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Abstract—One fundamental type of query for graph databases
is subgraph isomorphism queries (a.k.a subgraph queries). Due
to the computational hardness of subgraph queries coupled
with the cost of managing massive graph data, outsourcing the
query computation to a third-party service provider has been
an economical and scalable approach. However, confidentiality is
known to be an important attribute of Quality of Service (QoS)
in Query as a Service (QaaS). In this paper, we propose the first
practical private approach for subgraph query services, asym-
metric structure-preserving subgraph query processing, where the
data graph is publicly known and the query structure/topology is
kept secret. Unlike other previous methods for subgraph queries,
this paper proposes a series of novel optimizations that only
exploit graph structures, not the queries. Further, we propose a
robust query encoding and adopt the novel cyclic group based
encryption so that query processing is transformed into a series
of private matrix operations. Our experiments confirm that our
techniques are efficient and the optimizations are effective.

I. INTRODUCTION

Subgraph queries (via subgraph isomorphism) are a funda-

mental and powerful query in various real graph applications.

In particular, it is fundamental to various modern graph

queries, such as graph pattern queries [1] and ontology-based

matching [28]. While it is well known that subgraph queries

are NP-hard, there has been significant research progress on

enhancing their performance, e.g., [7], [14], [25], [29]. A

recent attempt has been to outsource costly computation to

a query service provider (SP), who is often equipped with

powerful machines, to provide query as a service (QaaS).

Thereby, users not only obtain high performance, scalability,

and elasticity [13] but also are free from the burdens of

managing IT infrastructure.

Because SPs may not always be trusted, users’ privacy may

be threatened. In fact, (data or query) confidentiality has been

recognized as one of the public’s most crucial concerns (e.g.,

[23]). A stream of research on private query processing has

bloomed in the past decade, e.g., in the context of relational

databases [16], spatial databases [17] and graphs [3]. However,

to date, subgraph queries that preserve the query structure

(a.k.a topology) over large networks has not yet been studied.

We motivate the problem with an application scenario, which

does not require domain knowledge. Others can be found in

network medicine1 and patterns in communication networks.

1Yildirim, M. A. et al. Drug-target network. Nature Biotech. 25, 1119-1126 (2007).

Example 1.1: Law enforcement agencies are increasingly

using social media to solve crimes. According to a recent

survey2 of 1,221 federal, state and local law enforcement

who use social media, four out of five officials used social

media to solve crimes. Suppose a law enforcement agency

is investigating a set of suspicious individuals over a public

social network (e.g., Cloob, which is a Persian-language social

networking website, mainly popular in Iran) held in a third

party SP . In order to monitor the online activities of these

individuals with one another, the agency wishes to glean in-

formation related to interactions between them on the network

by issuing a subgraph query representing the relationships

between the individuals. Unfortunately, it is possible that the

SP may have been infiltrated by friends or sympathisers of

these individuals. Hence, in order to protect the privacy of the

intent of the agency from the SP , the agency cannot expose

the subgraph query directly, especially the query structure (i.e.,

specific relationship pattern between the individuals). How can

the agency glean relevant information using a subgraph query

while preserving its topological privacy?

Unfortunately, previous work on privacy-preserving graph

queries [2], [3], [12], [15], [19], [21], [24] (except [8]) cannot

support subgraph queries while preserving their structure. Fan

et al. [8] keep both query and data graphs private. In contrast,

as query clients may often have data access privileges, the

privacy requirement of this work is on queries only. As a

result, querying significantly larger graphs becomes possible.

Other work has studied privacy-preserving graph publication

[4], [5], [22], [32], [33]. Since the published data are sanitized

(i.e., modified), it is not clear how subgraph queries can

be supported. Recent studies [10], [11] have addressed the

authenticity of the query answers, but not their confidentiality.

It is worth highlighting that the intrinsic technical challenge

of this research direction is that although the data graph is

available to the SP , the SP cannot optimize the queries

by directly exploiting the structure of the query graphs. In

comparison, recent subgraph isomorphism algorithms (e.g.,

VF2 [7], Turboiso [14] and QuickSI [25]) intensively utilize

the query graphs for optimization, which by definition, leaks

their structural information. More recently, the work reported

in [30] supports “structureless” graph queries . However, the

2
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structure is automatically generated by a ranking model and

the SP is aware of the queries.

One may also attempt to solve the problem with a naive

solution in which the SP exhaustively traverses all of the

data graph to enumerate all candidate mappings (i.e., possible

mappings) between the query and the graph and return them to

the client for verification. The intuition is that since the query

structure is not exploited, its privacy is preserved. However,

this is infeasible because the number of candidate mappings

is exponential to the graph size in the worst case.

The first challenge of this research is then “how to reduce

a large data graph and subsequently the number of candidate

mappings for verification, without exposing the query struc-

ture?”. Our first idea is to determine the minimized candidate

subgraphs that contain at least a candidate mapping. Then can-

didate mappings are enumerated from those subgraphs instead

of the original graph. In particular, we propose optimizations

that use novel neighborhood containment of data vertices to

minimize the subgraphs. Second, we determine subgraphs

(called candidate matchings) from a candidate subgraph,

where candidate mappings are enumerated. In comparison, in

previous work [7], [14], [25] where privacy is not a concern,

the matching (i.e., the query graph) is known. We propose a

subgraph cache and use neighborhood equivalent classes to

further minimize the number of matchings and mappings.

The second challenge is “how to verify if a candidate

mapping is a subgraph isomorphism mapping without leaking

the query structure?”. We propose a query encoding scheme

and adopt an encryption scheme for query graphs. With these,

we derive a basic structure-preserving verification method that

consists of a series of private matrix operations. Moreover,

to minimize communication overheads, we propose to use

the complement of the encoding for an enhanced verification

method for queries of bounded sizes.

In summary, the contributions of this paper are as follows:

• At query time, we first propose a new candidate subgraph

exploration in the absence of query structure, to reduce

a large data graph for query processing. We propose

further reducing the size of candidate subgraphs by using

neighborhood containment.

• Since candidate matchings are determined from candidate

subgraphs, we propose a subgraph cache to prune the

candidate matchings that are enumerated.

• We propose a robust encoding scheme and its verification

method. We propose a model for the client to determine

a proper encoding for his/her query.

• We conduct extensive experiments with real datasets to

investigate the effectiveness and efficiency of our pro-

posed methods.

Organization. Sec. II introduces the problem. We provide the

preliminaries in Sec. III. Sec. IV presents query preprocessing

at clients. Sec. V details the structure-preserving optimizations

that minimize the candidate mappings. Sec. VI presents the

verification of subgraph isomorphism mapping in an encrypted

domain. We analyze privacy in Sec. VII. Sec. VIII shows the

Service provider (SP)Client
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& public keys

Fig. 1. Overview of the system model.

experimental results and Sec. IX compares the related work

in the literature. We conclude in Sec. X.

II. PROBLEM FORMULATION

This section formulates the technical problem. More specif-

ically, it presents the system model, attack model, privacy

target, and problem statement.

System model. The system model resembles the classical

server-client model, which contains two parties (illustrated

in Fig. 1): (1) A Service Provider (SP) and (2) the query

client (or simply client). The SP is equipped with powerful

computing utilities such as a cloud and hosts a subgraph

query service for publicly known graph data G. The client

encrypts his/her query Q using a secret key (generated by

himself/herself) as Qk and submits Qk to the SP . The SP
then processes the client’s encrypted query Qk over the data

G, and returns an encrypted result to the client. The client

decrypts the result to obtain the query answer.

Attack model. We assume the semi-honest (adversary) model

which is widely used in the database literature [2], [3], [17],

[20], where the SP is honest-but-curious. That is, the attacker

may be the SP or another adversary hacking the SP . The

SP performs computations according to the system model

but it may be interested in inferring secrets. For presentation

simplicity, we often call the attacker the SP . We assume

that the attacker can be both eavesdropping and adopting the

chosen plaintext attack (CPA) [20].

