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Abstract
In this paper, we study the problem of indexing multi-

dimensional data in the P2P networks based on distributed
hash tables (DHTs). We identify several design issues and
propose a novel over-DHT indexing scheme called m-
LIGHT. To preserve data locality, m-LIGHT employs a
clever naming mechanism that gracefully maps the index
tree into the underlying DHT so that it achieves efficient
index maintenance and query processing. Moreover, m-
LIGHT leverages a new data-aware index splitting strat-
egy to achieve optimal load balance among peer nodes.
We conduct an extensive performance evaluation for m-
LIGHT. Compared to the state-of-the-art indexing schemes,
m-LIGHT substantially saves the index maintenance over-
head, achieves a more balanced load distribution, and
improves the range query performance in both bandwidth
consumption and response latency.

1. Introduction
Distributed Hash Table (DHT) provides a scalable,

load balanced, and robust substrate in building large-scale
distributed applications. Several DHT overlays, such as
Chord [1], CAN [2], and Pastry [3], have been proposed.
Whereas simple lookup operations can be efficiently exe-
cuted over DHTs, they lack support for complex queries
such as range queries and similarity queries, which are
however popular in many P2P applications (e.g., “finding
the songs that are rated above 4 and published during
2007 and 2008”). The reason is that data locality, which
is crucial to processing such complex queries, is destroyed
by uniform hashing employed in DHTs.

In the literature, there are two indexing approaches
to support complex queries in P2P systems: 1) over-
DHT indexing paradigm which builds an add-on index
module over generic DHTs (e.g., PHT [4] and DST [5]);
2) DHT-dependent indexing paradigm which modifies
the internal structures of underlying DHTs or develops

novel locality-preserved overlays (e.g., Skip graphs [6]
and BATON [7]). Although the over-DHT indexing ap-
proach is generally less efficient in query performance
than the DHT-dependent indexing approach, it excels
in many other aspects such as simplicity of deploy-
ment/implementation/maintenance and inherited load bal-
ancing [4], [8], [9], [5]. These issues could be particularly
important in practice, for example, if one wants to deploy
P2P applications in the world-wide OpenDHT project [10].

In the paper, we study the problem of how to efficiently
support multi-dimensional range queries in existing DHT-
based P2P systems and thus advocate the over-DHT index-
ing paradigm. We propose a novel over-DHT index called
m-LIGHT (multi-dimensional Lightweight Hash Tree over
a DHT). Particularly, we investigate the following prob-
lems: 1) how to map a tree-based index into the underlying
DHT to better support distributed query processing; and
2) how to perform index maintenance to better balance
the loads of peer nodes. We consider multi-dimensional
data and employ a space-partition based kd-tree to index
data [8], [4], [11]. To distribute the kd-tree over a DHT,
we propose a tree-decomposition strategy that enlarges the
local view on each peer yet requires no extra maintenance
overhead. We further propose a novel multi-dimensional
naming mechanism to gracefully map the decomposed tree
into the DHT. The naming mechanism possesses several
nice properties that lead to high efficiency in both index
maintenance and query processing. Moreover, to address
the load balancing issue in space-partition based indexes,
we propose a data-aware index splitting strategy to achieve
optimal load balance among peer nodes.

The rest of this paper proceeds as follows. Section 2
surveys related work. Section 3 presents the m-LIGHT
index structure. How to update the m-LIGHT index is
explained in Section 4, followed by a description of its
lookup operation in Section 5. Section 6 presents the
algorithms for processing range queries based on the
m-LIGHT index. Section 7 experimentally evaluates the



performance of m-LIGHT. Finally, Section 8 concludes
this paper.

2. Related Work
In this section, we first survey the existing over-DHT

indexing schemes, and then review the multi-dimensional
indexing techniques, both in a P2P context.

