
Efficient Probabilistic Truss Indexing on Uncertain Graphs
Zitan Sun

Hong Kong Baptist University, Hong Kong

sunzitan@comp.hkbu.edu.hk

Xin Huang

Hong Kong Baptist University, Hong Kong

xinhuang@comp.hkbu.edu.hk

Jianliang Xu

Hong Kong Baptist University, Hong Kong

xujl@comp.hkbu.edu.hk

Francesco Bonchi

ISI Foundation, Italy

francesco.bonchi@isi.it

ABSTRACT
Networks in many real-world applications come with an inherent

uncertainty in their structure, due to e.g., noisy measurements, in-

ference and prediction models, or for privacy purposes. Modeling

and analyzing uncertain graphs has attracted a great deal of atten-

tion. Among the various graph analytic tasks studied, the extraction

of dense substructures, such as cores or trusses, has a central role.

In this paper, we study the problem of (𝑘,𝛾)-truss indexing and

querying over an uncertain graph G. A (𝑘,𝛾)-truss is the largest
dense subgraph of G, such that the probability of each edge being

contained in at least 𝑘 − 2 triangles is no less than 𝛾 . Our first

proposal, CPT-index, keeps all the (𝑘,𝛾)-trusses: retrieval for any
given 𝑘 and 𝛾 can be executed in an optimal linear time w.r.t. the

graph size of the queried (𝑘,𝛾)-truss. We develop a bottom-up CPT-
index construction scheme and an improved algorithm for fastCPT-
index construction using top-down graph partitions. For trading

off between (𝑘,𝛾)-truss offline indexing and online querying, we

further develop an approximate indexing approach (𝜖,Δ𝑟 )-APX
equipped with two parameters, 𝜖 and Δ𝑟 , that govern tolerated

errors. This approximation scheme can produce exact results and, by

freely adjusting the two parameters, can efficiently support (𝑘,𝛾)-
truss indexing and querying tasks over large uncertain graphs.

Extensive experiments using large-scale uncertain graphs with

261 million edges validate the efficiency of our proposed indexing

and querying algorithms against state-of-the-art methods.

CCS CONCEPTS
• Human-centered computing→ Social network analysis; • In-
formation systems → Clustering; Database query process-
ing; • Mathematics of computing→ Graph algorithms; • The-
ory of computation→ Probabilistic computation.

KEYWORDS
probabilistic 𝑘-truss, uncertain graph, indexing, query

ACM Reference Format:
Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi. 2021. Efficient

Probabilistic Truss Indexing on Uncertain Graphs. In Proceedings of the Web
Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3442381.3449976

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449976

a

bc

d
gf

0.95

0.95

0.95 0.95

0.95

0.95

1

0.8

1

0.8

0.8

0.2

0.2

h

H

(a) Uncertain graph G

a

bc

d
gf

h

(b) Possible world 𝐻

Figure 1: An example of uncertain graph G.H is the (3, 0.9)-
truss of G. The deterministic graph 𝐻 is a possible world of
G.

1 INTRODUCTION
Graph is a widely used model to represent entities and their rela-

tionships in many application domains, such as biological networks,

social and communication networks, or traffic networks, just to

mention a few. In many such applications, uncertainty on the net-

work structure is inherently part of the analysis. In fact, the network

is rarely directly observable: in most of the cases its structure must

be inferred from noisy data and by means of correlation analyses,

machine learning modeling, and other imprecise processes. Such

uncertainty can be captured and modeled by means of probabilistic
graphs, or uncertain graphs, where each edge is associated with

tis own probability of existence [31]. Uncertainty on the network

structure can also be explicitly adopted as a privacy measure [6].

One key graph analytic task is the identification of dense sub-

structures. In the literature, there exist a plethora of different dense

subgraph definitions, both in deterministic and uncertain graphs,

including cliques, quasi-cliques [30], 𝑛-clans [26], 𝑛-club [26], 𝑘-

core [33], 𝑘-truss [36], (𝑘, 𝜂)-core [7], and (𝑘,𝛾)-truss [43][18][14].
In a deterministic graph, 𝑘-truss is the largest subgraph, such that

every edge is contained in at least (𝑘 − 2) triangles. For example,

consider the graph 𝐺 in Figure 1(a) ignoring the edge probabilities:

the whole graph is a 3-truss, as every edge is contained in at least

one triangle. Given an uncertain graph G and two parameters 𝑘 ≥ 2

and 𝛾 ∈ (0, 1], a (𝑘,𝛾)-truss is a subgraph H ⊆ G in which the

probability of each edge being contained in at least 𝑘 −2 triangles is

no less than 𝛾 [43][18]. In Figure 1(a), the probability of edge (𝑓 , 𝑑)
being contained in one triangle is 0.2 × 0.2 × 0.8 = 0.032, and those

of other edges are no less than 0.032; hence, the whole graph G is a

(3, 0.032)-truss.
In this paper, we tackle the problem of constructing an offline

index to support efficient (𝑘,𝛾)-truss retrieval for any 𝑘 , 𝛾 . The

(𝑘,𝛾)-truss indexing is particularly useful in applications in which

many (𝑘,𝛾)-truss retrieval queries must be issued in order to find

a solution. Some examples include probabilistic triangle densest

https://doi.org/10.1145/3442381.3449976
https://doi.org/10.1145/3442381.3449976


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi

subgraph discovery [35], team formation and community search [15,

17], and module detection for critical medical assessments, such as

in cancer diagnoses [18]. In Sections 8.3 and 8.4, we validate the

usefulness of (𝑘,𝛾)-truss indexing in practice for speeding-up task-

driven team formation [7, 18] and approximating triangle densest

subgraph discovery [35] over uncertain graphs.

Challenges and contributions. Efficient (𝑘,𝛾)-truss indexing

and retrieval presents significant challenges, mostly due to the

enumeration of all possible 𝑘 and 𝛾 combinations.

For a given 𝛾 , it exists a (𝑘,𝛾)-truss decomposition method to

find all the 𝑘-trusses of an uncertain graph G [18]. Unfortunately,

a straightforward extension of such method is inefficient for (𝑘,𝛾)-
truss indexing and retrieval. On the one hand, as there exist infinite

choices for value of 𝛾 ∈ (0, 1], building a decomposition for many

values of𝛾 would lead to combinatorial blow-up and inefficiency. On

the other hand, an online search approach applying (𝑘,𝛾)-truss de-
composition [18] each time from scratch for a given 𝑘 and 𝛾 , would

not benefit of an index and would incur in high time complexity

especially for large real-world graphs. The need for an index gets

even worse when many (𝑘,𝛾)-truss queries are repeatedly issued.

To tackle problems efficiently, we analyze and find several useful

structural properties of (𝑘,𝛾)-truss. The key observation is that, for

a given 𝑘 , the maximum probability 𝛾 of an edge that this edge is

contained in a (𝑘,𝛾)-truss, can be computed in polynomial time.

Thus, the trussness of every edge for all possible 𝑘 can be pre-

computed. Moreover, we analyze the hierarchical properties of

(𝑘,𝛾)-truss and design a compact and elegant CPT-index to keep all
the (𝑘,𝛾)-trusses. To construct theCPT-index, we develop a bottom-

up CPT-Basic construction to keep the (𝑘,𝛾)-truss information

from the smallest 𝑘 to the largest 𝑘 . To improve the efficiency, we

further propose a fast algorithm CPT-Fast to construct CPT-index
from the largest 𝑘 to the smallest 𝑘 using graph partitions.

Besides these two exact algorithms, which generate bottom-

up and top-down CPT-index constructions, we also propose an

approximate indexing scheme (𝜖,Δ𝑟 )-APX. (𝜖,Δ𝑟 )-APX builds up

an approximate index, which keeps the approximate trussnesses

within a given error Δ𝑟 for partial edges that are contained in the

(𝑘,𝛾)-truss for 𝛾 ≥ 𝜖 . Built upon CPT-Fast, (𝜖,Δ𝑟 )-APX achieves a

good level of efficiency to balance out the trade-off between index

construction and (𝑘,𝛾)-truss retrieval.

The contributions of this paper can be summarized as follows:

• We formulate the problem of building an index to maintain all

the (𝑘,𝛾)-trusses of an uncertain graph G for any value of 𝑘

and 𝛾 , for efficient (𝑘,𝛾)-truss retrieval (Section 3).

• Exploiting structural properties of (𝑘,𝛾)-truss we devise a

compactCPT-index to keep the probabilistic trussnesses for all
edges in G. To construct the CPT-index, we propose a bottom-

up indexing approach, CPT-Basic, through which to compute

all the (𝑘,𝛾)-trusses (Section 5).

• We present a top-down algorithm, CPT-Fast for building the
CPT-index. To speed up efficiency, CPT-Fast delays the initial-
ization and update of probabilistic support vectors. CPT-index
based (𝑘,𝛾)-truss retrieval can be carried out in an optimal

linear time for any given 𝑘 and 𝛾 (Section 6).

• To achieve efficient (𝑘,𝛾)-truss indexing on large graphs, we

develop an approximate indexing scheme named (𝜖,Δ𝑟 )-APX.
The approximate index is built uponCPT-Fast discarding those
(𝑘,𝛾)-trusses with probability 𝛾 < 𝜖 while guaranteeing the

approximation of the trussnesses value within a small error

Δ𝑟 . The significant advantage of (𝜖,Δ𝑟 )-APX is the way in

which it trades off the time costs of index construction and

(𝑘,𝛾)-truss retrieval (Section 7).

• Our extensive empirical analysis on nine real-world uncer-

tain graphs (Section 8) demonstrates that (𝑖) our index-based
approaches are several orders of magnitude faster than the

online search approach [18], (𝑖𝑖) have useful applications in
task-driven team formation and approximating probabilistic

triangle densest subgraph discovery, and (𝑖𝑖𝑖) that our (𝜖,Δ𝑟 )-
APX scheme scales to a large graph with 261M edges.

2 RELATEDWORK
Our work is related to uncertain graph analytics and 𝑘-truss mining.

Uncertain Graph Analytics. In the literature, numerous kinds of

graph analytic problems have been extended from deterministic

graphs to uncertain graphs [9, 19, 22, 23, 28, 38, 39, 41], such as

dynamic skyline queries [3],𝑘-nearest neighbor searches [31], top-𝑘

maximal cliques [42], graph sparsification [29], and (𝑘, 𝜂)-core [7],
just to mention a few.

The study most related to our work is the probabilistic 𝑘-core

indexing proposed by Yang et al. [37]. The key distinctions with

our work are as follows. (1) While [37] studies 𝑘-core we focus on a

different dense subgraph model, 𝑘-truss, which has typically higher

density and clustering coefficient than 𝑘-core in both determinis-

tic [36] and uncertain graphs [18]. The (𝑘,𝛾)-truss decomposition

has also a higher computational complexity than (𝑘, 𝜂)-core de-

composition [37], which makes the (𝑘,𝛾)-truss indexing task more

challenging. (2) Different optimization techniques are developed. In

particular, [37] develops techniques to accelerate the probabilistic

vector initialization, while our top-down CPT-Fast method accel-

erates both phases of vector initialization and vector update. (3)

Compared with (𝑘, 𝜂)-core indexing [37], we not only have an exact
indexing method for optimal linear time query processing, but also

propose a novel approximate indexing algorithm by keeping partial

indexes to be scalable on large real-world graphs.

K-Truss Mining. Many recent works have studied 𝑘-truss min-

ing [15][21][4][8], which finds a dense subgraph of 𝑘-truss such

that each edge has at least 𝑘 − 2 triangles within the 𝑘-truss.

The discovery of 𝑘-trusses has been widely studied over various

kinds of graphs, including deterministic graphs [36], uncertain

graphs [14, 18, 43], dynamic graphs [15, 40], directed graphs [25, 34],

attributed graphs [16], simplicial complexes [32] and public-private

networks [13]. Moreover, truss decomposition that finds all 𝑘-

trusses on a graph has in-memory algorithms [36], shared-memory

algorithms [20], external-memory algorithms [43], and cloud com-

puting [10]. Chen et al. [10] design graph-parallel algorithms for

truss decomposition in the scenario of cloud computing. Huang et

al. [18] study the probabilistic truss decomposition on uncertain

graphs, which finds the (𝑘,𝛾)-truss for a given parameter 𝛾 . Fate-

meh et al. [14] use the central limit theorem to accelerate probability



Efficient Probabilistic Truss Indexing on Uncertain Graphs WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

calculations in regard to a (𝑘,𝛾)-truss, instead of using dynamic

programming techniques [18]. Different from the above studies,

this paper investigates a different problem regarding (𝑘,𝛾)-truss
indexing, to keep all possible (𝑘,𝛾)-trusses in a data structure and

develop novel algorithms.

3 PRELIMINARIES
In this section, we present the definitions and problem formulations.

3.1 Uncertain Graphs
Let G = (𝑉 , 𝐸, 𝑝) be an uncertain (or probabilistic) graph, where
𝑉 is the set of 𝑛 = |𝑉 | vertices, 𝐸 is the set of𝑚 = |𝐸 | edges, and
𝑝 : 𝐸 → [0, 1] is a probabilistic function. Without loss of generality,

we assume that the existence probability of an edge 𝑒 ∈ 𝐸 is non-

negative and denoted by 𝑝 (𝑒) ∈ (0, 1]. Each edge is supposed

to exist independently [31]. The larger its probability, the larger

chance that it exists. Let 𝑁 (𝑣) be the neighbor set of vertex 𝑣 ,

i.e., 𝑁 (𝑣) = {𝑢 | (𝑣,𝑢) ∈ 𝐸}. The degree of 𝑣 is 𝑑 (𝑣) = |𝑁 (𝑣) |. A
commonly used method of analyzing uncertain graphs is to apply

the possible worlds model, as follows.