Privacy target. To facilitate technical discussions, we assume

that the privacy target is to protect the structures of the

query graph Q from the SP under the attack model defined

above. The structural information of Q that we consider is the

adjacency matrices of Q (i.e., the edge information of Q). It is

obvious that the complete structure of a query can be derived

from the edge information.

To sum up, the problem statement of this paper can be stated

as follows: Given the above system and attack model, we seek

an efficient approach to complete the subgraph query service

while preserving the privacy target.

III. PRELIMINARIES AND OVERVIEW

In this section, we first provide preliminary concepts related

to subgraph queries. Then, we present an overview of our

proposed solution.

A. Subgraph Queries

The graph G = (V,E,Σ, L) considered in this paper is

an undirected labeled connected graph, where V (G), E(G),
Σ(G) and L are the set of vertices, edges, vertex labels and

the function that maps a vertex to its label, respectively. We

use nb(v,G) to denote the set of neighbors of v in G. We use

occ(ℓ,G) to represent the number of occurrences of the label
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Fig. 2. Overview of our approach.

ℓ in V (G). We use MG to represent the adjacency matrix of

G. MG(vi, vj) is a binary value, where MG(vi, vj) = 1 if

(vi, vj) ∈ E(G), and otherwise 0. The adjacency matrix MG

represents the edge information. For the clarity of technical

details, we present our technique with graphs having vertex

labels only. The techniques we propose can be extended to

support graphs with edge labels with minor modifications.

Subgraph queries. Def. 3.1 recalls the definition of subgraph

isomorphism. We say a graph G is a subgraph of another

graph G′ iff there exists a subgraph isomorphism mapping

(or mapping for short) from G to G′, denoted as G ⊆ G′

or subIso(G, G′) = true. In this paper, we study subgraph

queries stated as: given a query graph Q and a data graph G,

the subgraph query is to determine if subIso(Q, G) = true.

It is well known that deciding whether Q is the subgraph of

G is NP-hard.

Definition 3.1: Given two graphs G = (V,E,Σ, L) and G′ =
(V ′, E′,Σ′, L′), a subgraph isomorphism mapping from G to

G′ is an injective function f : V (G) → V (G′) such that

• ∀u ∈ V (G), f(u) ∈ V (G′), L(u) = L′(f(u)); and

• ∀(u, v) ∈ E(G), (f(u), f(v)) ∈ E(G′).

B. Overview of Our Approach

An overview of our solution is sketched in Fig. 2. Our

solution essentially consists of the algorithms at the client side

and those at the SP side.

Client-side algorithms. For the algorithms at the client side,

we propose performing lightweight optimization and encryp-

tion on the query graph Q. (1) We first analyze the query

to determine the starting label ℓs and the minimum height h
of Q, which are useful for minimizing the number and the

sizes of candidate subgraphs of G. A candidate subgraph is a

subgraph in G that may contain a candidate matching, whereas

a candidate matching is a subgraph of the candidate subgraph

that may generate a candidate mapping between Q and G.

(2) We then propose a robust encoding scheme for Q (of any

size). (3) We adopt the private-key encryption scheme CGBE

[8] to encrypt the encoded Q to encrypted query Qk, which is

issued to the SP for query processing. (4) The client decrypts

the encrypted answer returned by the SP .

Server-side algorithms. The main ideas of the algorithms at

the SP side are to localize and minimize the enumeration of

candidate mappings between Q and G in candidate subgraphs.

(1) The SP first efficiently determines the candidate subgraphs

CSss (subgraphs) starting from each starting vertex s of the

label ℓs with the traversal depth h. We propose neighborhood

containment (NC) to minimize each CSs in the absence of

the structure of Q. Subsequently, it minimizes the number

of candidate mappings to be enumerated by the SP . (2) In

each CSs, the SP enumerates all candidate matchings (CMs)

and candidate mappings. We propose a canonical labeling-

based subgraph cache and apply neighborhood equivalent

class (NEC) to further avoid redundant CMs and candidate

mappings, respectively. (3) We derive structure-preserving

verification SPVerify from [8], where multiple encrypted mes-

sages Rk (with negligible false positives) are returned to the

client for decryption of the result.

SPVerify is derived from the seminal subgraph isomorphism

algorithm: the Ullmann’s algorithm [27]. The major benefit is

that its computation flow is simple; hence, we can cast the

algorithm into a series of matrix operations (additions and

multiplications). Since the encryption of SPVerify supports

such matrix operations, privacy is preserved.

We also note that SPVerify may send multiple messages

to the client for decryption, which may result in high de-

cryption and network communication costs. Thus we pro-

pose SPVerify∗. The major difference between SPVerify∗ and

SPVerify is that SPVerify∗ uses different query encodings

according to different query sizes and significantly fewer

encrypted messages are returned for decryption, and the query

size is smaller than a system-related constant.

IV. QUERY PREPROCESSING AT THE CLIENT

In this section, we introduce a preprocessing method of the

query graph. It comprises three steps: (1) retrieving optimiza-

tion parameters; (2) encoding the query; and (3) encrypting

the encoded query. The encrypted query is sent to the SP .

A. Retrieving Parameters for Optimization

In order to minimize (1) the size of each candidate subgraph

CSs and (2) the total number of CSss, the SP requires the

minimum height h of Q and, in the meantime, the starting

label ℓs of CSss that is infrequent in G. These parameters (h
and ℓs) are efficiently retrieved by the client.

Given a starting label ℓs, the SP generates CSss by a

breadth first search bounded by the depth h starting at each

vertex of G having the label ℓs (to be detailed in Sec. V-A).

On the one hand, to minimize the size of each CSs, we simply

find the spanning tree of Q with a minimum height h rooted

from a vertex u, where u ∈ V (Q) and ℓs = L(u). Intuitively,

the smaller the value h, the smaller the size of each CSs. Note

that we cannot choose the vertex u with h = 1 since it trivially

leaks the structure of Q (to be analyzed in Sec. VII). When

there is a tie (i.e., when vertices u and v of Q have the same
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h) the client selects the vertex of the label that is less frequent

in G, simply because the number of CSss is bounded by the

occurrence of the label in G.

Example 4.1: Fig. 3 (a) shows an example of the selection

of the starting label of query Q. The heights of the spanning

trees rooted from u1, u3, and u4 are 2. u1 is finally chosen as

the starting label as occ(0, G) < occ(2, G), where L(u1) = 0,

and L(u3) = L(u4) = 2. u2 is not considered because the

height of its spanning tree is 1.

B. Query Encoding

For presentation brevity, we present an encoding scheme for

the query Q (in Definition 4.1) to facilitate the discussion of

the subsequent encryption scheme. This encoding is extended

for further optimization (to be proposed in SubSec. VI-B).

Definition 4.1: The encoding of the entries of MQ are:

∀ui, uj ∈ V (Q),
{

MQ(ui, uj) = q if MQ(ui, uj) = 0; and
MQ(ui, uj) = 1 otherwise,

where q is a large prime number.

Example 4.2: Fig. 3 (a) also shows an example of the

encoding of Q by Def. 4.1. The entries in MQ with values 0
are replaced by the large prime q.

C. Query Encryption

Based on the encoding of Q, we adopt our recent private-key

encryption scheme [8] (cyclic graph based encryption scheme

CGBE) to encrypt the encoding of Q (MQ). CGBE not only

allows for efficient encryption and decryption but also supports

both partial additions and multiplications, which is the core of

efficient structure-preserving computation.

Background on cyclic group. Prior to the presentation of the

definition of CGBE, we first recall the preliminaries of cyclic

group [20]. Let G be a group. p = |G| is denoted as the order

of G. In particular, ∀g ∈ G, the order of G is the smallest

positive integer p s.t., gp = 1. Let 〈g〉 = {gi : i ∈ Zp, g
i ∈

Zn} = {g0, g1, · · · , gp−1} denote the set of elements generated

by g. The group G is called cyclic if there exists an element

g ∈ G such that 〈g〉 = G. g is called a generator of G.

