
The World Wide Web is the Internet’s
most widely used tool for informa-
tion access and dissemination, but
today’s users often experience long

access latency due to network congestion—par-
ticularly during peak hours and big events, such
as the Olympic Games. Caching frequently used
data at proxies close to clients is an effective way
to alleviate these problems. Specifically, caching
can reduce load on both the network and servers
(by localizing the traffic) and improve access la-
tency (by satisfying user requests from local stor-
age rather than remote servers). 

Caching proxies have become vital components
in most Web systems, and managing proxy cache is
critical. Researchers have studied this management

task extensively in other systems, such as memory
hierarchies and distributed file-sharing systems.
However, the Web and the Internet offer several
unique challenges in this area, not the least of
which are network size and the ever-evolving di-
versity of technologies and user behavior. Given
this, we need novel solutions for deploying Web
caching proxies on the Internet. 

Here, we offer an overview of key management
problems for Web proxy caching and prefetching
and present state-of-the-art solutions to these prob-
lems. Our focus is on the distribution of conventional
Web objects, such as HTML pages and images, but
we also address issues arising from emerging appli-
cations and services, such as streaming media.

Overview: Proxy Caching Systems
A proxy is usually deployed at a network’s edge,
such as at an enterprise network’s gateway or fire-
wall. The proxy processes internal client requests
either locally or by forwarding the requests to a re-
mote server, intercepting the responses, and send-
ing the replies back to the clients. Because this
proxy is shared by internal clients who tend to have
similar interests, it’s natural to cache commonly re-
quested objects on the proxy. 

A client-side browser typically retrieves a Web
object by initiating an HTTP GET command with
the object’s address. The browser first attempts to
satisfy the request from its local cache; if it fails, it
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sends the unresolved request to its proxy. If the
proxy finds the requested object in its cache, it re-
turns the object to the client; otherwise, the request
is forwarded to the object’s origin server, which—
as the authoritative source of the requested ob-
ject—returns the object to the proxy. The proxy
then relays the object to the client and, if needed,
saves a copy in its cache. If a request is satisfied
from the proxy cache, it is called a cache hit; other-
wise, it’s a cache miss. Figure 1 shows a stand-alone
proxy’s basic operations.

In addition to the basic GET command, HTTP
also provides a conditional GET command. The
proxy can use this modified GET with an if-modi-
fied-since date in the header to ensure that the re-
mote server returns only copies modified since the
specified date. Another important header is ex-
pires, which indicates when an object is no longer
fresh. In HTTP 1.1 (the latest version), cache-con-
trol headers offer a richer set of proxy cache controls,
including a list of directives to declare which objects
can be cached, as well as expiration-mechanism mod-
ifications, and revalidation or reload controls. 

Caching Challenges and Solutions
Cache replacement and prefetching, consistency
management, and cooperative management are key
cache management issues. Although these issues
date back to traditional memory hierarchies and file-
sharing systems, several distinctive features of the
Web and Internet necessitate different solutions. 

First, there is the issue of size. The Internet is the
world’s largest interconnected network. Google
alone receives more than 2,000 search queries a
second. Given the Internet and Web’s scale, any
cache-management solution must be massively
scalable—the proxy cache must be capable of han-
dling numerous concurrent user requests. 

Web application users also exhibit high hetero-
geneity in hardware and software configurations,
connection bandwidth, and access behaviors. This
diversity level continues to increase as new plat-
forms and access technologies—such as mobile
users with wireless access—proliferate. Hence, a
simple one-size-fits-all solution for cache manage-
ment might never be feasible.

In addition to this heterogeneity, proxy cache
consumers (Web browsers) and suppliers (servers)
are loosely coupled. Unlike in many distributed
file-sharing systems, this loose coupling is key to
Internet and Web success. However, it makes man-
aging consistency and cooperation among proxy
caches particularly difficult. Moreover, due to the
lack of a centralized administration, security and
privacy issues are deeply complicated.