2.1. Over-DHT Indexing

A variety of over-DHT indexing schemes have recently
been proposed to support complex queries in P2P systems.
Most of them focus on range queries. Prefix Hash Trie
(PHT) [4] is the first over-DHT indexing scheme. To
perform an exact-match query (or the lookup operation),
PHT starts the search from an internal node of the index
tree and thus avoids the single-root bottleneck. Internal
nodes in PHT do not hold data and serve as routing nodes
only. Thus, processing range queries in PHT always needs
to traverse down to leaf nodes. An observation here is
that if one can fill internal nodes with data, there is no
need to traverse down to leaf nodes, thereby accelerating
query processing. Following this observation, Distributed
Segment Tree (DST) [5] and Range Search Tree (RST) [9]
have been proposed. To fill internal nodes, they both
replicate the data records of a leaf node at all its ancestors.
To process a range query, they decompose the range
into several disjoint subranges, each maintained by an
internal node. Since each such internal node can be located
by a single DHT-lookup, the query can be efficiently
resolved in O(1) time. However, the replication strategy
could harm the index maintenance efficiency, that is, the
insert/delete/update overhead is significantly increased. In
contrast, our previous work, LHT [12], fills internal nodes
with data by an elegant mapping mechanism and achieves
high query efficiency without compromising the index
maintenance efficiency. Nevertheless, LHT can deal with
one-dimensional data only. Also, the load balancing issue
is not well addressed in LHT. As a non-trivial extension,
m-LIGHT employs a novel multi-dimensional naming
mechanism to index multi-dimensional data. Moreover,
a data-aware index splitting strategy is proposed in m-
LIGHT to address the load imbalance problem aggravated
by multi-dimensional space partitioning.

2.2. Multi-dimensional Query Processing

In the presence of various one-dimensional P2P in-
dexes, there are generally three solutions to process-
ing multi-dimensional queries. The first is to employ
multiple independent indexes with each indexing one
attribute/dimension. Mercury [13] uses a multiple-ring
structure (equivalently, multi-Chord), and processes range
queries across the multiple indexes in parallel. This solu-
tion typically amplifies the index maintenance overhead

and query bandwidth. The second solution is SFC in-
dexing, which uses the Space Filling Curve to reduce
dimensionality and indexes data by one-dimensional P2P
indexes [4], [14], [15]. Specifically, PHT [4] applies SFC
indexing over generic DHTs, while SCRAP [15] and
Squid [14] apply SFC indexing to Skip graphs and Chord
overlay, respectively. But the problem in SFC indexing
is that the neighborhood in a multi-dimensional space is
not well preserved in the one-dimensional SFC space,
thus deteriorating query efficiency. The last solution is to
directly develop multi-dimensional indexes, which conven-
tional multi-dimensional indexes (e.g., kd-tree) are used to
index data and mapped into P2P networks. MURK [15]
and SkipIndex [16] both extend the one-dimensional Skip
graphs by incorporating the kd-tree index. However, these
two schemes are only applicable to some specific P2P
networks. Distributed Quad-Tree [17] and DST [18] super-
impose the quad-tree over DHTs and respectively support
spatial queries and multi-dimensional range/cover queries.
Instead of employing the quad-tree, our proposed m-
LIGHT superimposes the kd-tree over DHTs. Compared
to the quad-tree, the kd-tree is more flexible in space
partitioning and attains better load balance. Furthermore,
the kd-tree is essentially a binary tree, which, as will be
seen, is suitable for incremental maintenance of m-LIGHT.

3. m-LIGHT Indexing Scheme

In this section, we describe the m-LIGHT index struc-
ture and its mapping strategy to the underlying DHT.

3.1. Overview

Consider a set of data records. Each record has a
data key (denoted by δ), which is represented by a multi-
dimensional vector δ =<δ1, δ2, · · · , δm>. Without loss of
generality, we assume that each δi (1 ≤ i ≤ m) is a real
number in interval [0, 1].