CGBE scheme. The cyclic group based encryption scheme is

defined as follows.

Definition 4.2: [8] The cyclic group based encryption scheme

is a private-key encryption scheme, denoted as CGBE = (Gen,

Enc, Dec), where

• Gen is a key generation function, which generates a secret

key x uniformly at random, a cyclic group 〈g〉 = {gi :
i ∈ Zp, g

i ∈ Zn}. It outputs the private keys as (x, g)
and the value p which is known to the public.

• Enc is an encryption function, which takes as input a

message m and the secret key (x, g). It chooses a random

value r, and outputs the ciphertext
e = mrgx (mod p)

• Dec is a decryption function, which takes as input a

ciphertext e, and the secret key (x, g). It outputs
mr = eg−x (mod p)

Note that the decryption function Dec in CGBE only de-

crypts the ciphertext e as a product of the message m and the

random value r.

Query encryption. With CGBE, we define the encryption of

MQ as follows.

Definition 4.3: The encryption of Q is denoted as Qk, Qk =
{V,MQk,Σ, L}, where ∀ui, uj ∈ V (Q),

MQk(ui, uj) = Enc(MQ(ui, uj), x, g)

Example 4.3: For example, ∀ui, uj , if MQ(ui, uj) = 1, then

MQk(ui, uj) = Enc(1) = rgx (mod p); and if MQ(ui, uj) =
q, then MQk(ui, uj) = Enc(q) = rqgx (mod p).

Discussion. We remark that the client holds the secret keys

(x, g) for decryption and moreover, determines the constant

c and an encrypted value I for encrypting verification results

(to be discussed in Sec. VI). At last, ℓs, h, Qk, c, I and p are

sent to the SP for structure-preserving query processing.

V. MINIMIZED SP MAPPING GENERATION

The query preprocessing at the client side (in Sec. IV)

generates (ℓs, h, Qk, c, I , p) for the SP . Upon receiving

these, the SP performs structure-preserving subIso (termed

SPsubIso), presented in Algo. 1.

As outlined in Sec. I, the SP first minimizes the number of

candidate mappings to-be-verified. For brevity, we focus on

the most crucial procedures: candidate subgraph generation

(Sec. V-A), candidate matching generation (Sec. V-B), and

candidate mapping enumeration (Sec. V-C).

A. Candidate Subgraph Generation

To avoid enumerating mappings on a possibly large graph,

the SP first generates candidate subgraphs (Fig. 3(b)), where

possible mappings can only be embedded in those subgraphs.

A candidate subgraph is formally described in Def. 5.1.

Definition 5.1: A candidate subgraph started from s ∈ V (G),
denoted as CSs, is an induced subgraph of G, s.t.

1) L(s) = ℓs;

2) ∀v ∈ V (CSs), v is reachable from s within h hops;

3) ∀ℓ, ℓ ∈ Σ(CSs) ⇔ ℓ ∈ Σ(Q); and

4) ∀ℓ ∈ Σ(CSs), occ(ℓ, CSs) ≥ occ(ℓ,Q).

Example 5.1: Suppose L(s) = ℓs = 0 and h = 2. Fig. 3(b)

sketches an example of a candidate subgraph CSs (the grey-

colored shadow) rooted from s of G. For each vertex v in



CSs, v is reachable from s within 2 hops. The set of labels

of Q is the same as that of CSs (i.e., Σ(CSs) = Σ(Q)). For

each label ℓ in CSs, occ(ℓ, CSs) ≥ occ(ℓ,Q).

Initial generation. GenCandSubGraph (Procedure 1.1,

Lines 8-17) shows the generation of candidate subgraphs.

Algo. 1 first initializes the CSs as ∅ (Line 1). For each vertex

s ∈ V (G), where L(s) = ℓs, it invokes GenCandSubGraph

(Line 1). GenCandSubGraph simply generates CSs by a

breadth first search method started from s on G within h hops

(Lines 10-15). VCSs
is to record the vertices of CSs deter-

mined so far. For each vertex v ∈ VCSs
, v must be reachable

from s within h hops (Lines 13-15), and L(v) ∈ Σ(Q) (Line

13). If ∀ℓ ∈ Σ(CSs), occ(ℓ, CSs) ≥ occ(ℓ,Q) (Line 16), CSs

is set to the induced subgraph of VCSs
in G (Line 17).

Minimization by neighborhood information. Since the sizes

of candidate subgraphs have a significant impact on perfor-

mance, we propose MinCandSubGraph (Procedure 1.2) to

minimize the size of each CSs. MinCandSubGraph is derived

based on our notion of neighborhood containment class (NC)

of CSs, defined as follows.

Definition 5.2: Given N = {v1, v2, · · · , vn} of V (CSs), N
is a neighborhood containment class (NC), denoted as v1 ⊑
v2 ⊑ · · · ⊑ vn, iff ∀vi, vj ∈ N , i < j,

1) L(vi) = L(vj);
2) a) nb(vi, CSs) ⊆ nb(vj , CSs), if N is an indepen-

dent set in CSs; or

b) nb(vi, CSs)∪ {vi} ⊆ nb(vj , CSs)∪ {vj}, if N is

a clique of CSs.

Based on Def. 5.2, the vertices of a candidate subgraph CSs

exhibit a total ordering with respect to the ⊑ relationships.

We have the following lemma for minimizing the size of

a candidate subgraph by keeping the “top” vertices in the

subgraph. The intuition is that the reduced CSs preserves all

the structures of the original CSs. The proof is established via

a simple contradiction. Due to space limits, we present it in

our technical report [9].

Lemma 5.1: Denote an NC N as {v1, v2, · · · , vn}, where

N ⊆ V (CSs) of a graph G. Denote the reduced V (CSs) (de-

noted as CSr
s ) is the induced subgraph of V (CSs)\(N\Nk)

of CSs, i.e. Nk = {vn−k+1, vn−k+2 · · · , vn} contains top-k
vertices of N that are kept, where k = occ(L(v1), Q). Then,

the answer of Q on CSs is the same as that on CSr
s .

Example 5.2: Reconsider Example 5.1. {v1, v2} is an NC

as L(v1) = L(v2), nb(v1, CSs) ⊆ nb(v2, CSs) and {v1, v2}
forms an independent set of CSs in Fig. 3(c). Since occ(1, Q)
= 1, by Lemma 5.1, we keep the top-1 vertex. It can be seen

that the answer of Q remains the same after removing either

v1 or v2 from CSs. For another example, let’s consider the NC

{v4, v5, v6} in Fig. 3(c), as the neighborhood of v4 is contained

by that of v5. Hence, v4 ⊑ v5. Similarly, v5 ⊑ v6. {v4, v5, v6}
forms an independent set. Again, by Lemma 5.1, we keep only

the top-1 vertex, i.e., v6. The answer of Q remains the same

after removing v4 and v5. All in all, Fig. 4(a) shows CSs, the

candidate subgraph after the minimization.

Algorithm 1 SPsubIso (Qk, G, ℓs, h)
Input: The encrypted query graph Qk , data graph G, starting label ℓs and hop h
Output: The encrypted result Rk

1: Initialize CSs = CMs = ∅, Cache = ∅, and Rk = 1
2: for each vertex s ∈ V (G) with the starting label ℓs
3: GenCandSubGraph(Qk , G, s, h, CSs) /* By Def. 5.1 */

4: MinCandSubGraph(Qk , CSs) /* Minimize CSs */

5: Initialize set VCMs = {s}
6: GenCandMatch(VCMs , Qk , CSs, Rk , Cache) /* By Def. 5.3 */

7: return Rk

Procedure 1.1 GenCandSubGraph (Qk , G, s, h, CSs)

8: Initialize a queue V isit and a set VCSs as empty

9: V isit.push(s), VCSs .insert(s), s.hop() = 0

10: while V isit is not empty /* BFS method */

11: v = V isit.pop()

12: if (v.hop() = h) continue /* By 2. in Def. 5.1 */

/* By 3. in Def. 5.1 */

13: for each v′ = nb(v,G), v′ 6∈ VCSs ∧ L(v′) ∈ Σ(Qk)

14: V isit.push(v′), VCSs .insert(v′)

15: v′.hop() = v.hop() + 1

/* By 4. in Def. 5.1 */

16: while ∃ℓ ∈ Σ(VCSs ), s.t. occ(ℓ, VCSs ) < occ(ℓ,Qk)
remove all v from Σ(VCSs ), where v ∈ Σ(VCSs ) and Σ(v) = ℓ

17: CSs = GenInducedSub(G, VCSs )

Procedure 1.2 MinCandSubGraph (Qk , CSs)

18: for each ℓ ∈ Σ(CSs), N = {} /* N is a set of NC */

/* Ascending ordered by |nb(v, CSs)| */

19: for each v ∈ V (CSs), L(v) = ℓ,

20: if ∃N ∈ N , s.t., /* By Def. 5.2 */

(1) {v} ∪ N forms an independent set (or a clique); and

(2) nb(v, CSs) (or nb(v, CSs)∪ {v}) contains those of vertices in N .

