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Abstract—Web objects, often associated with descriptive text
documents, are increasingly being geo-tagged. A spatial keyword
top-k query retrieves the best k such objects according to a
scoring function that considers both spatial distance and textual
similarity. However, it is in some cases difficult for users to
identify the exact keywords that describe their query intent.
After a user issues an initial query and gets back the result,
the user may find that some expected objects are missing and
may wonder why. Answering the resulting why-not questions
can aid users in retrieving better results. However, no existing
techniques are able to answer why-not questions by adapting the
query keywords. We propose techniques capable of adapting an
initial set of query keywords so that expected, but missing, objects
enter the result along with other relevant objects. We develop
a basic algorithm with a set of optimizations that sequentially
examines a sequence of candidate keyword sets. In addition,
we present an index-based bound-and-prune algorithm that is
able to determine the best sample out of a set of candidates
in just one pass of index traversal, thus speeding up the query
processing. We also extend the proposed algorithms to handle
multiple missing objects. Extensive experimental results offer
insight into the efficiency of the proposed techniques in terms
of running time and I/O cost.

I. INTRODUCTION

With the proliferation of geo-enabled mobile devices, no-
tably smartphones, location-based services that target web
objects with geo-location and textual descriptions, e.g., busi-
nesses and public facilities, are gaining in prominence. In
particular, so-called spatial keyword queries [3] enable a range
of services that retrieve such objects. More specifically, a
spatial keyword top-k query takes a user location and a set
of keywords as arguments and retrieves the k objects that
are ranked the highest according to a scoring function that
considers both spatial distance and textual similarity [10].

However, it can be difficult for users to identify the
keywords that best capture the intent of their queries. Thus,
having issued a query with a set of query keywords and having
received the result, a user may find that the result is not as
expected. Specifically, objects that the user expected to be in
the result are missing. This suggests to the user that other
useful objects, that are as yet unknown to the user, may be
missing from the result as well, and the user has reason to
question the overall utility of the query and its result.

In this setting, the utility of spatial keyword querying can
be improved by offering functionality that explains to the user
why one or more expected objects are missing and how to
minimally modify the initial query so that the missing objects,
and then potentially also other useful objects, become part of
the result. This paper considers such functionality, as illustrated
in the following example.

Example 1: In preparation for attending an overseas
conference, a user issues a query to find the top-3 hotels
that are close to the conference venue and are described as
“clean” and “comfortable.” The user is surprised that the
result contains only local hotels that are unknown to the user
and that a well-known nearby international hotel is not in the
result. The user wonders why this exclusion happens. Are the
returned hotels really the best, or are there better options? Are
the query keywords not properly set? How can the keywords
be adapted so that the expected hotels appear in the result?

Another scenario is for merchant users who want to refine
a set of keywords to best advertise their products.

Example 2: Consider a user who opens a Sichuan restau-
rant near the Oriental Pearl Tower in Shanghai, China. The
user lists the restaurant in online catalogs such as Google
My Business. To attract more customers, the user wants to
advertise the keywords in which the restaurant ranks high
when the customers search the catalog near the Oriental Pearl
Tower. However, the simple keywords “Sichuan cuisine” do
not return the restaurant as a top-10 result. The user wants to
know why and how the keywords should be modified so that
the restaurant can enter the top-10.

These scenarios call for support for why-not questions,
which were first introduced by Chapman and Jagadish [6].
Three different solution models have been proposed to an-
swer such why-not questions: manipulation identification [6],
database modification [16], [17], and query refinement [8],
[15], [28]. Using manipulation identification, Chapman and
Jagadish [6] study why-not functionality for Select-Project-
Join (SPJ) queries, showing how to find a query operator that
prevents a missing object from being included in a result.
Studies using database modification [16], [17] consider how
to update the original database so that SPJ queries and SPJ
+ Union + Aggregation queries can revive missing objects.
In contrast, studies based on query refinement [28] focus



on how to revise an original query so that a missing object
enters the result. He and Lo [15] apply this approach to top-k
preference queries. In previous work [8], we consider why-
not questions on spatial-keyword top-k queries to help users
adjust their preferences between spatial distance and textual
similarity to obtain query results that contain missing objects.
However, this past study does not provide users with more
precise keywords that better describe their query intention.

