the art. Besides, for ANTD, we also validate its conver-
gence, test its running time, scalability and robustness.

The rest of this article is organized as follows. We review

related community detection algorithms in Section II and
introduce related preliminaries in Section III. Then, we present
our novel conception of adjacency tensor and the ANTD and
ANTDg methods in Section IV. Subsequently, we present the
optimization algorithms with theoretical analysis for ANTD
and ANTDg in Section V. Finally, we report the experimental
results in Section VI and conclude this article in Section VII.

II. RELATED WORK

In this section, we present a brief review of related studies
on community detection.

A. Heuristic Criteria Based Community Detection

Classical community detection algorithms focus on par-
titioning a network based on optimizing different heuristic
criteria [14], [15], [16]. Clauset et al. [7] proposed to optimize
a well-known metric of modularity, which is an indicator of to
what extent a network partition is distinct from randomness.
Along this line, many other optimization methods are investi-
gated, such as taking the leading eigenvector of the modularity
matrix as indicator [17] and using greedy-based algorithm to
maximize modularity [7]. Other community criteria include
permanence [18] and conductance [19]. As these heuristics
are not the focus of this article, we refer interested readers
to a full survey [16] of them. Most heuristic algorithms can
determine the number of communities automatically. However,
such criteria-based heuristic algorithms may suffer from the
issue of resolution limit [20] and thus affect the quality of the
detected communities.

B. Learning Model Based Community Detection

Learning model-based community detection algorithms try
to learn compact node representations to determine the
underlying community structure. As a widely adopted learn-
ing model, NMF has good interpretability [9] and many
applications. Psorakis et al. [21] proposed a Bayesian NMF
model (BNMF) to learn node-community memberships in a
Bayesian inference manner. Kuang et al. [22] proposed the
symmetric NMF model (SymmNMF) to cluster graph nodes,
which fully preserves the symmetry of the adjacency matrix.
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Zhang and Yeung [23] proposed the bounded nonnegative
matrix tri-factorization model to tackle the overlapping com-
munity detection problem. Yang and Leskovec [24] proposed
a NMF-based method BigClam for overlapping community
detection, which is very efficient that could handle very
large networks. Sun et al. [14] proposed a nonnegative sym-
metric encoder—decoder approach (NNSED) for community
detection, which was the first to show the importance of an
autoencoder-like architecture. Ye er al. [15] proposed a novel
deep autoencoder-like NMF model (DANMF) for commu-
nity detection, which had extended Sun’s NNSED [14] to a
deep autoencoder-like architecture. Moreover, Ye et al. [25],
[26], [27] proposed three more advanced NMF-based models
for community detection. However, all these algorithms use
the adjacency matrix only, neglecting higher-order network
topology, which is proven to be conducive for community
detection [10], [11]. Even worse, their optimization process
may be overwhelmed by zero entries in the adjacency matrix,
leading to a suboptimal community structure.

As another line of work, network embedding methods
have also been adopted for community detection, and usu-
ally they can incorporate higher-order network topology.
Wang et al. [28] proposed the modularized NMF (MNMF)
to learn node representations by simultaneously factorizing
the second-order affinity matrix and optimizing modularity.
Neural network-based network embedding methods such as
DeepWalk [29], Node2Vec [30], and GraRep [31] are also
prevalent. However, all these network embedding methods
usually perform unsatisfactorily on community detection, since
they need to conduct post clustering on the learned embed-
dings to get communities instead of directly learning them.

Recently, due to the advances of deep learning technologies,
many neural network-based community detection models have
been proposed. E.g., as pioneers, Zhang et al. [32], [33], [34],
[35] proposed the adaptive graph convolution method, the
spectral embedding network, the GraphNet framework, as well
as a capsual network-based community detection framework.
As most of these models target at detecting communities in
attributed networks, which is beyond the scope of this article,
we only briefly review them and refer interested readers to a
recent nice survey article [36] for a comprehensive treatment.

III. PRELIMINARIES

In this section, we present basic notations and terminologies
used throughout this article.

A. Notations

We use boldface calligraphic letters to denote tensors,
boldface capital letters to denote matrices, boldface lowercase
letters to denote vectors, and italic lowercase letters to denote
scalar values. An element of a vector x, a matrix X and a
third-order tensor X is denoted by x;, x;;, and x;j, respec-
tively. We use I, to denote an identity matrix in R?*? 1,
to denote a d-dimensional all-one vector, diag(x) to denote
a diagonal matrix whose diagonal entries are composed of
x in order, and (-,-) to denote the inner product between
two vectors, matrices, or tensors. For a matrix X, x’, and x j

are used to represent the ith row and the jth column of X.
We adopt Tr(X) to denote the trace of X if it is square, X’ to
denote the transpose of X, and ||X]| to denote the Frobenius
norm of X. The Kronecker product is denoted as ®, and the
Hadamard product is denoted by ®. For a third-order tensor X,
each vector along its ith mode is called the mode-i fiber. X(;
denotes the matricization of X along the ith mode, which
can be constructed by arranging the mode-i fibers to be the
columns of the resulting matrix. The n-mode (matrix) product
of X with U is denoted by X x, U, and the Frobenius norm
of X is denoted by || X| ». Besides, we use X (:, :, i) and X
interchangeably to denote the ith frontal slice of X'. More
details of tensor manipulations can be referred to [12].

In this article, we consider an undirected and unweighted
network G = (V, £), where V = {vy, 02, ...,0,} represents
the node set of G and £ = {ey, e, ...,e,} CV x V denotes
the edge set of G respectively. We denote n = |V| and m = |&].
Besides, we use Ng(v;) = {u : (u,v;) € E,u € V} to
denote the neighborhood of v; in G and dg(v;) = |Ng(v;)]
to denote the degree of v; in G. The diameter of G is the
maximum length of the shortest path between two nodes in
G, denoted as diam(G). The network G is also represented
by a Boolean adjacency matrix A € B"*", whose (i, j)th
entry a;; = 1 if there is an edge connecting nodes v; and
v;, or 0 if not. Assume that we know a priori that there
are k communities to be detected in G, then the community
detection algorithm can return k detected disjoint communities
asC={c;:¢; # 9, Ufle ¢ =V, ciNc; = @,Vi # j}, where
¢; denotes the ith community for 1 <i < k. Besides, we use
&(v;) to denote the index of the community containing v;, i.e.,
D; € C¢u)- The induced subgraph of G by c¢; is denoted as
gc,- = (Vc,- > gc,-)-