Definition 1 (Possible World). Given a possible world 𝐺 =

(𝑉 , 𝐸𝐺 ) of an uncertain graph G, 𝐺 is a deterministic graph where
the set of edges 𝐸𝐺 ⊆ 𝐸 exists for certain, denoted by 𝐺 ⊑ G.

Note that a possible world 𝐺 ⊑ G keeps all the same vertices

of G. The existence probability of a possible world 𝐺 ⊑ G can be

calculated as follows.

Pr[𝐺 |G] =
def

∏
𝑒∈𝐸𝐺

𝑝 (𝑒)
∏

𝑒∈𝐸\𝐸𝐺
(1 − 𝑝 (𝑒)) . (1)

Example 1. Consider a probabilistic graph G in Figure 1(a) and
a possible world 𝐻 ⊑ G in Figure 1(b). By applying Eq. (1), we have
Pr[𝐻 |G] = 0.95

6 × 1
2 × (1 − 0.8)3 × (1 − 0.2)2 = 0.00376367048.

3.2 Probabilistic (𝑘,𝛾)-truss
We first define the 𝑘-truss in deterministic graphs and then extend

its definition to the probabilistic (𝑘,𝛾)-truss in uncertain graphs.

Given a deterministic graph 𝐺 , a subgraph 𝐻 (𝑉 (𝐻 ), 𝐸 (𝐻 )) of 𝐺
has the vertex set 𝑉 (𝐻 ) ⊆ 𝑉 (𝐺) and the edge set 𝐸 (𝐻 ) = {(𝑣,𝑢) ∈
𝐸 (𝐺) |𝑣,𝑢 ∈ 𝑉 (𝐻 )}. A triangle is a cycle of three vertices, 𝑣,𝑢,𝑤 ,

denoted as △𝑢𝑣𝑤 . For an edge 𝑒 = (𝑣,𝑢) in a graph 𝐻 , we define the

number of triangles containing 𝑒 as the support of 𝑒 in 𝐻 , denoted

by sup𝐻 (𝑒) = |{△𝑣𝑢𝑤 | (𝑣,𝑢), (𝑣,𝑤), (𝑢,𝑤) ∈ 𝐸𝐻 }|. Based on the

definition of support, we formulate a dense subgraph of 𝑘-truss as

follows.

Definition 2 (𝑘-truss). A subgraph 𝐻 is the 𝑘-truss of 𝐺 if
and only if 𝐻 is the largest subgraph of 𝐺 , such that ∀𝑒 ∈ 𝐸 (𝐻 ) is
contained in at least 𝑘 − 2 triangles in 𝐻 , i.e., sup𝐻 (𝑒) ≥ 𝑘 − 2.

The 𝑘-truss of𝐺 is represented in𝑇𝑘 . The largest value of 𝑘 , such

that a non-empty𝑇𝑘 ⊆ 𝐺 , is denoted by 𝑘𝑚𝑎𝑥 . Let 𝑘max = max{𝑘 ∈
Z : ∃ a non-empty 𝑇𝑘 ⊆ 𝐺}. Thus, graph 𝐺 can be decomposed

into multiple 𝑘-trusses {𝑇𝑘 |2 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 }.

Example 2. Consider the deterministic graph𝐻 in Figure 1(b). The
triangle △𝑏𝑑𝑔 is formed by three vertices, 𝑏, 𝑑 , 𝑔. Thus, the support of
edge (𝑏,𝑔) is sup𝐻 ((𝑏,𝑔)) = 1. The whole graph 𝐻 is the 3-truss as

𝑇3. In addition, we have 𝑘𝑚𝑎𝑥 = 4 for 𝐻 as the induced subgraph of
𝐻 by the vertex set {𝑎, 𝑏, 𝑐, 𝑑} is the 4-truss 𝑇4 in 𝐻 .

Uncertain Support. We consider the uncertain support of edges.

Given an edge 𝑒 in an uncertain graphH , the triangles containing 𝑒

exist with an uncertain probability. For example, the triangle △ℎ𝑑𝑓
in Figure 1(a) exists with a probability value of 0.2 × 0.2 × 0.8 =

0.032. Based on the possible world model, the uncertain support of

𝑒 ∈ 𝐸 (𝐻 ) is defined as the number of triangles containing 𝑒 inH ,

denoted as supH (𝑒). Let Pr[supH (𝑒) = 𝑡] be the probability that the
support supH (𝑒) equals 𝑡 inH , which is the sum of the probability

mass of all possible worlds 𝐻 ⊑ H that 𝑒 is contained in exactly 𝑡

triangles in 𝐻 . Specifically, we have the following definition.

Definition 3 (Uncertain Support). Given an edge 𝑒 in graph
H , the probability of uncertain support supH (𝑒) = 𝑡 is

Pr[supH (𝑒) = 𝑡] =
∑︁

𝐻 ⊑H Pr[𝐻 |H] · I(sup𝐻 (𝑒) = 𝑡), (2)

where I(sup𝐻 (𝑒) = 𝑡) is an indicator function which takes on 1 if
sup𝐻 (𝑒) = 𝑡 , and 0 otherwise.

Consequently, we define the probability that supH (𝑒) ≥ 𝑡 as

Pr[supH (𝑒) ≥ 𝑡] =
∑︁

𝐻 ⊑H Pr[𝐻 |H] · I(sup𝐻 (𝑒) ≥ 𝑡), (3)

where I(sup𝐻 (𝑒) ≥ 𝑡) is an indicator function which takes on

1 if sup𝐻 (𝑒) ≥ 𝑘 , and 0 otherwise. Obviously, Pr[supH (𝑒) ≥
𝑡] = 1 −∑𝑡−1

𝑖=0
Pr[supH (𝑒) = 𝑖] holds. To simplify this, we denote

Pr[supH (𝑒) ≥ 𝑡] by 𝜎H (𝑒, 𝑡), i.e., 𝜎H (𝑒, 𝑡) =def
Pr[supH (𝑒) ≥ 𝑡].

Moreover, let 𝜎H (𝑒) =
def
[𝜎H (𝑒, 0), 𝜎H (𝑒, 1), . . . , 𝜎H (𝑒, 𝑡𝑒 )] be

the vector of support probabilities of 𝑒 = (𝑢, 𝑣) from 0 to 𝑡𝑒 , where

𝑡𝑒 = |𝑁 (𝑢) ∩𝑁 (𝑣) | is the number of common neighbors between 𝑢

and 𝑣 . When it is clear from the context, we drop the subscriptsH
from all the notations, e.g., 𝜎 (𝑒), and 𝜎 (𝑒, 𝑡).

Based on the definitions of uncertain support and 𝑘-truss above,

we show that the deterministic 𝑘-truss can be extended to proba-

bilistic graphs as (𝑘,𝛾)-truss [18] as follows.
Definition 4 ((𝑘,𝛾)-truss). Given an uncertain graph G, and

two numbers, 𝑘 and 𝛾 , H is the (𝑘,𝛾)-truss of G if and only if H
is the largest subgraph in G, such that each edge 𝑒 ∈ 𝐸 (H) has the
probability of supH (𝑒) ≥ 𝑘 − 2 no less than 𝛾 , i.e., 𝜎H (𝑒, 𝑘 − 2) ≥ 𝛾 .

Example 3. Consider an uncertain graph G in Figure 1(a). For an
edge 𝑒 = (𝑎, ℎ), we have 𝑒 ∈ △𝑎𝑐ℎ and 𝑒 ∈ △𝑎𝑑ℎ . Thus, the uncertain
supports of 𝑒 are calculated as Pr[supG ((𝑎, ℎ)) = 2] = 0.83 × 0.95

2 =

0.46208 and Pr[supG ((𝑎, ℎ)) = 1] = 2 × 0.8 × 0.95 × 0.8 × (1 −
0.95× 0.8) = 0.29184. Therefore, the support probability vector of 𝑒 is
𝜎 ((𝑎, ℎ)) = [1, 0.75392, 0.46208]. In addition, the whole graph G is
(3, 0.032)-truss because ∀𝑒 ∈ 𝐸 (G), 𝜎 (𝑒, 1) ≥ 0.032.

3.3 Problem Formulation
In this paper, we are interested in indexing and querying (𝑘,𝛾)-
trusses for all possible values of 𝑘 and 𝛾 in a given graph G. We

formulate this problem of probabilistic truss indexing and querying
as (𝑘,𝛾)-truss indexing.

Problem 1. Given a probabilistic graphG = (𝑉 , 𝐸, 𝑝), the problem
of (𝑘,𝛾)-truss indexing on G involves constructing a (𝑘,𝛾)-truss index
and answering the (𝑘,𝛾)-truss retrieval for all possible 2 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥

and 𝛾 ∈ (0, 1].



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi

Consider a query of (𝑘,𝛾)-truss retrieval on G in Figure 1(a) for

𝑘 = 3 and 𝛾 = 0.9. The answer of (3, 0.9)-truss isH shown in Fig-

ure 1(a), which is an induced subgraph of G by vertices {𝑎, 𝑏, 𝑐, 𝑑, 𝑔}.
Note that all proposed techniques in this paper are naturally ex-

tended to discover the connected components of (𝑘,𝛾)-truss as the
maximal connected (𝑘,𝛾)-truss [18].

4 EXISTING ALGORITHM
In this section, we introduce an algorithm of (𝑘,𝛾)-truss decompo-

sition for a given 𝛾 [18]. The general idea of (𝑘,𝛾)-truss decompo-

sition uses a peeling strategy, which iteratively removes a disquali-

fied edge from a graph until the remaining graph is the (𝑘,𝛾)-truss.
To identify the qualification of an edge for the (𝑘,𝛾)-truss, the
𝛾-based maximum support is defined for an edge 𝑒 , denoted by

sup
𝛾 (𝑒) = max𝑡 {𝑡 ∈ Z+

0
|𝜎 (𝑒, 𝑡) ≥ 𝛾 and 𝜎 (𝑒, 𝑡 + 1) < 𝛾}. Thus, for

the given 𝑘 and 𝛾 , all edges 𝑒 with sup
𝛾 (𝑒) < 𝑘 − 2 can be removed

from graph G for (𝑘,𝛾)-truss decomposition.

(𝑘,𝛾)-Truss Decomposition Algorithm. Algorithm 1 presents

the pseudo-code for the (𝑘,𝛾)-truss decomposition procedure [18].

The algorithm first computes the edge support probability vector

𝜎 (𝑒) for all edges 𝑒 in the uncertain graph G (lines 1-2). Next, it uses

the peeling strategy to iteratively find all (𝑘,𝛾)-trusses, starting
from the smallest 𝑘 ≥ 2 (lines 3-9). Specifically, it first identifies

the value of 𝑘 as the smallest 𝛾-based maximum support among

all existing edges (line 4). If there exists an edge 𝑒 = (𝑢, 𝑣), such
that sup

𝛾 (𝑒) ≤ 𝑘 − 2, it indicates that 𝑒 belongs to the (𝑘,𝛾)-truss
but 𝑒 ∉ (𝑘 + 1, 𝛾)-truss. Thus, 𝑒 is assigned a trussness value of 𝑘 ,

denoted by 𝜏𝛾 (𝑒) = 𝑘 and is removed from graph G. After the edge
removal of 𝑒 , other edges in the neighborhood of 𝑒 shall be updated

accordingly (lines 8-9). This iterative process is repeated until all

edges are removed from G. The last value of 𝑘 when the algorithm

stops is 𝑘max. Note that all edges 𝑒 with 𝑝 (𝑒) < 𝛾 can be directly

removed from G for preprocessing at the beginning of Algorithm 1.

Drawbacks of Algorithm 1 for indexing and querying (𝑘,𝛾)-
truss. Although Algorithm 1 can compute all the (𝑘,𝛾)-trusses
using dynamic programming techniques, several drawbacks still

exist. First, we consider the limitations of Algorithm 1 for (𝑘,𝛾)-
truss indexing. The most significant drawback of Algorithm 1 is

that it only works for a given 𝛾 . Thus, if we apply Algorithm 1

for (𝑘,𝛾)-truss indexing, it needs to enumerate all possible values

of 𝛾 and invoke the (𝑘,𝛾)-truss decomposition for every 𝛾 on G.
However, the choices of the real number 𝛾 ∈ [0, 1] are infinite.

This implies that a straightforward extension of Algorithm 1 leads

to combinatorial blow-ups and that it is inefficient in regard to

(𝑘,𝛾)-truss indexing. Second, we consider the limitations of Algo-

rithm 1 for (𝑘,𝛾)-truss querying. We can directly apply Algorithm 1

without any index in order to find the (𝑘,𝛾)-truss for any given 𝑘

and 𝛾 . However, it still requires very expensive costs to compute

and update all 𝜎 (𝑒) vectors in the time complexity of 𝑂 (𝑑max𝜌𝑚),
where 𝑑max is the maximum degree and 𝜌 is the graph arboricity

of G with 𝜌 ≤ min{𝑑𝑚𝑎𝑥 ,
√
𝑚} [11]. Thus, the online approach

for (𝑘,𝛾)-truss querying is inefficient in regard to large uncertain

graphs. Motivated by the above limitations, we propose several

novel approaches for efficient (𝑘,𝛾)-truss indexing and querying

in the following sections.