21: N .insert(v) /* Ordered by ⊑ */

22: else create a new N , N = {v}, N = N ∪ {N}
23: for each N ∈ N , Nk = {vn−k+1, · · · , vn}, k = occ(ℓ,Qk)
24: Remove N\Nk from CSs /* By Lemma. 5.1 */

The minimization procedure MinCandSubGraph. Proce-

dure 1.2 shows the minimization of CSs by NC. For each

ℓ ∈ Σ(CSs), a set N of NC is first initialized as {}
(Line 18). For each vertex v of CSs with the label ℓ, sorted

in ascending order of |nb(v, CSs)| (Line 19) for efficiency,

MinCandSubGraph checks if there is an N in N , such that

N ∪ {v} forms an NC by Def. 5.2 (Line 20). If so, v is then

inserted into N (Line 21). Otherwise, the algorithm creates

a new N = {v} and unions N to N (Line 22). After

the generation of NC of CSs for the label ℓ, CSs can be

minimized by Lemma 5.1 via keeping the top-k vertices in

each N , N ∈ N , k = occ(ℓ,Qk) (Lines 23-24).

Complexity. The complexity of the generation of NC in

Procedure 1.2 is O(dmax|V (CSs)|2), where dmax is the

maximum degree of the vertices in CSs. In practice, |V (CSs)|
is often in the order of hundreds, which is small.

B. Candidate Matching Generation

A unique challenge in structure-preserving query processing

is that, in the absence of query structure, the SP matches

Qk to multiple possible subgraph structures in CSs. We call

such subgraph structures candidate matchings. In contrast,

if the query structures were not kept secret, the candidate

matching was known to be Q. Fig. 4(a) shows four candi-

date matchings, CMs1, CMs2, CMs3, and CMs4. For each

matching, candidate mappings are enumerated. It is evident

that a naive enumeration of all candidate matchings can be

inefficient. In this subsection, we propose GenCandMatch to

efficiently generate candidate matchings. The main idea is to

avoid generating redundant matchings from CSs.
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Fig. 4. (a) Construction of candidate matchings; and (b) Enumeration of possible mappings.

Definition 5.3: A candidate matching, denoted as CMs, is a

connected induced subgraph of CSs, s.t.

1) |V (CMs)| = |V (Q)|; and
2) ∀ℓ ∈ Σ(CSs), occ(ℓ, CMs) = occ(ℓ,Q).

Example 5.3: Fig. 4 (a) lists all the CMss enumerated from

CSs. ∀CMsi, i ∈ {1, ..., 4}, |V (CMsi| = |V (Q)|, and ∀ℓ ∈
Σ(CSs), occ(ℓ, CMsi) = occ(ℓ,Q).

Elimination of redundant CMs. We make two observations

from Example 5.3 and Fig. 4. (1) CMs2 is graph-isomorphic

to CMs3. If candidate mappings are generated from CMs2, it

is obvious that generating mappings from CMs3 is redundant.

(2) CMs1 is a supergraph of CMs2. One can simply generate

mappings from CMs1, and skip CMs2 and CMs3.

To remove the redundancies mentioned above, it is exactly

to solve the following problem: “given a graph G and a

graph database G : {G1, ...}, how to efficiently determine if

G is a subgraph of G′, G′ ∈ G?” Such a problem has been

extensively studied before (e.g., [25], [29]). Existing solutions

involve an index computed offline. In our context, candidate

matchings are enumerated online. Hence, the existing solutions

cannot be directly applied.

Canonical labeling-based subgraph cache. Let’s recall a

crucial property of canonical labeling. In the context of graph

query processing, the canonical labeling of a graph G is

denoted as can(G), and can(G) = can(G′) if and only if

G is isomorphic to G′. While the cost for computing the

canonical labeling of a graph is not yet known (P or NP),

the cost for comparing whether two graphs are isomorphic

using the labeling is O(1), once computed. This work adopts

the minimum dfs code [29] from the literature.

For each query, we propose Cache to store can(CMs),
where each CMs is the checked candidate matching. Once

a new CM ′
s is generated, we first check if can(CM ′

s) is

already in Cache. If so, CM ′
s is discarded. Otherwise, we

insert can(CM ′
s) into Cache. Further, we continue to enu-

merate subgraphs CM ′s from CM ′
s, where for each CM ′,

|V (CM ′)| = |V (CM ′
s)|, CM ′ ⊆ CM ′

s, and can(CM ′)

is stored in Cache. Putting subgraphs of CM ′
s increases

the chance of pruning by Cache. However, the trade-off is

that as the query size increases, the computational cost for

enumerating all subgraphs of a CM ′
s increases exponentially.

Thereby, for practical purposes, we enumerate all of the

subgraphs CM ′s of CM ′
s only if |V (Q)| ≤ δ, where δ is

a user-defined threshold.

Example 5.4: The top of Fig. 4 (a) shows the idea of the

canonical labeling-based cache. We assume that δ is 3, and the

sequence of the generation of CMs is from CMs1 to CMs4.

CMs3 is eliminated as can(CMs2) is in Cache. If we set

Algorithm 2 GenAllMap (Qk, CMs, Rk)
Input: The encrypted query Qk , candidate matching CMs and encrypted result Rk

1: Generate M from Qk and CMs

2: Initialize vector used as ~0
3: Initialize vector map as ~0
4: Construct NEC of CMs

5: EnumMap(u0, used, map, M, Qk , CMs, Rk) /* Enumeration */

Procedure 2.1 EnumMap(ui, used, map, M, Qk , CMs, Rk)

6: if i = |V (Qk)|
7: if |V (Qk)| ≤ c, SPVerify∗(map, Qk , CMs, Rk) /* Sec. VI-B */

8: else SPVerify(map, Qk , CMs, Rk) /* Sec. VI-A */

9: for each j < |V (CMs)|, M(ui, vj) = 1 ∧ used[vj ] = 0
/* Eliminate redundant mappings by Lemma 5.2 */

10: if ∃vj′ , vj′ ≃ vj , j′ < j, used[vj′ ] = 0 /* Lexi. order */

11: continue

12: used[vj ] = 1, map[ui] = vj

13: EnumMap(ui+1, used, map, Qk , CMs, Rk)

14: used[vj ] = map[ui] = 0

δ to 5, then CMs2 and CMs3 are both eliminated, because

CMs2 is a subgraph of CMs1, and when CMs1 is processed,

can(CMs2) is inserted into Cache.

The ordering in CMs generation. From Example 5.4, it can

be observed that the ordering in CMs generation affects the

performance of the cache, when |V (Q)| ≤ δ. Suppose δ = 5.

Assume CMs2 is generated before CMs1. Then, CMs2 is

not eliminated. In general, the earlier the larger CMss are

generated, the better the performance is. Therefore, we find

a simple ordering for CMs generation, by greedily adding

vertices to the CMs by the degree of each vertex.