B. Nonnegative Tucker Decomposition

Nonnegative Tucker decomposition (NTD) [37] is a special
case of the Tucker decomposition [12], where in the former
case all the factors are required to be nonnegative. It works
as a building block of our proposed ANTD method. The
nonnegative Tucker decomposition decomposes a nonnegative
data tensor into a nonnegative core tensor multiplied by a
nonnegative factor matrix along each mode. In the three-way
case, X € R/} is decomposed by NTD as

X~TxFx;Hx; K=[T;F HK]

nyxm Ny Xm n3xXm ny Xmp Xnm
where F € R'™™ H e RP™™, K € RP™™, T e RV,
and [7; F, H, K] is a shorthand for 7 x; F x, Hx3 K. In most
cases, solving the nonnegative Tucker decomposition resorts
to the following Frobenius norm approximation:

min_[X - [7;F, H,K][> st F,H,K,7T >0.
F.HK,T

IV. ANTD AND ITS VARIANT

In this section, we first propose a novel concept of adjacency
tensor, which uniformly resolves the issues of information
shortage and zero overload of adjacency matrices. Based on
the constructed adjacency tensor, we then derive the ANTD
method and a graph regularized variant of ANTD.
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Fig. 2. Construction framework of adjacency tensor .A.

A. Adjacency Tensor Construction

As the social diffusion expresses a dynamic recursive pattern
to influence nodes in the network, multihop node relations
provide much more additional conducive information for mod-
eling the community structure [10], [11]. Nevertheless, most
existing NMF-based community detection algorithms only
consider the first-order node connectivity information, which
is inadequate as it is restricted to only one hop and extremely
sparse. To this end, we propose the concept of adjacency
tensor. Due to the fact that the kth power of the adjacency
matrix gives the number of k-length paths connecting the
vertex pairs in the network [13], we construct our multihop
adjacency tensor A as follows.

1) Exponentiation: Given the adjacency matrix A of
the network G, we first get a series of matrices
{A, A2, ... A%}, where A’ represents the ith exponen-
tiation of A and contains a different view (i.e., ith hop)
of node—node connections, and dy represents the number
of total hops needed.

2) Normalization: For each matrix A’ in {A, A2, ..., A%},
we normalize it as A’ = D;l/zAinl/z, where D; =
diag(A’1,) is the degree matrix.

3) Combination: By stacking A’ in order, we obtain the
adjacency tensor A € RV"*% where A(:, :, i) = A",

To sum up, Fig. 2 illustrates the construction process of .A.

Our proposed adjacency tensor resolves the aforementioned
two issues of adjacency matrix from two aspects. On the one
hand, our proposed adjacency tensor explicitly incorporates
multihop information into its different frontal slices, which
provides more conducive information than the adjacency
matrix. On the other hand, as the allowed path length gets
longer, the possibility of a node getting touched with other
nodes based on the walks of that length becomes higher, and
therefore the higher power of the adjacency matrix becomes
denser. This directly increases the density of our proposed
adjacency tensor A.

Nevertheless, a straightforward but tricky problem is that
how do we select the value of dy. We expect that the adjacency
tensor A contains as much information as possible. Thus,
the number of hops dy should be set as diam(G) such that
A contains connectivity patterns of every possible node pair.
However, in reality, the diameter of a network can be large,
which brings difficulties in both computing A and storing
A. Fortunately, thanks to the six degrees of separation [38],

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

on average, all people pairs can reach each other in no more
than six hops in a social network. Although some large-scale
networks have large diameters, the structural information in
the first six hops is already considerable, which suggests the
parameter setting of dy = min(diam(G), 6).

B. ANTD Method

In this section, we derive the optimization problem of
our proposed ANTD method. A fundamental assumption
in network topology modeling is that, if two nodes share
more similar communities, they are more likely to form an
edge [26]. Following this assumption, we adopt the symmetric
nonnegative matrix tri-factorization [39], which is an extension
of the classical NMF, to model the edge generation process of
a network. Specifically, suppose we have a nonnegative matrix
U e R:‘LX]‘ which represents the community memberships
of nodes. That is, each element u;; in the learned U can
be interpreted as the propensity that the ith node belongs
to the jth community [23]. Moreover, suppose we have
a nonnegative tensor YW € R’fﬁkx’j“, whose frontal slices
represent different interaction patterns (similarities) between
communities in terms of different hops. E.g., the correspond-
ing elements in the learned VW of communities “r/JapanTravel”
and “r/TWantOut” would be relatively larger since these two
communities are semantically similar, while the corresponding
elements of “r/Photography” and “r/ChineseLanguage” would
be relatively smaller since they are irrelevant. Then, following
the assumption introduced at the beginning of this section,
u fpwg;ugq can be interpreted as the contribution to the
expected normalized number of edges between nodes v, and
vg in the ith hop from ¢, and ¢,.! Summing over all possible
community pairs (p, ¢), the expected normalized number of
edges between nodes v y and v, in the ith hop can be computed
as a_‘;’; = Z’;MZ] uppwiyigg = u/Wus". Obviously, the
generated a_‘;; should be as identical as possible with a_(;; [40],
which gives rise to the following objective function and its
related optimization problem

min | A~ WU, LJ|% st UW=0

which is a special case of the nonnegative Tucker decomposi-
tion introduced in Section III-B. Essentially, the above prob-
lem performs symmetric nonnegative matrix tri-factorization
[A® — UWOUT |2 slicewisely. Note that the above opti-
mization problem aims to reconstruct the original adjacency
tensor A by W and U, ie., it is a decoder. However,
as pointed out in [14] and [15], an encoder component which
projects the original network into the community interaction
space with the aid of node representations is also important.
In our case, the encoder component should map the adjacency
tensor A to the community interaction tensor VYW with the
aid of the community membership indicator U, therefore the

'We assume that the underlying community engagement of nodes is
invariant in different hops, hence we devise only one community membership
matrix U. However, the connection patterns of nodes in different hops are
different, therefore, we devise d different community interaction matrices,
stacked to be W € kakw“.
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Fig. 3. Architecture of ANTD.

corresponding optimization problem can be described as
min | [A4; U, U7, 1,] - W% st UW=0.
uwW

As we will discuss in Section V-C, the encoder component will
greatly benefit the community detection process. Moreover,
since the adjacency tensor A is constructed based on the
sole information source G, A might have strong dependence
among its frontal slices. Correspondingly, frontal slices of the
learned community interaction tensor W} would also be highly
correlated. To better capture the dependence that inherently
exists in W, we further factorize YV into two low-rank factors
B e RE“* and Y € R via W = B x3 Y, where d < d
controls the degree of correlation among W’s frontal slices:
When d = 1, all frontal slices of YV are proportional, but when
d = dp, the dependence in V¥V may degenerate to nothing due
to the trivial solution Y = I;,. Based on the above discussions,
the optimization problem of our proposed ANTD method is
given as

|A-[B:U,U,Y]|.

min
uY.B
2
+ A U7 U7 1] — [Bi 1 L Y
S.t. UY,B>0 (D

where A is used to balance the encoder and decoder. Fig. 3
illustrates the architecture of our proposed ANTD method.