Algorithm 1 Local (𝑘,𝛾)-Truss Decomposition

Input: G = (𝑉 , 𝐸, 𝑝); 𝛾 ∈ [0, 1];
Output: trussness score 𝜏𝛾 (𝑒) of each edge 𝑒 ∈ 𝐸
1: for all 𝑒 ∈ 𝐸 do
2: compute 𝜎 (𝑒) using dynamic programming [18];

3: while 𝐸 ≠ ∅ do
4: 𝑘 ← 2 +min𝑒∈𝐸 {sup

𝛾 (𝑒)};
// The following loop is for (𝑘,𝛾)-truss identification.

5: while ∃𝑒 = (𝑢, 𝑣) ∈ 𝐸 s.t. sup
𝛾 (𝑒) ≤ 𝑘 − 2 do

6: Assign the trussness to 𝑒 as 𝜏𝛾 (𝑒) = 𝑘 ;

7: Remove edge 𝑒 from graph G;
8: for𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣) do
9: Update 𝜎 ((𝑢,𝑤)) and 𝜎 ((𝑣,𝑤)) using a linear scan of

dynamic programming algorithm [18];

10: return 𝜏𝛾 (𝑒) for all edges 𝑒 ∈ 𝐸;

5 (𝑘,𝛾)-TRUSS INDEXING
In this section, we propose a new index structure for keeping the

Complete information of all Probabilistic (𝑘,𝛾)-Truss, referred to

as the CPT-index. The CPT-index can support (𝑘,𝛾)-truss queries
with any parameters of 𝑘 and 𝛾 . Before introducing the CPT-index,
we first analyze several useful structural properties of (𝑘,𝛾)-truss
for efficient index construction. Then, we present a bottom-up CPT-
index construction algorithm and a CPT-index-based method for

(𝑘,𝛾)-truss querying. Finally, we theoretically analyze the algo-

rithm complexities.

5.1 Properties of (𝑘,𝛾)-Truss
In the following, we first analyze the structural property of (𝑘,𝛾)-
truss and then define a key concept of probabilistic trussness.

Lemma 1. (Hierarchical Property) Given two parameter pairs of
(𝑘1, 𝛾1) and (𝑘2, 𝛾2), where 𝑘1 ≤ 𝑘2 and 𝛾1 ≤ 𝛾2, then two probabilis-
tic trusses of G are (𝑘1, 𝛾1)-truss and (𝑘2, 𝛾2)-truss, denoted by H1

andH2 respectively, andH2 ⊆ H1 holds.

Proof. This property of H2 ⊆ H1 holds naturally by the def-

inition of (𝑘,𝛾)-truss in Def. 4. For an edge 𝑒 ∈ 𝐸 (H2), the un-

certain support supH2

(𝑒) ≥ (𝑘2 − 2) has a probability of no

less than 𝛾2, i.e., 𝜎H2
(𝑒, 𝑘2 − 2) ≥ 𝛾2. As 𝑘1 ≤ 𝑘2 and 𝛾1 ≤ 𝛾2,

𝜎H2
(𝑒, 𝑘1 − 2) ≥ 𝜎H2

(𝑒, 𝑘2 − 2) ≥ 𝛾2 ≥ 𝛾1. As a result, each edge of

𝐻2 satisfies the uncertain support constraint of (𝑘1, 𝛾1)-truss, indi-
cating thatH2 is a subgraph of (𝑘1, 𝛾1)-trussH1. Thus,H2 ⊆ H1

holds. □

This lemma shows the relationship between different (𝑘,𝛾)-
trusses in G. We define the probabilistic trussness as follows.

Definition 5 (Probabilistic Trussness). Given an edge 𝑒 in
G and an integer 𝑘 ≥ 2, the probabilistic trussness is defined as the
largest probability 𝛾 , such that there exists a non-empty (𝑘,𝛾)-truss
H ⊆ G containing 𝑒 , denoted by𝛾∗

𝑘
(𝑒) = max𝛾 {𝛾 ∈ (0, 1] | 𝑒 ∈ 𝐸 (H)

andH is a non-empty (𝑘,𝛾)-truss of G}.

The probabilistic trussness is a very important indicator with

which to judge the existence of an edge 𝑒 in a given (𝑘,𝛾)-truss.
Given two parameters 𝑘 and 𝛾 , we can easily use the probabilistic

trussness to identify the existence of 𝑒 ∈ (𝑘,𝛾)-truss as follows.



Efficient Probabilistic Truss Indexing on Uncertain Graphs WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 1: An example of the CPT-index on graph G in Fig-
ure 1(a)

𝑘

𝛾∗
0.32 0.46208 0.75392 0.7737809 0.9409691 0.95

3 (𝑑, 𝑓 ) (𝑎,ℎ) (𝑎,𝑏) (𝑏, 𝑐) (𝑏,𝑑)
(ℎ, 𝑓 ) (𝑑,ℎ) (𝑐,𝑑) (𝑎,𝑑) (𝑑,𝑔)

(𝑐,ℎ) (𝑎, 𝑐) (𝑏,𝑔)
4 (𝑎,ℎ) (𝑎,𝑏) (𝑏, 𝑐)

(𝑑,ℎ) (𝑎, 𝑐) (𝑎,𝑑)
(𝑐,ℎ) (𝑏,𝑑) (𝑐,𝑑)

Lemma 2. Given an edge 𝑒 in graph G and an integer 𝑘 , the edge
𝑒 belongs to the (𝑘,𝛾)-truss if and only if 𝛾 ≤ 𝛾∗

𝑘
(𝑒).

According to Lemma 2, we can infer that, for any number 𝛾 >

𝛾∗
𝑘
(𝑒), 𝑒 does not belong to the (𝑘,𝛾)-truss in G. For instance, in

Figure 1(a), edge (𝑎, ℎ) has 𝛾∗
3
(𝑒) with 0.75392, so edge (𝑎, ℎ) is in

(3, 0.75392)-truss or in (3, 0.7)-truss but not in (3, 0.8)-truss. We

analyze the non-increasing property of probabilistic trussness.

Lemma 3 (Non-increasing Probability). For an edge 𝑒 in graph
G, and two integers 𝑘1, 𝑘2 with 𝑘1 < 𝑘2, we have the probabilistic
trussnesses of 𝑒 with 𝛾∗

𝑘1

(𝑒) ≥ 𝛾∗
𝑘2

(𝑒).

Proof. This property can be inferred by the hierarchical prop-

erty of (𝑘,𝛾)-truss, i.e., (𝑘2, 𝛾
∗
𝑘2

(𝑒))-truss ⊆ (𝑘1, 𝛾
∗
𝑘2

(𝑒))-truss for
𝑘2 > 𝑘1. Let 𝑒 belong to (𝑘2, 𝛾

∗
𝑘2

(𝑒))-truss; thus, 𝑒 ∈ (𝑘1, 𝛾
∗
𝑘2

(𝑒))-
truss and 𝑒 ∈ (𝑘1, 𝛾

∗
𝑘1

(𝑒))-truss. Based on Lemma 2, 𝛾∗
𝑘2

(𝑒) ≤ 𝛾∗
𝑘1

(𝑒)
holds. □

In Figure 1(a), the edge (𝑎, ℎ) has 𝛾∗
3
((𝑎, ℎ)) = 0.75392 and

𝛾∗
4
((𝑎, ℎ)) = 0.46208 ≤ 𝛾∗

3
((𝑎, ℎ)).

5.2 CPT-Index and (𝑘,𝛾)-Truss Retrieval
We introduce the CPT-index based on probabilistic trussnesses.

CPT-Index. The data structure of the CPT-index is a table. It

consists of all edges 𝑒 ∈ 𝐸 (G) with their probabilistic trussness

𝛾∗
𝑘
(𝑒) for all possible values of 𝑘 . Specifically, for each number

2 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 , the CPT-index maintains a sorted list of proba-

bilistic edges in the increasing order of 𝛾∗
𝑘
(𝑒), which can imply all

possible (𝑘,𝛾)-truss for 𝛾 ∈ (0, 1]. Table 1 shows an example of the

CPT-index for a graph G in Figure 1(a). It has only three values

𝑘 ∈ {2, 3, 4}, so 𝑘𝑚𝑎𝑥 = 4 and any (𝑘,𝛾)-truss with 𝑘 > 4 is empty.

Edges (𝑑, 𝑓 ) and (ℎ, 𝑓 ) belong to set (𝑘 = 3, 𝛾∗ = 0.32), so these

edges have 𝛾∗
3
= 0.32. Note that an edge may appear in multiple

(𝑘,𝛾)-trusses but in a unique (𝑘,𝛾∗
𝑘
(𝑒))-truss for a specific 𝑘 .

Index-based Retrieval of (𝑘,𝛾)-Truss. Next, we show how to use

the CPT-index to efficiently find (𝑘,𝛾)-truss. Assuming that 𝑘 = 3

and 𝛾 = 0.9, we seek to find the (𝑘,𝛾)-truss of G in Figure 1(a).

Based on the CPT-index in Table 1, we can directly look to the

row with 𝑘 = 3, which takes 𝑂 (1) time and merge all the edges

𝑒 with probabilistic trussness 𝛾∗
3
(𝑒) ≥ 0.9, which takes 𝑂 ( |𝐴𝑛𝑠 |)

time, where |𝐴𝑛𝑠 | is the number of edges in the answer (𝑘,𝛾)-
truss, if we compare probabilistic trussnesses from large to small.

Finally, we obtain the (3, 0.9)-truss, which consists of the edges

(𝑎, 𝑏), (𝑏, 𝑐), (𝑎, 𝑐), (𝑎, 𝑑), (𝑐, 𝑑), (𝑏, 𝑑), (𝑏,𝑔) and (𝑑,𝑔). In summary,

the CPT-index-based (𝑘,𝛾)-truss retrieval takes 𝑂 ( |𝐴𝑛𝑠 |) time, in-

dicating an optimal retrieval of (𝑘,𝛾)-truss based on the CPT-index.

5.3 CPT-Index Construction
We start with an observation.

Lemma 4. [Minimum Edge Support Probability] Given an uncer-
tain graphH and number 𝑘 , each edge 𝑒 ∈ 𝐸 (H) has the probability
𝜎 (𝑒, 𝑘 − 2) > 0. There exists an edge 𝑒 ∈ 𝐸 (H) has the minimum
edge support probability 𝜎 (𝑒, 𝑘 − 2) inH and 𝛾∗

𝑘
(𝑒) = 𝜎 (𝑒, 𝑘 − 2).

Proof. First, 𝜎 (𝑒, 𝑘 − 2) > 0 as 𝑒 ∈ 𝐸 (H). Second, 𝜎 (𝑒, 𝑘 − 2)
is the minimum one; thus, ∀𝑒 ∈ 𝐸 (H), 𝜎 (𝑒, 𝑘 − 2) ≥ 𝜎 (𝑒, 𝑘 − 2).
Therefore, the whole graphH is (𝑘, 𝜎 (𝑒, 𝑘 − 2))-truss. For any 𝛾 >

𝜎 (𝑒, 𝑘 − 2), (𝑘,𝛾)-truss requires all edges 𝑒 to meet 𝜎 (𝑒, 𝑘 − 2) ≥ 𝛾 ,
so 𝑒 ∉ (𝑘,𝛾)-truss. In conclusion, 𝛾∗

𝑘
(𝑒) = 𝜎 (𝑒, 𝑘 − 2). □

Note that not all edges 𝑒 satisfy 𝛾∗
𝑘
(𝑒) = 𝜎 (𝑒, 𝑘 − 2). For example,

consider two edges 𝑒1 and 𝑒2 that 𝜎 (𝑒1, 𝑘 − 2) < 𝜎 (𝑒2, 𝑘 − 2), we
suppose 𝛾∗

𝑘
(𝑒1) = 𝜎 (𝑒1, 𝑘 − 2). When edge 𝑒1 is removed, edge 𝑒2

should also be removed if it does not meet the truss requirements,

and 𝛾∗
𝑘
(𝑒2) should be set to 𝜎 (𝑒1, 𝑘 − 2).

Based on the observation above, we can develop a peeling al-

gorithm of CPT-index construction in a bottom-up manner. The

general idea is that we start from 𝑘 = 2 and extract the (𝑘, 0)-truss
of G, which is a deterministic 𝑘-truss of 𝐺 (𝑉 , 𝐸). Then, we itera-
tively delete an edge 𝑒 with the minimum edge support probability

in graph G and assign it the probabilistic trussness of 𝛾∗
𝑘
(𝑒); we

repeat the peeling process of edge removal until the remaining

graph is empty. After that, we increase 𝑘 by one and repeat the

above process until 𝑘 exceeds 𝑘𝑚𝑎𝑥 .

BC-Indexing Algorithm. The detailed procedure of CPT-Basic
for CPT-index construction is presented in Algorithm 2. First, the

algorithm extracts the deterministic graph 𝐺 = (𝑉 , 𝐸) of G =

(𝑉 , 𝐸, 𝑝), which takes all edges by ignoring their edge probabilities

(line 1). It then applies the algorithm of truss decomposition [36] on

𝐺 and obtains the largest value of edge trussness as 𝑘𝑚𝑎𝑥 (line 2).

Next, the algorithm starts from 𝑘 = 2 and iteratively computes the

CPT-index for different values of 𝑘 until 𝑘 achieves 𝑘𝑚𝑎𝑥 (lines 3-

21). The algorithm extracts an uncertain subgraphH of G induced

by the 𝑘-truss 𝐻 (lines 4-5). During the edge peeling process, it

finds an edge 𝑒 with the smallest 𝜎 (𝑒, 𝑘 − 2) inH , and assigns the

probabilistic trussness as 𝛾∗
𝑘
(𝑒) = 𝜎 (𝑒, 𝑘 − 2) (lines 8-9). Next, it

deletes 𝑒 from graphH and updates the support vectors of affected

edges inH (lines 11-20). The process of edge removal is conducted

in a BFS manner, which finds all edges not belonging to (𝑘,𝛾∗
𝑘
(𝑒))-

truss (lines 17-20) and puts them into an edge set 𝑆 (line 14). After

the edge removal, we update the CPT-index by adding all triple

elements of (𝑘, 𝑒,𝛾∗
𝑘
(𝑒)) for each edge 𝑒 ∈ 𝑆 (line 21). The algorithm

repeats the above process to enumerate all (𝑘,𝛾)-trusses in G until

𝑘 = 𝑘𝑚𝑎𝑥 and CPT-index construction is finished (lines 3-21).

