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Abstract— In wireless sensor networks, filters, which suppress
data update reports within predefined error bounds, effectively
reduce the traffic volume for continuous data collection. All prior
filter designs, however, are stationary in the sense that each filter
is attached to a specific sensor node and remains stationary
over its lifetime. In this paper, we propose mobile filter, a novel
design that explores migration of filters to maximize overall
traffic reduction. A mobile filter moves upstream along the data
collection path, with its residual size being updated according
to the collected data. Intuitively, this migration extracts and
relays unused filters, leading to more proactive suppressing of
update reports. While extra communications are needed to move
filters, we show through probabilistic analysis that the overhead
is outrun by the gain from suppressing more data updates.

I. INTRODUCTION

Wireless sensor networks have recently been used for many
applications to continuously collect the sensed data in the
operational field, so that the field’s properties of interest can
be monitored. In this paper, we are interested in continuously
gathering data distribution of the sensor field. For example:

Q: Monitor the population of wildlife at difference places
every 4 hours for the next 12 months.

Such complex queries, though clearly more difficult to
answer, reveal richer information than a simple aggregate such
as sum or average. For example, a (consistent) change of the
population distribution of the wildlife may be an indication of
the change of the surrounding environment [3].

In sensor networks, energy is a severely limited resource,
and communication dominates energy consumption. To obtain
the distribution information aforementioned, the base station
needs to continuously collect data from each sensor node. This
is obviously very energy expensive. Fortunately, approximate
results are usually acceptable as long as the error is bounded
by a certain threshold. Thus, a trade-off between energy
consumption and data quality can be explored. Data filtering,
by exploiting temporal data correlation, is an effective in-
network processing scheme towards this goal. Intuitively, if the
difference between the new reading and the previous reading
in a sensor node is small, the node should not report the new

reading. Olston et al. [4] first generalizes this idea to a filter
design for continuous data collection. In their work, a filter
is allocated to each sensor node such that the total filter size
obeys the user-specified error bound. In each round of data
collection, a node will suppress its data update report if the
difference from the previous report is less than its filter size.
There have been a flourish of follow-ups with more intelligent
filter allocation strategies (e.g., [2][5]).

All these prior filter designs, however, are stationary in
the sense that each filter is attached to a specific node and
remains stationary during a round of data collection. Thus,
unused filters in the current round of data collection might
be wasted, limiting the filtering capability. In this paper, we
propose mobile filter, a novel design that explores migration
of filters to reduce network traffic for error-bounded data
collection. A mobile filter moves upstream along the data
collection path, with its residual size being updated according
to the collected data. Intuitively, this migration extracts and
relays unused filters, leading to more proactive suppressing
of data reports. While extra communications are needed to
move filters, we show through probabilistic analysis that the
overhead is outrun by the gain from suppressing more data
transmissions. The overhead can be further reduced by piggy-
backing the filter information in data update reports.

An Example. To illustrate the effect of our mobile filtering
scheme, we compare it with a basic stationary filtering scheme
in a toy example in Figs. 1 and 2. Consider a sensor network
of chain topology (s4 through s0). The base station s0 needs to
record the data for each sensor node in each round (or use the
previously recorded data if it does not hear from the node).
Assume L1 distance is used for bounding data errors [1],1

and the total user-allowed filter size (error bound) is 4. The
previously reported reading of each sensor is shown in Fig.
1(a). In the current round, each sensor acquires a new reading,
as shown in Fig. 1(b). Using the stationary filtering scheme,
a filter is allocated to each node and one possible (uniform)

1L1 distance is the sum of the absolute differences between paired values
in two datasets. See Section II for a detailed definition.
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(a) Previously reported data readings.
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(b) Data readings of the current round.
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(c) Stationary filter suppresses one data report from s1.

Fig. 1. An example of a stationary filtering scheme. Total user allowed filter size (error bound) is 4. Node s0 is the base station.
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(a) Mobile filtering scheme at the start of the current round.
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(b) Mobile filter moves and suppresses data reports.
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(c) In total, all four data reports are suppressed.