C. Graph Regularized ANTD

Note that our proposed ANTD method is just a backbone,
which can naturally impose regularizers to further improve
community detection performance. We here introduce a variant
of ANTD, namely ANTDg, which imposes a graph reg-
ularizer [41] on top of ANTD, leading to the following
optimization problem:

. 2 T
- [B; Y T L
Jmin, |A—-[B:U,U,Y]|, + 7 Tr(U"LU)
2
+A|[ AU, U 1] — [B: L, I, Y]
s.t. U,Y,B>0

where y is a tunable parameter to adjust the importance of
graph regularization and L = D; — A (recall D; = diag(Al,)).
We will report the performance of ANTDg in experiments as
well.

V. OPTIMIZATION AND THEORETICAL ANALYSIS

In this section, we first present an alternating optimization
algorithm to solve (1). Then, we further theoretically analyze
the utility of the encoder and the convergence as well as com-
putational complexity of the optimization algorithm. Based
on the above developments, we finally briefly introduce the
optimization of ANTDg with its analysis on the convergence
and computaional complexity.

A. Problem Reformulation

The first term in the objective function of (1) is a quar-
tic polynomial function w.r.t. U, which makes itself highly
impossible to be convex w.r.t. U [26]. Besides, provided B
is a unit super-diagonal tensor, this term also coincides with
the objective function of INDSCAL [12], whose best solution
is still an open problem. Therefore, (1) is difficult to solve.
Alternatively, we introduce an auxiliary variable Z R:‘LX]‘
and propose an equivalent problem as

. 2
Jin A= [B:U,Z,Y][
T T 2
+A|[A; U7, 27 1y, ] — [B; I, I, Y]
s.t. U,Z,Y,B>0,U=7Z

whose objective function is now separately convex to every
variable. By defining a penalty function ||[U — Z||%p which
describes the cost of violating the constraint U = Z and
transferring this constraint to the objective function, we arrive
at our reformulated optimization problem
. 2 2
—[B;U,Z, YX -7
Jin | A—[B:U,Z,YX]| . + nllU - Z||;
2
+)~|| [[-A—a UT,ZT,I(J(JH - [[Bv Ik,Ik,YH ||F
S.t. U,Z,Y,B>0 (2)
where 7 is another parameter to adjust the weight of the

penalty term ||U — Z||%. In Section V-B, we will derive an
efficient solution to the above problem.

B. Solution Method

Inspired by the optimization of NTD [37], we derive an
alternating optimization algorithm for solving (2) as follows.
1) Updating U: The corresponding subproblem of updating
Uis
. 2
min [Py —UQull7 + A[U"Ry — Sy + 1[0 ~ ZI;
st. U>0
where Py = A1), Qu = B1)(Y®Z)", Ry = Ay (I, ®Z")"
and Sy = LB (Y ® k)", By introducing the Lagrangian

multiplier @y, and setting the partial derivative of the resulting
Lagrangian function w.r.t. U to 0, we get

Oy = —2PyQ{, +2UQuQy; + 2/RyR{ U
— 2/RySy, + 27U — 24/Z.

According to the complementary slackness of KKT condi-
tions [42], the optimal solution must satisfy U ® @y = 0,
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from which we can derive the updating rule for U as
PyQ/, + /RyS! + nZ
UQuQY, + ARyR{ U + U’
2) Updating Z: The corresponding subproblem of updating
Z is
. 2
min [P —ZQz} + 2|2 Rz — Sz + 1l Z — U
s.t. 7Z>0
where Pz = Ag), Qz = Bp) (Y U)T, Rz = Ap)(Iy; ®
U and Sz = LB (Y ®L)T. Similarly, by introducing the
Lagrange multiplier ®z, and setting the partial derivative of
the resulting Lagrangian function w.r.t. Z to 0, we get
@z = —2PzQ) +27QzQ} + 2ARzR}Z
—2ARzS} +24Z — 25U.

U<—~U®

According again to the complementary slackness of the KKT
conditions, the optimal solution must satisfy Z ® @z = 0,
from which we can derive the updating rule for Z as
P2Q} + IRzSL + nU
7QzQ} + IRZRYZ + nZ’
3) Updating Y: The corresponding subproblem of updating
Y is

Z—1® “)

min [Py — YQy7 + ARy — YSyll7 st Y >0

where Py = A(3), Qy = B(3)(Z ® U)T, Ry = IdOA(3)(ZT ®
UT)T and Sy = B (It ® Ix)”. Following the same routine,
by introducing the Lagrange multiplier ®y, and setting the
partial derivative of the resulting Lagrangian function w.r.t. Y
to 0, we get

Oy = —2PyQi +2YQyQy — 2ARySY + 2AYSySy.

According to the complementary slackness of the KKT con-

ditions, we can derive the updating rule for Y as
PyQj + ARySy

YQyQ¥ + 2YSySL '

4) Updating B: The corresponding subproblem of updating
B is

Y<«<Y®

)

min A~ [B:U,ZY]|;
+|[A U, 27, 1,] - [B: L I Y
s.t. B=>0.

Applying the theorem introduced in our supplementary mate-
rial, we can directly obtain the updating rule for B as
1+ AU, 2T, Y]
[B; UTU,Z"Z,YTY] + A[B; L, I, YTY]
Based on the above analysis, we summarize the detailed
optimization algorithm, which is outlined in Algorithm 1. The
algorithm first constructs the adjacency tensor A (line 1).
It then initializes all factors U, Z, Y, B randomly and
community sets ¢; = @ for 1 < i < k (line 2). Afterward,
it iteratively updates U, Z, Y and B until the stopping criteria
are met (lines 3-9). Finally, it partitions the network G by
assigning each node v; € V into Carg max, uj; (lines 10-14).