Complexity Analysis. We denote the edge size of deterministic

𝑘-truss 𝑇𝑘 as𝑚𝑘 = |𝑇𝑘 | where |𝐸 | =𝑚 ≥ 𝑚𝑘 for 𝑘 ∈ [2, 𝑘𝑚𝑎𝑥 ], and
T =

∑𝑘𝑚𝑎𝑥

𝑘=2
𝑚𝑘 . The arboricity of graph𝐺 is the minimum number

of spanning forests needed to cover all edges of𝐺 , which is denoted

as 𝜌 and 𝜌 ≤ min{𝑑𝑚𝑎𝑥 ,
√
𝑚}. The arboricity of 𝑇𝑘 is denoted as

𝜌𝑘 where 𝜌𝑘 ≤ 𝜌 for 𝑘 ∈ [2, 𝑘𝑚𝑎𝑥 ]. Note that 𝜌 = 𝜌2 and𝑚 =𝑚2.



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi

Algorithm 2 CPT-Basic

Input: G = (𝑉 , 𝐸, 𝑝)
Output: The CPT-index of G
1: Extract a deterministic graph 𝐺 = (𝑉 , 𝐸) from G;
2: Apply the truss decomposition on 𝐺 and get trussness 𝑘𝑚𝑎𝑥 ;

3: for 𝑘 ← 2 to 𝑘max do
4: Let 𝐻 be the 𝑘-truss of 𝐺 ;

5: LetH = (𝑉𝐻 , 𝐸𝐻 , 𝑝) be an induced subgraph of G by 𝐻 ;

6: Compute the support vector 𝜎 (𝑒) for each edge 𝑒 inH ;

7: while H ≠ ∅ do
8: Find an edge 𝑒 with the smallest 𝜎 (𝑒, 𝑘 − 2) fromH ;

9: 𝛾∗
𝑘
(𝑒) ← 𝜎 (𝑒, 𝑘 − 2);

10: An edge queue: 𝑄 ← {𝑒}; An edge set: 𝑆 ← ∅;
11: while 𝑄 ≠ ∅ do
12: Pop out an edge (𝑢, 𝑣) from 𝑄 ;

13: Remove (𝑢, 𝑣) fromH ;

14: 𝑆 ← 𝑆 ∪ {(𝑢, 𝑣)};
15: for𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣) do
16: Update the support vectors 𝜎 (𝑤,𝑢) and 𝜎 (𝑤,𝑣) ;
17: if 𝜎 ((𝑤,𝑢), 𝑘 − 2) ≤ 𝛾∗

𝑘
(𝑒) then

18: 𝑄 ← 𝑄 ∪ {(𝑤,𝑢)};
19: if 𝜎 ((𝑤, 𝑣), 𝑘 − 2) ≤ 𝛾∗

𝑘
(𝑒) then

20: 𝑄 ← 𝑄 ∪ {(𝑤, 𝑣)};
21: Add (𝑘, 𝑒,𝛾∗

𝑘
(𝑒)) for all edges 𝑒 ∈ 𝑆 into the CPT-index;

22: return {(𝑘, 𝑒,𝛾∗
𝑘
(𝑒)) | 2 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 , 𝑒 ∈ 𝐸 (G), 𝛾∗𝑘 (𝑒) > 0};

Theorem 1. CPT-Basic in Algorithm 2 takes 𝑂 (𝜌T (𝑑𝑚𝑎𝑥 +
log𝑚)) time and 𝑂 (𝜌𝑚) space.

Proof. First, we analyze the time complexity. Algorithm 2

extracts a deterministic graph 𝐺 and performs the truss de-

composition on 𝐺 , which takes 𝑂 (𝜌𝑚) time (lines 1-2). Then,

for each 𝑘 ∈ [2, 𝑘𝑚𝑎𝑥 ], it extracts the deterministic 𝑘-truss

𝐻 = 𝑇𝑘 in 𝑂 ( |𝑇𝑘 |) = 𝑂 (𝑚) time, and then applies the

probabilistic truss decomposition to calculate the edge truss-

nesses (lines 4-21). It takes 𝑂 ((min{𝑑 (𝑢), 𝑑 (𝑣)})2) time to com-

pute an initial vector 𝜎 ((𝑢, 𝑣)) and update it for an edge

(𝑢, 𝑣) ∈ 𝑇𝑘 (lines 6 & 15-16). Thus, the support vector

for all edges in 𝑇𝑘 takes 𝑂 (∑(𝑢,𝑣) ∈𝑇𝑘 (min{𝑑 (𝑢), 𝑑 (𝑣)})2) =

𝑂 (𝑑𝑚𝑎𝑥
∑
(𝑢,𝑣) ∈𝑇𝑘 min{𝑑 (𝑢), 𝑑 (𝑣)}) ≤ 𝑂 (𝑑𝑚𝑎𝑥𝜌𝑘𝑚𝑘 ). In addition,

Algorithm 2 needs to maintain a balanced binary search tree, in

order to get the edge with the smallest 𝜎 (𝑒, 𝑘 − 2) (lines 8 and 13).

The construction and maintenance of a balanced binary search

tree in H take in a total of 𝑂 (∑(𝑢,𝑣) ∈𝑇𝑘 min{𝑑 (𝑢), 𝑑 (𝑣)} log |𝑇𝑘 |)
= 𝑂 (𝜌𝑘𝑚𝑘 log𝑚𝑘 ) time. Overall, the time complexity of CPT-Basic
in Algorithm 2 is

𝑂 (𝜌𝑚 +
𝑘𝑚𝑎𝑥∑︁
𝑘=2

(𝑚𝑘 + 𝑑𝑚𝑎𝑥𝜌𝑘𝑚𝑘 + 𝜌𝑘𝑚𝑘 log𝑚𝑘 ))

= 𝑂 (𝜌 · (𝑑𝑚𝑎𝑥 + log𝑚) ·
𝑘𝑚𝑎𝑥∑︁
𝑘=2

𝑚𝑘 )

= 𝑂 (𝜌T (𝑑𝑚𝑎𝑥 + log𝑚)).
Next, we analyze the space complexity. The vector 𝜎 (𝑒) for all

edges in𝐺 takes𝑂 (∑(𝑢,𝑣) ∈G min{𝑑 (𝑢), 𝑑 (𝑣)}) = 𝑂 (𝜌𝑚) space. □

Theorem 2. The CPT-index takes 𝑂 (T ) space. For any 𝑘 and 𝛾 ,
CPT-index-based (𝑘,𝛾)-truss retrieval can be done in 𝑂 ( |𝐴𝑛𝑠 |) time,
where |𝐴𝑛𝑠 | is the graph size of (𝑘,𝛾)-truss answer.

Proof. For any 𝑘 ∈ [2, 𝑘𝑚𝑎𝑥 ], each edge 𝑒 ∈ 𝑇𝑘 has a unique

𝛾∗
𝑘
(𝑒). For those edges 𝑒 in 𝐺 but not belong to 𝑇𝑘 , we do not

keep the trussness 𝛾∗
𝑘
(𝑒). Thus, the space complexity of CPT-index

is 𝑂 (∑𝑘𝑚𝑎𝑥

𝑘=2
|𝑇𝑘 |) = 𝑂 (T ). The time complexity analysis of CPT-

index-based (𝑘,𝛾)-truss retrieval can be found in Section 5.2. □

6 FAST CPT-INDEX CONSTRUCTION
In this section, we present a fast CPT-index construction algorithm

CPT-Fast, which constructs the optimal CPT-index from 𝑘 = 𝑘𝑚𝑎𝑥

to 2 in a top-down manner. The general idea is to use Lemma 1 to

delay the initialization and update of 𝜎 (𝑒) for all possible edges
𝑒 ∈ 𝐸, which can speed up the index construction process.

Overview. Recall that CPT-Basic adopts the peeling strategy to

remove an edge 𝑒 with the smallest probabilistic support𝜎 (𝑒, 𝑘−2)in
each iteration. Due to the removal of 𝑒 , the probabilistic support

of other edges needs to be updated (in line 16 of Algorithm 2).

However, this part of the updating computation process can be

saved.

We start with an observation. For a given 𝑘 ≥ 2, let be 𝛾1 and

𝛾2 with 𝛾1 ≤ 𝛾2. According to Lemma 1, we have (𝑘,𝛾2)-truss ⊆
(𝑘,𝛾1)-truss. Thus, for any edge 𝑒 in (𝑘,𝛾2)-truss, it is unnecessary
to compute 𝜎 (𝑒, 𝑘 − 2) to identify (𝑘,𝛾1)-truss. This is because the
edge 𝑒 will not be removed during the (𝑘,𝛾1)-truss peeling process.

In this way, we can compute the trussness of all edges in (𝑘,𝛾1)-
truss efficiently and avoid frequent updates.

However, we cannot know in advance the edges of (𝑘,𝛾2)-truss
before computing (𝑘,𝛾1)-truss, as CPT-Basic computes edges with

the smallest 𝛾∗
𝑘
(𝑒) first. This creates significant challenges for ef-

ficient computation. To address this issue, we need to change the

order of 𝑘 in computing (𝑘,𝛾)-truss. Specifically, we develop a new

top-down algorithm to compute (𝑘,𝛾)-truss by varying𝑘 from𝑘𝑚𝑎𝑥

to 2, which is different from CPT-Basic computing scratch from 2

to 𝑘𝑚𝑎𝑥 in a bottom-up manner. For (𝑘+, 𝛾2)-truss, where 𝑘+ > 𝑘 ,

it is derived that (𝑘+, 𝛾2)-truss ⊆ (𝑘,𝛾2)-truss ⊆ (𝑘,𝛾1)-truss by
Lemma 1. Hence, we make use of the obtained (𝑘+, 𝛾2)-truss for
𝑘+ > 𝑘 and avoid updating 𝜎 (𝑒) for 𝑒 ∈ (𝑘+, 𝛾2)-truss during the

process of (𝑘,𝛾1)-truss computation.

Edge partition. In the following, we formally introduce how to

leverage the obtained (𝑘 + 1, 𝛾)-truss to compute (𝑘,𝛾)-truss via
edge partition. A general framework is shown in Figure 2. For a

given 𝑘 , we denote by Γ𝑘 = {𝛾∗
𝑘
(𝑒) ∈ (0, 1] |𝑒 ∈ (𝑘,𝛾)-truss}, which

keeps all distinct values 𝛾 in (𝑘,𝛾)-truss. Let be the 𝑘+ = 𝑘 + 1 and

the set cardinality |Γ𝑘+1 | = 𝑥 . Without the loss of generality, Γ𝑘+1
={𝛾1, . . . , 𝛾𝑥 } and 𝛾1 < 𝛾2 < . . . < 𝛾𝑥 . Thus, we can partition all

the edges 𝑒 of (𝑘,𝛾)-truss based on 𝛾∗
𝑘+1 (𝑒) into 𝑥 + 1 groups, i.e.,

[𝛾0, 𝛾1), [𝛾1, 𝛾2), . . . , [𝛾𝑥 , 𝛾𝑥+1), where 𝛾0 = 0 and 𝛾𝑥+1 = 1 + 10
−20

.

Note that 𝛾𝑥+1 could be any number exceeding 1. Specifically, we

have the following definition.

Definition 6 (Partition of Candidate Edges). Given two
integers 𝑘 ≥ 2 and 0 ≤ 𝑖 ≤ |Γ𝑘+1 | = 𝑥 , a partition of candidate
edges is denoted as 𝑃 (𝑘, 𝑖) = ⟨𝐸𝑖

𝑘
, 𝛾𝑙𝑜𝑤𝑒𝑟 , 𝛾𝑢𝑝𝑝𝑒𝑟 ⟩, where 𝛾𝑙𝑜𝑤𝑒𝑟 = 𝛾𝑖 ,



Efficient Probabilistic Truss Indexing on Uncertain Graphs WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Γ

Tk+1

Tk

21

P(k,2)P(k,1)P(k,0)

Figure 2: An example of 𝑃 (𝑘) and how 𝑇𝑘 is partitioned by
Γ𝑘+1.

𝛾𝑢𝑝𝑝𝑒𝑟 = 𝛾𝑖+1, and an edge set 𝐸𝑖
𝑘

= {𝑒 belongs to deterministic
𝑘-truss| 𝛾𝑙𝑜𝑤𝑒𝑟 ≤ 𝛾∗𝑘+1 (𝑒) < 𝛾𝑢𝑝𝑝𝑒𝑟 }.