Finally, the Web and the Internet change rapidly,
both in traffic characteristics and network struc-
tures, which complicates analysis of the environ-
ment. The Web’s dynamic nature easily makes ex-
isting products and even research findings obsolete
in a few years. Thus, we need a flexible and ex-
tendable interface for any Web-oriented solution.

Cache Replacement and Prefetching
Faced with insufficient disk space, a proxy must de-
cide which existing objects to purge when a new
object arrives. Cache replacement policies address
this issue. The classical cache replacement policy is
least recently used (LRU), which purges the oldest
among the cached objects. In the late ’90s, re-
searchers put significant effort into developing
more intelligent cache replacement strategies.
However, LRU offers limited room for improve-
ment; in practice, the simple LRU policy domi-
nates in cache products. 

Cache prefetching is related to replacement, but
unlike data caching, which waits on object requests,
prefetching proactively preloads data from the
server into the cache to facilitate near-future ac-
cesses. Studies have shown that, when combined
with caching, prefetching can improve latency by
up to 60 percent, while caching alone offers at best
a 26-percent latency improvement.1 However, a
cache prefetching policy must be carefully de-
signed: if it fails to predict a user’s future accesses,
it wastes network bandwidth and cache space. The
prediction mechanism thus plays an important role
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Figure 1. A stand-alone proxy. The browser initiates an HTTP GET
command, and if it can’t satisfy the request from local cache, it sends
the request to the proxy. (a) When the proxy can’t satisfy a request, a
cache miss occurs. (b) A cache hit: the proxy finds the requested object
and returns it to the client.
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in cache prefetching policy design. 
We can classify prefetching policies into three

categories based on the type of information the
prediction mechanism uses: mixed access pattern,
per-client access pattern, and object structural in-
formation. 

Mixed access pattern. This policy uses aggregate
access patterns from different clients, but doesn’t
explore which client made the request. A typical
example is the top-10 proposal,2 which uses pop-
ularity-based predictions. Specifically, the scheme
determines how many objects to prefetch from
which servers using two parameters: 

• M, the number of times the client has con-
tacted a server before it can prefetch, and

• N, the maximum number of objects the client
can prefetch from a server. 

If the number of objects fetched in the previous
measurement period L reaches the threshold M,
the client will prefetch the K most popular objects
from the server, where K = min{N, L}. 

Per-client access pattern. Here, the policy first an-
alyzes access patterns on a per-client basis, then
uses the aggregated access patterns for prediction.
An example is the popular Markov modeling
analysis tool,3 in which the policy establishes a
Markov graph based on access histories and uses
the graph to make prefetching predictions. In the
Markov graph, a set of Web objects (usually one
or two objects) is represented as a node; if the
same client accesses two nodes (A and B) in order
within a certain period of time, the policy draws a
direct link from A to B and assigns a weight with
the transition probability from A to B. 

Figure 2 shows an example in which the probabil-
ity of accessing B after A is 0.3 and the probability of
accessing C after A is 0.7. To make a prefetching pre-

diction, a search algorithm traverses the graph start-
ing from the current object set and computes the ac-
cess likelihood for its successors; the prefetching al-
gorithm can then decide how many successors to
preload, depending on factors such as access likeli-
hood and the bandwidth available for prefetching. 

Object structural information. Unlike the previous
categories, which are access-history based, ob-
ject structural information schemes exploit the
local information contained in objects them-
selves. Hyperlinks, for example, are good indic-
tors of future accesses because users tend to ac-
cess objects by clicking on links rather than
typing new URLs.4 The algorithm can also com-
bine object information with access-pattern-
based policies to further improve predication ef-
ficiency and accuracy.

Consistency Management
If the origin server updates an object after a proxy
caches it, the cached copy becomes stale. A cache
consistency algorithm’s goal is to ensure consis-
tency between the cached copy and the original ob-
ject. Existing cache consistency algorithms can be
classified as either weak or strong. If t is the delay
between the proxy and server, a strong consistency
algorithm returns the object outdated by t at most;
algorithms that can’t provide such a guarantee of-
fer weak consistency.

