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Abstract— Location cloaking has been proposed and well
studied to protect user privacy. It blurs the accurate user
location (i.e., a point with coordinates) and replaces it with
a well-shaped cloaked region (usually a circle or a rectangle).
However, to obtain such a cloaked region, all existing cloaking
algorithms require to know the accurate locations of all users.
Since such information is exactly what the user wants to hide,
these algorithms can work only if all parties involved in the
cloaking process are trusted. However, in practice this assumption
rarely holds as any of these parties could be malicious. Therefore,
location cloaking without exposing the accurate user location
to any party is urgently needed. In this paper, we present
such a non-exposure cloaking algorithm. It is designed for k-
anonymity and cloaking is performed based on the proximity
information among mobile users, instead of directly on their
coordinates. We decompose the problem into two subproblems
— proximity minimum k-clustering and secure bounding, and
develop distributed algorithms for both of them. Experimental
results consistently show that these algorithms are efficient and
robust under various proximity topologies and system settings.

I. INTRODUCTION

The recent consumer electronics market witnesses a boom-

ing sale of smart mobile devices. These devices, typically

Smartphones and PDAs, are equipped with powerful CPU,

large memory, positioning technology (e.g., GPS) and most

importantly a complete set of wireless communication inter-

faces (e.g., Bluetooth, WiFi, and HSDPA). As such, these

devices can establish not only Internet connections to external

servers, but also point-to-point connections to nearby peer

devices. The omnipotence of these devices opens up new

applications for mobile subscribers. In particular, with the

combination of GPS and wireless Internet, mobile users can

enjoy location-based services (LBS), which provide dynamic

content according to where the user is located. Typical LBS

applications include road navigation, nearest point of interest

(POI) query, and location-aware advertisement.

In order to enjoy such services, the mobile user must

explicitly expose his/her accurate location to the server. For

example, if the user asks for the nearest restaurant, he/she

must provide the LBS server his/her accurate position in terms

of GPS coordinates. In this sense, the user’s location privacy

is compromised in exchange for services. To address this

issue, an intuitive solution is to cache the whole dataset of

POI on the mobile device, which can then resolve location-

based queries locally. However, due to limited resources of
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the mobile device, this solution cannot scale to large POI

datasets, neither can it deal with data updates. Therefore, a

more sophisticated strategy called location anonymity has been

proposed and studied [1], [2], [3], [4], [5]. The objective is to

allow the mobile user to request services without revealing

the accurate location. Among various approaches proposed

along this line, location cloaking is predominant [1], [2], [3],

[6]. It blurs the accurate user location and replaces it with a

well-shaped cloaked region (usually a circle or a rectangle),

according to some anonymity metric such as k-anonymity (the

cloaked region must contain at least k users) or granularity

(the size of the cloaked region must exceed a threshold).

In effect, location cloaking achieves privacy protection at the

cost of a degrading service. The larger is the cloaked region,

the more privacy is preserved, but the less specific is the

request. Therefore, most existing location cloaking research

focuses on minimizing the size of the cloaked region while

still satisfying the anonymity metric. To this end, a number of

location cloaking algorithms have been proposed for different

anonymity metrics [1], [2], [3], [7], [8], [9].

However, to obtain the cloaked region and optimize its

size, all existing algorithms require the accurate locations

(i.e., the coordinates) of all users. As the accurate locations

are exactly what the users want to hide, all existing work

essentially imposes an assumption that all parties involved in

the cloaking process must be trusted. Typical parties include

the “anonymizers” that sit in between the user and the LBS

server [2], [3], [7], and the user peers when the cloaking

is performed in a peer-to-peer environment [8]. However,

in practice any of these parties could be malicious and the

exposure of the accurate location information to any party

might reveal users’ identity or other sensitive information. In

this sense, existing algorithms have limited applications and

location cloaking without exposing the accurate user location

to any party is urgently needed.
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In this paper, we present such a non-exposure location

cloaking algorithm. It is designed for k-anonymity and cloak-

ing is performed based on the proximity information among

mobile users. Such proximity information is widely available

in practice. For example, a mobile device is able to measure the

closeness from its peers through its omnidirectional antenna,

by either the received signal strength (RSS) from its peers (the

stronger the closer), or the time difference of arrival (TDOA)

of beacon signals from its peers (the shorter the closer). Fig. 1

shows the WiFi RSS of neighboring peers from a laptop

computer and Fig. 2 shows a proximity graph that is based

on such RSS information. A vertex in this graph stands for a

user, and an edge means that the two users are WiFi neighbors.

The proposed non-exposure cloaking process is invoked by

the host user who wants to request a location-based service.

The process involves the surrounding users and is conducted in

two phases. In the first phase, k users (including the host user)

are identified through the proximity information. They and

only they contribute to the resulted cloaked region. Moreover,

if they become host users later, they will employ the same

cloaked region. The shaded cloud in Fig. 2 encloses 4 users

for a 4-anonymity cloaking request from a host user. In this

paper, we show that this phase is equivalent to finding a cluster

of size at least k in the graph. Furthermore, to minimize the

size of the cloaked region, we should minimize the diameter

of this cluster. This problem is thus called proximity minimum

k-clustering. It is difficult particularly in the distributed envi-

ronment because an earlier cluster result for a host user might

significantly affect subsequent cluster results. We tackle this

problem by defining an equivalent relation called t-connected.

This leads to a nice property called cluster-isolation, where

subsequent cluster results are immune to change. Based on

this property, we present an efficient distributed algorithm for

minimum k-clustering.

In the second phase, the cloaked region — a bounding box

of all users in the cluster — is obtained without exposing

their accurate locations. The solid box in Fig. 2 shows a

possible bounding box for the cluster of 4 users. Finding

this box is equivalent to obtaining lower and upper bounds

of users’ coordinates without revealing these coordinates. We

call this problem secure bounding. It is related to secure

multi-party computation (SMC) [10]. To reduce the size of

the cloaked region, the objective of secure bounding is to

obtain the bound as tight as possible with the lowest cost.

We propose a progressive bounding algorithm in which a

bound increases progressively until all users agree with this

bound. By developing a sophisticated cost model for the

communication cost, we derive the optimal increment value

for this algorithm.

To summarize, our contributions in this paper are as follows:

1) To the best of our knowledge, this is the first study

that explores the problem of location cloaking without

exposing the accurate user locations.

2) We propose location cloaking on proximity and de-

compose this problem into two subproblems: proximity

minimum k-clustering and secure bounding.

3) We define an equivalent relation that leads to cluster-

isolation, based on which we design an efficient and

distributed algorithm for minimum k-clustering.

4) We develop a cost model of the communication cost for

secure bounding, based on which we design an optimal

progressive bounding algorithm.

5) We conduct extensive experiments that show the robust-

ness and effectiveness of the proposed algorithms for

various network topologies and other system settings.