𝑃 (𝑘, 𝑖) consists of three parts: an edge set 𝐸𝑖
𝑘
and two parameters

of 𝛾𝑙𝑜𝑤𝑒𝑟 and 𝛾𝑢𝑝𝑝𝑒𝑟 . For each edge 𝑒 ∈ 𝐸𝑖
𝑘
, it satisfies 𝛾𝑙𝑜𝑤𝑒𝑟 =

𝛾𝑖 ≤ 𝛾∗
𝑘+1 (𝑒) < 𝛾𝑖+1 = 𝛾𝑢𝑝𝑝𝑒𝑟 . Note that, for 𝑖 = 0, we have 𝐸0

𝑘
=

{𝑒 ∈ 𝐸 |𝑒 ∈ 𝑇𝑘 \𝑇𝑘+1}, i.e., those edges belong to the deterministic

𝑘-truss, but do not belong to (𝑘 + 1)-truss. Moreover, for 𝑘 = 𝑘𝑚𝑎𝑥 ,

we have 𝑥 = 0 and 𝐸0

𝑘
= 𝑇𝑘𝑚𝑎𝑥

. Thus, we have a total of 𝑥 + 1

partitions as 𝑃 (𝑘) = {𝑃 (𝑘, 0), 𝑃 (𝑘, 1), . . . , 𝑃 (𝑘, 𝑥)}. In general, we

have 𝑥 different (𝑘 + 1, 𝛾)-trusses for different valued 𝛾 in Γ𝑘+1, and
then divide all candidate edges 𝑇𝑘 into 𝑥 + 1 parts as 𝑃 (𝑘).

Example 4. Consider graph G in Figure 1(a). Assuming that
Γ4 has been computed, we use Γ4 to partition the edges of 𝑇3. For
𝑘 = 4, we have Γ4 ={0.46208, 0.7737809} and 𝑥 = 2. The three
edges {(𝑎, ℎ), (𝑐, ℎ), (𝑑, ℎ)} have the same probabilistic trussness
𝛾4 (𝑒) = 0.46208. The six edges {(𝑎, 𝑏), (𝑏, 𝑐), (𝑏, 𝑑), (𝑎, 𝑐),(𝑎, 𝑑),
(𝑐, 𝑑)} all have 𝛾4 (𝑒) = 0.7737809. As shown in Figure 2, the edges
of 𝑇4 have been divided into two parts with two 𝛾4 (∗) = {𝛾1, 𝛾2}.
Based on Γ4, we partition the candidate edges of 𝑇3 into three parts:
[0, 0.46208), [0.46208, 0.7737809), [0.7737809, 1 + 10

−20). There-
fore, 𝑃 (3, 0) = ⟨{(𝑑, 𝑓 ), (ℎ, 𝑓 ), (𝑏,𝑔), (𝑑,𝑔)}, 0, 0.46208⟩; 𝑃 (3, 1) =

⟨{(𝑎, ℎ), (𝑐, ℎ), (𝑑, ℎ)}, 0.46208, 0.7737809⟩; 𝑃 (3, 2) = ⟨{(𝑎, 𝑏), (𝑏, 𝑐),
(𝑏, 𝑑), (𝑎, 𝑐), (𝑎, 𝑑), (𝑐, 𝑑)}, 0.7737809, 1 + 10

−20⟩.

Hence, we have the following corollary.

Corollary 1. Given 2 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 − 1 and 0 ≤ 𝑖 ≤ |Γ𝑘+1 |, each
edge 𝑒 ∈ 𝑃 (𝑘, 𝑖) has the trussness 𝛾∗

𝑘
(𝑒) ≥ 𝑃 (𝑘, 𝑖) .𝛾𝑙𝑜𝑤𝑒𝑟 .

Proof. This concludes from Lemma 1 and Def. 6. □

CPT-Fast Indexing Algorithm. Algorithm 3 outlines the CPT-
Fast algorithm, which is a top-down decomposition for (𝑘,𝛾)-truss
indexing based on edge partitions. The algorithm first applies

the truss decomposition on 𝐺 and obtains 𝑘𝑚𝑎𝑥 (line 2). Then,

it adopts a top-down decomposition strategy of (𝑘,𝛾)-truss index-
ing by traversing 𝑘 from 𝑘𝑚𝑎𝑥 to 2 (lines 3-26). For a specific

𝑘 ∈ [2, 𝑘𝑚𝑎𝑥 ], it partitions all edges of 𝑇𝑘 into multiple parti-

tions 𝑃 (𝑘) = {𝑃 (𝑘, 0), . . .} by Definition 6 (line 6). It starts from

𝑖 = 0 and loads each partition 𝑃 (𝑘, 𝑖) one by one into an edge

set 𝑐𝑎𝑙𝐸 for (𝑘,𝛾)-truss peeling processing (lines 8-26). For each

edge 𝑒 ∈ 𝑃 (𝑘, 𝑖) .𝐸𝑖
𝑘
, if the support vector 𝜎 (𝑒, 𝑘 − 1) can find,

the vector 𝜎 (𝑒, 𝑘 − 2) can be computed by adding edges in 𝑐𝑎𝑙𝐸

for efficiency; otherwise, the vector needs to be computed in H
from scratch (line 9). Next, the algorithm iteratively finds an edge

𝑒 with the smallest support probability 𝜎 (𝑒, 𝑘 − 2) (line 12). If

𝜎 (𝑒, 𝑘−2) > 𝑃 (𝑘, 𝑖) .𝛾𝑢𝑝𝑝𝑒𝑟 , it needs to load a new partition 𝑃 (𝑘, 𝑖+1)
into 𝑐𝑎𝑙𝐸 for the calculation (lines 13-14); otherwise, it can skip the

Algorithm 3 CPT-Fast

Input: G = (𝑉 , 𝐸, 𝑝)
Output: The CPT-index of G
1: Extract a deterministic graph 𝐺 = (𝑉 , 𝐸) from G;
2: Apply truss decomposition [18] on 𝐺 and get trussness 𝑘𝑚𝑎𝑥 ;

3: for 𝑘 ← 𝑘𝑚𝑎𝑥 to 2 do
4: Let 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) be the 𝑘-truss of 𝐺 where 𝐸𝐻 = 𝑇𝑘 ;

5: LetH = (𝑉𝐻 , 𝐸𝐻 , 𝑝) be an induced subgraph of G by 𝐻 ;

6: Partition all edges of 𝐸𝐻 into 𝑃 (𝑘) by Definition 6;

7: 𝑐𝑎𝑙𝐸 ← ∅; 𝑖 ← 0;

8: while H ≠ ∅ do
9: Compute the support vector 𝜎 (𝑒) for 𝑒 ∈ 𝑃 (𝑘, 𝑖).𝐸𝑖

𝑘
by

using edges in 𝑐𝑎𝑙𝐸;

10: 𝑐𝑎𝑙𝐸 ← 𝑐𝑎𝑙𝐸 ∪ 𝑃 (𝑘, 𝑖) .𝐸𝑖
𝑘
;

11: while 𝑐𝑎𝑙𝐸 ≠ ∅ do
12: 𝑒 ← arg min𝑒∈𝑐𝑎𝑙𝐸 {𝜎 (𝑒, 𝑘 − 2)};
13: if 𝜎 (𝑒, 𝑘 − 2) > 𝑃 (𝑘, 𝑖) .𝛾𝑢𝑝𝑝𝑒𝑟 then
14: break;
15: An edge queue: 𝑄 ← {𝑒}; An edge set: 𝑆 ← ∅;
16: 𝑐𝑎𝑙𝐸 ← 𝑐𝑎𝑙𝐸 − {𝑒};
17: while 𝑄 ≠ ∅ do
18: Pop out an edge 𝑒∗ = (𝑢, 𝑣) from 𝑄 ; 𝑆 ← 𝑆 ∪ {𝑒∗};
19: A set of candidate edges to update 𝜎 (𝑒): 𝑛𝑒𝑖𝐸 ← {𝑒 ∈

𝑐𝑎𝑙𝐸 |𝑒 ∈ △𝑢𝑣𝑤 ,𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣), 𝑒 ≠ 𝑒∗};
20: Remove the edge 𝑒∗ from graphH ;

21: for 𝑒 ∈ 𝑛𝑒𝑖𝐸 do
22: update 𝜎 (𝑒);
23: if 𝜎 (𝑒, 𝑘 − 2) ≤ 𝜎 (𝑒, 𝑘 − 2) then
24: 𝑄 ← 𝑄 ∪ {𝑒}; 𝑐𝑎𝑙𝐸 ← 𝑐𝑎𝑙𝐸 − {𝑒};
25: Add (𝑘, 𝑒, 𝜎 (𝑒, 𝑘 − 2)) for 𝑒 ∈ 𝑆 into CPT-index;
26: 𝑖 ← 𝑖 + 1;

27: return {(𝑘, 𝑒,𝛾∗
𝑘
(𝑒)) | 2 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 , 𝑒 ∈ 𝐸 (G), 𝛾∗𝑘 (𝑒) > 0};

considerations of all edges in 𝑃 (𝑘, 𝑗), where 𝑗 ≥ 𝑖 + 1, which saves

the cost of the 𝜎 (𝑒) update (line 22). After obtaining 𝑒 , it removes

all edges 𝑒 disqualified for (𝑘, 𝜎 (𝑒, 𝑘 − 2))-truss from graphH and

updates the support vector 𝜎 (𝑒) for candidate edges in 𝑛𝑒𝑖𝐸, where
𝑛𝑒𝑖𝐸 ← {𝑒 ∈ 𝑐𝑎𝑙𝐸 |𝑒 ∈ △𝑢𝑣𝑤 ,𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣), 𝑒 ≠ 𝑒∗} (lines
17-24). This step is similar to CPT-Basic, but uses a smaller set 𝑛𝑒𝑖𝐸

for the updating process. It keeps all edges and their probabilistic

trussness in the CPT-index until 𝑘 = 2 (line 25).

Algorithm Analysis. Algorithm 3 computes the same CPT-index
result as CPT-Basic in Algorithm 2. However, in contrast to Algo-

rithm 2, Algorithm 3 has two efficiency advantages: initializing

and updating 𝜎 (𝑒). First, Algorithm 3 initializes 𝜎 (𝑒) in batch for

different partitions 𝑃 (𝑘) in the iteratively reduced graphH , which

produces the initializations on smaller graphs much faster (lines

9-10 of Algorithm 3). Second, Algorithm 3 updates 𝜎 (𝑒) for a small

number of edges in 𝑛𝑒𝑖𝐸 (line 22 of Algorithm 3). In other words,

those edges in partitions 𝑃 (𝑘, 𝑗) where 𝑗 > 𝑖 are skipped when ini-

tializing and updating 𝜎 (𝑒), speeding up the efficiency. As a result,

Algorithm 3 is more efficient than Algorithm 2. Furthermore, at

each phase of edge removal, only the edges in a partition are con-

sidered in Algorithm 3. Thus, it takes a small cost to maintain the

edges in the set 𝑐𝑎𝑙𝐸, as the set has no more edges than the graph



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi

𝐺 . Let |𝑐𝑎𝑙𝐸 | be the number of edges in 𝑐𝑎𝑙𝐸. A small-sized balance

binary search tree is needed to maintain edge probabilistic support

in𝑂 (Pmax logPmax)) time, where Pmax denotes the maximum size

of 𝑐𝑎𝑙𝐸 in all iterations of Algorithm 3, i.e.,

Pmax = max

𝑘∈[2,𝑘max ],𝑖∈[0, |Γ𝑘 | ]
|
|Γ𝑘 |⋃
𝑗=𝑖

𝑃 (𝑘, 𝑗) | − |
|Γ𝑘+1 |⋃
𝑗=𝑖+1

𝑃 (𝑘 + 1, 𝑗) |.

As a result, the time complexity of CPT-Fast in Algorithm 3 is

𝑂 (T 𝜌 (𝑑max + logPmax)) and the space complexity is still 𝑂 (𝜌𝑚).

7 (𝜖,Δ𝑟 )-APPROXIMATE INDEXING SCHEME
In this section we devise an approximate indexing scheme for (𝑘,𝛾)-
truss. Using the CPT-index, the retrieval of (𝑘,𝛾)-truss can be com-

pleted with optimal time complexity w.r.t. the answer size. However,

the CPT-index construction still takes a considerable amount of

time when using large graphs. To trade off the efficiency of in-

dex construction and the online query processing of (𝑘,𝛾)-truss
retrieval, we propose an (𝜖,Δ𝑟 )-approximate (𝑘,𝛾)-truss indexing
method to keep partial information regarding edge trussness.

7.1 (𝜖,Δ𝑟 )-APX Index Construction
We first give two needed definitions of floor and ceiling functions.

Definition 7. Given 𝛾,Δ𝑟 ∈ [0, 1], the floor function is
𝑓 𝑙𝑜𝑜𝑟 (𝛾,Δ𝑟 ) = ⌊ 𝛾Δ𝑟

⌋ · Δ𝑟 . Similarly, the ceiling function is defined as
𝑐𝑒𝑖𝑙 (𝛾,Δ𝑟 ) = (⌊ 𝛾Δ𝑟

⌋ + 1) · Δ𝑟 .

The (𝜖,Δ𝑟 )-APXmethod is a slight modifications of CPT-Fast in
Algorithm 3, which uses two new parameters 𝜖 andΔ𝑟 to control the
limits of pruning probability and approximation ratio, respectively.

Pruning probability 𝜖. The approximate index keeps the partial
edge trussnesses of (𝑘,𝛾)-truss for all 𝑘 ≥ 2 and 𝛾 ≥ 𝜖 , where 𝜖 is a

small value, e.g., 𝜖 = 10
−20

. For 𝑘 = 2, we first remove all the edges 𝑒

with 𝑝 (𝑒) < 𝜖 from the graphG before the actual index construction

takes place. Thus, we keep no index information for edges with such

low edge probabilities. For 𝑘 ≥ 3, we apply the truss decomposition

on the probabilistic graph G to get (𝑘, 𝜖)-truss by [18], rather than

on the deterministic graph𝐺 (line 2 of Algorithm 3). Therefore, we

reduce the graph index size and improve the index construction

efficiency.