Weak consistency. Weak cache consistency is gen-
erally supported by validation, in which proxies
verify the validity of their cached objects with
the origin server. There are two basic validation
approaches: time-to-live (TTL)-based validation
and proactive polling. With the TTL-based ap-
proach, the proxy assigns a TTL value to the ob-
ject upon caching. When a request arrives, the
proxy serves it with the cached copy if its lifetime
has not expired; otherwise, the proxy sends the
server a conditional request to download a newer
version of the object, if it exists.5

Despite its simplicity and effectiveness, the TTL-
based approach suffers from a major drawback: if an
object expires, but the origin server has not yet up-
dated it, the proxy must still verify with the server,
which will return only a “not modified” message.
This delays access, reducing proxy caching’s effec-
tiveness. To address this, the proxy can proactively
poll the server to check cached copies’ validity, ei-
ther at fixed or adaptive intervals. Another option is
to batch the validation requests and responses, or
piggyback them over normal HTTP traffic to re-
duce polling bandwidth overhead.  
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Figure 2. The Markov graph for a per-client access
pattern. The graph enables prefetching predictions
based on access history.



JULY/AUGUST 2004 57

Strong consistency. Strong cache consistency can
be enforced by either server-driven invalidation
or client-driven validation.6,7 In the server-dri-
ven invalidation approach, the server must in-
validate a proxy’s copies before it can update the
objects. To notify the proxies of object updates,
the server must maintain for each object a state
record of the list of proxies that cache the object.
For a popular Web server, the extra space re-
quired to maintain all objects’ states can be sig-
nificant. In contrast, client-driven validation
doesn’t require the server to maintain any state.
Instead, the proxy validates the cached copies’
freshness with the server for every cache-hit ac-
cess. However, as with the TTL-based ap-
proach, this introduces unnecessary access delay
for valid cache-hit objects. In addition, if the ob-
ject is accessed more often than it’s updated, va-
lidity checking with this approach can generate
numerous unnecessary messages. 

To balance the space required to maintain states
with the message volume that validations require, re-
searchers developed a hybrid approach called
leases.6,7 In this approach, the server and proxy agree
that the server will notify the proxy if the leased ob-
ject is updated during the lease period. The server
can grant a lease to an object for every proxy request,
or for cache-hit requests only (because invalidations
are useful only for frequently accessed objects). If the
lease has not expired, the proxy can immediately
serve client requests from the cache. Otherwise, the
proxy must validate the cached object and renew the
lease on the first access after expiration. 

Cache Cooperation
So far, we’ve considered only stand-alone proxy de-
sign. One disadvantage of this design is that the

proxy represents a single point of failure and per-
formance bottleneck. In other words, it lacks ro-
bustness and scalability. Cooperative caching, in which
caching proxies collaborate with one another in
serving requests, overcomes these limitations.8–11

Because the Internet topology is generally orga-
nized hierarchically, setting up a cache hierarchy is
a popular technique for making caches cooperate.
Such a hierarchy defines a parent-child relationship
between proxy caches (see Figure 3a). Each cache
in the hierarchy is shared by a group of clients or
children caches. The cooperative caches process a
Web object request as follows. If the client can’t lo-
cate the object in its local cache, it sends the request
to its leaf proxy. If this leaf cache contains the ob-
ject, it returns the object to the client. Otherwise,
the cache forwards the request to its parent. This
process recursively proceeds up the hierarchy un-
til the object is located on some proxy or on the
origin server. The caching hierarchy often requires
manual configuration, which makes it vulnerable
to topology changes. This typically limits hierar-
chy depth—most operational hierarchies have only
three levels: institutional, regional, and national.