To assign data records in the underlying DHT space,
each record needs a DHT key (denoted by κ). Given a
DHT key κ, the record is mapped to the peer whose
identifier is less than but closest to hash(κ). One can
simply set the data key as the DHT key, which however
destroys data locality and impedes effective range query
processing. Instead, m-LIGHT uses a novel method to
generate DHT keys that preserve data locality. First, data
keys are clustered in a space kd-tree, which is then decom-
posed into a set of distributed data structures, called leaf
buckets. After that, a DHT key is generated for each leaf
bucket by an innovative m-dimensional naming function
such that neighboring index nodes can be easily located in
distributed query processing and minimal maintenance is
required for data updates. In what follows, we detail each
of these procedures.



3.2. Indexing in Space Kd-Tree

(a) Space partitioning (b) Space kd-tree decomposition

Figure 1: Space kd-tree

In order to index multi-dimensional data, we recursively
partition the data space into cells along different dimen-
sions in an alternative fashion. As shown in Fig. 1a, the
2D space is recursively halved along the x and y axes,
alternatively, until a cell contains no more than θsplit data
records. Space partitioning is used here, that is, a data
space is always equally partitioned, regardless of the data
distribution. This space partitioning approach renders the
local space indexed by each node to be known globally,
which is essential to support distributed query processing.
The index is called space kd-tree, as shown in Fig. 1b;
every internal node has two children and the tree has two
roots. The additional root, termed as virtual root, is a
virtual node above the ordinary one. Thus, the number of
leaf nodes equals the number of non-leaf nodes. As will
be discussed later, this property enables us to name each
leaf node with a distinct internal node.

Every tree node is tagged with a label. In particular,
the virtual root is labelled with 0 . . . 0 (m consecutive 0’s,
where m is the data dimensionality) and the ordinary root
is labelled with 0 . . . 01, denoted by # (i.e., # = 0 . . . 01).
Every tree edge is also tagged — if the edge goes left, it
is labelled with 0; otherwise, 1. Then, the label of each
internal node or leaf node can be obtained by concatenating
all labels on the path from the virtual root to the node itself,
as illustrated in Fig. 1b.

3.3. Index Decomposition

To materialize the tree in a distributed setting, we
decompose the space kd-tree and store each piece in a leaf
bucket. Conceptually, we decompose the global index tree
into local trees, each of which is associated with a distinct
leaf. The local tree of a leaf consists of all its ancestors.
For example, Fig. 1b illustrates two local trees of leaves
#01 and #101111. With our node labelling strategy, each
local tree can be encoded in the corresponding leaf label
λ: the label of each ancestor is a prefix of λ, and the
sibling of an ancestor (called branch node) can be found
by a modified prefix of λ with the ending bit inverted

(i.e., 0 to 1, or 1 to 0). Thus, in a leaf bucket, we store
two components: the label store which maintains label λ
and summaries the local tree information, and record store
which keeps all related data records. Now that the space
kd-tree is decomposed into leaf buckets, the remaining
issue is how to map them to the peers, which is achieved
by an innovative naming function.

3.4. m-Dimensional Naming Function

For a leaf bucket labelled as λ, the m-dimensional
naming function fmd(·) generates its DHT key κ, i.e.,
κ = fmd(λ). The bucket is then stored in the DHT peer
that is responsible for hash(fmd(λ)). In this section, we
first present the naming function for 2D indexing, and then
extend it to m-dimensional indexing.

2d
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Figure 2: Naming the space kd-tree in m-LIGHT

3.4.1. Naming for 2D Indexing.
Definition 1 (2D-naming function): In a 2D space kd-

tree, for the binary label of any leaf, λ = b1 · · · bi−2bi−1bi,
where bj = [0|1], j = 1, · · · , i, the 2D-naming function is
recursively defined as follows:

f2d(b1 · · · bi−2bi−1bi) =

{
f2d(b1 · · · bi−2bi−1) if bi−2 = bi,
b1 · · · bi−2bi−1 otherwise.