In this paper, we apply the query refinement model to
solve the problem of answering why-not questions on spatial
keyword top-k queries via keyword adaption. The paper’s
contributions are summarized as follows:

• We formulate the novel keyword-adapted why-not
spatial keyword top-k query and reduce it to a query
refinement problem.

• We propose a basic algorithm as well as a set of
optimizations to efficiently search the candidate query
keyword sets to find the optimal solution.

• We propose a more advanced algorithm based on an
index structure, which determines the best keyword set
among a set of candidates using a bound-and-prune
strategy.

• We extend the algorithms to support queries with
multiple missing objects and provide strategies that
find approximate results and balance solution quality
and query response time.

• We report on extensive experiments on real-life
datasets to evaluate the performance of the proposed
algorithms. The results show that the algorithms per-
form well in a wide range of settings.

The rest of the paper is organized as follows. Section II
reviews related work. Section III describes preliminaries and
defines the keyword-adapted why-not spatial keyword top-k
query. Section IV presents the basic query algorithm along
with a set of optimizations. Section V proposes an index-
based solution. We extend the algorithm to support queries
with multiple missing objects in Section VI. Experimental
results are reported in Section VII, followed by a conclusion
in Section VIII.

II. RELATED WORK

To the best of our knowledge, no studies exist that consider
the use of keyword adaption for why-not questions on spatial
keyword top-k queries. In the following, we survey studies
on spatial keyword queries and why-not queries separately,
and we distinguish them from the setting of why-not spatial
keyword queries.

A. Spatial Keyword Query Processing

A spatial keyword query retrieves the most relevant spatial
web objects with respect to both spatial distance and textual
similarity. A number of efficient query processing techniques
have been proposed for this query. Early work presents a
hybrid index structure that integrates R*-tree and inverted file
for the estimation of both spatial and textual similarities [34].
Martins et al. [25] compute text relevancy and location prox-
imity independently and then combine the two aspects. The

more recent IR-tree [10], [20], [29] is a hybrid index that
estimates the bounds of spatial distance and textual similarity
at the same time. Another hybrid index, the IR2-tree [11]
combines an R-tree [14] with superimposed text signatures.
However, this index is applicable only when the keywords
serve as a Boolean filter. Rocha-Junior and Nørvåg [27] study
the spatial keyword query in road networks. A comprehensive
experimental evaluation of different spatial keyword indexing
and query processing techniques is available [7].

Different variants of the spatial keyword query have also
been considered. Chen et al. [9] study a query that retrieves
web pages which contain query keywords and whose page
footprints intersect with a query footprint. A recently proposed
mCK query retrieves the best m objects within a minimum
diameter that match given keywords. The bR*-tree and the
virtual bR*-tree [32], [33], which augment each node with a
bitmap and MBRs for keywords, are proposed for computing
this query. Cao et al. [4] introduce a query that retrieves the
top-k spatial web objects ranked according to both prestige-
based relevance and location proximity. Another study [5]
proposes a query that retrieves a group of nearby spatial web
objects whose keywords cover the query’s keywords and that
have the lowest inter-object distances. Further, spatial keyword
similarity search in regions of interest has been studied [12].
Other studies consider a direction-aware spatial keyword query
that finds k nearest neighbors in the search direction that cover
all query keywords [19]. Li et al. [21] investigates a spatial
approximate string query that is a range query augmented
with a string similarity predicate. Bouros et al. [2] aim to
identify pairs of objects from a spatio-textual database that are
both spatially close and textually similar. Another study [30]
integrates the social influence into traditional spatial keyword
search to improve the answer quality. However, none of the
work mentioned above address the why-not spatial keyword
query problem.