Approximation ratio Δ𝑟 . The approximate index uses a param-

eter Δ𝑟 ∈ [0, 1] to maintain the trussness of each edge 𝑒 for any

𝑘 ∈ [2, 𝑘𝑚𝑎𝑥 ] as an approximate value of 𝑓 𝑙𝑜𝑜𝑟 (𝛾∗
𝑘
(𝑒),Δ𝑟 ). In

other words, we assgin an approximate trussness of 𝑓 𝑙𝑜𝑜𝑟 (𝛾∗
𝑘
(𝑒),

Δ𝑟 ) for all edges 𝑒 with an actual trussness 𝛾∗
𝑘
(𝑒) satisfying

𝑓 𝑙𝑜𝑜𝑟 (𝛾∗
𝑘
(𝑒),Δ𝑟 ) ≤ 𝛾∗

𝑘
(𝑒) < 𝑐𝑒𝑖𝑙 (𝛾∗

𝑘
(𝑒),Δ𝑟 ). Specifically, we mod-

ify Algorithm 3 to remove a batch of edges 𝑒 from graph G, in-
stead of an edge 𝑒 with the smallest 𝜎 (𝑒, 𝑘 − 2). Every removal

edge 𝑒 satisfies the condition of 𝜎 (𝑒, 𝑘 − 2) < 𝑐𝑒𝑖𝑙 (𝜎 (𝑒, 𝑘 − 2),Δ𝑟 )
(lines 23-24 of Algorithm 3). Thus, we assign all removal edges

with an approximate trussness of 𝑓 𝑙𝑜𝑜𝑟 (𝛾∗
𝑘
(𝑒),Δ𝑟 ) and ensure

𝛾∗
𝑘
(𝑒) − 𝑓 𝑙𝑜𝑜𝑟 (𝛾∗

𝑘
(𝑒),Δ𝑟 ) < Δ𝑟 . Therefore, we avoid costly compu-

tations for exact update 𝜎 (𝑒) and achieve bulk deletion to reduce

the removal iterations.

For example, given Δ𝑟 = 0.1, the trussnesses 𝛾∗
𝑘
(𝑒1) = 0.11,

𝛾∗
𝑘
(𝑒2) = 0.12 and 𝛾∗

𝑘
(𝑒3) = 0.21, our approximate indexing should

Table 2: (0.1, 0.1)-approximate index on graph G in Fig-
ure 1(a).

𝑘

𝛾∗
0.3 0.4 0.7 0.9

3 (𝑑, 𝑓 ) (𝑎,ℎ) (𝑎,𝑏) (𝑏, 𝑐) (𝑏,𝑑)
(ℎ, 𝑓 ) (𝑑,ℎ) (𝑐,𝑑) (𝑎,𝑑) (𝑑,𝑔)

(𝑐,ℎ) (𝑎, 𝑐) (𝑏,𝑔)
4 (𝑎,ℎ) (𝑎,𝑏) (𝑏, 𝑐)

(𝑑,ℎ) (𝑎, 𝑐) (𝑎,𝑑)
(𝑐,ℎ) (𝑏,𝑑) (𝑐,𝑑)

keep the batch of edges {𝑒1, 𝑒2} together as the trussness of 0.1

due to 𝑓 𝑙𝑜𝑜𝑟 (𝛾∗
𝑘
(𝑒1), 0.1) = 𝑓 𝑙𝑜𝑜𝑟 (𝛾∗

𝑘
(𝑒2), 0.1) = 0.1, and keep the

trussness of 𝑒3 as 𝑓 𝑙𝑜𝑜𝑟 (𝛾∗𝑘 (𝑒3), Δ𝑟 ) = 0.2. Table 2 shows the (𝜖,Δ𝑟 )-
approximate index on a uncertain graph G shown in Figure 1(a)

where 𝜖 = 0.1 and Δ𝑟 = 0.1. Note that the CPT-index is identical to
the (𝜖,Δ𝑟 )-approximate index for 𝜖 = 0 and Δ𝑟 = 0. In addition, we

keep the deterministic trussness for all edges in the deterministic

graph 𝐺 , which can be useful for query processing in case of the

input query parameter 𝛾 < 𝜖 in (𝑘,𝛾)-truss retrieval.
Complexity analysis. Let us denote G′ the shrank graph after

removing all edges 𝑒 with 𝑝 (𝑒) < 𝜖 from graph G, where the

edge size of G′ is 𝑚′ = |𝐸 (G′) | ≤ 𝑚. We also let 𝜌 ′ and 𝑑 ′𝑚𝑎𝑥

denote respectively the arboricity and the maximum degree in the

deterministic graph of G′. Moreover, T ′ = ∑𝑘𝑚𝑎𝑥

𝑘=2
|𝑇 ′
𝑘
|, where 𝑇 ′

𝑘
is

the 𝑘-truss in deterministic graph of G′.

Theorem 3. Building (𝜖,Δ𝑟 )-APX index takes𝑂 (T ′𝜌 ′ 𝑑 ′
max
) time

and 𝑂 (𝜌 ′𝑚′) space, where T ′ ≤ T , 𝜌 ′ ≤ 𝜌 , and 𝑑 ′
max
≤ 𝑑max.

Proof. Recall that, in the CPT-Basic and CPT-Fast algorithms,

we create a balanced binary search tree to maintain the edge with

the smallest probabilistic edge support, as 𝜎 (𝑒, 𝑘 − 2) may be any

float value. However, in the (𝜖,Δ𝑟 )-APX algorithm, the value of

𝜎 (𝑒, 𝑘 − 2) is rounded as 𝑓 𝑙𝑜𝑜𝑟 (𝜎 (𝑒, 𝑘 − 2),Δ𝑟 ). This implies that

there exist finite values for probabilistic edge supports and, at most,

⌈1/Δ𝑟 ⌉ distinct bins to handle a batch of edges. Thus, we can im-

plement a sort bin algorithm to maintain the edges with the small-

est amount of probabilistic edge support in 𝑂 (1) time. The total

time complexity of (𝜖,Δ𝑟 )-APX is 𝑂 (T ′𝜌 ′𝑑 ′𝑚𝑎𝑥 ) using 𝑂 (𝜌 ′𝑚′)
space. □

7.2 (𝜖,Δ𝑟 )-APX Index based (𝑘,𝛾)-truss Retrieval
The algorithm involved in finding (𝑘,𝛾)-truss based on the (𝜖,Δ𝑟 )-
approximate index is outlined in Algorithm 4. Using Lemma 1,

Algorithm 4 exploits the pruning strategy to efficiently extract

(𝑘,𝛾)-truss for the given 𝑘 and 𝛾 . Specifically, if 𝑘1 ≥ 𝑘2 ≥ 𝑘3

and 𝛾1 ≥ 𝛾2 ≥ 𝛾3, (𝑘1, 𝛾1)-truss ⊆ (𝑘2, 𝛾2)-truss ⊆ (𝑘3, 𝛾3)-truss
holds, according to Lemma 1. To obtain (𝑘2, 𝛾2)-truss, we only

need to check a small part of the edges in {𝑒 |𝑒 ∈ (𝑘3, 𝛾3)-truss,
𝑒 ∉ (𝑘1, 𝛾1)-truss} and compute trussness in order to query (𝑘,𝛾)-
truss. Thus, Algorithm 4 first extracts two subgraphs, H𝑢 and

H𝑙 , from the (𝜖,Δ𝑟 )-approximate index (lines 1-2). H𝑢 is the

(𝑘, 𝑐𝑒𝑖𝑙 (𝛾,Δ𝑟 ))-truss from the (𝜖,Δ𝑟 )-approximate index;H𝑙 is the

(𝑘, 𝑓 𝑙𝑜𝑜𝑟 (𝛾,Δ𝑟 ))-truss from (𝜖,Δ𝑟 )-approximate index. It generates

a set of (𝑘,𝛾)-truss candidate edges as 𝑐𝑎𝑙𝐸 ← {𝑒 |𝑒 ∈ H𝑙 , 𝑒 ∉ H𝑢 }



Efficient Probabilistic Truss Indexing on Uncertain Graphs WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Algorithm 4 (𝜖,Δ𝑟 )-Approximate Index based (𝑘,𝛾)-Truss Re-

trieval

Input: (𝜖,Δ𝑟 )-approximate index; 𝑘 ; 𝛾 ;

Output: (𝑘,𝛾)-truss;
1: H𝑢 ← Extract the (𝑘,𝛾𝑢 )-truss from (𝜖,Δ𝑟 )-approximate index

where 𝛾𝑢 = 𝑐𝑒𝑖𝑙 (𝛾,Δ𝑟 );
2: H𝑙 ← Extract the (𝑘,𝛾𝑙 )-truss from (𝜖,Δ𝑟 )-approximate index

where 𝛾𝑙 = 𝑓 𝑙𝑜𝑜𝑟 (𝛾,Δ𝑟 );
3: 𝑐𝑎𝑙𝐸 ← {𝑒 |𝑒 ∈ H𝑙 , 𝑒 ∉ H𝑢 };
4: Compute 𝜎H𝑙

(𝑒) for each edge 𝑒 ∈ 𝑐𝑎𝑙𝐸;
5: while ∃𝑒∗ ∈ 𝑐𝑎𝑙𝐸 with 𝜎H𝑙

(𝑒∗, 𝑘 − 2) < 𝛾 do
6: Remove 𝑒∗ fromH𝑙 and 𝑐𝑎𝑙𝐸;

7: Update 𝜎H𝑙
(𝑒) for all necessary edges 𝑒 ∈ 𝑐𝑎𝑙𝐸;

8: return H𝑙 ;

(line 3). Then, it iteratively removes the disqualified edges from

H𝑙 using the definition of (𝑘,𝛾)-truss (lines 5-7) and finally re-

turnsH𝑙 as the answer (line 8). For example, consider the (0.1, 0.1)-

approximate index in Table 2. For a (4, 0.5)-truss retrieval, the edges

{(𝑎, 𝑏), (𝑏, 𝑐), (𝑎, 𝑐),(𝑎, 𝑑), (𝑐, 𝑑), (𝑏, 𝑑)} that locate in (4, 0.7)-truss,

will be directly obtained in the answer by avoding computations.

The edges {(𝑎, ℎ), (𝑐, ℎ), (𝑑, ℎ)} need to be checked for a qualified

(4, 0.5)-truss.

Our (𝜖,Δ𝑟 )-approximate index based (𝑘,𝛾)-truss retrieval can
achieve exact results for any given𝑘 and𝛾 . This is because we follow

the peeling strategy to remove edges with the smallest trussness

and update the support vectors of the remaining edges, ensuring

exact computation of all edges’ trussnesses. The fast efficiency of

(𝑘,𝛾)-truss retrieval leverages (𝜖,Δ𝑟 )-approximate index to obtain

small-sized candidate graphs for edge removals.

Discussions. In summary, the approximate indexing scheme im-

proves the efficiency of index construction. First of all, it ignores all

the edges 𝑒 with 𝜎 (𝑒, 𝑘 − 2) < 𝜖 , leading to a smaller graph G and a

smaller corresponding 𝑘𝑚𝑎𝑥 . Note that, if an input parameter 𝛾 < 𝜖 ,

Algorithm 4 uses 𝑇𝑘 asH𝑙 . 𝑇𝑘 is often much larger thanH𝑢 ; so, in

this case, the algorithm cannot significantly improve the efficiency.

Fortunately, in real applications, we usually are not interested in

the discovery of any (𝑘,𝛾)-truss with a very small probability. Thus,

it is possible to choose a suitable value of 𝜖 in order to speed up

index construction. Second, we use the parameter Δ𝑟 to index edges
in a batch. A larger value of 𝛾𝑖 leads to a shorter index construction

time but a longer online (𝑘,𝛾)-truss retrieval time. Therefore, the

approximate indexing scheme achieves a good balance by trading

off between index construction and online query processing. As a

result, (𝜖,Δ𝑟 )-approximate indexing is more practical for real-world

large graph datasets than other methods (CPT-Basic and CPT-Fast).
On the other hand, CPT-Fast builds up the exact CPT-index and
optimally deals with (𝑘,𝛾)-truss retrieval, which is expected to

outperform the other two methods on moderate and small graph

datasets.

8 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

performance of our proposed solutions.

Table 3: Network statistics
Network |𝑉G | |𝐸G | 𝑑𝑚𝑎𝑥 𝑘𝑚𝑎𝑥

Fruit-Fly 3,751 3,692 27 5

ca-GrQc 5,242 14,496 81 44

wiki_vote 7,118 103,689 1,065 23

Flickr 24,125 300,836 546 218

DBLP 684,911 2,284,991 611 115

biomine 1,008,200 6,742,939 139,624 439

LiveJournal 4,847,571 42,851,237 20,333 352

Orkut 3,072,441 117,185,083 33,313 73

wise 58,655,849 261,321,033 278,489 80

10-4

10-2

100

102

104

106

Fruit-Fly

ca-GrQc

wiki_vote

Flickr
DBLP

biomine

LiveJournal

Orkut
wise

Q
ue
ry
T
im
e
(s
)

CPT-Basic
CPT-Fast
(� ,�r)-APX

LocalDecomp

10-2
10-1
100
101
102
103
104
105

Fruit-Fly

ca-GrQc

wiki_vote

Flickr
DBLP

biomine

LiveJournal

Orkut
wise

In
de
x
S
iz
e
(M
B
M

CPT-Basic
CPT-Fast
(� ,�r)-APX
dataset size

Figure 3: Performance of all algorithms for all datasets, in
terms of query time (left), measured as average over 100
queries, and index size (right).