The rest of the paper proceeds as follows. Section II

reviews existing work on location anonymity and privacy-

aware location-based services. Section III introduces the sys-

tem architecture and problem definition. Section IV presents

the proximity k-clustering algorithm and Section V presents

the secure bounding algorithm. The experimental results are

shown in Section VI, followed by the concluding remarks in

Section VII.

II. RELATED WORK

Location anonymity has attracted intensive research as a

solution to protecting user privacy in mobile computing,

especially for location-based services. The objective is to allow

a mobile user to request services without revealing his/her

position. Among various anonymizing techniques, location

cloaking is the predominant. It sends to the server a cloaked

region (usually a circle or a rectangle) that contains the

genuine user position and is large enough to satisfy some

privacy metric. The two most widely adopted metrics are k-

anonymity — this region must contain at least k users so

that the genuine requesting user is indistinguishable from at

least k − 1 other users who have the same cloaked region,

and granularity — the area of this region must exceed a

threshold. Gruteser and Grunwald were the first to propose

spatio-temporal cloaking [1] for k-anonymity, where a trusted

middleware generalizes (i.e., cloaks) the spatial and temporal

extents of user locations. More specifically, the middleware

indexes all user locations using a Quadtree. Upon receiving

a request, the middleware traverses the tree until it finds a

quadrant containing the requesting user and other k−1 users.

This quadrant is the cloaked region for this request. Gedik

and Liu considered a personalized k-anonymity model and

proposed Clique-Cloak, which constructs a clique graph to

combine clients that can share the same cloaked region [2],

[11]. A grid-based cloaking algorithm was suggested in the

Casper framework [3] to address both the k-anonymity and

granularity metrics. We addressed the issue when a client

continuously requests location cloaking, and developed an

optimal cloaking technique to resist trace analysis attacks [4].



There are some recent studies on location cloaking for

distributed environments where a centralized and trusted

anonymizer does not exist. Chow et al. extended k-anonymity

cloaking to a peer-to-peer environment [8]. The main idea is

to let the client form a group from his/her peers via multi-

hop communication. The cloaked region of any subsequent

request is then a region that covers all peers in this group. To

reduce the size of the cloaked region while achieving the same

k-anonymity, Ghinita et al. studied cloaking in a distributed

environment and proposed hilbASR to sort all users and store

this ordering in a distributed annotated B+-tree index [7]. In

hilbASR, all users are sorted by Hilbert space-filling curve

ordering according to their locations, and then every k users

are grouped together in this order. They recently extended this

framework to a Chord peer-to-peer environment [9] and used

distributed hash tables, instead of the hierarchical B+-tree to

store user locations.

It is noteworthy that all these cloaking approaches require

the user to expose the accurate positions to the trusted (cen-

tralized) anonymizer or peers. The approach proposed in this

paper, to the best of our knowledge, is the first in the literature

that eliminates this requirement.

On the server side, to support location cloaking, spatial

query processing on cloaked regions has also been studied. Hu

and Lee proposed k range nearest neighbor (kRNN) search

that takes a rectangle instead of a point as the input for k

nearest neighbor search. The Casper framework proposed by

Mokbel et al. consists of both an anonymizer and a query pro-

cessor. The processor evaluates spatial queries over the cloaked

regions and returns a superset of results to the client for further

filtering [3]. Cheng et al. proposed a similar framework based

on location uncertainty [12], where the returned results are

probabilistic results.

Besides location cloaking, other anonymizing techniques

have also been proposed. Pseudonym decouples the mapping

between the user identity and the location so that the server

only receives the location without the user identity [13],

[14]. However, such a technique is limited to those location-

based services that do not require the user’s identity. In

particular, the lack of user identity makes the billing of these

services impossible. Dummy generates fake user locations

(called dummies) and mixes them together with the genuine

user location into the request [15]. However, by monitoring

long-term movement patterns of the user, the server may

distinguish the genuine location from dummies. You et al.

enhances this technique by generating consistent movement

patterns for dummies in a long run [16]. More recently, Yiu et

al. proposed SpaceTwist [5], where the user repeatedly issues

kNN queries from dummies, which they called anchors, until

the kNN result for the genuine location is guaranteed. Ghinita

et al. proposed a similar framework that is based on Private

Information Retrieval (PIR) [17]. The framework partitions

the space into grid cells and then the user requests the content

of the cell where he/she is located. Thanks to PIR, the user

can encrypt which cell is requested while receiving the correct

content. By setting proper content for each cell, this framework
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can support approximate and exact NN queries. Furthermore,

the framework is shown to guard against correlation attacks,

but with two limitations. First, this framework must ensure

that the database is encrypted as described, and all original

data is removed at the server; however, there is no trivial way

of ensuring this on an untrusted server. Second, extending this

framework to support kNN queries is difficult and costly: for

each k, the server must create a unique version of content

for each cell, which leads to high computation and storage

overhead.

III. SYSTEM ARCHITECTURE

In this section, we describe the system model and as-

sumptions made in our study. As shown in Fig. 3, there are

a large number of mobile users in the system. They carry

wireless-enabled (Bluetooth, WiFi, or GPRS) devices such as

PDAs and Smartphones. These devices can establish not only

Internet connections to external servers, but also point-to-point

connections to neighboring peer devices. To request location-

based contents or services, these devices are also equipped

with embedded positioning modules (such as GPS) to acquire

their own positions and attach them in the service requests.

However, to protect location privacy, before a user (called

the host user) requests the service, he/she invokes location

cloaking, which obtains for this user a cloaked region that

satisfies k-anonymity — at least k users are in this region.

Moreover, this region is also the cloaked region for any of

them as a host user. Then the host user attaches this region,

instead of the accurate location, in the service request, so that

any adversary who intercepts this request cannot distinguish

its owner from any of the other k − 1 users.

Cloaking is performed on the proximity information among

peer users, instead of directly on their spatial coordinates.

A mobile device can measure such proximity information

through the received signal strength (RSS), or the time dif-

ference of arrival (TDOA) of beacon signals. However, the

proximity information alone can only identify k users for the

k-anonymity, but does not suffice to obtain the cloaked region,

which is a bounding box of these k users. In order not to

expose their accurate locations, a secure bounding protocol

must be carried out on these users after they are identified.

As such, the proposed non-exposure location cloaking for

a host user is conducted in two phases. In the first phase,

k users (including the host user) are identified through the
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proximity information. By identifying these k users, the first

phase also restricts the number of participating users in the

next phase. In the second phase, these users participate in the

secure bounding to obtain the cloaked region. Note that, this

region will serve as the cloaked region for all these k users.