B« B® (6)
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Algorithm 1 Optimization Algorithm for ANTD

Input: Network G, parameters A, 7, maximum number of
iterations @, number of communities to be detected k.

Output: The k detected communities C = {cy, 2, ..., ¢} in
the network G.

1: Extract adjacency matrix A from G and construct adjacency
tensor A accordingly, as shown in Section IV-A;

2: Set the number of iterations f =0 and ¢; = D for 1 <i <
k, and initialize U,, Z;, Y, and BB, randomly;

3: while r < ® and not converged do

4:  Update U, according to (3);

5:  Update Z, according to (4);

6: Update Y, according to (5);

7

8

9

Update B, according to (6);
ot <—t+1;
: end while
10: for all v; € V do
11:  Community membership: £(v;) <— argmax;(u,);;j;
12:  Assign node v; into its corresponding community as
Cen) < Cen Y Hoils
13: end for
14: return The k detected communities C = {c1, ca, ..., ck}
in the network G.

C. Utility of the Encoder Component

We here analyze the utility of the encoder component
I[A; UT,UT, 1, ] — [B; Ik, I, Y]|I%. After (1) has been well
solved, the following two equations hold approximately:

A%BX1UX2UX3Y=(BX3Y)X1UX2U 7
A x; U x, UT ~ (B x3Y). (®)

By substituting (7) into (8), we obtain an important relation
(B x3Y) x; (U'U) x, (U'U) ~ (B x3Y)

which implies that U is implicitly forced to be orthogonal
(i.e., this relation provides a necessary condition for U’s
orthogonality). According to [43], if U is simultaneously
nonnegative and orthogonal, each row of U will contain only
one positive element, indicating the community index that
the corresponding node belongs to. Therefore, the introduced
encoder component greatly benefits the task of community
detection, because we expect the node-community member-
ships to be very clear.

D. Convergence and Complexity Analysis

First, we analyze the convergence of Algorithm 1. As our
proposed multiplicative updating rules in Algorithm 1 are
directly derived from their NMF counterparts, the monotonic
convergence analysis in [44] can be applied to our case as
well. Therefore, we omit the proof here and conclude that
Algorithm 1 converges.

Next, we analyze the computational complexity of
Algorithm 1 step by step. Recall that n and m denote the
number of nodes and edges in the network G respectively,
k is the number of communities to be detected, dy denotes
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the number of hops needed, and d represents the number
of frontal slices of B. We assume that k < n, dy < n
and d < dp, which generally hold in reality. Constructing
A needs to compute {A', A%, ... AP} and their correspond-
ing matrix normalization first, which can be computed in
O(dpmn) time, using the fast Boolean square matrix power
algorithm [45], and O(don?) time, respectively. In addition,
updating U needs to calculate B, (Y ® Z)", A1y, @ Z7)"
and LB (Y ® I)" first. By applying the fast algorithm
introduced in [46], these three terms can be efficiently com-
puted in O(dok*n), O(dpkn?®) and O(ddok* + dk*) time,
respectively. Besides, computing the multiplicative updating
rule in (3) costs O(dpkn?) time, thus the total time complexity
of updating U is O(dokn?). Following the same routine,
updating Z and Y cost O(dokn?®) and O(dokn* + dodn?)
time, respectively. Moreover, the computational complexity of
updating B is O(dokn?). As a result, the time complexity of
Algorithm 1 is O(dymn + ®g(dokn® + dodn?)), where @
is the total number of iterations. It is noted that, the com-
putational complexity of the iterative optimization process of
Algorithm 1 still scales quadratically instead of cubically with
the number of nodes n. This implies that, compared to many
existing NMF-based methods, like NNSED [14] which takes
O(n’k) time, although our proposed ANTD method adopts
nonnegative tensor decomposition to process the higher-order
adjacency tensor, the order of magnitude of its computational
complexity has not been increased, which guarantees its
efficiency.

E. Optimization and Theoretical Analysis of ANTDg

Following the derivation routine in Section V-B, all we
need to modify Algorithm 1 to the optimization of ANTDg
is adding y AU and y D;U to the numerator and denominator
of the updating rule of U (i.e., (3)), respectively. Moreover,
the convergence and computational complexity of ANTD are
easily carried over to ANTDg as the resulting algorithm is
also Lee-Seung type and the complexity of the additional
computations is of O(n?k). It is remarked that, other regular-
izers can also be easily incorporated into ANTD, with minor
modifications to its updating rules.

VI. EXPERIMENTS

In this section, we evaluate our proposed methods on a
variety of real-world benchmark networks. The source code of
our proposed methods is implemented in MATLAB 2020b and
publicly available.” All experiments run on a Ubuntu server
with 3.70-GHz 19-10900K CPU, 128-GB main memory.

A. Comparative Methods
We compare our methods with three categories of state-of-
the-art community detection methods as follows.

e Structural Community Detection Without Ground-Truth
Communities: Ten community detection methods are
compared on networks without ground-truth communities,

Zhttps://github.com/Kwan1997/ANTD

including Betweenness [3], Fast-Greedy [7], InfoMap [8],
Label-Prop [47], Leading-EV  [17], WalkTrap [48],
Watset [49], EdMot [10], SBM [50], and Belief [51].
All these methods can automatically detect an optimal
number of communities.

e One-Stage Community Detection With Ground-Truth
Communities: Eleven one-stage community detection
methods are compared on networks with ground-truth
communities, including ten NMF-based methods of NMF [9],
ONMF [52], BNMF [21], NNSED [14], DANMF [15],
HPNMF [26], AANMF [25], SymmNMEF [22], SCNMF [53],
and PGS [54], and also one tensor-based method of
GraphFuse [55]. All these methods can directly get network
partition from the learned node representations.

e Two-Stage Community Detection With Ground-Truth
Communities : Six two-stage community detection methods
are compared on networks with ground-truth communities,
including two tensor-based multiview clustering methods of
WTNNM [56] and CGL [57], and four network embedding
methods of MNMF [28], RandNE [58], NodeSketch [59],
and BoostNE [60]. All these methods need to conduct
clustering on the learned node representations to partition the
network.