Due to space limitations, we skip the pseudo-code for

CMs generation (GenCandMatch) [9], which is essentially

an enumeration incorporated with the subgraph cache.

C. Candidate Mapping Generation
For a new candidate matching CMs is generated,

GenCandMatch (though its pseudo-code is omitted for

brevity) invokes GenAllMap (Algo. 2) to enumerate all possi-

ble mappings between Qk and CMs.

Elimination of redundant mappings by NEC. Recall that

the number of mappings is exponential to the size of CMs.

However, in practice, many mappings are redundant. Hence,

before generating the mappings, we utilize neighborhood

equivalent classes NECs of CMs (Def. 5.4) to eliminate those

redundant mappings. We remark that NEC is a special case of

NC. While a similar NEC has been proposed in [14] for query

and data graphs, our NEC is applied to data graphs only.

Definition 5.4: Given an NC N = {v1, v2, · · · , vn} of CSs,

where N is either an independent set or a clique of CSs, N
is a neighborhood equivalent class (NEC), denoted as v1 ≃
v2 ≃ · · · ≃ vn, iff ∀vi, vj ∈ N , vi ⊑ vj and vj ⊑ vi.

Example 5.5: Let’s consider the example of CMs4 in

Fig. 4 (a), {v5, v6} is an NEC as L(v5) = L(v6) and

nb(v6, CMs4) = nb(v5, CMs4) = {v3}.
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Rk = R1 ×R2
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(b). SPVerify∗ between Qk and CMs1

Fig. 5. SPVerify (and SPVerify∗) between Qk and CMs1.

Suppose that u3 and u4 (in Fig. 4 (a)) have been mapped

to v5 and v6, respectively. It is not necessary to map u3 and

u4 onto v6 and v5, respectively. This can be formalized as the

following lemma. Foremost, we often use (ui 7→ vi) to denote

map[ui] = vi for ease of exposition.

Lemma 5.2: Suppose the following are true:

1) ui, uj ∈ V (Q), vi′ , vj′ ∈ V (CMs), L(ui) = L(uj) =
L(vi′) = L(vj′);

2) vi′ ≃ vj′ ;
3) (ui 7→ vi′) and (uj 7→ vj′).

Let map′ be the mapping map except that (ui 7→ vj′ ) and

(uj 7→ vi′ ). Then, map is a candidate mapping between Q
and CMs if and only if map′ is also a candidate mapping.

The proof is omitted since it can be established by a simple

proof by contradiction. Next, we present the data structures

and the mapping generation, that exploit the lemma.

Data structures. (i) A vertex label mapping M is a m × n
binary matrix, m = |V (Qk)| and n = |V (CMs)|. Specifically,

∀u, v, M(u, v) = 1 if L(u) = L(v), where u ∈ V (Qk) and

v ∈ V (CMs); and otherwise 0. (ii) A vector map of the size

|V (Qk)| is to record a mapping from Qk to CMs, map[u] = v
(i.e., u 7→ v) represents that vertex u in Qk is mapped to vertex

v in CMs. map[u] = 0 if u is not yet mapped. (iii) A vector

used of the size |V (CMs)| is to denote whether the vertex

v in CMs has been mapped to a vertex of Qk and recorded

in map. used[v] = 0 if v is not yet mapped. In other words,

used[v] = 1 if and only if map[u] = v for some u ∈ Qk.

Algorithm for mapping generation. The detailed algorithm

GenAllMap is shown in Algo. 2. It first initializes the data

structures, including M, used and map in Lines 1-3. Line 4

constructs NEC of CMs, which is similar to that of NC in

Procedure 1.2. EnumMap (Lines 6-14) is then invoked to enu-

merate all possible mappings. A mapping map is constructed

vertex by vertex iteratively. Line 9 checks if vj is a possible

map of ui by M and used. We then exploit the equivalence

class to further check if vj can be possibly mapped to ui (Lines

10-12). The vertices in a NEC are checked in a predefined

order (e.g, lexicographical order). If ∃vj′ s.t. vj′ ≃ vj , j′ < j
and vj′ is not used before, then vj is skipped (Line 10). If

vj passes the check, EnumMap is called recursively (Line 13)

until a full mapping is constructed (Line 6).

Example 5.6: Fig. 4(b) illustrates the possible candidate

mapping generation for those CMss of Example 5.3. Since

v5 ≃ v6 in CMs4, by Lemma 5.2, we only enumerate map5,

where u3 7→ v5 and u4 7→ v6, but the one with u3 7→ v6 and

u4 7→ v5 is eliminated.

VI. SP MAPPING VERIFICATION

Section V presented a series of optimizations that reduce the

number of mappings to be generated. Then, for each mapping

map, the SP verifies (in the encrypted domain) if there is

no violation in map. The encrypted verification results are

aggregated before they are transmitted to the client. In this

section, we derive a basic verification (SPVerify) from [8]

for our problem setting. Next, we propose an enhanced one

(SPVerify∗) that aggregates many more messages but requires

the query size to be smaller than a user-determined constant.

A. SPVerify

Given a mapping map between Qk and CMs, we determine

if CMs is a valid mapping or not. Specifically, we define the

violation w.r.t. the encoding of Q as follows: ∃ui, uj ∈ V (Q),

MQ(ui, uj) = 1 ∧ (vi′ , vj′) 6∈ E(CMs) (1)

where vi′ , vj′ ∈ V (CMs), ui 7→ vi′ and uj 7→ vj′ . It states

that there exists an edge between vertices ui and uj in Q, but

there is no corresponding edge between the mapped vertices

vi′ and vj′ in CMs. We term the case in Formula 1 as a

violation of subgraph isomorphism (or simply violation). A

mapping without violation(s) is called a valid mapping.

Example 6.1: Let’s take the two mappings map1 and map2 of

CMs1 in Fig. 4 (b) as an example. First, no violation is found

in map1. Second, for map2, we find that MQ(u1, u3) = 1 and

(s, v4) 6∈ E(CMs1), where map2[u1] = s and map2[i3] = v4.

Therefore, map2 is invalid.

Algorithm for SPVerify. The intuitive idea of SPVerify is to

transform the verification steps into mathematical operations

on MQk and CMs, where (1) the violation (Formula 1) can

be detected; (2) only matrix additions and multiplications

are involved; and (3) the result can be aggregated with one

message or multiple messages.

Algo. 3 shows the detailed algorithm. The inputs are a

candidate mapping map, an encrypted query graph Qk, a

candidate matching CMs and an encrypted result Rk. We

remark that Rk is to record the aggregated result for CMss,

where Rk is initialized to 1 in Line 1 Algo. 1.

We initialize an intermediate result Ri with a value 0
(Line 1). For each pair of vertices (ui, uj) in V (Q) and

the mapped vertex pair (vi′ , vj′) in CMs (Lines 2-3), the

following two steps are performed:

1. Additions (Lines 4-7): if (vi′ , vj′) 6∈ E(CMs), Ri is set

to (MQk(ui, uj) + Ri) (mod p). This indicates that if

(ui, uj) is an edge in Q, Ri must not contain a factor of

q, and the decryption value of Ri is non-zero (i.e., the

current mapping map contains a violation (by Formula 1),

which is not a valid mapping). Otherwise, no violation

is caused by (ui, uj). This sets Ri to the value I + Ri

(mod p), where I is an encrypted value with a factor q
issued by the client, I = Enc(q); and

2. Multiplications (Line 8): it aggregates Ri into Rk, by

Rk = Rk × Ri (mod p). If there is at least one valid

mapping from Q to G, i.e., at least one Ri whose

decryption value is zero. The decryption value of Rk must

also be zero. Otherwise, it is non-zero. We remark that

CGBE leads to errors if the number of Ris aggregated in

Rk is larger than a predetermined value M .