The complete workflow of a service request from a host user

is illustrated in Fig. 3. If this user has previously participated

in the cloaking for some other user and hence has a cloaked

region, the whole cloaking will be skipped — he/she can

request the location-based service directly with this cloaked

region (®). Otherwise, the first phase of location cloaking

(i.e., k-clustering) is executed either at a centralized and

dedicated server called anonymizer or distributedly at the

host user. In the former case (¬), the anonymizer has the

complete proximity information submitted by all users. In

the latter case (¶), the host user dynamically gathers such

information through peer-to-peer communications. The second

phase of cloaking (i.e., secure bounding) is executed at the

host user and participated by all the k users through peer-

to-peer communication (). Finally, the host user requests the

location-based service (®) with the cloaked region obtained in

the second phase of cloaking. In the next two sections, we will

discuss the algorithms in the two cloaking phases, respectively.

IV. PROXIMITY K-CLUSTERING

We formally model the proximity input for anonymization

as follows. We are given a dataset D of all users, and each user

in D has some peer users in proximity. The proximity input

can be modeled as an undirected weighted graph where each

vertex denotes a user and each edge (u, v) denotes that users

u and v are in proximity; and the weight of (u, v) denotes the

relative distance between u and v. This distance could be any

measure that relates to distance (e.g., signal strength), as long

as it is symmetric and agreed by both u and v. We call the

resulted graph a weighted proximity graph (WPG). Fig. 4(b)

shows a WPG where the relative distance is the signal strength.

For example, the weights of edges (u2, u1) and (u2, u3) are

1 and 2, which means that the signal between u2 and u1 is

stronger than that between u2 and u3.

By definition, location k-anonymity is to map a host user

u to a set of peer users S(u) ∈ D such that the size of

S(u) exceeds k, i.e., |S(u)| ≥ k. However, besides the size

threshold, S(u) must also satisfy the following: (1) u ∈ S(u),
otherwise the host user may not get the service he/she desires;

and (2) ∀v ∈ S(u), S(v) = S(u), i.e., every user in set S(u)
must be mapped to the same S(u), otherwise by knowing

S(v) 6= S(u), an adversary can simply deduce that v cannot be

the host user and thus safely remove v from S(u). The latter

criterion is also called reciprocity property in the literature

[7]. These two criteria together indicate that S(u) forms a k-

clustering in D. More specifically, a k-clustering is a partition

of D into a number of groups, each of which has a size of

at least k. The following theorem confirms that location k-

anonymity on WPG is equivalent to k-clustering.

Theorem 4.1: Location k-anonymity on WPG is equivalent

to k-clustering.

PROOF. We prove this by showing that S(u) is an equiv-

alence class, or more specifically, the binary relation “a is in

the k-cluster of b” (denoted by a ∼ b) is an equivalent relation.

That is, it satisfies the following three properties:

Reflexibility: Since u ∈ S(u), u ∼ u.

Symmetry: If u ∼ v, by definition it implies u ∈ S(v).
Then according to the reciprocity property, S(u) = S(v).
On the other hand, by reflexibility, v ∈ S(v). So we have

v ∈ S(u), i.e., v ∼ u.

Transitivity: If u ∼ v and v ∼ t, by definition it implies

u ∈ S(v) and v ∈ S(t). According to the reciprocity property,

S(u) = S(v) = S(t). On the other hand, by reflexibility,

u ∈ S(u). So we have u ∈ S(t), i.e., u ∼ t.

The objective of location k-anonymity is to find a cloaked

location with the smallest size for the host user in order to

receive the best quality of service. In this paper, the cloaked

location is a bound of all user locations in the cluster, and

it strongly depends on the diameter (the maximum distance

between any two vertices) of this cluster: the smaller the

diameter is, the smaller the cloaked location will be. As such,

we set our objective of k-clustering as to find for the host user

a minimum-diameter cluster of size at least k, and hereafter

call this problem minimum k-clustering.

The minimum k-clustering problem is different from exist-

ing graph clustering problems in two aspects. First, the criteria

are two-folded — minimizing the diameter and bounding the

size of this cluster, whereas most existing algorithms have

a single criterion to optimize, such as minimum sum of

weights [18]. Second, existing algorithms, especially those

top-down fashioned (such as k-median), are centralized. A

centralized algorithm requires the global knowledge of the

whole WPG, and easily becomes a performance bottleneck.

More importantly, such an algorithm finds the cluster for every

vertex in the WPG; however, in our problem only the host

users need k-clustering. As such, a distributed and local k-

clustering algorithm that only finds the cluster for a host user

is more desirable.

However, intuitive local k-clustering leads to a poor min-

imum k-clustering result for subsequent host users. Let us

consider the local k-clustering algorithm k nearest neighbor

(kNN). kNN clusters the host vertex and its k − 1 nearest

neighbors in the WPG. For example, in Fig. 4(a) we are asked

for a 3-clustering out of 6 users, where the host vertex is u4.

kNN will cluster u4 with u3 and u5, the two nearest users

of u4. However, since there are only three vertices left, they

must form a cluster for subsequent 3-clustering. The resulted

bound of this cluster, shown in the dotted box, is equal to
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the bound of all 6 users. The reason for this poor clustering

result is that although the first cluster has a small size, it

significantly changes the topology of the rest in the WPG

and may even make it disconnected (i.e., having an infinite

diameter), so that subsequent k-clustering results are poor. In

general, directly finding a cluster of size k from the host vertex

is not sufficient, because removing this cluster from the WPG

might cost some other vertices a larger cluster or even unable

to find a cluster of size k. Fig. 5 shows an example. The dotted

line encloses a cluster of 5 vertices; however, removing this

cluster isolates vertex g from the rest of WPG. To address

this issue, while obtaining a minimum-diameter cluster for the

host vertex, the distributed minimum k-clustering algorithm

must also guarantee the k-clustering result of the rest WPG

are not affected. This property is called cluster-isolation, and

a distributed k-clustering algorithm that satisfies this property

is cluster-isolated.

Property 4.1: Let C(u) denote the cluster for vertex u under

a distributed k-clustering algorithm. C(u) is isolated if for any

vertex v 6= u, C(v) is the same for WPGs G and G − C(u).
This distributed algorithm is cluster-isolated if for any u, C(u)
is isolated.

Fig. 4(b) shows a revised algorithm of kNN, together with

its 3-clustering result of u4 in the same WPG as in Fig. 4(a).

The algorithm is the same as kNN, except that when two

or more vertices are of the same distance, it breaks the tie

by choosing the vertex with the smallest degree. As such,

{u4, u5, u6} is clustered because u5 and u6 are the 2NN results

of u4. Note that this cluster is isolated because removing it

does not affect the clustering result of any remaining users —

u1, u2, u3, because they will form a cluster with or without

{u4, u5, u6}. In this particular WPG, the 3-cluster of any

vertex is isolated, so this algorithm is cluster-isolated on this

WPG. Consequently, the resulted bounds of these clusters are

much smaller than those in Fig. 4(a). It is noteworthy that this

algorithm is not cluster-isolated in general. For example, if the

weight of edge (u4, u6) is 3 instead of 2, then {u3, u4, u5}
is clustered for u4, and it does affect the clustering results of

the remaining users — u1, u2, u6. As such, we should design

a general algorithm that proves to be cluster-isolated.