For all tensor-based methods, we take the adjacency tensor
A as their inputs. In addition, we implement pruned versions
of ANTD and ANTDg, namely ANTDp and ANTDgp, which
ignore their encoder components, for ablation study. ANTDg
and ANTDgp are only involved in the task of community
detection with ground-truth communities.

B. Parameter Settings

For ANTD and its three variants, we set d = 1 (resp.
search d in {1, 2,3}) on the task of community detection
without (resp. with) ground-truth communities, and on all
tasks, we tune A and 7 (and y if graph regularized) in
the search grid {1073,1072, 107", 1, 10}, which is kept the
same as in [15]. Besides, we set the maximum number of
iterations @ = 2000, and stop the optimization process when
the change in the loss function is less than the floating-point
relative accuracy (i.e., eps in MATLAB). Moreover, we set
dy = min(diam(G), 6) for these four methods as suggested in
Section IV-A.

For all network embedding methods, we set the dimen-
sionality of node representations as 64, which is the default
setting in the literature [14], [15], [29]. Besides, since the
learned node representations from all these network embed-
ding methods cannot be directly used to extract community
structure, we conduct post-k-means clustering on the learned
embeddings to get a network partition.

For the second group of methods of DANMF, HPNMF,
SCNMF, PGS, and Graphfuse, we tune each of their para-
meters in the search grid {1073,1072,10°", 1, 10}. Besides,
for PGS, we tune the thresholding parameter (i.e., ¢ in their
article) in {eps, 2, 4, 6, 8}, and for DANME, we set the layer
size as n — 256 — 128 — k and the maximum number of
pretraining iterations as 1000.
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TABLE I
STATISTICS OF DOLPHINS, NET-SCIENCE, AND WIKI-VOTE

Statistic Dolphins  Net-Science ~ Wiki-Vote

# of Nodes 62 379 889

# of Edges 159 914 2,914

Diameter 8 17 13
TABLE II

DEFINITIONS OF MODULARITY, PERMANENCE, AND COVERAGE

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
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For the two tensor-based multiview clustering methods
of WINNM and CGL, we tune each of their parameters
in the search grid {1073,1072, 107", 1, 10}. Besides, sim-
ilarly, we conduct post spectral clustering on the learned
similarity graphs of these two methods for a network
partition.

For all the other methods, they either do not have any para-
meter to be tuned, or the number of their tunable parameters
is larger than four. For the latter ones, we set their parameters
as their original authors or other researchers suggested.

C. Community Detection without Ground-Truth Communities

Datasets: We use three real-world networks,? i.e., Dolphins,
Net-Science, and Wiki-Vote, whose statistics are summarized
in Table I. These networks do not have ground-truth com-
munities, but are very classical benchmarks which are widely
evaluated in the literature [26], [27], [61].

Evaluation Metrics: Given no ground-truth communities,
we measure the community quality using structural informa-
tion. We employ three widely used “unsupervised” community
quality metrics, namely modularity [7], permanence [18], and
coverage [62], as defined in Table II. In Table II, the indicator
function d(ce@,), céwy)) = 1 if and only if ¢z = csw)),
or 0 otherwise. The larger these values, the better community
results. Note that modularity and permanence can be negative,
while coverage is always positive. As comparative methods
can automatically determine the best number of communities,
we vary k for ANTD and ANTDp from 2 to 30 with step
size 1 for fairness. For all methods, we report the best results
under all possible parameter combinations.

Exp-1: Community Quality Evaluations Without
Ground-Truth Communities in Terms of Modularity,
Permanence, and Coverage: We evaluate the quality of
different community detection algorithms over three networks
without ground-truth communities. Based on the results in
Figs. 4-6, we have the following experimental observations.

3http://networkrepository.com
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Fig. 6. Coverage evaluations on three datasets.

e ANTD Is Effective: In terms of modularity, our proposed
ANTD method achieves a relatively high performance, ranking
in the top four among 12 methods. In terms of permanence and
coverage, our proposed ANTD method consistently outper-
forms all the other methods. Moreover, in terms of coverage,
our ANTD method consistently achieves full marks on all
the networks. These evidences significantly demonstrate the
effectiveness of ANTD.

e Encoder Makes Sense: For all the three metrics, ANTD
consistently outperforms its pruned version ANTDp on all the
networks. This phenomenon shows that the autoencoder-like
architecture is indeed beneficial for improving community
detection performance.

Exp-2: Sensitivity Analysis on k: We analyze the sensitivity
of ANTD in terms of its modularity performance w.r.t. k.
The experimental result on the Dolphins dataset is shown in
Fig. 7(a). As observed, with k increases, the modularity shows
an overall trend of first increasing and then decreasing, which
is in accord with our expectation. It is thus suggested to set k
to a medium value when k is not known a priori.

D. Community Detection with Ground-Truth Communities

Datasets: We use 12 widely used datasets of real-world
networks with ground-truth communities.* Table III reports

“https://snap.stanford.edu/data/index.html,
and http://mlg.ucd.ie/aggregation/index.html

https://lings.soe.ucsc.edu/data
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TABLE IIT
STATISTICS OF 12 REAL-WORLD NETWORKS WITH GROUND-TRUTH COMMUNITIES

Statistic Cora Citeseer Email Texas Cornell ~ Washington ~ Wisconsin ~ Football ~ Politics]E ~ PoliticsUK ~ Rugby  Olympics
# of Nodes 2,708 3,327 1,005 187 195 230 265 248 348 419 854 464
# of Edges 5,429 4,732 16,706 328 304 446 530 2,645 12,567 19,950 22,861 7,787
Density 0.148%  0.086%  3.311% 1.886% 1.607% 1.694% 1.515% 8.636%  20.814% 22.782% 6.277% 7.249%
# of Communities 7 6 42 5 5 5 5 20 7 5 15 28
Diameter 19 28 7 8 8 8 8 4 3 3 4 5
TABLE IV TABLE V

STATISTICS OF FIVE SYNTHETIC NETWORKS DEFINITIONS OF PURITY, F-SCORE, AND NMI
Statistic LFR-100 LFR-500 LFR-lk LFR-5k LFR-10k Metric Definition
# of Nodes 100 500 1,000 5,000 10,000 Purity [16 LSk axieaior e N ss
# of Edges 240 1,090 2247 11277 23,187 v vl 135 n izl el =t ez 01551
# of Communities 6 34 60 310 614 -score [16] 2T [p I In
Diameter 7 11 11 15 16 NMI [16] 1(C,5)

graph statistics of these real-world datasets, where the density
is computed by m/ (g) Besides, we also generate five synthetic
networks with ground-truth communities for efficiency and
scalability evaluations. Specifically, we use the LFR bench-
mark toolkit [63] to generate five synthetic networks with
different number of nodes varied in 100, 500, 1000, 5000,
and 10000, and we set mixing parameter as 0.2, average
degree as 5, maximum degree as 25, degree distribution
exponent as 2, community size distribution exponent as 1,
and community size bounds as #nodes/50 and #nodes/20.
Table IV shows the statistics of these generated synthetic
networks.