Fig. 2. An example of a mobile filtering scheme. Total user allowed filter size (error bound) is 4. Node s0 is the base station.

allocation is shown below each sensor in Fig. 1(c). We can see
that the stationary filters can suppress only one data update
report from s1. All other updates need to be reported, and
overall it incurs 2+3+4 = 9 link messages. As a contrast, we
now employ the mobile filtering scheme for the same scenario.
The entire filter size is assigned to s4 at the beginning of the
current round, as shown in Fig. 2(a). The filter suppresses
s4’s data update report and the residual filter moves upstream
as shown in Fig. 2(b), which further suppresses s3’s update
report. In general, the filter suppresses update reports while it
moves along the path. Eventually, all four update reports are
suppressed, as shown in Fig. 2(c). The total number of link
messages incurred is 3 (for the mobile filter transmission).

Intrinsically, one may consider the filter (i.e., the error
bound allowed by the user) a valuable resource that can be
exploited for conserving energy. In the stationary filtering
scheme, each filter has to make an independent decision about
data suppressing. The filters have no knowledge of how other
filters are used by other sensor nodes. Therefore, the utilization
of the filter resource is not optimized; for example, the filters
on s2 through s4 are wasted in the above example. The mobile
filtering scheme, on the other hand, is able to adapt to the
current data readings and allocates filters on the fly to optimize
the utilization. This intuition will be formalized in our analysis.

II. SYSTEM MODEL AND PROBLEM DEFINITION

In our system, the readings of all sensors need to be
periodically collected by the base station to evaluate complex
queries, and we call each data collection a round. In the
first round, all the sensor nodes report their readings. In the
subsequent rounds, the sensor nodes report readings that are
not suppressed. If the base station does not receive a report
from a sensor node, its previously reported reading will be
treated as collected data and used for current query evaluation.

To facilitate our presentation, in this paper we employ L1

distance as the error bound model. Specifically, let the true
readings of the sensor nodes be x1, x2, . . . , xN and let the
readings collected by the base station be x′

1, x
′
2, . . . , x

′
N ; the

L1 distance is then L1 =
∑N

i=1 |xi −x′
i|. If the user-specified

precision requirement is E, the error-bounded data collection
must guarantee L1 =

∑N
i=1 |xi − x′

i| ≤ E. L1 distance is
commonly used to measure the distance between complex
distributions [1]. It is worthwhile to note that our mobile

filtering scheme is not limited to the L1 model; and discussions
on different error models can be found in [6].

To bound the error of data collection, data filters are in-
stalled on sensor nodes in the network. Each filter is associated
with a deviation bound (hereafter referred to as filter size) and
the total filter size should not exceed the bound E. Thus, our
problem is to design a mobile filtering scheme that maximizes
the overall data suppression while maintaining the user-defined
error bound in each round. The mobile filter scheme includes
the initial placement of the mobile filters, the mobile filter
migration strategy, and the data filtering strategy.

III. MOBILE FILTERING ON A CHAIN TOPOLOGY

For a chain topology, we first show that the mobile filter
should initially be placed at the leaf node.

Theorem 1: For a chain topology, the filter should be allo-
cated as a whole to the leaf sensor node in order to minimize
the total communication cost.

The proof can be found in [6]. Following this theorem, given
a total error bound of E, the filter size initially allocated to
the leaf node is E and the filter sizes allocated to all other
nodes are zero. By the end of each round of data collection,
the leaf node resets the filter size to E and all other nodes
reset the filter sizes to zero. It is worth noting that resetting
the filter sizes does not incur any communication cost.

We now give a formal cost analysis of the performance for
both the stationary and mobile filtering schemes. While this
analysis is necessarily simplified, it provides a clearer view of
the benefit of mobile filtering. Assume that the data changes
follow a standard normal distribution. Let E be the total filter
size, and Xi(i = 1, 2, · · · , N) be the random variable for the
sensor value change of node si. Further assume that the change
for each node is i.i.d. and that Xi follows a normal distribution
of N(0, 1). Without loss of generality, we consider the case
where only the upper bound of the filter is violated.