Specifically, given a binary string λ = b1 · · · bi−2bi−1bi,
f2d(·) checks its last bit bi and the third last bit bi−2. If they
are the same, the last bit is truncated and this procedure
is repeated. Otherwise, the procedure is terminated after
truncating the last bit. Thus, f2d(λ) always produces a
prefix of λ. For example, f2d(#0101111) = #0101,
f2d(#0011111) = #001, and f2d(#101111) = #101.
In particular, f2d(#) = f2d(001) = 00. Intuitively, this
naming function maps a leaf node to the lowest ancestor
that is not aligned with the leaf node in terms of the
quadrant position. For example, as shown in Fig. 2a,
leaf node #101111 lies in the top-right quadrant of its
grandparent. The direct parent, node #10111, also lies
in the top-right quadrant of its own grandparent, so does



node #1011. Thus, the naming function passes all these
ancestors, until the ancestor #101 is found, which is in
the top-left quadrant of its own grandparent.

The naming function f2d(·) has several interesting prop-
erties, which are described in the following theorems.1

Theorem 1 (Corner preservation): Given an internal
node ω whose corresponding data region has four corner
cells, these cells are named to f2d(ω), ω, ω0 and ω1,
respectively.

Theorem 1 implies that given ω, the names of its four
corner cells can be directly inferred, which is especially
useful for processing of distributed range queries (since it
helps to quickly locate the range boundaries).

Theorem 2 (Bijective mapping): f2d(·) is a bijective
mapping from Λ to Ω, where Λ and Ω denote the leaf
node set and the internal node set, respectively.

Fig. 2b shows the intuition for Theorem 2. This theorem
guarantees that for each DHT key (i.e., the label of an
internal node), there is one and only one leaf named to it,
implying the storage load is balanced.

3.4.2. Scale up to m-dimensional Indexing.
Definition 2 (m-dimensional naming function):

Given a space kd-tree, for any leaf label
λ = b1 · · · bi−m · · · bi−1bi, where bj = [0|1], j = 1, · · · , i,
the m-dimensional naming function is recursively defined
by

fmd(λ) = fmd(b1 · · · bi−m · · · bi−1bi)

=

{
fmd(b1 · · · bi−m · · · bi−1) if bi−m = bi,
b1 · · · bi−m · · · bi−1 otherwise.

Theorem 3 (m-dimensional corner preservation): In
the m-dimensional index tree, given any internal node ω
whose corresponding data cube has 2m corner cells, these
cells are named to fmd(ω), ω, ω0, ω1, ω00, ω01, · · · , and
ω11 · · · 1, respectively.

Theorem 4 (m-dimensional bijective mapping):
fmd(·) is a bijective mapping from Λ to Ω, where Λ
and Ω denote the leaf node set and the internal node set,
respectively.

In the rest of this paper, for simplicity our discussions
are based on a 2D space. Nevertheless, all the algorithms
presented can be extended to an m-dimensional space in
a natural way.

4. Index Tree Maintenance
In this section, we discuss how m-LIGHT adjusts its

structure along with data insertions and deletions.We first
consider the conventional threshold-based splitting strategy
and show that m-LIGHT can achieve incremental tree
maintenance. After that, we propose a data-aware index

1. Due to space limitations, all theorem proofs are omitted in this paper,
and can be found in our technical report [19].

splitting strategy which offers optimal load balance among
peers.

4.1. Incremental Tree Maintenance

In the conventional threshold-based splitting strategy,
two thresholds, namely θsplit and θmerge, are predefined
for leaf split and merge. After a data insertion, if the
number of records stored in the leaf bucket gets higher
than θsplit, a split process is triggered. Similarly, after a
data deletion, if a pair of sibling leaf buckets is found
containing less than θmerge data records, a leaf merge
is then triggered. For split/merge consistency, θmerge is
set smaller than θsplit (e.g., θmerge = θsplit/2). Before
introducing the split/merge process, we present a property
of our 2D-naming function.

Theorem 5 (Incremental split): Consider a leaf bucket
λ that is split into two child nodes, λ0 and λ1. The naming
function f2d(·) maps one child to f2d(λ), and the other to
λ.