Evaluation Metrics: We employ three evaluation met-
rics of purity, F-score, and NMI [16], as defined in
Table V. In Table V, S {s1,52,...,5]} denotes
the set of [ ground-truth communities, I(C,S)
Zle le:l(|ci Nsjl/n)log(nlc; Ns;l/lcills;l) is the mutual
information between C and S, H(C) = —Zle(lckl/n)
log(|ck|/n) denotes the entropy of C (and similar applies
to H(S)), and tp, fp, fn denote the number of true
positive, false positive and false negative hits obtained
by the pair confusion matrix of {x(v(),x(v2),...,x(v,)}
and {&(vy),&(02),...,¢(v,y)), respectively, where x(v) €
{1,2,...,1} denotes the index of the ground-truth community

(H(CO)+H(S))/2

containing v. For both metrics, the larger values, the better
community results. For all the networks in Table III, we set
the number of communities to be detected k as the same as
the number of ground-truths /. We report the average results
of different algorithms on ten runs under the best parameter
combination.

Exp-3: Community Quality Evaluations With
Ground-Truth Communities in Terms of Purity, F-
Score and NMI: We evaluate the community quality of
different algorithms over 12 networks with ground-truth
communities. Based on the results in Tables VI-VIII, where
the shaded (resp. boldface) number represents the top-three
(resp. best) performance value respectively, we have the
following observations.

* Our Proposed Methods Are Effective: In terms of these
three metrics, we can observe that in most cases, at least
one of the four versions of ANTD can achieve top-three
performance, under comparisons with 17 state-of-the-art com-
petitors. Besides, ANTDg strikes the best performance the
most times. These evidences fully show the effectiveness of
our proposed methods. Moreover, we can find that except
on the Cora, Citeseer, Washington, and Wisconsin networks,
ANTDg consistently performs better than other tensor-based
methods with our adjacency tensor as inputs, indicating that in
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TABLE VI
PURITY EVALUATIONS ON 12 REAL-WORLD DATASETS