B. Why-Not Query Processing

To improve the usability of database systems, the why-
not problem was introduced by Chapman and Jagadish [6].
Existing approaches can be classified into three categories.
Chapman and Jagadish use manipulation identification to iden-
tify operations that filter out missing objects. Other studies
[16], [17] adopt a database modification to update an original
database so that missing objects become part of query results.
Tran and Chan [28] retrieve the missing objects through
query refinement. He and Lo [15] employ query refinement to
answer why-not questions on top-k preference queries. They
aim to modify the original query with the minimum penalty.
More recent, studies [1], [13], [18] consider how to answer
why-not questions using query refinement in the contexts of
social image search, reverse skyline queries, and reverse top-k
queries, respectively. In [8], we study the why-not question
on spatial keyword top-k queries. However, it only adjusts
the users’ preferences between the spatial distance and the
textual similarity. It does not suggest keywords that better
describe users’ query intentions, which is the focus of this
paper. As adapting the query keywords needs to re-evaluate the
textual similarity between the query and objects, the existing
techniques are not applicable here.



III. PRELIMINARIES AND PROBLEM DEFINITION

A. Preliminaries

We consider a database D of spatial objects. Each object
o ∈ D is a pair (o.loc, o.doc), where o.loc is a point location
and o.doc is a set of generic keywords that describe the
object. A spatial keyword top-k query q retrieves k top ranked
objects from D according to a ranking function that takes into
consideration both spatial distance and textual similarity. For
broad applicability, we consider a widely used ranking function
[10]:

ST (o, q) = α · (1− SDist(o, q)) + (1−α) ·TSim(o, q), (1)

where SDist(o, q) denotes spatial distance normalized by
the maximum possible distance between two points in D,
TSim(o, q) denotes textual similarity, and α ∈ (0, 1) repre-
sents the user’s relative preference between spatial distance
and textual similarity.

A spatial keyword top-k query q is a 4-tuple
(loc, doc, k, α), where q.loc is a query point location,
q.doc is a set of query keywords, q.k is the number of objects
to retrieve, and q.α denotes the user preference. The distance
SDist(o, q) is calculated as the (normalized) Euclidean
distance between p.loc and q.loc. The textual similarity
TSim(o, q) can be computed using an information retrieval
model. Without loss of generality, we adopt the widely-used
Jaccard similarity model [24]:1

TSim(o, q) =
|o.doc ∩ q.doc|

|o.doc ∪ q.doc|
(2)

In the ranking function, the higher the score computed by
Eqn. (1), the higher the ranking of the corresponding object.
We define the rank of an object o as follows:

R(o, q) = |{o′ ∈ D|ST (o′, q) > ST (o, q)}|+ 1 (3)

With the definition of ranking, the spatial keyword top-k
query is defined as follows:

Definition 1: Spatial Keyword Top-k Query. A spatial
keyword top-k query q returns a set R of k objects from D,
where ∀o ∈ R (∀o′ ∈ D − R (ST (o, q) ≥ ST (o′, q))), or
in terms of object rank, ∀o ∈ R (∀o′ ∈ D − R (R(o, q) ≤
R(o′, q))).

B. Why-Not Spatial Keyword Query

It is often difficult for users to find the keywords that best
describe their query intention. Thus, identifying the proper
query keyword set is arguably the key challenge in issuing
a spatial keyword top-k query. After a user issues a query
q = (loc, doc0, k0, α) and receives the result, the user may
observe that one or more objects that were expected to be in the
result are missing. The user may then pose a why-not question
with a set of missing objects M = {m1,m2, ...,mj}, asking
the system for a refined query q′ = (loc, doc′, k′, α) the result

1The algorithm developed in Section IV can support other similarity models
by using the particular spatial keyword top-k query algorithms associated with
these models; the KcR-tree based algorithm proposed in Section V can also
be extended to support other models, e.g., the Dice coefficient and the Cosine
similarity.