The split process proceeds as follows. The splitting
bucket λ is first divided into two buckets locally. Then,
it conducts a DHT-put operation to re-assign the bucket
named to λ in the underlying DHT space. For the one
named to f2d(λ), it is mapped to the same peer as does
bucket λ and incurs no transfer. Similarly, to merge a pair
of leaf buckets, only one bucket needs to be transferred
across the DHT. This nice property, termed as incremental
tree maintenance, typically reduces the cost by half for
both the number of DHT-lookups and the amount of
transferred data.

4.2. Data-aware Splitting Strategy

We observe that the threshold-based splitting strategy
may generate empty leaf buckets, since the space-based
partition employed the kd-tree does not take into account
the local data distribution. In this section, we propose a
data-aware index splitting strategy which achieves optimal
load balance among peer nodes.

The data-aware splitting strategy requires a predefined
parameter ε, which indicates the expected load (rather than
the upper/lower bound) in terms of the number of data
records stored on each bucket. Generally, this strategy aims
at minimizing the difference between the real load and the
expected load (i.e., ε). When a bucket receives a new data
record, it locally computes a virtual subtree rooted at this
bucket, called optimal split subtree, which minimizes the
total difference for all leaves. Specifically, for a leaf bucket,
the difference is (l − ε)2, where l is the number of data
records stored on the bucket. For example, in Fig. 3a, each
point represents a data record (or a data key) in the data
space, and ε = 2. The optimal split subtree (shown in the
bottom part) contains three leaves (or data cells), and the
total difference is (2− ε)2 + (2− ε)2 + (0− ε)2 = 4. This



value is minimized; for instance, if the upper-left cell is
further split into two leaves (respectively containing one
data point), the total difference would be (1− ε)2 + (1−
ε)2 + (2 − ε)2 + (0 − ε)2 = 6, which is larger than the
previous one, 4. To find out the minimized total difference,
a naive solution is to apply the brutal-force search to try
all possibilities, which is time-consuming. Instead, we use
a divide-and-conquer approach, as shown in Algorithm 1
— it first computes the minimized total difference for the
left child, and then for the right child. The process is
recursively invoked until the cell containing no more than
ε data points is reached (line 2). When the computation is
done, we compare the minimized value with the current
difference (i.e., the one for the current bucket without
splitting). If the minimized value is smaller, the current
bucket is split according to the optimal split subtree;
otherwise, it stays unchanged. Note that the algorithm runs
locally and is invoked whenever the bucket load changes
(due to data insertions/deletions).

Algorithm 1 local-split(leaf bucket λ)
1: slocal ← (λ.load− ε)2

2: if λ.load ≤ ε then
3: return slocal.
4: else
5: sleft ← local-split(λ.leftChild())
6: sright ← local-split(λ.rightChild())
7: snon local ← sleft + sright

8: if slocal ≤ snon local then
9: return slocal.

10: else
11: return snon local.

Local

calculation

(4- )
2
=4

(2- )
2
+

(2- )
2
+

(0- )
2
=4

(a) Before insertion

Local

calculation

(5- )
2
=9

(2- )
2
+

(2- )
2
+

(1- )
2
=1

(b) After insertion

Figure 3: An example for data-aware splitting (ε = 2).

An example. As shown in Fig. 3a, the leaf bucket
initially contains 4 data points. Given ε = 2, the initial
difference value is (4− ε)2 = 4. It then locally computes
the optimal split subtree, which partitions the space into 3
cells, which contain 2, 2, and 0 data points, respectively.
The minimized difference becomes (2− ε)2 + (2− ε)2 +
(0 − ε)2 = 4. Since this difference value actually equals

the initial one, the split process would not be triggered.
Now suppose that a new data point (0.2, 0.2) is inserted
(see Fig. 3b). In this case, the initial difference value will
be updated to (5− ε)2 = 9, and the minimized difference
value will be (2− ε)2 +(2− ε)2 +(1− ε)2 = 1. Therefore,
the minimized difference is smaller and, hence, the leaf
bucket is split into 3 buckets, corresponding to the 3 cells
shown in the bottom part of Figure 3b.