Before we propose a distributed and cluster-isolated mini-

mum k-clustering algorithm, there is one remaining issue —

the diameter of a cluster is complex and costly to derive in

the clustering process. To remedy this, we use the maximum

edge weight (MEW) instead of the diameter. In effect, we

show in the following corollary that the diameter of a regular

graph (all vertices have same degrees) of size k and degree d is

bounded by the maximum edge weight w. Since the topologies

of wireless networks tend to be clustered and small world

graphs [19] which consist of regular graphs plus a few random

edges, this corollary justifies the usage of MEW instead of the

diameter in this paper.

Corollary 4.2: The diameter of a regular graph with

k vertices and degree d is bounded by w ∗ (1 +
⌈logd−1 ((2 + ǫ)dk log k)⌉), where w is the maximum edge

weight and ǫ > 0 is a constant.

PROOF. From [20], we know that the diameter

for an un-weighted regular graph is bounded by

1 + ⌈logd−1 ((2 + ǫ)dk log k)⌉. As such, the diameter

for the weighted graph is at most w ∗ (1 +
⌈logd−1 ((2 + ǫ)dk log k)⌉).

A. Connectivity k-Clustering

In this subsection, we formally present the distributed k-

clustering algorithm on WPG that minimizes the MEW in the

cluster. It is derived from a centralized k-clustering algorithm

and modified to be cluster-isolated. First, we introduce an

equivalence relation called t-connected, based on which these

two k-clustering algorithms are designed.

Definition 4.1: t-connected relation: Two vertices a and b
are t-connected, if there is a path a, v1, v2, ..., b in WPG such

that no edge weight in this path exceeds t.
Theorem 4.3: t-connected is an equivalence relation.

PROOF. We prove that this relation satisfies the three prop-

erties of an equivalence relation:

Reflexibility: For vertices a and a, since there is no edge

in the path, t-connected is trivially satisfied.

Symmetry: Since WPG is an undirected graph, the weights

on the path from a to b and those from b to a are equivalent.

Transitivity: If a and b are t-connected, b and c are t-
connected, then we can connect the path from a to b and the

path from b to c. As such, we obtain a path from a to c with

no edge weight exceeding t. So a and c are t-connected.

In general, an equivalence relation partitions all elements in

a set into equivalence classes. We therefore obtain a clustering

of the vertices in WPG through t-connectivity. In terms of

graph notions, an equivalence class corresponds to a connected

component in WPG whose edge weights do not exceed t.
For different t, we obtain different clustering results. More

specifically, if t is set to the MEW of the whole WPG, the

clustering result has only a single connected component —

the whole WPG. Then by decreasing t, this component is

partitioned into smaller connected components, which form

another clustering result.

To minimize the cluster size, the clustering algorithm should

use the lowest t while keeping all connected components valid,

i.e., their sizes are no smaller than k. Algorithm 1 shows

the pseudocode. It partitions a connected component, i.e., a

t-connectivity cluster, by removing edges in this cluster in the

descending order of their weights, until this cluster is no longer

connected and is thus partitioned into some smaller connected

components, i.e., clusters. Each of these clusters is partitioned

in the same way into even smaller clusters. The recursive par-

tition continues until a further partition will lead to an invalid
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cluster, i.e., the size is smaller than k. As such, the resulted

clusters are those that cannot be further partitioned, and we

call them the smallest valid t-connectivity clusters. Fig. 6(a)

though 6(c) illustrate a 2-clustering process. Starting from the

MEW of the whole WPG (which is 8), the algorithm removes

the edges of weights 8 and 7, and the WPG is partitioned into

two clusters (Fig. 6(b)). For each cluster, starting from its own

MEW, the algorithm removes edges of descending weights

until it is no longer connected. In Fig. 6(b), the left-hand

cluster is already a smallest valid t-connectivity cluster, while

the right-hand cluster can be further partitioned by removing

the edges of weights 6 and 4. The two resulted clusters,

however, become smallest valid t-connectivity clusters, so the

whole clustering process terminates. The final clusters are

shown in Fig. 6(c). Note that throughout the recursive partition,

the connectivity t’s of the clusters are ever-decreasing, and the

minimum MEW is guaranteed because any further decrease

would invalidate some cluster(s).

Algorithm 1 Centralized t-Connectivity k-Clustering

Input: G: the WPG
k: the anonymity requirement

Output: ∪C: the set of resulted clusters
Procedure:

1: ∪C = {G};
2: while there is C can be partitioned do

3: Q = descending sort C.E by their weights;
4: while C is still connected do

5: edge e = Q.pop();
6: remove e from C;
7: add the connected components to ∪C;

Algorithm 1 is centralized, as it requires the knowledge of

the whole WPG. In what follows, we extend it to a distributed

version of t-connectivity k-clustering. It finds the cluster C for

a particular vertex u. Intuitively, to minimize the cluster size

(i.e., the MEW), the algorithm should find the smallest valid

t-connectivity cluster of u by increasing t until the cluster size

just exceeds k. However, a key observation is that this cluster

is not necessarily isolated, that is, removing this cluster might

affect the clustering result of some remaining vertex in the

WPG. To remedy this, we give a sufficient condition of the

smallest valid t-connectivity cluster being isolated.

Theorem 4.4: A sufficient condition of the smallest valid t-
connectivity cluster being isolated is that, all external border

vertices of this cluster (vertices adjacent but not belonging

to it) can form a valid t-connectivity cluster in the remaining

WPG.

PROOF. Let C denote this cluster, w denote an arbitrary

vertex in the remaining WPG, and C(w) and C′(w) denote the

clustering result of w in the original and remaining WPGs,

respectively; that is, they are the smallest valid t-connectivity

clusters that satisfy this sufficient condition. We prove C′(w) =
C(w) in the following two cases.

1) If w is an external border vertex, by this condition, with

t-connectivity w already has a valid cluster in the original

WPG, and this cluster does not contain any vertex in C
because otherwise a connectivity higher than t is needed.

Moreover, since C(w) is fully contained in this cluster,

removing C does not remove any vertex or edge in C(w),
which means C′(w) = C(w).

2) If w is not an external border vertex, we can still prove

that C(w) does not contain any vertex in C. Otherwise,

this cluster must contain at least one vertex v in C and

one external border vertex s. Since the weight of edge

(v, s) exceeds t, the connectivity t′ of this cluster must

exceed t. However, s already has a valid t-connectivity

cluster even in the remaining WPG, which contradicts

the fact that C(w) is the smallest valid cluster. Therefore,

C′(w) = C(w).