1− SDist(o, q) TSim(o, q) ST (o, q)

m 0.5 0.66 0.58

o1 0.2 0.5 0.35

o2 0.9 0.33 0.615

o3 0.4 1 0.7

(b)

{t1, t3}

o1:

q:

o2:

(a)

m:
o3:{t1}

{t1, t2, t3}
{t1, t2}

(1, {t1, t2})

Fig. 1. An Example of Why-not Spatial Keyword Top-k Query

of which contains the missing objects. Since it is possible that
no modified set of keywords can revive the missing objects,
we also consider the enlargement of k. Different modifications
of these two parameters may yield many qualified queries that
retrieve the missing objects, and we prefer the refined query
that minimally modifies the original query. Specifically, we
adopt a penalty model [8], [13], [15] that associates a penalty
with a refined query. It is defined as the weighted sum of the
modifications of the two parameters, i.e., ∆k and ∆doc. The
penalty (cost) of a query q′ that refines an original query q is
defined as follows:

Penalty(q, q′) = λ ·
∆k

R(M, q)− k0
+(1−λ) ·

∆doc

|doc0 ∪M.doc|
(4)

Here, λ is a user preference on the modification of q.k
versus q.doc and R(M, q) = maxmi∈MR(mi, q). Next,
∆k = max (0, k′ − k0) since for a refined query q′, if
R(M, q′) > k0, k′ must be no smaller than R(M, q′) to revive
the missing objects; otherwise, k′ can remain at k0. As in other
studies [8], [15], we normalize ∆k by R(M, q) − k0, as a
basic refined query is to keep the original query keywords
and enlarge k0 to R(M, q); for other refined queries that
modify the query keywords to achieve a lower penalty than
that of this basic one, ∆k must not exceed R(M, q) − k0.
Using the principle of edit distance, the modification of query
keywords ∆doc is quantified as the minimum count, denoted as
ED(doc0 , doc

′), of edit operations needed to transform doc0 to
doc′. For simplicity, we consider two edit operations: insertion
and deletion. Similarly, we normalize ED(doc0 , doc

′) by the
maximum possible number of edit operations needed to modify
doc0 into a doc′ that yields a query that retrieves all objects
in M . This quantity is estimated as |doc0 ∪M .doc|, where

M .doc =
⋃j

i=1 mi .doc. In other words, we just consider the
keywords in M.doc, as adding a keyword not in M.doc would
make the set of query keywords less relevant to the user’s
query intention, i.e., less relevant to the missing objects.

We now define the keyword-adapted why-not spatial key-
word top-k queries as follows:

Definition 2: Keyword-Adapted Why-Not Spatial Key-
word Top-k Query. Given a set D of spatial objects, a
missing object set M ⊂ D, an original spatial keyword
query q = (loc, doc0, k0, α), the keyword-adapted why-not
spatial keyword top-k query returns the refined query q′ =
(loc, doc′, k′, α), with the lowest penalty according to Eqn. (4)
and the result of which contains all objects in M .

TABLE I. AN EXAMPLE OF REFINED QUERIES

Refined Query ∆k ∆doc Penalty

q1 = (3, {t1, t2}) 1 0 0.5

q2 = (1, {t2, t3}) 0 0.66 0.33

q3 = (2, {t1, t3}) 0.5 0.66 0.58

q4 = (2, {t1, t2, t3}) 0.5 0.33 0.415



Example 3: Fig. 1 illustrates the keyword-adapted why-
not query. Figure 1(a) shows the locations and keywords of
four objects and the initial query q. Figure 1(b) lists the values
of 1 − SDist(o, q), TSim(o, q) as well as the ranking score
ST (o, q) of each object with respect to (w.r.t.) the initial query
that has doc0 = {t1, t2}, k0 = 1, and α = 0.5. According to
the ST (o, q) values, we can see that object m has rank 3 under
the initial query, so it is not in the result. Table I lists several
refined queries that retrieve m together with their penalties,
where λ = 0.5. We omit loc and α in the refined queries
as they stay unchanged. In this setting, R(m, q) − k0 = 2
and |doc0 ∪ m.doc| = 3. Query q1 keeps the initial query
keywords and enlarges k0 to R(m, q). So the total penalty is
0.5 · 3−1

2 + 0.5 · 03 = 0.5. Similarly, q2 keeps k0 and changes
the query keywords to {t2, t3}, which causes a smaller penalty.
Query q2 is the best refined query.

