
DigestJoin: Expediting Joins on Solid-State Drives∗

Shen Gao, Yu Li, Jianliang Xu, Byron Choi, Haibo Hu
Depart of Computer Science

Hong Kong Baptist University
Kowloon Tong, Hong Kong SAR, China

{sgao,yli, xujl, bchoi, haibo}@comp.hkbu.edu.hk

Abstract. This demonstration presents a recently proposed join algorithm called
DigestJoin. Optimized for solid-state drives (SSDs), DigestJoin aims at reducing
intermediate join results and hence expensive write operations while exploiting fast
random reads. The demonstration system consists of an implementation of
DigestJoin in the open-source PostgreSQL database management system on an Intel
SSD. In the demonstration, we will showcase the performance benefits of DigestJoin
in comparison to a traditional join algorithm and highlight the workloads in which
DigestJoin is particularly favorable.

1 Introduction

Solid-State Drives (SSDs) have recently been a competitive alternative secondary storage
for database applications, thanks to their superiority such as low access latency, low
power consumption, and excellent shock resistance [1]. However, compared to magnetic
disks, SSDs possess a number of distinct I/O characteristics, which affect database
applications, among others. First, SSDs do not involve any mechanical components so
that there is a negligible seek time in reading pages. A random read is almost as fast as a
sequential read on SSDs. Second, SSDs have an erase-before-write constraint: a page has
to be erased before it can be overwritten. Although this can be addressed by the out-place
update strategy, new issues such as wear leveling and garbage collection arise, rendering a
write slower than a read on SSDs. Third, with the short I/O latency (e.g., the random read
of an SSD is 150X faster than that of a magnetic disk [1]), I/O cost may no longer
dominate CPU computation cost in evaluating a query on an SSD-based database system.
These distinct I/O characteristics make the state-of-the-art join algorithms, which assume
I/O characteristics of magnetic disks, suboptimal when implemented on SSDs.

In this demonstration, we present DigestJoin ⎯ a recently proposed algorithm that
optimizes join performance for SSDs by reducing intermediate join results and exploiting
fast random reads [2]. DigestJoin consists of two phases: digest-table joining and page
fetching (see Figure 1). In the first phase of digest-table joining, DigestJoin projects the

∗ This work was partially supported by the Research Grants Council of Hong Kong (Grants
HKBU210808 and HKBU211307) and Natural Science Foundation of China (Grant No. 60833005).

mailto:LNCS@Springer.com

tuple id (tid) as well as the attribute(s) that participate in the join. The projected tables are
called the digest tables. A traditional join algorithm is then applied on the digest tables to
generate the digest join results. The digest join results are simply pairs of tids together
with the join attribute(s), thereby minimizing the size of intermediate join results. In the
second phase of page fetching, based on the digest join results, DigestJoin loads the full
tuples that satisfy the join from the original tables to produce the final join results.
Whenever a tuple is fetched from disk, the entire page containing the tuple is fetched.
Ideally, each page should be fetched at most once during the process of final-result
construction. However, this is difficult to achieve in practice due to memory constraints.
As the digest join results are not clustered with respect to page address, a page may be
fetched multiple times during the construction process. Thus, a page fetching strategy is
needed to minimize the number of page accesses. In the following sections, we provide
more details of each of the two phases in DigestJoin with an example.

 Figure 1: Overview of DigestJoin Figure 2: Connecting SSD to motherboard

2 Digest-Table Joining

Consider two tables A = {a1, a2, …, an} and B = {b1, b2, …, bn}. Denote the tuple ids of
these two tables by A.tid and B.tid, respectively. In the first step, we scan tables A and B
and compute the digest tables that contain only the join attributes and the tuple ids. For
example, given a simple join A ⊳⊲A.ax=B.bx B, the digest tables will be A’ = {A.tid, A.ax} and
B’ = {B.tid, B.bx}. After that, we apply a traditional join algorithm (e.g., nested-loop, hash
join, or sort-merge) to the digest tables to generate the digest join results, e.g., in the form
of {A.tid, B.tid, ax} for the above example. As the digest tables are often much smaller
than the original tables, the I/O of the join, especially the write operations on SSDs, would
be greatly reduced.