Then by definition, C is isolated.

Corollary 4.5: A distributed algorithm that finds for a host

vertex u the smallest valid t-connectivity cluster that satisfies

the above condition is cluster-isolated.

Algorithm 2 details the distributed algorithm in three steps.

In the first step (lines 1–6), it obtains the smallest valid

cluster of u by spanning from u through edges with increasing

weights until the size reaches k. In Algorithm 2, it always

chooses the minimum-weight edge from the priority queue

of to-be-spanned vertices, the result cluster C is guaranteed

as the smallest valid cluster. In the second step (lines 7–15),

the algorithm checks each external boundary vertex v in C. If

v cannot form a cluster of size k with t connectivity in the

remaining WPG, v is added to C and t is thus updated. New

vertices will then be spanned from C using the new t. In this

process, some vertices become new external boundary vertices.

The algorithm terminates when all external boundary vertices

are checked. It is noteworthy that if an external boundary

vertex passes the check once, it will either pass any subsequent

check (because in the updated C, t can only increase) or

even be added to C. In both cases, it does not need to be

checked again. Finally in the third step (lines 16–17), since

the size of C might be well above k and since all the edge

weights in C are known, the algorithm calls the centralized

k-clustering algorithm (Algorithm 1) to obtain the smallest

valid cluster for u. Fig. 7(a) and 7(b) show the distributed t-
connectivity 2-clustering process on the same WPG as Fig. 6

where u is the host vertex. In the first step, the distributed



Algorithm 2 Distributed t-Connectivity k-Clustering

Input: G: the WPG
u: the host vertex
k: the anonymity requirement

Output: C: the cluster of u
Procedure:

1: C = {u};
2: push all u’s neighbors in G to H;
3: while |C| < k do
4: v = H.pop();
5: C = C ∪ {v};
6: push all v’s neighbors not in C to H;
7: E is the set of external boundary vertices;
8: t is the connectivity of C;
9: while E is not empty do

10: v = E.next();
11: if v does not have a t-connectivity cluster of size k then

12: C = C ∪ {v};
13: t=minimum weight of edge between v and C;
14: span C with new t;
15: insert new external boundary vertices to E;
16: call centralize k clustering(C, k);
17: C is the cluster that contains u;
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Fig. 7. Distributed t-Connectivity 2-Clustering

algorithm uses 5-connectivity to form a 2-cluster {u, v} in

solid dots (Fig. 7(a)). In the second step, the three external

border vertices (the hollow dots) are checked. Among them,

only w cannot form a 2-cluster with 5-connectivity. As such,

w is added to the cluster and x is added as a new external

border vertex (Fig. 7(b)). Since x can have a 2-cluster with 5-

connectivity (shown in dashed line), the algorithm proceeds to

the third step and returns {u, v, w} as the 2-cluster result. Note

that in this example, the distributed algorithm achieves the

same cluster as the centralized algorithm. However, in general

the result by the distributed algorithm depends on the host

users, especially when there are many of them.

V. SECURE BOUNDING

Now that the k-cluster is formed, the next and final step

is to hide the true identity of the host user among the users

in this cluster. This is achieved by generalizing the identifier

or quasi-identifier that is embedded in the service request.

Typical examples of such identifier include the geographic

coordinates (longitude and latitude) and IP address. Without

loss of generality, we assume that the identifier is a scalar and

private attribute ξ of the user, and therefore the objective in

this section is to obtain tight lower and upper bounds for the

ξ values of all users in a cluster without revealing them.

This problem is closely related to secure multi-party com-

putation (SMC) [10]. In general, a secure multi-party com-

putation problem is to compute a function from multiple

participants in a distributed network, each holding one input.

The computation must be secure, that is, no more information

is revealed to any participant except for those implied by this

participant’s input and the function output. The most funda-

mental problem in SMC is Yao’s Millionaire Problem [21],

where two millionaires wish to know who is richer, without

revealing the exact figures of their fortune. The essence of

this problem is to compare two private numbers. Theoretically,

the Millionaire problem and secure multi-party computation

problem in general can be solved using circuit evaluation

protocol [22]. In this protocol, the function is represented by

a Boolean circuit, and each party jointly evaluates the circuit

without disclosing to the other parties their own inputs that

are fed into this circuit. However, the communication cost of

such protocol depends on the size of the circuit, which in turn

depends on the size of the input domain and on the complexity

of function expression [23].

Our problem can be reduced to an SMC problem if we

want to obtain the tightest bound — the maximum and

minimum ξ values. However, this is not favorable due to the

following three reasons. First, the circuit evaluation protocol

for the function of maximum or minimum is impractical.

In fact, even for the most primitive SMC problem — the

Millionaire problem — the communication complexity of the

most efficient protocol (Cachin’s algorithm) is polynomial to

the number of bits of each input (i.e., the precision of ξ) and

the number of participants (i.e., k in our problem). There-

fore, solving an SMC problem is impractical, in particular

in mobile environments where communication is extremely

expensive. Second, returning the maximum and minimum ξ
values exposes the actual ξ values of some users, which is

not fair for them. Third, SMC assumes that participants have

no apriori knowledge on the inputs and hence strict security

can be guaranteed. However, in our problem, the fact that all

participating users are in the same cluster already implies their

ξ values are close and even within a certain range. As such,

SMC is an overwhelming and inappropriate solution to our

problem.

As such, in this section we present our own secure bounding

protocol. For simplicity, we present the protocol for upper

bounding, and we assume that users follow a semi-honest

model [24]. In this model, the users follow the protocol

properly except that they can record all intermediate results

to deduce the ξ values of others.1 Our protocol is progressive

and follows the “hypothesis-verification” paradigm: in each

iteration, a hypothetic bound is proposed and verified by all

users in the cluster; if not all agree with this bound, a new

iteration begins and a larger bound is proposed for those

disagreeing users to verify. The protocol terminates when all

users agree. Note that the bound can be computed either at a

centralized server or at the host user in a distributed environ-

ment. Algorithm 3 shows the pseudocode of this protocol. The

key factor in this protocol is the increment of the new bound

from a disagreed bound. A smaller increment leads to a tighter

1This model is opposed to the malicious model where users may not follow
the protocol at all. It has been shown that any protocol secure in the semi-
honest model can be adapted to be secure in the malicious model by imposing
the users to follow the protocol.
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bound, however, it is at the cost of more iterations and thus

higher communication overhead for verification. On the other

hand, a larger increment leads to a looser bound, and thus costs

higher communication for the subsequent service request. In

what follows, we derive the optimal bound to minimize the

total communication cost.