IV. BASIC WHY-NOT ANSWERING ALGORITHM

Following the problem analysis, we present a basic algo-
rithm and then several optimizations.

A. Problem Analysis

Recall that we consider refining the query keywords and
k to achieve the inclusion of missing objects. Only refined
pairs (doc′, k′) that satisfy Lemma 1 are candidates for the
best refined query.

Lemma 1: Given a set M of missing objects, a pair of
refined query keywords and a result cardinality (doc′, k′) can
result in the best refined query if and only if (i) k′ = R(M, q′),
when R(M, q′) ≥ k0; or (ii) R(M, q′) ≤ k′ ≤ k0, when
R(M, q′) < k0, where R(M, q′) = maxmi∈MR(mi, q

′).

The proof is straightforward and hence omitted. Lemma 1
implies that given a refined keyword set doc′, we may set
k′ = R(M, q′) to get the minimum penalty. This observation
inspires a basic solution to the keyword-adapted why-not
query. In the following, we first consider a single missing
object m. In Section VI, we show how the algorithms can
be adapted to handle multiple missing objects.

B. Basic Algorithm

The basic algorithm works as follows. First, we determine
the rank R(m, q) of the missing object m w.r.t. the initial
spatial keyword query by processing the query until object m
appears. Then we enumerate all possible query keyword sets
and invoke an existing spatial keyword top-k query algorithm
(e.g., [10]) for each such set to determine the ranking of object
m for each keyword set. Finally, we return the keyword set
with the minimum penalty according to Eqn. (4).

To support spatial-keyword top-k query processing with
the Jaccard similarity model, similar to related work [10],
[26], we employ a hybrid index that estimates bounds on
spatial distance and textual similarity at the same time. This
index, called the SetR-tree, is a variant of the IR-tree [20]. A
leaf node of the SetR-tree stores a number of entries of the
form (o,mbr, pks), where o represents an object, mbr is the
minimum bounding rectangle (MBR) of the object, and pks
is a pointer to the keyword set of o. A non-leaf node stores
a number of entries of the form (pc,mbr, pku, pki), where

pc is a child pointer, mbr is the MBR of the child node,
pku is a pointer to the union of the keyword sets of all the
objects indexed in the subtree rooted at this node, and pki is a
pointer to the intersection of the keyword sets. These two sets
are stored sequentially on disk to reduce the number of disk
seeks. Fig. 2 shows an example SetR-tree, where the keyword
sets associated with each leaf and non-leaf node are shown.
For instance, consider the non-leaf node R3; its union (resp.,
intersection) set is the union (resp., intersection) of keyword
sets associated with leaf nodes R1 and R2.

o1 o2 o3

R1 R2

R1 : : R2

R3

Union Set

Chinese

restaurant

Intersection SetChinese

Spanish

restaurant

o4 o5

Spanish

restaurant

Intersection Set

restaurant

restaurant

Union Set Union Set

Spanish

restaurant

Intersection Set

Fig. 2. An Example SetR-tree

Theorem 1: Consider a query q = (loc, doc, k, α) and
a SetR-tree node N that indexes a set S of objects. Let
MDist(q.loc,N.MBR) denote the minimum distance between
q.loc and N ’s MBR and let N∪ and N∩ denote the union and
intersection keyword sets of N , respectively. It holds that:

∀o ∈ S (ST (o, q) ≤α · (1−MDist(q.loc,N.MBR))

+ (1− α) ·
|N∪ ∩ q.doc|

|N∩ ∪ q.doc|
)

(5)

Proof: As o is enclosed by N.MBR, the distance between
q.loc and o.loc must be no less than MDist(q.loc,N.MBR),
which is to say:

1 − SDist(o.loc, q .loc) ≤ 1 −MDist(q .loc,N .MBR)

Next, o.doc ∈ N∪ and N∩ ∈ o.doc, which ensures that o.doc∩
q.doc ∈ N∪ ∩ q.doc and N∩ ∪ q.doc ∈ o.doc ∪ q.doc. So we
have:

TSim(o.doc, q.doc) =
|o.doc ∩ q.doc|

|o.doc ∪ q.doc|
≤

|N∪ ∩ q.doc|

|N∩ ∪ q.doc|

Recall that ST (o, q) = α ·(1−SDist(o.loc, q.loc))+(1−α) ·
TSim(o.doc, q.doc), where neither of the two terms exceeds
those of Eqn. (5). Thus, Theorem 1 holds.