Method Cora Citeseer ~ Texas  Cornell ~ Washington ~ Wisconsin ~ Email ~ Football ~ Politics]E ~ PoliticsUK ~ Rugby  Olympics
NMF [9] 0.4884  0.3461  0.6567  0.4400 0.5726 0.5204 0.6821  0.8206 0.8963 0.9605 0.8338 0.8248
ONMF [52] 0.4919  0.3427  0.6364  0.4436 0.5730 0.5268 0.6948  0.8097 0.8750 0.9483 0.8308 0.8104
BNMF [21] 0.4865  0.3351  0.5995  0.4574 0.5352 0.5094 0.4105  0.4486 0.8954 0.9665 0.8094 0.5259
NNSED [14] 0.4743  0.3569  0.6481  0.4436 0.5770 0.5200 0.6949  0.7976 0.9075 0.9593 0.8335 0.8045
DANMF [15] 0.5482  0.3881 0.6652  0.4621 0.6074 0.5362 0.6696  0.8028 0.9078 0.9620 0.8481 0.8421
HPNMF [26] 0.5879 04415 0.5882  0.4503 0.5357 0.5158 0.7068 = 0.8761 0.9402 0.9751 0.8599 0.9173
AANMF [25] 0.4219  0.2978  0.6380  0.4621 0.6213 0.5336 0.4920  0.5838 0.7244 0.8287 0.7018 0.6544
SymmNMF [22]  0.5293  0.3625  0.5930  0.4333 0.5896 0.5411 0.6920  0.8364 0.9239 0.9593 0.8262 0.8575
SCNMF [53] 0.5662  0.4134  0.6754  0.4487 0.6074 0.5521 0.7061  0.8615 0.9368 0.9713 0.8429 0.9032
PGS [54] 0.5511 = 0.4808 @ 0.5802  0.4477 0.5487 0.5004 0.6777  0.6235 0.8632 0.9560 0.8638 0.8894
GraphFuse [55] 0.3618  0.3581 0.6064  0.4538 0.5452 0.4860 0.6277  0.8215 0.9049 0.9632 0.8329 0.8464
WTNNM [56] 0.5529  0.3801  0.5882  0.4462 0.6426 0.5264 0.6756  0.7988 0.9037 0.9545 0.8091 0.8397
CGL [57] 0.4918  0.4046  0.6310  0.4872 0.6478 0.5623 0.6379  0.8259 0.8649 0.9498 0.8430 0.8387
MNMF [28] 0.5151 0.3446  0.6102  0.4692 0.6226 0.5200 0.4884  0.6498 0.8052 0.9419 0.8269 0.6944
RandNE [58] 0.3667  0.2620  0.5535  0.4328 0.5157 0.4977 0.4378  0.7502 0.8851 0.9636 0.8265 0.7479
NodeSketch [59] 0.3343 02603  0.5636  0.4282 0.5978 0.4842 0.3469  0.4065 0.8239 0.9258 0.6711 0.5158
BoostNE [60] 0.3928  0.2450  0.5551  0.4323 0.4878 0.4691 0.4338  0.6753 0.8658 0.9596 0.8222 0.7477
ANTD 03195  0.2971 | 0.6588  0.4862 0.6078 0.5075 0.7127  0.8664 0.9382 0.9737 0.8459 09119
ANTDp 03146 0.2309  0.6449 | 0.4908 0.6013 0.5008 0.7085  0.8611 0.9394 0.9727 0.8487 0.9259
ANTDg 0.4034  0.3387  0.6636 | 0.4913 0.6209 0.5068 0.7184  0.8753 0.9474 0.9792 0.8547 0.9192
ANTDgp 03132 0.2446  0.6535  0.5056 0.6252 0.5079 0.7105  0.8660 0.9408 0.9725 0.8546 0.9289
TABLE VII
F-SCORE EVALUATIONS ON 12 REAL-WORLD DATASETS
Method Cora Citeseer ~ Texas  Cornell ~ Washington ~ Wisconsin ~ Email ~ Football ~ PoliticsIE ~ PoliticsUK ~ Rugby  Olympics
NMF [9] 03181  0.2868  0.5533  0.3302 0.4415 0.3563 0.4904  0.7457 0.7096 0.7224 0.5123 0.7224
ONMF [52] 0.3184  0.2825  0.5389  0.3373 0.4271 0.3533 0.5101  0.7353 0.6717 0.7626 0.5153 0.6850
BNMF [21] 03252 0.2251 04786  0.3117 0.3602 0.3134 0.3407  0.4169 0.9169 0.9134 0.6202 0.5228
NNSED [14] 03193  0.2796  0.5540  0.3457 0.4409 0.3647 0.5397  0.7196 0.7117 0.7443 0.5318 0.6665
DANMEF [15] 0.4126  0.2956  0.5702  0.4209 0.5072 0.4332 0.5016  0.7051 0.7285 0.8516 0.6496 0.7813
HPNMF [26] 0.4345 03143 05373 = 0.4334 0.4796 0.4771 0.5208 = 0.8013 0.9067 0.9835 0.6756 0.8210
AANMF [25] 0.3075  0.2946  0.5453  0.3659 0.5048 0.3829 0.2269  0.3294 0.6559 0.7765 0.5028 0.4419
SymmNMF [22] 03518  0.2860  0.5160  0.3399 0.4669 0.3690 0.4573  0.7580 0.6954 0.7205 0.5094 0.7444
SCNMF [53] 04144 03164 0.5998 0.4187 0.5053 0.4552 0.5070  0.7835 0.8722 0.9698 0.7185 0.8079
PGS [54] 0.4020 =~ 0.3478  0.5400  0.4318 0.4842 0.4818 0.5059  0.5033 0.8816 0.9585 0.7605 0.7726
GraphFuse [55] 0.3101  0.3030  0.5400  0.4278 0.4846 0.4825 0.3645  0.7599 0.8630 0.9385 0.5765 0.7639
WTNNM [56] 0.3661 0.3077  0.3630  0.2903 0.3967 0.4826 0.4656  0.6842 0.7446 0.9061 0.5053 0.6687
CGL [57] 0.3628 = 0.3143 | 0.3394  0.3049 0.3609 0.3182 0.3414  0.7013 0.6492 0.7960 0.5333 0.6202
MNMF [28] 03661  0.2937  0.4348  0.3409 0.4899 0.3564 0.2594  0.4749 0.7564 0.8810 0.5248 0.5095
RandNE [58] 0.2130  0.1949  0.3639  0.3016 0.3440 0.2992 0.2509  0.5727 0.8862 0.9529 0.5943 0.5391
NodeSketch [59]  0.1958  0.1878  0.3211  0.2633 0.3356 0.2724 0.1334  0.2053 0.5836 0.6945 0.3605 0.3063
BoostNE [60] 03030  0.2991 03917  0.3342 0.4095 0.3771 0.2196  0.4298 0.8523 0.9440 0.5943 0.4614
ANTD 0.2901 0.2915  0.5603  0.4311 0.5262 0.4826 0.5655  0.7958 0.8888 0.8892 0.5670 0.8310
ANTDp 0.3030  0.2953 | 0.5835  0.4335 0.5162 0.4720 0.5503  0.7903 0.8171 0.8645 0.5496 0.8403
ANTDg 03252  0.3021  0.5763  0.4333 0.5368 0.4830 0.5768  0.8140 0.9427 0.9822 0.6906 0.8577
ANTDgp 0.3026  0.2949 | 0.5865  0.4403 0.5393 0.4713 0.5662  0.7978 0.8749 0.9070 0.5904 0.8555

our scheme the adjacency tensor is utilized in a more effective
way.

e Encoder Is Not Omnipotent : Occasionally, the pruned ver-
sions of ANTD and ANTDg perform better than their orig-
inals. This suggests that the autoencoder-like architecture is
not always conducive, although it gives better performance in
most cases.

e Graph Regularizer Makes Sense: We can find that the per-
formance of ANTDg is better than ANTD in nearly all
cases, reflecting that the performance of ANTD can be further
improved by incorporating a graph regularizer.

e Network Embedding Methods Are Not Effective: As obs-
erved, in terms of NMI, three network embedding methods
RandNE, NodeSketch, and BoostNE perform not as good
as expected on the first seven networks. The reason is that
they are not community detection oriented, although they can
encode higher-order node relations into embeddings. Besides,

these methods have to conduct a post k-means clustering to
partition the network. This two-stage methodology may also
affect the performance of community detection.

e There Is No Free Lunch [64]: Although our proposed
methods perform fairly well in most cases, their performance
deteriorates on the Cora and Citeseer networks, which may
be partly due to the extreme sparsity of these networks as
shown in Table III. This shows that different methods may
be suitable for different scenarios, and we suggest to use our
proposed methods in relatively dense networks.