Algorithm 3 Progressive Bounding

Input: C: the cluster
u: the host user

Output: X: the upper bound
Procedure:

1: while X is not the upper bound for all users in C do

2: C = disagreeing users;
3: compute new X;

A. Unary Bounding

We are about to derive the increment of a new bound X
from a disagreed bound X0 in an iteration where there are

still N users who disagree. Obviously, their ξ values must

exceed X0, so variables ξ − X0 of the N users are all posi-

tive. Furthermore, they are also independent and identically-

distributed (iid) random variables. In Fig. 8, the x-axis denotes

such a variable, p(x) (x > 0) denotes the probability density

function, and P (x) denote the cumulative density function.

As for the communication cost, the bound verification incurs

only a round-trip fixed-size communication, so the cost per

user is denoted by a constant Cb. On the other hand, the

communication cost of the subsequent service request depends

on the new bound X ; without loss of generality, it is denoted

by a function R(X). The objective is to find an optimal bound

X that minimizes the total communication cost.

First of all, we consider the simple case when N = 1,

and the resulted bound is called unary bound. Since there

is only one user, when the bound X is set to x, the total

communication cost C(x) is

C(x) = Cb + R(x) + (1 − P (x))C∗. (1)

Here 1−P (x) is the probability when x fails to upper bound

the only user (see Fig. 8), and C∗ denotes the subsequent

communication cost in such case. Since there is only one user,

this cost equals the minimum value of C(x), which we are

about to derive.

To obtain the minimum value of C(x), we take the first

derivative of x in Equation 1 and make it zero,

C′(x) = R′(x) − C∗p(x) = 0.

The x solution to this equation leads to the minimum C(x)
value, i.e., C(x) = C∗. So from Equation 1, we have

C∗ = Cb + R(x) + (1 − P (x))C∗.

Combining these two equations, we obtain a differential equa-

tion of x as,

P (x)R′(x) = (Cb + R(x))p(x) (2)

The optimal bound is the x solution to Equation 2. We show

how this equation is solved in the following two examples.

Example 5.1: The x variable of a user (i.e., the ξ − X0

value) follows a uniform distribution in the range of (0, U),
i.e., p(x) = 1/U , P (x) = x/U . The communication cost for

the service request is proportional to the area of the bound,

i.e., R(x) = Cr ∗x2, where Cr is a constant. Then Equation 1

is reduced to Cr ∗ x2 = Cb, so x =
√

Cb

Cr
. It is noteworthy

that in this setting, the bound only depends on the ratio of Cb

to Cr , not on U .

Example 5.2: The x variable of a user (i.e., the ξ − X0

value ) follows a negative exponential distribution, i.e., p(x) =
e−λx/λ, P (x) = 1−e−λx/λ. The communication cost for the

service request is proportional to the length of the bound, i.e.,

R(x) = Cr ∗ x. Then the Equation 1 is reduced to λeλx =
(1 + Cb

Cr

) + x. An approximate solution to this transcendental

equation can be obtained by Newton’s method with an initial

guess x = [ln(1 + Cb

Cr
)/λ]/λ. The bound again depends on λ

and the ratio of Cb to Cr.

B. N-Bounding

We now extend unary bounding to N-bounding (N > 1).

When there are N users, the total communication cost C is a

function of both x and N ,

C(x, N) = N ∗ Cb + R(x)

+

N
∑

i=1

(

N

i

)

(1 − P (x))iP (x)N−iC∗(i) (3)

Here
(

N

i

)

(1 − P (x))iP (x)N−i is the probability that i users

disagree with bound x, and C∗(i) is the subsequent com-

munication cost in this case, which is in turn the optimal

communication cost of i-bounding. Note that in this equation,

C(x, N) only depends on those C∗(i) whose i ≤ N . As such,

we can recursively derive the optimal x and C∗(i) values for

each N through bottom-up dynamic programming, starting

from N = 2. At each N , we apply the same approach as

in unary bounding to derive the optimal x, that is, we take the

first derivative in Equation 3 and make it zero.

Though this dynamic programming approach is theoretically

sound, it requires N rounds of differential equation solving,

which is CPU intensive. For a CPU-restrained mobile device,

we propose a simplified and approximate equation as follows.

We use the expected number of disagreeing users i instead of

enumerating all possibilities for this number i in Equation 3.

By the iid assumption, i = ⌊N(1−P (x))⌋, and the total prob-

ability that bound x fails is 1 − PN (x). As such, Equation 3

can be approximated as

C(x, N) ≈ N ∗Cb +R(x)+(1−PN(x))C∗(⌊N(1−P (x))⌋).

In this equation, C∗(⌊N(1−P (x))⌋) can be further bounded

and approximated by considering each user individually. That



is, C∗(⌊N(1−P (x))⌋) ≤ (C∗−R∗)N(1−P (x))+R∗, where

C∗ = C∗(1) and R∗ is the R(x) value at the optimal x for

C∗. R∗ is deducted from C∗ because R∗ is independent of the

number of users and should be counted only once. As such,

we have

C(x, N) ≈ N ∗ Cb + R(x)

+ N(1 − P (x))(1 − PN(x))(C∗ − R∗) + R∗. (4)

Taking the first derivative of x, omitting the high exponent

(N ) terms, and making it zero, we have

R′(x) = (C∗ − R∗)Np(x) (5)

The optimal N-bounding is the x solution to Equation 5. We

show how this equation is solved in the previous two examples.

Example 5.3: Same as Example 5.1. The x variable of a

user (i.e., the ξ − X0 value) follows a uniform distribution

in the range of (0, U), i.e., p(x) = 1/U , P (x) = x/U . The

communication cost for the service request is proportional to

the area of the bound, i.e., R(x) = Cr ∗ x2. Then Equation 5

is reduced to 2Crx = (C∗ − R∗)N/U , so x = N(C∗

−R
∗)

2CrU
.

Example 5.4: Same as Example 5.2. The x variable of a

user (i.e., the ξ − X0 value ) follows a negative exponential

distribution, i.e., p(x) = e−λx/λ, P (x) = 1 − e−λx/λ. The

communication cost for the service request is proportional

to the length of the bound, i.e., R(x) = Cr ∗ x. Then

Equation 5 is reduced to Cr = (C∗ − R∗)Ne−λx/λ, so

x = [ln (C∗ − R∗)N − lnλCr]/λ.

Algorithm 4 shows the complete pseudocode of secure

progressive bounding for a cluster of users. The initial bound

is set to the minimum value of ξ domain, and the bound is

progressively incremented by the optimal N-bounding value

on disagreeing users. The whole algorithm terminates when no

more user disagrees. Note that this algorithm treats all users in

C equally, including the host user u, and none of them reveal

their ξ values.