Theorem 1 enables us to estimate the bounds for spatial
distance and textual similarity using the SetR-tree, which
further provides the bound of the ranking score of each
object indexed by a SetR-tree. This facilitates the search by a
SetR-tree to find the top-k most relevant objects. The spatial
keyword query processing algorithm using the SetR-tree is
similar to that of the IR-tree [20]. Interested readers may refer
to [20] for details.

One other issue we need to address is the possible query
keyword sets. As the total number of distinct keywords in D
may be huge and adding a keyword that is not in m.doc would
make the set of query keywords less relevant to the user’s query
intention, we consider only the keywords in m.doc.



C. Optimizations

The above algorithm essentially executes a spatial keyword
query for each candidate keyword set doc′ to determine the
ranking of the missing object for the set. The doc′ sets
are obtained by adding keywords in m.doc to doc0 and by
deleting keywords originally in doc0. This yields 2|doc0∪m.doc|

candidate keyword sets. For each such keyword set, a spatial
keyword query is processed until the missing object is re-
trieved. We now present techniques that accelerate this process.

1) Early Stop: In the basic algorithm, for each doc′, we
need to invoke a spatial keyword query to determine the
ranking of the missing object, which means that the query can
stop only when the missing object m appears in the result.
However, for a keyword set doc′ that is not very relevant to
m, the number of objects that rank higher than m may be very
large. Fortunately, such extensive computations can be avoided.
We have seen that a basic refined query is to just enlarge k
in the original query to R(m, q) without modifying the query
keyword set. This refined query has penalty λ according to
Eqn. (4). Our approach is to maintain a currently best refined
query together with its penalty pc. The penalty of a refined
query is the sum of two terms: the penalty for modifying k0
and the penalty for modifying doc0. Given a keyword set doc′,
we can compute ∆doc accordingly. The query q′ generated
from doc′ can be the best refined query if and only if:

λ ·
max(0, R(m, q′)− k0)

R(m, q)− k0
+ (1− λ) ·

∆doc

|doc0 ∪m.doc|
≤ pc,

from which we can deduce the ranking lower bound RL(m, q′)
for the missing object m w.r.t. a refined keyword set doc′:

RL(m, q′) = ⌊k0+
pc − (1− λ) · ∆doc

|doc0∪m.doc|

λ
·(R(m, q)−k0)⌋

(6)
Eqn. (6) implies that we can stop processing the spatial
keyword query corresponding to a keyword set doc′ as soon as
we retrieve more than RL(m, q′) objects. When a new query q′

is found that has a smaller penalty than the currently smallest
penalty, pc is updated and query q′ is recorded as the currently
best refined query.

Example 4: Consider a top-5 query, where the ranking
R(m, q) of the missing object under the initial query is 10
and λ = 0.5. Assume that the currently best refined query
qc has penalty pc = 0.5. Now we are going to process a
candidate keyword set doc′ w.r.t. which the ranking of the
missing object is 100. Suppose ∆doc

|doc0∪m.doc| = 0.4. Then

according to Eqn. (6), we can calculate RL(m, q′) = ⌊5 +
0.5−(1−0.5)·0.4

0.5 · (10 − 5)⌋ = 8, which means we can stop
the processing of the query generated by doc′ as soon as we
retrieve 8 objects.