For stationary filtering, we apply a uniform allocation where
each node is assigned a filter size of E

N . The probability that
the filter is violated at node si is pi = Pr[Xi > E

N ] = 1 −
Pr[Xi ≤ E

N ] = 1
2 (1−erf

(
E√
2N

)
). Define an indicator random

variable Yi such that

Yi =
{

1 if Xi > E
N ;

0 otherwise.
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Fig. 3. Expected cost as a function of the number of nodes N . E = 1
2
N .
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Fig. 4. Expected cost as a function of the total filter size E. N = 30.

We have E[Yi] = pi × 1 + (1 − pi) × 0 = pi = 1
2 (1 −

erf
(

E√
2N

)
). Given node si’s update cost of i, the expected

transmission cost is E[
∑N

i=1 Yi × i] = E[Yi]
∑N

i=1 i =
N(N+1)

2 E[Yi].
For mobile filtering, the filter simply migrates upstream and

suppresses the data reports as long as the residual filter size
is larger than the data change. The probability that the filter
is violated at node si is pi = Pr[Xi > E − ∑N+1

j=i+1 Xj ] =
Pr[

∑N+1
j=i Xj > E] (Define XN+1 = 0). Let Zi =

∑N
j=i Xj .

Since Xi’s are i.i.d, Zi is also a normal distribution of
N(0, N − i + 1). Define an indicator random variable Yi

Yi =
{

1 if Zi > E;
0 otherwise.

We have E[Yi] = pi = 1
2 (1 − erf

(
E√

2(N−i+1)

)
). The

expected cost of mobile filtering is then E[
∑N

i=1 Yi × i] =∑N
i=1 E[Yi]i. If the filter migration is not piggy-backed with

data reports, there is at most an additional cost of N .
In Figs. 3 and 4, we plot numerical results for the two

filtering schemes. For mobile filtering, the results are shown
for two versions, namely, with and without piggy-back. Their
performance differs by at most N . In Fig. 3, the total error
bound is fixed to N

2 and a filter of size 0.5 is attached to each
node for stationary filtering. Since the data changes follow
a standard normal distribution, each filter will suppress the
updates with a probability of approximately 40%. We can see
that mobile filtering greatly outperforms stationary filtering.
We also see that when N increases, the cost of stationary
filtering increases much faster than that of mobile filtering,
implying that mobile filtering is more scalable.

In Fig. 4, we fix the number of sensors to N = 30 and
vary the total error bound E from 0 to 100. With piggy-back,
mobile filtering performs better than stationary filtering for
all cases tested. Even without piggy-back, only after E = 50
does mobile filtering perform worse than stationary filtering.
Note that when E = 50, each node obtains a filter size of
50/30 = 1.67 for stationary filtering, which implies that the
probability of a new reading being suppressed is as high as
90%. In other words, the error bound is extremely large in
this case, which may not provide meaningful results and is
not desirable for most applications.

The above analysis is simplified in many ways. First, the
mobile filter migration strategy is to move the filter all the
way to the base station. The mobile filter, however may stop
migration, if the residual filter size is small. Second, the data
filtering strategy is to simply suppress all the data as long
as the mobile filter can. This greedy strategy may not lead
to an optimal solution. The intuition is that suppressing data
updates with large changes consumes its filter size and may
restrict the mobile filter’s ability from suppressing more data
updates upstream. Third, the underlying network topology is
simplified as a chain. Nevertheless, the analysis has shown
that substantial gain can be expected by mobile filtering. For
a comprehensive study of mobile filtering under general tree-
structured sensor networks, the reader is referred to [6].

IV. CONCLUSION

In this paper, we have proposed a novel mobile filtering
scheme for error-bounded non-aggregate data collection in
sensor networks. By exploring the migration of filters, a
mobile filter extracts and relays unused filters in the network to
suppress as many data update reports as possible. An analytical
study has been performed to quantify the performance benefit
of mobile filtering against the conventional stationary filtering;
where substantial gain is shown to be expected.
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