Algorithm 3 SPVerify(map, Qk, CMs, Rk)

1: Initialize Ri = 0
2: for each ui, uj ∈ V (Q), i < j

3: vi′ = map[ui], vj′ = map[uj ]
/* Additions */

4: if (vi′ , vj′ ) 6∈ E(CMs)

5: Ri += MQk
(ui, uj) (mod p) /* Aggregate violation */

6: else

7: Ri += I (mod p) /* No violation, I = Enc(q) */

/* Multiplications */

8: Rk ×= Ri (mod p) /* Decompose Rk after aggregating M Ri */

Example 6.2: Fig. 5(a) depicts an example of SPVerify

between Qk and CMs1. There are two mappings from Qk

to CMs1 in Fig. 4(b). In map1, all the factors in R1 contain

q since map1 is a valid mapping. However, in map2, since

there exists a violation between (u1, u3) and (s, v4), there is

a factor in R2 that has no prime q. Rk = R1 ×R2 (mod p).

Decryption at the client. After receiving all the encrypted

messages Rk, the client performs two main steps:

• For each Rk, the client computes the plaintext of Rk by

R′
k = Dec(Rk, x, g)

M ; and

• The client computes the final result by R = R′
k (mod q).

R equals zero if and only if there is at least one valid mapping

from Q to G and thus, subIso(Q,G) = true.

Example 6.3: We show the decryption at the client by using

the example in Fig. 5 (a). Assume M = 2. The encrypted

message Rk only aggregates two Ris. The client generates

the g−2x, computes R′
k = Rk × g−2x (mod p), and finally

computes R = R′
k (mod q). The result is zero, which indicates

Q is a subgraph of G.

Decomposition scheme. We recall that the decryption (Dec

in Def. 4.2) uses the arithmetic modulo p. The message m ∗ r
must not exceed p. When there are too many Ris multiplied

into Rk, the product (in the plaintext domain) may exceed p.

Subsequently, the client will not obtain the correct plaintext

under the arithmetic system. Therefore, we decompose the

product into smaller numbers and the client decrypts those

numbers instead. Through Formula 2 below, we can determine

the maximum number of Ris to be aggregated in Rk (M ):

Len(p) ≥ M(Len(q) + Len(r))

⇔ M ≤ Len(p)
(Len(q)+Len(r)) ,

(2)

where Len(p) is the size of p.
Let’s say we set M = 10. From experiments, the number of

mappings (after our minimizations) for our queries is around

500 on average. Each message is 2048 bits in size. Thus, the

communication cost is around 12.8KB, which is very small.

False positives. Due to CGBE [8], the two matrix operations

in SPVerify introduce negligible false positives: (1) additions

with computing Ri (Lines 4-7); and (2) multiplications with

computing Rk in each decomposed number (Line 8). However,

the probabilities of the above two false positives are negligible.

The probability of false positives from the aggregation (ad-

ditions) while computing Ri and the multiplication of Rks in

each decomposed number are respectively stated in Props 6.1

and 6.2, which can be established by simple arithmetics [9].

Since the proofs are similar to those presented in [8], we omit

them for the interest of space.

Algorithm 4 SPVerify∗(map, Qk, CMs, Rk)

1: Initialize Ri = 1
2: for each ui, uj ∈ V (Q), i < j

3: vi′ = map[ui], vj′ = map[uj ]
/* Multiplications */

4: if (vi′ , vj′ ) 6∈ E(CMs)

5: Ri ×= MQk
(ui, uj) (mod p) /* Aggregate violation */

6: else

7: Ri ×= I (mod p) /* No violation, I = Enc(1)*/

/* Additions */

8: Rk += Ri (mod p)

Proposition 6.1: The probability of false positives in Ri is 1
q ,

which is negligible.

Proposition 6.2: The probability of false positives in Rk is

1− e−
M
q , which is negligible, in each decomposed number.

B. Optimized SPVerify for Queries of Bounded Sizes

Each encrypted message Rk sent by SPVerify aggregates

at most M messages Ris. In this subsection, we propose

SPVerify∗, which significantly reduces the number of mes-

sages returned, and in turn reduces both the communication

and computational costs at the client. The main idea behind

SPVerify∗ is to use multiplications to detect violations since

queries are often small and use additions to aggregate Ris.

Hence, the value of Rk may not exceed p even after many

aggregations. However, a tradeoff of SPVerify∗ is that the

query size must be bounded by a pre-determined constant c.
Similar to SPVerify, SPVerify∗ also detects the violation by

multiplications and additions. In order to achieve that, we first

define a complement encoding of the query (see Def. 6.1).

Definition 6.1: The encoding of the entries of MQ are:

∀ui, uj ∈ V (Q),
{

MQ(ui, uj) = 1 if MQ(ui, uj) = 0
MQ(ui, uj) = q otherwise

where q is a large prime number.

In relation to Def. 6.1, we adopt Formula 1 to state the

violation: ∀ui, uj ∈ V (Q),

MQ(ui, uj) = q ∧ (vi′ , vj′) 6∈ E(G) (3)

where vi′ , vj′ ∈ V (G), ui 7→ vi′ and uj 7→ vj′ .

Algorithm for SPVerify∗. For ease of comparison, we present

the pseudo-code of SPVerify∗ (shown in Algo. 4) in the style

of SPVerify. The inputs and the initialized data structures are

the same as SPVerify, except that Rk is initialized to 0. The

two main steps of SPVerify∗ can be highlighted as follows:

1. Multiplications (Lines 4-7): according to the violation (by

Formula. 3), if (vi′ , vj′) 6∈ E(CMs), set Ri as the value

MQk(ui, uj) × Ri (mod p). This indicates that as long

as (ui, uj) is an edge in Q, Ri must contain the factor q,

and the decryption value is zero (i.e., the current mapping

map contains a violation). Otherwise, Ri is set to a value

I × Ri (mod p), where I is an encrypted value without

factor q issued by the client, I = Enc(1); and

2. Additions (Line 8): it aggregates Ri to Rk, where Rk =
Rk + Ri (mod p). If there is at least one valid mapping

from Q to G (i.e., at least one Ri whose plain text is



non-zero). The decrypted value of Rk must also be non

zero. Otherwise, it is zero.

Example 6.4: Fig. 5 (b) illustrates an example of SPVerify∗.

Similarly, since there is no violation in map1, all the factors

in R1 do not contain q. Regarding map2, since there is a

violation, R2 contains a factor q. Rk = R1 +R2 (mod p).

Decryption at the client. The decryption is modified as:

• The client computes the message encoded in Rk as R′
k =

Dec(Rk, x, g)
m(m−1)/2, where m = |V (Q)|; and

• The client computes the final result by R = R′
k (mod q).

R equals non-zero if and only if there is at least one valid

mapping from Q to G. Thus subIso(Q,G) = true.

Example 6.5: We show the decryption in Fig. 5 (b). For

simplicity, we assume that Rk only aggregates R1 and R2.

The client generates g−6x, computes R′
k = Rk × g−6x (mod

p), and finally computes R = R′
k (mod q). The result is non-

zero which indicates that Q is a subgraph of G.

Determining the constant c to decide when to use SPVerify

or SPVerify∗. In SPVerify∗, multiplications are used to aggre-

gate violations by edges in CMs (Line 4 in Algo. 4), instead

of aggregating numerous mapping results (Ri in Line 8 of

Algo. 3). Similarly, when Ri (Lines 4-7) in Algo. 4 exceeds

p, the client cannot recover the plaintext. The number of

multiplications for each Ri is directly related to the size of

the query (|V (Q)|). We can determine the maximum size of

the query, denoted as c, using the following inequality.

Len(p) ≥ c(c−1)
2 (Len(q) + Len(r))

⇔ 0 ≥ c2 − c− 2Len(p)
Len(q)+Len(r)

(4)

Putting these together, in Lines 7-8 of Algo. 2, once |V (Q)| ≤
c, the SP uses SPVerify∗. Otherwise, it uses SPVerify.

False positives. Since both SPVerify and SPVerify∗ use

CGBE, we can obtain that the probabilities of false positives of

SPVerify∗ are also negligible. Their proofs are almost identical

to those of Props. 6.1 and 6.2 and [8], and hence, omitted.