3 Page Fetching

The digest join results consist of only the tids of the tuples that satisfy the join. To
produce the final join results, we fetch the tuples from the original tables according to tids.
The fetching is performed at page-level granularity. This has been known to be the
classical page fetching problem in index-based joins. However, as random reads are no
longer an issue on SSDs, we can simply minimize the amount of I/Os in fetching the full
tuples. On the other hand, due to the short I/O latency of SSDs, the CPU computation cost
of page fetching should also be taken into consideration.

As an illustration, one straightforward solution is to fetch the pages of the tuples as
soon as they are generated in the digest-table joining phase, and cache them in a buffer for
future use. Since random reads are fast on SSDs, we assign as few input buffers as
possible in the digest-table joining phase in order to maximize the number of buffers for
page caching. For example, suppose that sort-merge is used to join the digest tables. Page
fetching is incorporated in the merge phase of the digest-table join (i.e., after the digest
tables have been sorted). We assign only two input buffers to merge the two sorted digest
tables. The remaining buffer space forms a page cache. A cache replacement policy, LRU,
is used for the management of the page cache. This page fetching strategy maximizes the
amount of cached pages. Meanwhile, it does not incur much CPU computation cost. More
advanced page fetching strategies for SSDs have also been proposed; interested readers
may refer to [2] for details.

4 Demonstration Description

We have implemented DigestJoin in PostgreSQL 8.3.6 [3], an open-source database
management system. We store the TPC-H tables on an Intel 80GB X25-M SSD, which are
connected to the motherboard via a SATA II connection (see Figure 2). In this
demonstration, we will showcase the performance benefits of DigestJoin in comparison to
a traditional sort-merge join (TraditionJoin) algorithm and highlight the workloads in
which DigestJoin is particularly favorable.

Figure 3(a) gives a screenshot of the GTK+ interface of our demonstration system.
After launching the system, the user can input a join query in standard SQL form. Below
is an example:

SELECT *
FROM CUSTOMER C, ORDERS O
WHERE C.C_CUSTKEY = O.O_CUSTKEY

Next, the user can set a number of parameters for execution:
• Join result selectivity: This adds to the WHERE clause of the user query an

additional filtering function that selects part of the original join results. The
selectivity can be ranged from 0.01 to 1.0.

• Skewness of join results: When used with the join selectivity, this parameter
controls the page distribution of selected join results. When it is set at 0, the join
results are evenly distributed; when it is set at 1, the selected join results are highly
clustered on a few hot pages.

• Buffer size: This sets the size of the buffer (in terms of the number of 8KB pages)
used for the join algorithm.

• Dataset size: Each dataset under testing has three sizes for selection: small
(250MB), medium (500MB), and large (1GB).

The user can also choose an execution mode. In simultaneous mode (Figure 3(a)), to
contrast the performance difference, DigestJoin and TraditionJoin will be executed side-
by-side, and their elapsed times will be visualized in the performance bars (see the left
part of Figure 3(a)) in real time. For TranditionJoin, the whole join process is divided into
three stages: scanning and sorting the outer table (Phase I), scanning and sorting of the
inner table (Phase II), and merging join results (Total Time). For DigestJoin, the whole
process is divided into generating digest join results (Phase I), page fetching (Phase II),
and generating final results (Total Time). During the execution, the “Processing” status
will be displayed in the corresponding stage. After completing all stages, the total elapsed
time will be reported. In an alternative separate mode (Figure 3(b)), the two join
algorithms will be executed one after the other in order to eliminate their possible
performance interference of simultaneous execution. Finally, the user can check the join
results by clicking the Results buttons. An online demo video for DigestJoin is available
at http://www.comp.hkbu.edu.hk/~db/demo.

(a) Simultaneous mode (b) Separate mode

Figure 3: User interface of the demonstration system

References

1. S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim: A Case for Flash Memory SSD in
Enterprise Database Applications. Proceedings of SIGMOD, pp. 1075–1086 (2008)

2. Y. Li, S. T. On, J. Xu, B. Choi, and H. Hu: DigestJoin: Exploiting Fast Random Reads for Flash-
based Joins. Proceedings of the 10th International Conference on Mobile Data Management
(MDM '09), pp. 152-161 (2009)

3. PostgreSQL: http://www.postgresql.org/