Datasets. We use nine real-world probabilistic graphs in the ex-

periments. Table 3 reports the network statistics. Fruit-Fly is a

protein-protein interaction (PPI) network [27] from the BioGRID

database [1] and STRING database [31]. Flickr is an online photo

sharing community network, in which vertices represent users and

an edge probability represents the Jaccard coefficient of two users’

interest groups [7, 31]. DBLP is a probabilistic collaboration net-

work [2]. Biomine is a biological interaction network [12], in which

the probability of an edge represents the confidence that the inter-

action actually exists [7, 31]. In the other five datasets, wiki_vote,

ca-GrQc, LiveJournal, Orkut, and wise [24], the edge probabilities

are uniformly assigned a random value from the interval [0, 1].
ComparisonMethods. We compare different algorithms for index

construction and (𝑘,𝛾)-truss retrieval query processing, as follows.

Our code is available at https://github.com/jinrdfh/P-truss.

• LocalDecomp: An online (𝑘,𝛾)-truss search in Algorithm 1

[18], which finds (𝑘,𝛾)-truss without any index.

• CPT-Basic: The basic (𝑘,𝛾)-truss indexing scheme for exact

CPT-index construction using Algorithm 2. The CPT-index-
based (𝑘,𝛾)-truss retrieval provides optimal answers.

• CPT-Fast: A fast (𝑘,𝛾)-truss indexing scheme for exact CPT-
index construction using Algorithm 3. CPT-Fast uses the same

(𝑘,𝛾)-truss retrieval method as CPT-Basic.
• (𝜖,Δ𝑟 )-APX: An (𝜖,Δ𝑟 )-approximate indexing scheme in Sec-

tion 7, trades off the efficiency of index construction and query

processing and achieves exact query answers.

Evaluation Metrics and Parameters. We compare two tasks re-

garding index construction and query processing. For index con-

struction, we use two metrics of the index construction time (in

seconds) and the index size (in Megabytes). For (𝑘,𝛾)-truss query
processing, we input two parameters 𝑘 , 𝛾 and evaluate the effi-

ciency using query time (in seconds). For each query, we set the

https://github.com/jinrdfh/P-truss


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi

Table 4: Index construction time (in seconds) of three indexing algorithms. ‘-’ represents that it exceeds the time limit.
Fruit-Fly ca-GrQc wiki_vote Flickr DBLP biomine LiveJournal Orkut wise

CPT-Basic 4.7 × 10
−2

15 2.2 × 10
2

2.5 × 10
4

1.8 × 10
3

6.9 × 10
5

- - -

CPT-Fast 2.7 × 10−2 6.9 87 1.7 × 10
3

4.9 × 10
2

5.6 × 10
4

- - -

(𝜖,Δ𝑟 )-APX 9.1 × 10
−2

7.8 53 72 2.3 × 102 1.2 × 104 5.0 × 104 7.7 × 104 9.9 × 104

10-3
10-2
10-1
100
101
102
103

3 7 11 15 19

Q
ue
ry
T
im
e
(s
)

k

CPT-Basic
(� ,�r)-APX

LocalDecomp

(a) Flickr

10-3
10-2
10-1
100
101
102
103

3 7 11 15 19

Q
ue
ry
T
im
e
(s
)

k

CPT-Basic
(� ,�r)-APX

LocalDecomp

(b) DBLP

10-2
10-1
100
101
102
103
104

3 7 11 15 19

Q
ue
ry
T
im
e
(s
)

k

CPT-Basic
(� ,�r)-APX

LocalDecomp

(c) biomine

10-1
100
101
102
103
104
105

3 7 11 15 19

Q
ue
ry
T
im
e
(s
)

k

(� ,�r)-APX
LocalDecomp

(d) wise

Figure 4: Parameter sensitivity evaluation of all query processing algorithms by varying 𝑘 .

10-3
10-2
10-1
100
101
102
103

0 0.2 0.4 0.6 0.8

Q
ue
ry
T
im
e
(s
)

�

CPT-Basic
(� ,�r)-APX

LocalDecomp

(a) Flickr

10-2
10-1
100
101
102
103
104
105

0 0.2 0.4 0.6 0.8

Q
ue
ry
T
im
e
(s
)

�

CPT-Basic
(� ,�r)-APX

LocalDecomp

(b) DBLP

10-2
10-1
100
101
102
103
104
105
106
107

0 0.2 0.4 0.6 0.8

Q
ue
ry
T
im
e
(s
)

�

CPT-Basic
(� ,�r)-APX

LocalDecomp

(c) biomine

101

102

103

104

105

0 0.2 0.4 0.6 0.8

Q
ue
ry
ti
m
e
(s
)

�

(� ,�r)-APX
LocalDecomp

(d) wise

Figure 5: Parameter sensitivity evaluation of all query processing algorithms by varying 𝛾 .

parameters 𝑘 ∈ [3, 40] and 𝛾 ∈ (0, 1]. We randomly test 100 sets of

queries and report the average running time. We treat the running

time of an index construction and a query as infinite if it cannot

finish within 200 hours, which is marked by ‘-’. For (𝜖,Δ𝑟 )-APX,
we set the parameters 𝜖 = 0.1 and Δ𝑟 = 0.001 by default.

8.1 Efficiency Evaluation

Exp-I: Index Construction Time. We compare the efficiency

of three index construction algorithms: CPT-Basic, CPT-Fast and
(𝜖,Δ𝑟 )-APX. Table 4 reports the index construction time of the

different algorithms for all datasets. (𝜖,Δ𝑟 )-APX outperforms CPT-
Fast and CPT-Basic on most datasets, except for the small datasets

Fruit-Fly and ca-GrQc. Neither CPT-Fast nor CPT-Basic can fin-

ish the index construction within 200 hours on the large graphs

LiveJournal, Orkut, and wise. CPT-Fast is faster than CPT-Basic
on all other graphs, which validates the effectiveness of edge parti-

tioning and delays updates for 𝜎 (𝑒) in the top-down framework of

CPT-Fast.

Exp-II: Query Time. We conduct the query efficiency evaluation

of (𝑘,𝛾)-truss retrieval for all datasets. We compare the query time

of four algorithms: one online search algorithm (LocalDecomp)
and three index-based (𝑘,𝛾)-truss retrieval algorithms (CPT-Basic,
CPT-Fast and (𝜖,Δ𝑟 )-APX). Figure 3(left) reports the query time

of all the methods. We can observe that LocalDecomp performs

the worst for all datasets, due to the way in which the online com-

putation does not have any index. Both CPT-Basic and CPT-Fast
are orders of magnitude faster than LocalDecomp for all datasets

with a successfully constructed index, except for large graphs.

CPT-Basic and CPT-Fast have the same query time, as they are

based on the same exactCPT-index. Moreover, (𝜖,Δ𝑟 )-APX is faster

than LocalDecomp and slower than CPT-Basic and CPT-Fast, as
(𝜖,Δ𝑟 )-APX uses an (𝜖,Δ𝑟 )-approximate index. On the other hand,

whileCPT-Basic andCPT-Fast cannot complete index construction

within 200 hours, (𝜖,Δ𝑟 )-APX reduces the query time of LocalDe-

comp from 2.0-7.3 hours to 10-65 minutes on the three large graphs.

Exp-III: Index Size. Figure 3(right) reports the index sizes of dif-
ferent index construction algorithms for all datasets. The disk sizes

of the original graphs are also reported for comparison. The CPT-
index constructed by CPT-Basic and CPT-Fast take more space

than the graph size and (𝜖,Δ𝑟 )-APX, except for the small graph

Fruit-Fly. In Fruit-Fly, many edges have the same probability, so the

CPT-index can compress a great deal of space; moreover, (𝜖,Δ𝑟 )-
APX keeps the trussness index of the deterministic graph 𝐺 and

takes more index space than CPT-Basic and CPT-Fast. In regard

to the other datasets, the (𝜖,Δ𝑟 )-approximate index occupies the

smallest space, which is comparable with the graph sizes. This is

because (𝜖,Δ𝑟 )-APX prunes those low probability edges 𝑝 (𝑒) < 𝜖

and merges many edges with the same probabilities.

8.2 Parameter Sensitivity Evaluation
For query processing, we compare three algorithms: LocalDecomp,
CPT-Basic, and (𝜖,Δ𝑟 )-APX, as CPT-Basic and CPT-Fast achieve
the same performance based on the same index.

Exp-IV: Varying Query Parameter 𝑘 . We evaluate the perfor-

mance of different query processing algorithms by varying the

parameter 𝑘 . We vary 𝑘 from 3 to 19 and set 𝛾 = 0.2. Figure 4



Efficient Probabilistic Truss Indexing on Uncertain Graphs WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

1

10

102

103

10-4 10-3 10-2 10-1

In
de
xi
ng
T
im
e
(s
)

�

(� ,�r)-APX

(a) Index Time

10-2
10-1
100
101
102
103

10-4 10-3 10-2 10-1
Q
ue
ry
T
im
e
(s
)

�

(� ,�r)-APX

(b) Query Time

0
5
10
15
20
25
30

10-4 10-3 10-2 10-1

In
de
x
S
iz
e
(M
B
)

�

(� ,�r)-APX

(c) Index Size

Figure 6: Parameter sensitivity evaluation of (𝜖,Δ𝑟 )-APX by
varying 𝜖 on Flickr dataset.

reports the query time results of LocalDecomp, CPT-Basic, and
(𝜖,Δ𝑟 )-APX for four large datasets: Flickr, DBLP, biomine, and wise.

The query time of the CPT-Basic and (𝜖,Δ𝑟 )-APX algorithms de-

creases with the increased 𝑘 . This is because the (𝑘,𝛾)-truss has
a denser and smaller graph size with a larger 𝑘 , which can be re-

trieved faster. Note that CPT-Basic cannot answer the (𝑘,𝛾)-truss
query as it cannot finish index construction within a given time

for wise, as shown in Figure 4(d). In addition, LocalDecomp has a

stable query processing performance but runs much slower than

CPT-Basic and (𝜖,Δ𝑟 )-APX.
Exp-V: VaryingQuery Parameter𝛾 .We further evaluate the per-

formance of LocalDecomp, CPT-Basic, and (𝜖,Δ𝑟 )-APX by varying

the parameter 𝛾 . We vary the parameter 𝛾 from 0 to 1 and set

𝑘 = 3. Figure 5 shows the query time results of all methods for

four large datasets: Flickr, DBLP, biomine, and wise. The query

time of CPT-Basic and (𝜖,Δ𝑟 )-APX significantly decreases with the

increased 𝛾 . (𝜖,Δ𝑟 )-APX is faster than LocalDecomp and slower

than CPT-Basic, which makes use of partial indexing information

in its online search of (𝑘,𝛾)-truss in an integrated way. Specifically,

for 𝛾 < 0.1, (𝜖,Δ𝑟 )-APX takes a much longer query time to com-

pute (𝑘,𝛾)-truss from𝑇𝑘 when 𝛾 < 0.1 with the indexing setting of

𝜖 = 0.1. On the other hand, when 𝛾 ≥ 0.1, (𝜖,Δ𝑟 )-APX makes use

of the (𝜖,Δ𝑟 )-approximate index and obtains a small edge set 𝑐𝑎𝑙𝐸

for quick (𝑘,𝛾)-truss identification, using less time. Once again,

LocalDecomp has the worst performance, and CPT-Basic is the

best but cannot finish query processing on the largest graph wise,

as shown in Figure 5(d).

Exp-VI: Varying Pruning Probability 𝜖.We evaluate the param-

eter sensitivity of (𝜖,Δ𝑟 )-APX by varying 𝜖 ∈ [10
−4, 0.2]. Figure 6

reports the index construction time, query time, and index size of

(𝜖,Δ𝑟 )-APX in regard to Flickr. With a larger pruning probability 𝜖 ,

(𝜖,Δ𝑟 )-APX has less costs regarding index construction, as shown

in Figure 6(a), and generates a smaller CPT-index in Figure 6(c);

meanwhile, the query time of (𝜖,Δ𝑟 )-APX is greater, as shown in

Figure 6(b). This is because we generate the queries by randomly

picking the parameter 𝛾 ∈ [0, 1], and (𝜖,Δ𝑟 )-APX takes a longer

running time to obtain (𝑘,𝛾)-truss for 𝛾 < 𝜖 .

Exp-VII: Scalability Test.We conduct a scalability test on Flickr.

Similar trend results can be found as for the other datasets. To test

the scalability of the proposed algorithms, we vary the graph size

by randomly sampling edges in the Flickr graph with 20%, 40%,

60%, 80%, and 100%. Figures 7(a)-(c) report the results regarding

index construction time, index size, and query time for all meth-

ods used. In Figure 7(a), the index construction time of CPT-Basic
increases faster than the construction time of CPT-Fast, indicat-
ing good scalability in regard to CPT-Fast on index construction.

10-1
100
101
102
103
104
105
106

0.2 0.4 0.6 0.8 1.0

In
de
x
T
im
e
(s
)

Sample Ratio

CPT-Basic
CPT-Fast
(� ,�r)-APX

(a) Index Construction Time

0

50

100

150

200

0.2 0.4 0.6 0.8 1.0

In
de
x
S
iz
e
(M
B
)

Sample Ratio

CPT-Basic
CPT-Fast
(� ,�r)-APX

(b) Index Size

10-3
10-2
10-1
100
101
102
103
104
105

0.2 0.4 0.6 0.8 1.0

Q
ue
ry
T
im
e
(s
)

Sample Ratio

CPT-Basic
CPT-Fast
(� ,�r)-APX

LocalDecomp

(c) Query Time

Figure 7: Scalability of different algorithms on Flickr dataset
in terms of index construction time, index size, and query
time.