VII. PRIVACY ANALYSIS

In this section, we prove the privacy of the encryption

method and SPsubIso. The attack model is the one defined

in Sec. II. The attackers or SPs are eavesdroppers and can

adopt chosen plaintext attack (CPA) [20].

Privacy of the encryption method. CGBE is adopted to

encrypt the query graph in this paper. The privacy of CGBE

and MQk can be recalled from [8].

Lemma 7.1: [8] CGBE is secure against CPA. MQk is

preserved from the SP against the attack model under CGBE.

Then, based on Lemma 7.1, we have the following.

Proposition 7.1: The structure of the query is preserved from

the SP against the attack model under CGBE.

Proof: (Sketch) The proof can be derived from

Lemma 7.1. After receiving Qk, the SP cannot break the

MQk since they are secure against CPA. V , Σ and L do not

contain structural information. Thus, the structure of query is

preserved from the SP against the attack model.

Privacy of SPsubIso. SPsubIso mainly consists of five

steps: (1) GenCandSubGraph; (2) MinCandSubGraph; (3)

GenCandMatch; (4) GenAllMap; and (5) SPVerify (or

SPVerify∗). We now analyze the privacy of each step as

follows. However, first, the analysis requries some notations.

We denote a function P (m,h,Σ) that returns all possible

graphs of m vertices with a minimum height h and the labels

Σ. |P (m,h,Σ)| is exponential to the value m and the size

of Σ. 3 Let A(Q) is a function that returns 1 if SP is able

to determine the exact structure of Q, and 0 otherwise. The

probability that the SP can determine the structure of the

query Q is denoted as Pr[A(Q) = 1]. Given a query Q
and (m,h,Σ), the probability of determining its structure is

Pr[A(Q) = 1] = 1/|P (m,h,Σ)|.
Proposition 7.2: Under GenCandSubGraph,

MinCandSubGraph, GenCandMatch and GenAllMap,

Pr[A(Q) = 1] = 1/|P (m,h,Σ)|.

Proof: (Sketch) The proof is established by one main fact:

SP does not utilize any structural information of the query,

except the value h in the algorithm.

• GenCandSubGraph utilizes ℓs, h, Qk and G to generate

all the CSss;

• MinCandSubGraph minimizes the size of each CSs by

using only the structure of CSs itself;

• GenCandMatch utilizes Qk and CSs to generate CMss;

• GenAllMap enumerates all the possible mappings maps

between Qk and CMs.

The SP cannot learn the structure of Q by invoking them,

and thus the probability of determining a structure remains

Pr[A(Q) = 1] = 1/|P (m,h,Σ)|.
In SPVerify and SPVerify∗, SP sends messages to the

clients. The clients may terminate the algorithm when a

mapping is found, which may leak information to the SP .

Such a leak can be quantified in the following proposition.

Proposition 7.3: Under SPVerify or SPVerify∗, the following

hold for :

• If Q is a subgraph of G, Pr[A(Q) = 1] = 1/|S|, where

S = {G|G ∈ P (m,h,Σ), G ⊆ CMs, where CMs ∈
Cache }; and

• If Q is not a subgraph of G, Pr[A(Q) = 1] =
1/|P (m,h,Σ)|.

Proof: (Sketch) Since the algorithm SPVerify∗ is similar

to that of SPVerify, due to the space constraint, we prove it

with SPVerify only. The proof involves two aspects:

(1) SP can never determine any structural information from

the mathematical computations in each steps of SPVerify:

Recall that SPVerify comprises a fixed number of mathe-

matical operations in the encrypted domain in Algo. 3.

• Lines 4-7 invoke a constant number of additions of

MQk and Ri, and only structure of CMs is considered.

More specifically, ∀i, j, m2 additions are invoked for

MQk(i, j) and Ri; and

3We remark that if h = 1, the SP is able to infer that the vertex with ℓs
must connect to other vertices in Q. To avoid this special case, as mentioned
in Sec. IV, we choose the starting vertex where h equals or larger than 2.



TABLE I
STATISTICS OF THE REAL-WORLD DATASETS

Graph G |V (G)| |E(G)| Avg. Degree |Σ(G)|
DBLP 317,080 1,049,866 6.62 199

LiveJournal 3,997,962 34,681,189 17.34 1355

• Line 8 requires one multiplication on each Ri and Rk.

Based on Lemma 7.1, all the intermediate computations results

are securely protected against the attack model. Moreover,

each step of SPVerify has a constant number of operations

in the encrypted domain. SP cannot learn any information

from them.

(2) SP may only infer some structural information from the

message communications:

Recall that once M Ris are aggregated into Rk, Rk is

returned to the client, the client may decide to terminate

SPVerify after receiving Rks. There are two cases:

• Suppose there is at least one valid Rk such that Q
is a subgraph of G. In this case, Q must be graph

(or subgraph) isomorphic to one of CMs in Cache.

Therefore, Pr[A(Q) = 1] = 1/|S|, where S = {G|G ∈
P (m,h,Σ), G ⊆ CMs, CMs ∈ Cache}; and

• If the client does not terminate the algorithm, SP does

not know if there is a valid Rk or not. Thus, the

probability of determining the structure of Q is still

Pr[A(Q) = 1] = 1/|P (m,h,Σ)|.

Based on Prop. 7.3, we note that the client can make a

tradeoff between privacy and response times by terminating

the algorithm as late as acceptable.

VIII. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of our

techniques with popular real datasets.4 The results show that

our techniques are efficient and our optimizations are effective.

The platform. We conducted all our experiments on a machine

with an Intel Core i7 3.4GHz CPU and 16GB memory running

Windows 7 OS. All techniques were implemented on C++, and

CGBE was implemented on the GMP library. We simulate the

bandwidth as 10Mbits/s.

Data and query sets. We benchmarked real-world datasets:

DBLP, Amazon, Youtube, and LiveJournal.5 Due to space

limitations, we opt to report the performance of DBLP and

LiveJournal, since others exhibit similar performance charac-

teristics. Other performance details of Amazon and Youtube

are reported in [9]. Since the vertices do not have labels, we

adopt the approach that uses the degree of the vertex as its

label [18]. (We tested to assign vertex labels by randomly

choosing labels from predefined domains. We noted similar

trends. Due to space limits, we skip reporting them.) Some

statistics of the datasets are shown in Table I.

For each dataset, we generated two types of queries [26]:

(1) BFS queries (BFS) and (2) DFS queries (DFS) by random

BFS and DFS methods, respectively. Both BFS and DFS

contain query sets Q3-Q8, wherein each Qn contains 1,000

4As discussed in Sec. I, previous studies are not applicable to our problem,
since they heavily exploit query structures, which are secret in this work.

5The datasets are available at http://snap.stanford.edu/.

query graphs, and n is the number of vertices of each query of

the query set. h of the query sets are around 3-4 on average.

Default values of the parameters. In CGBE, the prime p
and q are 2048 bits and 32 bits, respectively. The random

number r is 32 bits. The largest value c is 12 by Formula 4.

However, to study the performance of both SPVerify∗ and

SPVerify, we first set c to 6, by default. That is, if |V (Q)| ≤ 6,

we used SPVerify∗. Otherwise, we used SPVerify. We finally

investigated the effectiveness of SPVerify∗ with c = 11. For

SPVerify∗, we set M = 100 by default (i.e., we aggregated

100 Ris into each Rk). For SPVerify, we set M = 10 only.

Unless specified otherwise, δ = 5. Under these settings, no

false positives was detected from the entire experiments.
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Fig. 6. Average preprocessing time at the client.

A. Performance at the Client Side

Preprocessing time at the client. We report the average

preprocessing time of the query Q at the client side on all

datasets in Fig. 6. Specifically, the preprocessing of Q includes

(1) the computation for ℓs and h; and (2) the encryption of

Q by CGBE. We observe that the average times for each

query on all datasets are around 4ms, which shows that the

preprocessing is in cognitively negligible.