Algorithm 4 Secure Bounding

Input: C: the k-cluster
u: the host user

Output: X: the maximum bound
Procedure:

1: X = minimum value of ξ domain;
2: while C is not empty do
3: X = X + N-bounding(|C|);
4: remove from C whose ξ ≤ X;

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of t-
connectivity k-clustering and secure bounding algorithms

through extensive experiments. The user location dataset we

use is a Points of Interest (POI) dataset of California from

U.S. Geological Survey [25]. This dataset contains 104,770

POIs of various categories. We normalize all their coordinates

so that these POIs fit in a unit square. Throughout our

experiments, each POI represents a user who is standing right

at its coordinates. The user is equipped with a wireless-enabled

device and is capable of communicating with other users who

are within the distance threshold δ. In practice, mobile devices

have limited resources, so in the experiments each user can

connect to at most M peers. As shown later, M essentially

controls the density of the WPG, or more specifically, the

average degree of the vertices in the WPG. As for the edge

weight, we assume that a user can measure the radio signal

strength (RSS) of the connected peers and sort them according

to RSS. Then the weight of an edge (a, b) is set to the

ranking of vertex a in the sorted peer list of vertex b. In the

experiments, we adopt a simple RSS model that is reversely

correlated to the distance. As such, the weight designates how

relatively faraway a is from b. In addition, to ensure a and b
are reversible, the weight is set to the minimum of the two:

the ranking of a in b’s list and the ranking of b in a’s list.

As for the k-clustering algorithms, we compare the t-
connectivity algorithm (t − Conn) with the kNN algorithm.

Recall that kNN algorithm is distributed, and it clusters the

host vertex with its k − 1 nearest neighbors that have not yet

been clustered in the WPG. For t − Conn, we implement

both the centralized and distributed protocols. The difference

is that, the centralized protocol has the knowledge of the

entire WPG, and therefore it clusters all vertices in the WPG

when the first user requests for location cloaking, whereas the

distributed protocol only clusters those vertices in the smallest

valid t−connectivity cluster of the host vertex.

As for the bounding algorithms, we compare the secure

bounding algorithm with three alternative algorithms. The

optimal algorithm (OPT) obtains the tightest possible bound

by finding the minimum and maximum coordinates of all

users in the same cluster. Obviously, OPT is not practical as

it requires each user to expose their coordinates. As such,

OPT is merely used as a benchmark. The rest two algorithms,

namely, linear bounding and exponential bounding, are also

based on progressive bounding, i.e., a hypothetic bound is

proposed and progressively increased by X until all users

agree. The difference between linear, exponential and secure

bounding is how the increment X is computed. The linear

algorithm increases the bound by a fixed amount, i.e., X is a

constant; the exponential algorithm doubles the bound in each

iteration, so X equals to the length of current bound. For

these two algorithms, we are yet to decide the initial bound.

To ensure a fair comparison, all three algorithms assume a

uniform distribution of the coordinates. As such, the initial

bound is obviously N/104770 where N is the size of the

cluster. As for secure bounding, we also need to know the

communication cost of subsequent service request. In the

experiments, we assume that the service request is a range

query on the same POI dataset. As such, the communication

cost is (approximately) proportional to area of the bound.

With ξ (in this case, the coordinates) following a uniform

distribution and the communication cost of service request

proportional to the area of the bound, we can adopt the

formulae developed in Example 5.3 to compute X , where

U = N/104770, Cb = 1 and Cr = 1, 000 (i.e., the content of

a POI is 1, 000 times larger than a bounding message).

We implement a testbed in Java (JDK1.6) on a desktop PC



Parameter Symbol Default Value

# of users 104,770

distance threshold δ 2 × 10−3

max # of connected peers M 10

k-anonymity k 10

bounding cost Cb 1

service request cost Cr 1,000

uniform distribution bound U N/104770
initial bound X N/104770
# of user requests S 2, 000

TABLE I

SIMULATION PARAMETER SETTINGS

with Pentium D 3.0GHz CPU and 2GB RAM. The workload

consists of S (out of 104,770) users who request location

cloaking for range queries. For the k-clustering algorithms,

we measure the following two metrics: communication cost

(in terms of number of messages) and area of cloaked location,

both of which are averaged over the total number of cloaking

requests. As we observe that if a user is involved in the

k-clustering process, only a single message containing the

adjacent vertices as well as the edge weights is sent to the

host vertex, the communication cost essentially equals the

number of involved users. Furthermore, to eliminate the impact

of bounding algorithms on the resulted cloaked location,

we use the optimal bounding when k-clustering algorithms

are evaluated. For the bounding algorithms, we measure the

following three metrics: the communication cost for bounding,

the communication cost for service requests, and the CPU

time, also averaged over the total number of cloaking requests.

Table I summarizes all parameter settings in the experiments.

A. Effect of Average Degree in WPG

In this subsection, we vary M , the maximum number of

connected peers for each user to alter the average vertex

degree in the WPG. We choose M to increasing exponentially:

4, 8, 16, 32, 64 and the resulted average vertex degrees are

3.8, 5.8, 10.0, 16.0, 22.8 respectively. Fig. 9(a) and 9(b) show

the measured communication cost and the size of cloaked

location (in terms of its area). kNN achieves the lowest

communication cost and is almost independent of the de-

gree, which means that the topology has little effect on the

number of involved users during kNN clusetering. On the

other hand, the centralized t-connectivity algorithm involves

all users when the first k-clustering request comes. As such,

it serves as an upper bound of the communication cost. The

distributed t-connectivity algorithm involves more users than

kNN algorithm because it clusters all users in the smallest

valid t-connectivity cluster. As the vertex degree increases

and the WPG becomes denser, the size of this cluster also

increases, but at a moderate rate.

As for the size of cloaked location, the two t-connectivity

algorithms significantly outperform kNN — the size is reduced

by about 2/3 and is independent of the average vertex degree.

This indicates that t-connectivity effectively clusters vertices

in the neighborhood. On the other hand, kNN is much worse

because with more location cloaking requests, more users

will have been clustered. As such, kNN is no longer able

to cluster the host user with the neighboring users because
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they are already clustered. Instead, the algorithm has to further

span the WPG to find k − 1 un-clustered users, which might

be far away. We will discuss this effect in more detail in

Section VI-C. Another observation is that centralized t−Conn
is even slightly worse than distributed t − Conn, especially

when the average vertex degree is large. The reasons are

two-folded. First, t − Conn aims at minimizing the largest

MEW (maximum edge weight) among all clusters, whereas

the experimental result only shows the size of the cluster

that contains the host user. Second, the centralized t − Conn
focuses on the clusters of the entire WPG, whereas the

distributed t−Conn focuses on the clusters within the smallest

valid t-connectivity cluster. As such, the latter is sensitive to

the host users, and will thus cluster in favor of them. More

specifically, in this experiment there are only 2% host users

(2,000 out of 104,770), most of the clusters by the centralized

t−Conn are never requested, that is, the users in these clusters

never contribute to the k-clustering, even if they are close to

some host users. On the other hand, in the distributed t−Conn
all neighboring users can participate in the k-clustering of a

host user. This effect is more eminent when the WPG is denser,

as there are more neighboring users for a particular host user.