0

2000

4000

6000

8000

10000

12000

102030405060708090100

T
im
e
(s
)

The number of queries

(� ,�r)-APX
LocalDecomp

(a) Maximizing 𝑘

0
5000
10000
15000
20000
25000
30000
35000
40000

102030405060708090100

T
im
e
(s
)

The number of queries

(� ,�r)-APX
LocalDecomp

(b) Maximizing 𝛾

Figure 8: The cumulative query time of task-driven team for-
mation. Here, 𝛾 = 10

−11 and 𝑘 = 3 by default.

(𝜖,Δ𝑟 )-APX performs best across all datasets. The index size of

(𝜖,Δ𝑟 )-APX also increases slowly, as shown in Figure 7(b). Last, Fig-

ure 7(c) shows the query time of all the methods used. In Figure 7(c),

LocalDecomp again performs the worst among all methods. (𝜖,Δ𝑟 )-
APX is slower than CPT-Basic and CPT-Fast and increases slightly

as the sampling ratio increases, indicating the stable scalability of

the (𝜖,Δ𝑟 )-APX scheme in regard to (𝑘,𝛾)-truss retrieval.

8.3 Application: Task-Driven Team Formation
In this experiment, we apply our (𝑘,𝛾)-truss indexing to solve the

task-driven team formation problem [7, 18]. Given a probabilistic

collaboration graph G = (𝑉 , 𝐸, 𝑝) derived specifically for a topic

task 𝑇 , a set of query vertices 𝑄 ⊆ 𝑉 , the problem is finding a con-

nected subgraph of (𝑘,𝛾)-truss𝐻 such that (𝑖) 𝐻 contains all nodes

𝑄 and (𝑖𝑖) 𝐻 has the largest trussness [18]. We use the same dataset

of DBLP collaboration network and the same topics of ‘data’ and

‘algorithm’ [18], where the edge probability represents the collabo-

ration strength of papers between two authors related to the topics

by LAD model [5]. We evaluate the strength of probabilistic truss-

ness in two dimensions of 𝑘 and 𝛾 . Specifically, one is maximizing

the 𝑘 w.r.t. a given 𝛾 , and the other one is maximizing the 𝛾 w.r.t. a

given 𝑘 . We randomly generate 100 sets of query nodes. Figure 8(b)

shows the cumulative query time of LocalDecomp [18] and our

(𝜖,Δ𝑟 )-APX approach to find (𝑘,𝛾)-truss team by maximizing 𝑘 ,

w.r.t. a given 𝛾 = 10
−11

. Both approaches find the same (𝑘,𝛾)-truss
results. (𝜖,Δ𝑟 )-APX is faster than LocalDecomp, which achieves sig-
nificantly incremental gains with more queries issued. In addition,

Figure 8(a) shows the cumulative query time of LocalDecomp [18]

and (𝜖,Δ𝑟 )-APX bymaximizing𝛾 , w.r.t. a given𝑘 = 3. LocalDecomp
runs much slower than (𝜖,Δ𝑟 )-APX. This because that it needs

to call LocalDecomp multiple times to find a feasible (𝑘,𝛾)-truss,
which uses a binary search over 𝛾 ∈ [0, 1] such that |𝛾 − 𝛾∗ | ≤ 0.1

where 𝛾∗ is the largest trussness. On the other hand, our (𝜖,Δ𝑟 )-
APX approach runs once to achieve results for each team formation

query.



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi

Table 5: The efficiency and quality results of probabilistic
triangle densest subgraph discovery.

Expected Triangle Density Running Time (in seconds)
PTDS Ours loss (%) PTDS Ours speedup

Fruit-Fly 1.87 1.84 1.4 0.05 0.001 50x
ca-GrQc 91.2 87.0 4.7 63 0.23 277x

Flickr 376 345 8.1 15,234 0.29 52,080x

8.4 Application: Probabilistic Triangle Densest
Subgraph Discovery

Weapply our (𝜖,Δ𝑟 )-APX algorithm for a novel application of proba-

bilistic triangle densest subgraph discovery. The problem of triangle

densest subgraph discovery over a deterministic graph is formu-

lated and studied in [35], while its problem over uncertain graphs

has not been studied yet, to the best of our knowledge. Given a

subgraph H ⊆ G, we define the expected triangles of an edge 𝑒

in H is the expected number of triangles containing 𝑒 based on

its support vector, i.e., 𝛼 (𝑒) = ∑𝑡𝑒
𝑖=0

𝑖 · 𝜎H (𝑒, 𝑖). Thus, the expected
triangle density of H is denoted as TDensity(H) =

∑
𝑒∈𝐸 (H) 𝛼 (𝑒)
3 |𝑉 (H) | .

The problem of probabilistic triangle densest subgraph is to find an

induced subgraphH𝑆 of G by a subset of vertices 𝑆 with the largest

expected triangle density, i.e., 𝑆∗ = arg max𝑆⊆𝑉 TDensity(H𝑆 ). We

implement a PTDS method by extending the
1

3
-approximation al-

gorithm [35] from deterministic graphs to uncertain graphs. We

compare two methods: one baseline is to apply PTDS on the whole

graph G directly; the other one is to first extract (𝑘,𝛾)-truss from G
by (𝜖,Δ𝑟 )-APX and then apply PTDS on a small (𝑘,𝛾)-truss graph,
denoted as (𝜖,Δ𝑟 )-APX. Table 5 reports the running times and ex-

pected triangle density of PTDS and (𝜖,Δ𝑟 )-APX on three datasets.

Our (𝜖,Δ𝑟 )-APXmethod obtains competitive triangle densities com-

pared with PTDS, which falls in a small density loss of 8.1% but

achieves a significant speedup of of 52,080x on Flickr.

9 CONCLUSIONS
This paper studies the problem of (𝑘,𝛾)-truss indexing and querying
on uncertain graphs. We propose a compact data structure of the

CPT-index to keep the complete information of (𝑘,𝛾)-truss for all
𝑘 and 𝛾 . CPT-index-based querying algorithms can perform (𝑘,𝛾)-
truss retrieval with an optimal level time complexity for any given

𝑘 and 𝛾 . To efficiently construct the CPT-index, we propose two
index construction algorithms, CPT-Basic and CPT-Fast, in the

bottom-up search and top-down partition manners. Based on CPT-
Fast, we further develop (𝜖,Δ𝑟 )-APX scheme to trade-off the index

construction and online retrieval processes. Experiments on large

datasets verify the superiority of our methods over state-of-the-art

approaches.

Acknowledgments. The work is supported by HK RGC Grants

Nos. 22200320, 12200819, CRF C6030-18G, and Guangdong Basic

and Applied Basic Research Foundation (No. 2019B1515130001).

Xin Huang is the corresponding author.

REFERENCES
[1] http://thebiogrid.org.

[2] http://dblp.uni-trier.de.

[3] S. Banerjee and B. Pal. Dysky: Dynamic skyline queries on uncertain graphs.

CoRR, abs/2004.02564, 2020.
[4] M. Blanco, T. M. Low, and K. Kim. Exploration of fine-grained parallelism for load

balancing eager k-truss on gpu and cpu. In 2019 HPEC, pages=1–7, year=2019.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, 2003.

[6] P. Boldi, F. Bonchi, A. Gionis, and T. Tassa. Injecting uncertainty in graphs for

identity obfuscation. Proc. VLDB Endow., 5(11):1376–1387, 2012.
[7] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. Core decomposition of

uncertain graphs. In KDD, pages 1316–1325, 2014.
[8] Y. Che, Z. Lai, S. Sun, Y. Wang, and Q. Luo. Accelerating truss decomposition on

heterogeneous processors. Proc. VLDB Endow., 13(10):1751–1764, 2020.
[9] L. Chen and X. Lian. Query processing over uncertain databases. Synthesis

Lectures on Data Management, 4(6):1–101, 2012.
[10] P. Chen, C. Chou, and M. Chen. Distributed algorithms for k-truss decomposition.

In International Conference on Big Data, pages 471–480, 2014.
[11] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.

Comput., 14(1):210–223, 1985.
[12] L. E. and H. T. Biomine: predicting links between biological entities using network

models of heterogeneous databases. BMC Bioinformatics, 13, 2012.
[13] S. Ebadian and X. Huang. Fast algorithm for k-truss discovery on public-private

graphs. In IJCAI, pages 2258–2264, 2019.
[14] F. Esfahani, J. Wu, V. Srinivasan, A. Thomo, and K. Wu. Fast truss decomposition

in large-scale probabilistic graphs. In EDBT, pages 722–725, 2019.
[15] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss community

in large and dynamic graphs. In SIGMOD, pages 1311–1322, 2014.
[16] X. Huang and L. V. Lakshmanan. Attribute-driven community search. PVLDB,

10(9):949–960, 2017.

[17] X. Huang, L. V. Lakshmanan, J. X. Yu, and H. Cheng. Approximate closest

community search in networks. PVLDB, 9(4), 2015.
[18] X. Huang, W. Lu, and L. V. S. Lakshmanan. Truss decomposition of probabilistic

graphs: Semantics and algorithms. In SIGMOD, pages 77–90, 2016.
[19] R. Jin, L. Liu, B. Ding, and H.Wang. Distance-constraint reachability computation

in uncertain graphs. PVLDB, 4(9):551–562, 2011.
[20] H. Kabir and K. Madduri. Shared-memory graph truss decomposition. In HiPC,

pages 13–22, 2017.

[21] V. Kassiano, A. G., A. N. P., and K. T. Mining uncertain graphs: An overview. In

Algorithmic Aspects of Cloud Computing, pages 87–116, 2017.
[22] A. Khan, F. Bonchi, A. Gionis, and F. Gullo. Fast reliability search in uncertain

graphs. In EDBT 2014, pages 535–546.
[23] A. Khan, F. Bonchi, F. Gullo, and A. Nufer. Conditional reliability in uncertain

graphs. TKDE, 30(11):2078–2092, 2018.
[24] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-

tion. http://snap.stanford.edu/data, June 2014.

[25] Q. Liu, M. Zhao, X. Huang, J. Xu, and Y. Gao. Truss-based community search

over large directed graphs. In SIGMOD, pages 2183–2197, 2020.
[26] R. J. Mokken. Cliques, clubs and clans. Quality & Quantity, 13(2):161–173, 1979.
[27] A. P. Mukherjee, P. Xu, and S. Tirthapura. Mining maximal cliques from an

uncertain graph. arXiv preprint arXiv:1310.6780, 2013.
[28] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi. The pursuit of a good possible

world: extracting representative instances of uncertain graphs. In SIGMOD 2014,
pages 967–978.

[29] P. Parchas, N. Papailiou, D. Papadias, and F. Bonchi. Uncertain graph sparsifica-

tion. TKDE, 30(12):2435–2449, 2018.
[30] J. Pei, D. Jiang, and A. Zhang. Mining cross-graph quasi-cliques in gene expression

and protein interaction data. In ICDE, pages 353–354, 2005.
[31] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. K-nearest neighbors in uncertain

graphs. PVLDB, 3(1-2):997–1008, 2010.
[32] G. Preti, G. D. F. Morales, and F. Bonchi. STruD: Truss decomposition of simplicial

complexes. In The Web Conf. 2021.
[33] A. E. Saríyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek. Stream-

ing algorithms for k-core decomposition. PVLDB, 6(6):433–444, 2013.
[34] T. Takaguchi and Y. Yoshida. Cycle and flow trusses in directed networks. Royal

Society Open Science, 3, 2016.
[35] C. Tsourakakis. The k-clique densest subgraph problem. In WWW, pages 1122–

1132, 2015.

[36] J. Wang and J. Cheng. Truss decomposition in massive networks. PVLDB,
5(9):812–823, 2012.

[37] B. Yang, D. W., L. Q., Y. Zhang, L. Chang, and R. Li. Index-based optimal algorithm

for computing k-cores in large uncertain graphs. In ICDE, pages 64–75, 2019.
[38] Y. Yuan, G. Wang, L. Chen, and H. Wang. Efficient keyword search on uncertain

graph data. TKDE, 25(12):2767–2779, 2013.
[39] Y. Yuan, G. Wang, H. Wang, and L. Chen. Efficient subgraph search over large

uncertain graphs. PVLDB, 4(11):876–886, 2011.
[40] Y. Zhang and J. X. Yu. Unboundedness and efficiency of truss maintenance in

evolving graphs. In SIGMOD, pages 1024–1041, 2019.
[41] Z. Zou, H. Gao, and J. Li. Discovering frequent subgraphs over uncertain graph

databases under probabilistic semantics. In KDD, pages 633–642, 2010.
[42] Z. Zou, J. Li, H. Gao, and S. Zhang. Finding top-k maximal cliques in an uncertain

graph. In ICDE, pages 649–652, 2010.
[43] Z. Zou and R. Zhu. Truss decomposition of uncertain graphs. Knowledge and

Information Systems, 50(1):197–230, 2017.

http://thebiogrid.org
http://dblp.uni-trier.de
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Related Work
	3 PRELIMINARIES
	3.1 Uncertain Graphs
	3.2 Probabilistic (k,)-truss
	3.3 Problem Formulation

	4 Existing Algorithm
	5 (k, )-Truss Indexing
	5.1 Properties of (k, )-Truss
	5.2 CPT-Index and (k, )-Truss Retrieval
	5.3 CPT-Index Construction

	6 Fast CPT-Index Construction
	7 (, r)-Approximate Indexing Scheme
	7.1 (, r)-APX Index Construction
	7.2 (, r)-APX Index based (k,)-truss Retrieval

	8 Experiments
	8.1 Efficiency Evaluation
	8.2 Parameter Sensitivity Evaluation
	8.3 Application: Task-Driven Team Formation
	8.4 Application: Probabilistic Triangle Densest Subgraph Discovery

	9 Conclusions
	References