Exp-4: Convergence Evaluations: We conduct convergence
evaluations for ANTD. Fig. 7(b) reports the objective function
value curve of ANTD on the Cornell network with 7
A = 0.1 and d = 2. As observed, the objective function
value monotonically decreases, which validates our theoretical
analysis. Besides, the convergence speed of ANTD is not very
fast: The objective function value first decreases slowly, but
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TABLE VIII
NMI EVALUATIONS ON 12 REAL-WORLD DATASETS
Method Cora Citeseer ~ Texas  Cornell ~ Washington ~ Wisconsin ~ Email ~ Football ~ Politics]E ~ PoliticsUK ~ Rugby  Olympics
NMF [9] 0.2557  0.1214  0.2138  0.0993 0.1221 0.0782 0.6893  0.8401 0.7429 0.7214 0.6343 0.8304
ONMF [52] 0.2635  0.1213  0.2030  0.1097 0.1177 0.0846 0.7018  0.8377 0.7188 0.7187 0.6304 0.8208
BNMF [21] 0.2586  0.0646  0.1265  0.0869 0.0946 0.0686 0.5609  0.6548 0.8377 0.8728 0.6827 0.7276
NNSED [14] 0.2329  0.1166  0.2137  0.1064 0.1208 0.0919 0.7036  0.8292 0.7514 0.7294 0.6367 0.8163
DANMF [15] 03683 0.1463  0.2142  0.1254 0.1538 0.0874 0.6813  0.8179 0.7630 0.8057 0.6764 0.8537
HPNMF [26] 03524  0.1439  0.1094  0.0829 0.0754 0.0807 0.7014 = 0.8815 0.8480 0.9356 0.6975 0.9107
AANMF [25] 0.2021  0.1090  0.1971  0.1269 0.1776 0.0990 0.5276  0.6408 0.5586 0.6206 0.5591 0.7031
SymmNMF [22] 03262  0.1338  0.1476  0.0950 0.1333 0.1098 0.6917  0.8505 0.7698 0.7151 0.6254 0.8584
SCNMF [53] 0.3714  0.1786  0.2384 0.1108 0.1528 0.1056 0.7035  0.8685 0.8456 0.9153 0.6954 0.8992
PGS [54] 0.3884  0.2364 0.0854  0.0855 0.0835 0.0610 0.6690  0.7449 0.7948 0.8722 0.7495 0.8799
GraphFuse [55] 0.1337  0.0936  0.1539  0.0846 0.1153 0.0498 0.6427  0.8594 0.8359 0.8766 0.6645 0.8763
WTNNM [56] 03367  0.1273  0.1466  0.1008 0.1972 0.0971 0.6689  0.8221 0.7530 0.8101 0.6052 0.8406
CGL [57] 02682  0.1423  0.1512  0.1082 0.1912 0.1103 0.6324  0.8288 0.7152 0.7375 0.6578 0.8379
MNMF [28] 03176 = 0.1501 @ 0.1638  0.1213 0.1855 0.0814 0.5395  0.6942 0.6431 0.7822 0.6366 0.7207
RandNE [58] 0.0932  0.0180  0.0857  0.0589 0.0799 0.0641 0.4816  0.7970 0.8042 0.8739 0.6534 0.7844
NodeSketch [59]  0.0739  0.0201  0.1063  0.0558 0.1324 0.0557 0.3449  0.4704 0.5844 0.6279 0.4547 0.5471
BoostNE [60] 0.1802  0.0535  0.0757  0.0685 0.0754 0.0682 0.5229  0.7473 0.7851 0.8794 0.6615 0.7830
ANTD 0.0719  0.0684 | 02197 0.1351 0.1853 0.0601 0.7185  0.8813 0.8412 0.8570 0.6606 0.9133
ANTDp 0.0430  0.0228  0.1952  0.1349 0.1759 0.0570 0.7120  0.8792 0.8429 0.8180 0.6604 0.9219
ANTDg 0.2073  0.0954 | 0.2223  0.1369 0.2035 0.0645 0.7186  0.8969 0.9008 0.9488 0.7028 0.9195
ANTDgp 0.0394  0.0335 0.1969 | 0.1363 0.2047 0.0616 0.7148  0.8876 0.8561 0.8415 0.6742 0.9231

then drops rapidly, and finally steadily converges to a local
optimum. It is also noted that the objective function value of
ANTD is relatively small (i.e., dozens), which is due to the
fact that the frontal slices of A are all normalized adjacency
matrices. This suggests that we should not set large values for
the parameters of ANTD.

Exp-5: Efficiency and Scalability Evaluations: We conduct
efficiency and scalability evaluations for ANTD. For all
experiments here, we set the number of iterations as 2000 and
all tunable parameters as 0.1 (except d = 2 for ANTD) for
all adopted methods.

First, we evaluate the running time (i.e., the time of the
whole community detection process) of ANTD. Fig. 7(c)
reports the running time of WTNNM, CGL, AANMEF, and
ANTD on the LFR-1k network. As observed, ANTD runs
much faster than WTNNM and AANMEF, demonstrating the
efficiency of ANTD to some extent. Besides, ANTD consumes
nearly the same time with CGL.

Next, we test the scalability of ANTD over five synthetic
networks as shown in Fig. 7(d). As observed, with the grown
size of networks, ANTD needs exponentially more time
to detect all communities, reflecting a challenging task for
tensor-based community detection over large-scale networks.
Fortunately, our ANTD method takes around 8 h to detect
all communities on the LFR-5k network, which is not slow.
Note that for networks with more than 10000 nodes, build-
ing the corresponding adjacency tensor will cause memory
overflow. This is due to the limited memory of our local
machine, therefore we here only consider networks with fewer
than 10000 nodes. Distributed optimization methods can be
adopted to solve this problem, and we leave it as our future
work.

Exp-6: Sensitivity Evaluations: We conduct sensitivity eval-
uations for ANTD. Specifically, we turn 1 and # in the search
grid {1073,1072, 107!, 1, 10}, while fixing d = 2, and report
the community detection performance of ANTD under all
possible parameter combinations on the Cornell network in
terms of NMI in Fig. 7(e). As observed, in general, smaller

A tends to give better NMI. This is because the objective
function of ANTD is of small order of magnitude, as we
analyzed in Exp-4, and larger 1 would therefore cause the
Tucker decomposition under-fitting to A and eventually sacri-
fice the quality performance. In addition, ANTD is relatively
nonsensitive to these parameters in the search grid (4, n) €
{103,102, 107"} x {1073,1072,1071, 1, 10}, indicating a
very stable performance in terms of NMI.

VII. CONCLUSION

In this article, we proposed a novel concept of adjacency
tensor, which contains multihop topological information, and
a novel tensor Tucker decomposition-based community detec-
tion method ANTD, which can effectively process the adja-
cency tensor, as well as a graph regularized version of
ANTD namely ANTDg. To optimize ANTD, we derived an
efficient iterative optimization algorithm. Our proposed opti-
mization algorithm scales only quadratically with the number
of nodes, which is the same as many existing NMF-based
methods, although ANTD is a tensor decomposition-based
method. Moreover, with minor modifications, the developed
optimization algorithm for ANTD can be easily adapted to
optimize ANTDg, with convergence and computational com-
plexity carried over. To comprehensively test our proposed
methods, we conducted extensive experiments on a variety
of real-world benchmark networks. Comparative experimental
results showed that our proposed methods manifested out-
standing performance and outperformed the state-of-the-art
community detection algorithms. For future work, we plan to
investigate how to utilize multihop local manifold structure to
regularize the detected communities, and how to adapt our
method to large-scale networks by distributed optimization
techniques.
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