Therefore, we can conclude that the distributed t − Conn is

robust and efficient in various degree settings.

To understand how the cloaked region size affects the total

communication cost, we combine the communication cost of

k-clustering and service requests (i.e., a range query on the

same POI dataset) and plot the total cost in Fig. 10 for the

default M . We vary the data size of each POI object and

observe that t − Conn outperforms kNN when the size of a

POI is 10 or more than 10 times larger than the size of a

clustering message. In practice, a POI object usually contains

texts, images and even videos, whereas a clustering message

only contains the adjacency list of a user or the ids of users in

the cluster so far. As such, the above condition almost always

holds, which means that t − Conn almost always achieves a
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lower total communication cost.

B. Effect of k

In this subsection, we vary k, the anonymity requirement

of the host user. The k values we choose in the experiment

are 5, 10, 20, 30, 40, and 50. Fig. 11(a) and 11(b) show the

measured communication cost and the size of cloaked location.

As expected, the communication cost of centralized t−Conn
is independent of k and serves as the upper bound of all

algorithms. On the other hand, the cost of distributed t−Conn
increases with k, but the increment is relatively slow and

saturates after k = 30. This indicates that the smallest valid

t-connectivity cluster only grows moderately as k increases

and it becomes stable for large k values. kNN algorithm, on

the other hand, incurs linear cost with regard to k, because it

has to find k − 1 un-clustered users. Therefore, kNN loses its

advantage of low communication cost for moderate and large

k values.

As for the size of cloaked location, t − Conn greatly

outperforms kNN for all k settings. In addition, the size for

t−Conn is linear with respect to k, which indicates that the

performance of t−Conn is consistent and irrespective of k. On

the other hand, the size for kNN algorithm increases sharply

with k: at k = 5, the size for kNN is only twice as large as the

size for t − Conn, whereas at k = 50, it becomes four times

as large. This shows that kNN algorithm deteriorates quickly

as k increases. This can be explained by the fact that when

k is larger, it becomes more difficult for a host user to find

all k−1 un-clustered users in the neighborhood. We therefore

conclude that t − Conn algorithms are effective and robust

regardless of the anonymity requirement.

C. Effect of Requesting Users

In this subsection, we vary S, the number of cloaking

requests. The S values we choose in the experiment are

1,000, 2,000, 4,000, and 8,000. Fig. 12(a) and 12(b) show

the measured communication cost and the size of cloaked

location. The communication cost of t − Conn significantly

drops as S increases. This is because all users in the smallest

valid t-connectivity cluster are clustered and subsequent k-

clustering requests on them are directly answered without

any communication cost. On the other hand, each time kNN

algorithm only forms a cluster of exactly k users, so increasing

the number of cloaking requests cannot amortize the com-

munication cost. Among the two t − Conn algorithms, the
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Fig. 12. Performance under Various # of Requesting Users

centralized algorithm drops more quickly as S increases than

the distributed algorithm. This is because in the centralized

algorithm, once the first cloaking request is completed, all

subsequent requests are at no costs. We observe that when

S is sufficiently large (S ≥ 4000), both algorithms achieve

almost the same cost. To summarize, the distributed t−Conn
is less costly when there are fewer requests, and with more

requests the two algorithms cost asymptotically the same.

As for the size of cloaked location, we observe an almost

linear increase with S for kNN algorithm. This can be ex-

plained by the property of cluster-isolation. Since kNN does

not have this property, as more and more users are clustered

in the WPG, it becomes increasingly difficult to find k−1 un-

clustered users in the remaining WPG; and even they can be

found, they are far away from the host user. In other words,

the performance of kNN deteriorates when many users are

requesting location cloaking. On the other hand, the distributed

t − Conn has the cluster-isolation property, so the size of

cloaked location is not affected by the number of requesting

users. We therefore conclude that the distributed t−Conn is

effective and robust regardless of the number of requests.

D. Bounding Algorithms

In this subsection, we evaluate the performance of secure

bounding algorithm under various k settings against other

competitors, namely, the optimal bounding, linear bounding

and exponential bounding. As aforementioned, all algorithms

except the optimal bounding are progressive algorithms, and

they differ in how the new bound X is computed. Fig. 13(a),

13(b) and 13(c) show the communication cost of bounding,

service request, and the total, respectively. We observe that

the linear algorithm has the highest bounding cost because it

is the most conservative — it needs the most iterations to find

the bound. The benefit is low subsequent request cost. The

exponential algorithm has an opposite performance: it has the

lowest bounding cost because it is the most aggressive — it

needs the fewest iterations to find the bound. The disadvantage

is high request cost, which means that the resulted bound is

quite coarse. On the other hand, secure bounding strikes a

good balance between the two costs. In particular, as Cr/Cb =
1, 000 in this experiment, secure bounding tends to sacrifice

certain amount of bounding cost to reduce the request cost.

As such, in Fig. 13(c) it always achieves the minimum total

cost among the three progressive algorithms and very close to

the optimal bounding.
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In terms of CPU cost (Fig. 13(d)), since closed form

formulae have been derived for secure bounding, it costs as

little CPU overhead as the other two progressive algorithms.

In particular, even for the largest k (k = 50), the CPU time

is still far less than 1ms, which shows the secure bounding is

an efficient and robust bounding algorithm.

VII. CONCLUSION

In this paper, we investigate the problem of location cloak-

ing without users exposing their accurate locations. We decom-

pose the problem into two subproblems: proximity minimum

k-clustering and secure bounding. For the former problem, we

propose a t-connectivity k-clustering algorithm that proves to

be cluster-isolated. For the latter problem, by developing a cost

model, we propose a progressive bounding algorithm that is

optimal in terms of the total communication cost. Experimental

results consistently show that both algorithms are efficient

and robust to various network topology settings, number of

requesting users and the anonymity metric k.

As for future work, we plan to design new algorithms for

secure bounding with alternative objectives. The progressive

bounding algorithm optimizes the communication cost, but a

user who disagrees an old bound X and agrees a new bound

X ′ essentially exposes the private ξ value by a bound [X, X ′].
The smaller the increment is from X to X ′, the smaller is

this bound, and thus the more information about ξ is exposed.

As such, we need to develop a privacy loss metric and design

new secure bounding algorithms based on this metric. We also

plan to elaborate the protocols in our distributed k-clustering

and secure bounding algorithms to ensure their robustness in

undesired scenarios. For example, concurrency control must be

considered when two or more users request cloaking almost

at the same time. Since a single user can only join one cluster

but can participate the clustering process of multiple host

users, our protocols must prevent deadlocks while making the

best clustering decision. As another example, communication

failures during the clustering or bounding process should also

be concerned, and a balance must be struck between robustness

and efficiency.
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