The following theorem shows that the proposed data-
aware splitting strategy can achieve optimal peer load
balance.

Theorem 6 (Optimal balance): For a given data set
and an expected number of buckets, the data-aware index
splitting strategy minimizes the variance of expected load
on all DHT peers.

5. Lookup Operation
Given a data key δ, the m-LIGHT lookup operation2

returns the label of the leaf bucket that covers δ, namely
λ(δ). The lookup operation is fundamental for supporting
many other m-LIGHT operations, including exact-match
queries, data insertions/deletions and range queries.

To conduct a lookup operation for δ, a peer first locally
calculates the set of all possible values of λ(δ), called the
candidate set. For example, given δ =<0.2, 0.4>, the bi-
nary representations of 0.2 and 0.4 are 001 · · · and 011 · · · ,
respectively. These two binary numbers are then inter-
leaved as 001011 · · · , and the target label λ(<0.2, 0.4>)
must be a prefix of #001011 · · · . For example, in Fig. 1a,
λ(<0.2, 0.4>) = #001. Furthermore, we assume that the
maximum possible height of the index tree is known in
advance, denoted by D, which can can be estimated by
apriori knowledge or by probing certain values before
query processing [8], [11]. Thus, the target label λ(δ) has
a length in the range from 3 to D + 3 (recall that root
label # has 3 bits). As such, the lookup problem becomes
how to find the target label from a candidate set of D + 1
labels, each being a distinct prefix of the longest label.

To efficiently resolve the lookup problem, m-LIGHT
employs a binary search procedure. Specifically, in each
loop iteration, the algorithm first obtains a label with length
being the middle value of a binary-search interval, and then
applies the naming function to this label to get a DHT
key and probe the corresponding peer/bucket. The lookup
process is illustrated by the following example.

An example. Consider a lookup of <0.3, 0.9> with
D = 20. As shown in Fig. 1, the target bucket
is cell #101110. Note that the longest candidate la-
bel of <0.3, 0.9> is #10111000011110000111. The m-
LIGHT lookup algorithm first probes the prefix of half
length, #1011100001, and performs a DHT-lookup for

2. In this paper, we refer to “m-LIGHT lookup” as “lookup” for short,
and as a distinction, “DHT-lookup” retains its full name.



f2d(#1011100001) = #101110000. It returns a NULL
value and the upper search bound is decreased to
#101110000. The next probe is f2d(#10111) = #101.
The returned bucket is #101111, which does not contain
<0.3, 0.9>. Note that this probe has also examined can-
didate label #1011, since it is also named to #101. The
next probe is f2d(#101110) = #0111, which reaches the
target #101110.

6. Range Queries
In a multi-dimensional space, a range query specifies a

multi-dimensional region and returns all data keys falling
in that region. In this section, we present the range query
algorithm over the m-LIGHT index, where the queried
region can be of an arbitrary shape.

Consider a queried range R issued by some user. The
peer node where the query is received from the user,
called the query initiator, first locally figures out the lowest
internal node that fully covers R (a.k.a., the lowest common
ancestor (LCA) of R). The algorithm then proceeds to
forward the range query to the LCA. Specifically, the query
initiator carries out a DHT-lookup of f2d(LCA), which
must reach one corner cell of the region associated with
the LCA, as shown in Theorem 1. Upon receiving the
range query, the corner cell constructs a local tree based
on its leaf label. Among all branch nodes in the local tree,
there exist one or more whose regions overlap the queried
range. Denote these branch nodes by β1, β2, · · · and βk,
respectively. For each βi, the range query is decomposed
into the subrange Ri, which is the overlapped region
between βi and R, that is, Ri = βi ∩ R. Then, Ri is
forwarded to βi via a DHT-lookup of f2d(βi). Note that
there is no overlap between Ri and Rj due to the space
partitioning approach employed in m-LIGHT. Hence, the
subqueries Ri (i = 1, 2, · · · , k) can be processed in
parallel and there is no redundant bucket visit. For further
forwarding in each βi, a similar process is recursively
applied until the current R is fully covered in one cell.
Algorithms 2 and 3 formally describe the range query
processing.