2) Enumeration Order: The order in which we consider the
candidate keyword sets plays an important role in the basic
algorithm. First, pc plays a key role in the pruning, which
further determines RL(m, q′) for an incoming doc′. Finding
a small pc early can speed up the pruning and improve the
efficiency of the algorithm. Second, the dominating objects of
the missing object in the previous queries have high chances
to keep dominating m if the next keyword set is similar to
the previous ones. Thus, we consider the keyword sets in a

particular order. We should first consider the keyword sets who
are more likely to be the final best refined query. We estimate
this “more likely” based on two conjectures: keyword sets with
a smaller edit distance to the original keyword set are “more
likely” since they incur lower penalty; and adding a keyword
that is more particular to a missing object will make the query
more related to m. We define the particularity of a keyword
t to an object o using the IDF (inverse document frequency)
weight as follows:

Parti(o, t) =

{

−log |D|−nt+0.5
nt+0.5 t /∈ o.doc

log |D|−nt+0.5
nt+0.5 t ∈ o.doc

, (7)

where nt is the number of objects that contain the keyword t.
Thus, we consider the candidate keyword sets in increasing
order of their edit distance to doc0. Further, sets with the
same edit distance are considered in ascending order of the
sum of the total particularity of the inserted (+) and deleted
(-) keywords. This ordering also provides an early termination
condition on the enumeration process: when the current pc
is less than the penalty of the next keyword set in the
modification of keywords, we can guarantee no remaining
keyword sets can be the best refined set, and we can return
the currently best refined set as the final solution.

3) Keyword Set Filtering: Since similar keyword sets have
similar textual similarities to an object, the rankings of objects
according to the scoring function (Eqn. (1)) may be similar for
similar query keyword sets. For instance, if we have processed
a spatial keyword query for a keyword set doc0 and have
obtained the set C of objects that rank higher than missing
object m (i.e., dominators of m) then for the keyword set doc′

that is obtained by slightly modifying doc0, e.g., removing
a keyword from doc0, the textual similarity and ranking for
each object in C will change very little. Thus, the objects in
C will stand a good chance to keep ranking higher than m.
Therefore, we propose to cache the dominators of the missing
object retrieved from the previously processed query. Before
generating and processing a spatial keyword top-k query for a
new keyword set doc′, we test how many cached dominators
still rank higher than the missing object. If this number exceeds
the lower bound of the ranking we derived for doc′ using
Eqn. (6), doc′ can be pruned safely without further processing.

4) Parallel Processing: Another observation is that the
processing of spatial keyword queries generated from different
candidate keyword sets is independent of each other, with
the exception that the parameters such as pc and RL need
to be synchronized to stop early. As such, we also optimize
the algorithm by concurrently processing the queries using
multiple physical threads available in the underlying machine.

Algorithm 1 summarizes the basic algorithm along with
the optimizations.

V. BOUND-AND-PRUNE ALGORITHM

While the optimizations make the basic algorithm more ef-
ficient, it still needs to invoke a spatial keyword query for each
candidate keyword set one by one, where each time multiple
SetR-tree nodes need to be loaded into memory and accessed.
As I/O operations are much more costly than in-memory
operations, loading the index nodes and data objects for each
keyword set is wasteful. Also, the intersection/union keyword



Algorithm 1 Basic Algorithm for Answering Why-not Ques-
tions

INPUT: SetR-tree T , original query q = (loc, doc0, k0, α),
missing object m
OUTPUT: Best refined query q′ = (loc, doc′, k′, α)

1: determine R(m, q)
2: doc′ ← doc0, k

′ ← R(m, q), pc ← λ //initialize the best
refined query and the penalty threshold using the basic
refined query

3: S ← ∅ // a candidate query keyword set
4: repeat
5: S ← NextKeywordSet() // find the next query keyword

set according to the enumeration order
6: if (1− λ) · ∆doc

|doc0∪m.doc| ≥ pc
7: break
8: compute RL for S according to Eqn. (6)
9: t← 0

10: for each object o in C
11: if ST (o, qS) > ST (m, qS) then t + + //qS is the

spatial keyword query generated by the keyword set S
12: if t ≥ RL

13: continue
14: determine R(m,S) by processing a spatial keyword

query // in query processing, if the number of retrieved
objects exceeds RL, the processing terminates and the
algorithm continues to the next keyword set

15: compute the penalty p for S according to Eqn. (4)
16: if p < pc then
17: pc ← p, doc′ ← S, k′ ← R(m,S)
18: until S = ∅
19: return q′ = (loc, doc′, k′, α)

sets in an upper node of the SetR-tree may be empty/large
if the underlying objects are from different categories, which
would further slow down the processing of a spatial keyword
query. To address these problems, we present an index-based
bound-and-prune algorithm that finds the best sample out of
a number of keyword sets and prunes the others in just one
index access. As the index nodes and data objects are loaded
just once for a set of keyword sets, substantial I/O can be
saved.