An alternative is to set up a distributed cache ar-
chitecture, where the participating proxy caches are
peers (see Figure 3b). A simple yet popular distrib-
uted cooperation model is based on broadcast
queries: If a proxy can’t satisfy a client’s request from
its own cache, it will broadcast the request to all
proxies it cooperates with, trying to resolve the re-
quest without contacting the origin server. How-
ever, it’s well known that large-scale broadcast over-
head is prohibitively high, even if multicast is used.
A more intelligent and efficient way is to forward an
object request only to proxies that might contain
the object. Many methods have been devised to
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Figure 3. Different cooperative cache organizations. (a) A cache hierarchy, (b) a distributed cache architecture, and (c) a
combination of the two.
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achieve this objective, such as to distribute the
cached objects’ digests to peer caches, or to hash
partition the object namespace among proxies. 

Researchers have also proposed hybrid schemes
that combine the advantages of hierarchical and dis-
tributed caching. Figure 3c shows an example, in
which proxies are organized into local groups. Using
multicast, clients first query requested objects within
a local group. If this produces a cache miss, the re-
quest is recursively forwarded to the proxy group in
the next higher layer. The Internet Cache Protocol,
a generic protocol for intercache communications,11

contains additional hybrid configurations.
In a cooperative caching environment, managing

cache replacement and consistency is clearly more
complex than with stand-alone proxies. However,
studies show significant benefits when proxies co-
operate on cache replacement decisions.12 To man-
age consistency, cooperative caches (such as Harvest
and Squid) still widely use the simple TTL-based
schemes. Recently, researchers have also developed
multicast-based invalidation for cache hierarchies
and cooperative leases for distributed caches.13

Web proxies play a vital role in ef-
ficiently distributing Web con-
tents over the Internet. Many of
the proposed solutions that

we’ve presented here have matured and are de-
ployed in commercial products and systems.
With emerging applications and service models,
however, cache management for Web proxies re-
mains a fertile research area. There are several
possible directions for such research, including
caching dynamic content and streaming objects,
and security and integrity issues.

According to a recent study,5 dynamic con-
tent—such as dynamically generated data and per-
sonalized data—now contributes up to 40 percent
of the total Web traffic. Dynamic data is typically
marked as noncachable, and thus the origin server
must serve each user request. To improve perfor-
mance for data-intensive Web applications, de-
velopers have deployed reverse caches near the
origin server to support dynamic content caching.
The main challenge is to ensure freshness of
cached content; otherwise, the user might receive
stale data. Another important issue is the analysis
of query semantics, which decomposes a given
query into a probing query to be satisfied by the
cache and a remainder query to be sent to the
server for evaluation. 

Analysts predict that streaming media, such as
music or video clips, will soon represent a signifi-

cant portion of Web traffic. Caching streaming me-
dia is particularly attractive given its content’s sta-
tic nature. However, due to streaming objects’ dis-
tinctive features—such as huge size, intensive
bandwidth use, and high interactivity—conven-
tional proxy caching techniques don’t perform ef-
ficiently.14 One solution is partial caching. Many
recent studies have demonstrated that even if a
small portion of a streaming object is stored on the
proxy, the client playback quality can be signifi-
cantly improved. How to optimally choose the por-
tions to cache and how to synchronize proxy and
origin server delivery remain difficult tasks, as does
cache management on cooperative proxies. The
problem is further complicated in that streaming
objects often have variable bit rate and stringent
transmission delay or delay jitter demands. 

Finally, using proxies creates many security
problems. It’s difficult, for example, to protect
stand-alone caches from various attacks, includ-
ing invasion and denial-of-service. For coopera-
tive caches, establishing a trust model among par-
ticipants is challenging. In addition, Web
applications typically use the Secure Sockets
Layer protocol to provide the end-to-end security
for data transmissions between the client and the
server, but the existence of an intermediate proxy
largely violates SSL’s functionality. To alter data,
an attacker can now target both a proxy and the
origin server, so it’s crucial to ensure the integrity
of a proxy’s cached content.
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