Algorithm 2 range-query(range R)
1: ωR ← lowest-common-ancestor(R)
2: λ ← DHT-lookup(fmd(ωR))
3: if λ == NULL then
4: return lookup(R.top left corner)
5: else if R ⊆ λ then
6: return λ
7: else
8: return recursive-forward(R, ωR)

An example. Suppose that the queried range is a
rectangle R bounded by [0.1, 0.3] in the x dimension and
[0.6, 0.8] in the y dimension, and that the indexed space

Algorithm 3 recursive-forward(range R, region β)
1: λ ← DHT-lookup(fmd(β))
2: for all βi ∈ {branch nodes between λ and β} do
3: Ri ← βi ∩R
4: if Ri 6= NULL then
5: recursive-forward(Ri, βi)

101111101110

(a) Exemplar queried range

2d

2d2d 2d

2d

(b) Query processing

Figure 4: Range query processing

in the current m-LIGHT is as shown in Fig. 4a. The peer
receiving R computes the LCA being #10 and forwards
the query to the DHT key f2d(#10) = #1. It is the
cell with label #10101 that is named to #1, so is the
one forwarded to. Based on the local tree of #10101,
the queried range is decomposed into three subranges,
which are forwarded to f2d(#10100), f2d(#1011) and
f2d(#100), respectively, as illustrated in Fig. 4b. The
subranges in #10100 and #100 are fully covered in the
next peers. For the subrange in #1011, the next peer is
the cell #101111 (note f2d(#101111) = f2d(#1011)),
which does not cover the subrange. The query is then
forwarded to f2d(#10110), which covers the subrange and
the process is terminated. The whole querying process
consumes four DHT-lookups (in bandwidth) and three
rounds of DHT-lookups (in latency).

We further develop a parallel version of range query
processing. The idea is to forward h subqueries (h >= 2)
within a branch node in each step (if h = 1, the parallel
query processing will be degraded to the basic algorithm
as previously described). By query parallelization, this
processing strategy reduces latency by a factor of h + 1,
while incurring more bandwidth as a trade-off. In practice,
the user can tune the parameter of h based on his/her
performance preference.

7. Performance Evaluation

This section presents the results of performance eval-
uation. Note that m-LIGHT is a multi-dimensional over-
DHT index. Thus, we compare it with the state-of-the-art



schemes in the same category, i.e., PHT [4] and DST [5],
[18]. The performance metrics of our interest are index
maintenance overhead, load balance and query cost.

7.1. Experiment Setup

We have implemented the m-LIGHT index in Java.
The total number of code lines is about 2500 (includ-
ing m-LIGHT, DST and PHT), which demonstrates the
simplicity of developing an over-DHT indexing scheme.
In the experiments, m-LIGHT, DST, and PHT were run
over the Bamboo DHT [20], a ring-like DHT that has
good robustness and is now deployed in a real-life project,
OpenDHT [10]. Our experimental study is based on a
system built in a LAN environment where runs more than
one hundred logical peers. Our experiments are based on
a real dataset [21] that contains 123,593 postal addresses
(points) in three metropolitan areas of New York, Philadel-
phia and Boston. Along each dimension, we normalize the
data points into the range [0, 1]. In the experiments, we
inserted these data points progressively into the index, and
tested the performance under different dataset sizes.