 0

 5

 10

 15

 20

 25

Q3 Q4 Q5 Q6 Q7 Q8

A
v
g

. 
s
iz

e
 (

K
B

)

BFS
DFS

(a) DBLP

 0

 50

 100

 150

 200

 250

Q3 Q4 Q5 Q6 Q7 Q8
A

v
g

. 
s
iz

e
 (

K
B

)

BFS
DFS

(b) LiveJournal

Fig. 7. Average received encrypted message size at the client.

The sizes of messages received by the client. We report the

sizes of the encrypted messages Rks that the client received in

Fig. 7. Due to the optimizations by SPsubIso, the largest sizes

of Rks (at Q6) are around 13KB on LiveJournal, which can be

efficiently transmitted via today’s networks. For Q7-Q8, as we

set c to 6 (by default), SPsubIso uses SPVerify. The number

of Ris aggregated in each Rk is 10. Thus, the message sizes

for Q7-Q8 are larger. Since the maximum value of c is 11 in

the current configuration, SPVerify∗ can be used to produce

much smaller messages (to be discussed with Fig. 14).
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Fig. 8. Average decryption time at the client.

The decryption time at the client. After receiving the en-

crypted messages Rks, the client decrypts Rks. The decryption

time is shown in Fig. 8. Since the sizes of Rks are small and

the decryption method is simple, the average decryption times

at the client are correspondingly fast at most 16ms.
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Fig. 9. Average total running time at the SP .

B. Performance at the SP Side

The total runtime at the SP . Fig. 9 shows the average total

runtime at the SP on all datasets, which is exactly the runtime

of SPsubIso. For the simplicity of performance analysis, we

terminated SPsubIso once the client found at least one valid

mapping. (The client may postpone the termination to achieve

higher privacy [8], although that introduces small but non-

trivial overhead to SPsubIso.) It is not surprising that the

runtimes increase exponentially with the query sizes. For Q8,

the largest runtime is around 12s on LiveJournal. However,

the running times for small queries (Q3-Q6) are well below

600ms for all datasets.

We further report the breakdowns of the total runtimes

of SPsubIso: (1) GenCandSubGraph and MinCandSubGraph;

and (2) GenCandMatch and SPVerify. For the DBLP dataset,

the breakdown percentages of both query sets are similar: 30%
and 70%. For LiveJournal, they are 53% and 47%.
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Fig. 10. Average % of reduced vertices in CSs by NC.

The effectiveness of minimization of CSs. In Fig. 10,

we show the average percentage of the reduced vertices

of CSs by NC in MinCandSubGraph. We observe that

MinCandSubGraph reduces around 40% of the vertices of

CSss on DBLP. However, for LiveJournal, the percentage (on

average) is around 20%.

In our experiment, we note that a small fraction of queries

have CSss that contain numerous candidate mappings. The

reason is that SPsubIso cannot exploit query structures for

optimizations. In this case, for each CSs, we compute an upper

bound of the number of candidate mappings of a query by

simple calculations on CSs. For those candidate subgraphs

that may exceed 100, 000 mappings, we transmit the candidate

subgraphs to the client to do subIso (e.g., using [14] or [7]).

The percentage of such queries is very small, at most 1%
for Q3-Q7 on all datasets. For Q8, the percentage is only

10%. In other words, most subgraph queries are successfully

outsourced to the SP .
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Fig. 11. Average % of the pruned redundant CMs by Cache.

The effectiveness of the elimination of redundant CMs.

Fig. 11 shows the average percentage of redundant CMss

pruned by Cache in GenCandMatch. We note that as the

query size increases, the effectiveness of Cache increases.

For Q3-Q4 of all datasets, the percentage of the elimination

of redundant CMs increases to 80%. For Q5-Q8 on DBLP,

the percentages are stable at around 80%. We note the graph

structures of LiveJournal are diverse and there are many

distinct CMss. The effectiveness of Cache then decreases

from 80% to 50% for Q5-Q8. This is also reflected by the fact

that the sizes of the encrypted messages Rks are the largest

for LiveJournal (see Fig. 7).
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Fig. 12. Average Cache size at SP .

The memory consumption of Cache. We report the memory

consumption of Cache in Fig. 12. As we only store the hash

code of the canonical labeling of each distinct CMs, the

memory consumption is very small (at most 25MB).
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Fig. 13. Average % of the pruned redundant mappings by NEC.

The effectiveness of pruning redundant mappings by NEC.

We report the pruning of redundant mappings by using NEC

in Fig. 13. We observe that, for most of the queries, we pruned

approximately 20% of redundant mappings on average. This

further saves on computations in SPVerify and SPVerify∗.
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Fig. 14. Average size of messages Rks when c = 11.

The number of aggregated messages by SPVerify∗. In Fig. 7,

since c was set to 6 by default, we used SPVerify for Q7-Q8,

where each Rk is an aggregate of M messages and M = 10.

As discussed, the messages are small. To study SPVerify∗, we

then set c = 11. We used Q8 with DFS and varied the values

of M from 10 to 100. Fig. 14 shows the detailed performance

of all datasets. We report that for M = 10, the message size

is the same as those values of Q8 DFS in Fig. 7. Importantly,

as M increases, the message size decreases accordingly.

Summary. The experiments show that the computation times

at the client were in the order of milliseconds. The messages

transferred were small. Most computation was outsourced to

the SP . Further, the proposed optimizations were effective.

IX. RELATED WORK

While there has been some work on privacy-preserving

query processing, due to space limitations, we can only include

the work relevant to graph queries.



Privacy-preserving graph queries. Cao et al. [3] proposed

supporting subgraph queries over an encrypted database with a

number of small graphs. Their work protects the privacy of the

query, index and data features. However, this work does not

address the subgraph isomorphism verification of candidate

graphs. Cao et al. [2] studied tree pattern queries over en-

crypted XML documents. The traversal order for each query

(required by their method) is predetermined. In the context

of graphs, the order cannot be predetermined. He et al. [15]

analyzed vertex reachability, while preserving edge privacy.

Gao et al. [12] proposed neighborhood-privacy protection

for the shortest distance. It aims to preserve the neighbor-

hood connections and the shortest distances between vertices.

Mouratidis et al. [24] proposed a shortest path computation

with no information leakage using the PIR protocol [6], whose

high computational cost is a known concern. Karwa et al.

[19] addressed subgraph counts by satisfying the differential

privacy of edges. Yin et al. [31] studied private reachability

queries. Fan et al. [10], [11] proposed authenticated subgraph

query services under the classical data outsourcing setting.

A subgraph isomorphism verification method that keeps both

query and data graphs secret was proposed [8]. To our knowl-

edge, this is the first work that subgraph queries are protected,

whereas the data graph is publicly known.

Subgraph isomorphism. Ullmann [27] proposed a seminal al-

gorithm for subgraph isomorphism. The basic idea is a search

with backtracking with respect to the matrix that represents

possible isomorphic relationships. In the last decade, several

algorithms (e.g., VF2 [7], QuickSI [25] and Turboiso [14])

have been proposed to enhance performance significantly.

They all require to traversing the query on graph data. For

instance, VF2 [7] relies on a set of state transitions and

traversals on the graph and query. QuickSI [25] optimizes the

ordering in traversals of graphs. Turboiso [14] exploits neigh-

borhood information and local regions of vertices. Turboiso
also involves determining an optimal traversal in query pro-

cessing. However, the traversals themselves carry topological

information, which makes privacy preservation complicated if

it is possible at all. Wu et al. [30] supports structureless graph

queries, as the query structure is automatically formulated.

However, the queries are known to the SP .

X. CONCLUSION

This paper studies the first practical private approach for

subgraph query service: asymmetric structure-preserving sub-

graph query processing. Our techniques include deriving min-

imized candidate subgraphs to significant reduce the number

of candidate mappings, generating candidate matchings and

then candidate mappings without redundancies and verifying

candidate mappings without leaking query structures. Our

experiments confirm that our techniques are efficient and

effective. A future work is to support data values associated

with the graphs. We also plan to apply distributed computing

once candidate subgraphs are generated.
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