7.2. Maintenance Performance

The first experiment evaluates the index maintenance
performance when data are progressively inserted. Recall
that data insertion in m-LIGHT involves two operations:
a lookup and a possible leaf bucket split. Both of these
two operations incur system costs, and in this experiment,
we report these costs as a whole. We take two measures,
i.e., the DHT-lookup cost and the data-movement cost. The
results are shown in Figs. 5a and 5b. For all three indexing
schemes under comparison, the cumulative maintenance
costs go up linearly as data are inserted. We also vary
the threshold θsplit and report the evaluation results in
Figs. 5c and 5d. In general, both of the DHT-lookup cost
and data-movement cost are insensitive to the value of
θsplit, except that DST incurs less data-movement cost
when θsplit is smaller. This is because in this case, the
internal nodes in DST easily get saturated, and many
data records are not replicated at these nodes, thereby
decreasing the data-movement cost. Comparing the three
indexing schemes, due to data replication, DST is worse
than the other two by an order of magnitude; m-LIGHT
achieves the best performance in all cases tested and saves
about 40% maintenance cost against PHT.

7.3. Effect of Data-aware Splitting

We now evaluate the effect of the data-aware splitting
strategy in terms of load balance. We use two measures,
i.e., the variance of storage on each peer and the percentage
of the empty buckets. We compare it with the threshold-
based splitting, which is commonly used in many existing
P2P indexes. We set ε and θsplit respectively at 70 and
100, in which case the two trees under comparison are
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Figure 5: Maintenance costs
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Figure 6: Storage load balance

of the same size. The results are shown in Fig. 6. It can
be seen that by the data-aware splitting strategy, the load
variance is decreased by 15%, and the empty buckets are
reduced by 35%.

7.4. Range Query Performance

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

2k

4k

100k

200k

B
an

dw
id

th
 (#

 o
f D

H
T-

lo
ok

up
s)

Range span

 mLigHT-basic
 mLigHT-parallel-2
 mLigHT-parallel-4
 PHT
 DST

(a) Bandwidth

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

La
te

nc
y 

(r
ou

nd
s 

of
 D

H
T-

lo
ok

up
s)

Range span

 mLigHT-basic
 mLigHT-parallel-2
 mLigHT-parallel-4
 PHT
 DST

(b) Latency
Figure 7: Range query performance

We evaluate the range query performance in terms of
bandwidth cost and response latency. The two measures
used are the number of DHT-lookups and the rounds of



DHT-lookups. In evaluation, we include both the basic
algorithm and the parallel algorithm for range query pro-
cessing in m-LIGHT. For the parallel algorithm, we test
two versions, with the parameter of lookahead steps being
2 and 4, respectively. We compare the three m-LIGHT
query algorithms together with PHT and DST. In the
experiments, the queried ranges are rectangles uniformly
distributed in the data space of [0 . . . 1, 0 . . . 1]. We first
vary the range span (i.e., the area of the rectangle) and
report the results in Figs. 7a and 7b. In terms of bandwidth
cost (Fig. 7a), DST consumes much more than any other
scheme, typically by an order of magnitude. This is partly
because in our setting, D=28; this is larger than the real
tree depth, rendering the queried range to be decom-
posed into many small subranges in DST. In contrast, m-
LIGHT (basic) is most bandwidth-efficient. The m-LIGHT
(parallel-2) and m-LIGHT (parallel-4) consume more in
bandwidth, but as a trade-off, they achieve a significant
saving in query latency (see Fig. 7b). DST is time-efficient
when the query range is small. However, as the query
range increases, the latency of DST dramatically increases,
whereas the other schemes are more stable.

In summary, the proposed m-LIGHT is more flexible
and outperforms PHT and DST in terms of both index
maintenance and query processing. Moreover, m-LIGHT
(parallel) trades bandwidth efficiency for significant saving
in query latency.

8. Conclusion

This paper has proposed m-LIGHT, a low-maintenance
yet query-efficient multi-dimensional index structure over
DHTs. Three core techniques contribute to the efficiency
of m-LIGHT: a tree-decomposition strategy, a novel nam-
ing mechanism and a data-aware index splitting strategy.
Experimental results based on a real dataset show that m-
LIGHT outperforms the state-of-the-art schemes in various
aspects, including maintenance efficiency, load balance
and range query performance. As an over-DHT indexing
scheme, m-LIGHT is adaptable to any DHT substrate, and
is easy to implement and deploy.
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