A. Preliminaries: KcR-Tree

We adopt the KcR-tree (Keyword count R-tree) [22] as
the index structure. Essentially, a KcR-tree is an R-tree that
integrates the textual information of the indexed objects into
each tree node.

A leaf node of the KcR-tree contains entries of the form
(o,mbr, pks), where o represents an object, mbr is the min-
imum bounding rectangle of the object, and pks is a pointer
to the keyword set of the object. A non-leaf node contains
entries of the form (pc,mbr, pcm), where pc is a pointer to
a child node, mbr is the minimum bounding rectangle of the
child node, and pcm is a pointer to a keyword-count map kcm
of the child node. More specifically, kcm is a key-value map
where each key is a keyword corresponding to the objects in
the child node and each value is the number of objects in
the child node that contain this keyword. In addition, each
node of the KcR-tree stores a cnt value, which is the total
number of the objects indexed in the subtree rooted at this
node. Fig. 3 illustrates a KcR-tree. For example, in R1, the

value cnt = 3 means that the subtree of this node indexes
3 objects, i.e., o1, o2, o3. The kcm of this node has keys for
o1.doc ∪ o2.doc ∪ o3.doc = {Chinese, restaurant}. Two of
the three objects have the keyword Chinese and all of them
have the keyword restaurant.

o1 o2 o3

R1 R2

R1 : R2 :

R3 :

Keyword-Count Map

Keyword-Count Map

Chinese 2

restaurant 3

cnt= 5

cnt=3

Chinese 2

Spanish 2

restaurant 5

o4 o5

Spanish 2

restaurant 2

Keyword-Count Map

cnt=2

Fig. 3. An Example KcR-tree

B. Properties of KcR-tree

Given a KcR-tree node N , for a query keyword set S,
we can estimate the upper and lower bounds on the number
of objects in N that rank higher than the missing object m.
Let MaxDom(N,S,m) and MinDom(N,S,m) denote the
upper and lower bounds, respectively. We proceed to show how
such bounds are estimated.

Theorem 2: Given a KcR-tree node N , an initial query q,
a missing object m, and a refined query keyword set S, if an
object o indexed in N ranks higher than m under the new
query, the following inequality must hold:

TSim(o, S) >
α

1− α
· (MinDist(N, q)− SDist(m, q))

+ TSim(m,S),
(8)

where MinDist(N, q) is the minimum distance between the
query location q.loc and N ’s minimum bounding rectangle.

Proof: Under the new query, if an object o in node N
ranks higher than m, it holds that:

α · (1− SDist(o, q)) + (1− α) · TSim(o, S)

> α · (1− SDist(m, q)) + (1− α) · TSim(m,S),

which can be rewritten as:

TSim(o, S) >
α

1− α
· (SDist(o, q)− SDist(m, q))+TSim(m,S)

Since object o is enclosed by node N ’s minimum bounding
rectangle, the following is true:

SDist(o, q) > MinDist(N, q)

The theorem follows by combining the two inequalities.

Theorem 2 provides a lower bound of the textual similarity
for an object o in N that ranks higher than the missing object
w.r.t. query keyword set S. We denote the lower bound as
TSim(N, o, S)L. Next, we introduce another important metric,
the pseudo textual similarity between a KcR-tree node N and
a keyword set S, which will be used in the estimation of the
ranking bounds.

Definition 3: The pseudo textual similarity between a
KcR-tree node N and a keyword set S is defined as follows:

TSim∼(N,S) =

∑

t∈S∩N.doc N.count(t)

|S| ·N.cnt+
∑

t∈N.doc−S N.count(t)
,



where N.doc denotes the keyword set in N ’s keyword-count
map and N.count(t) denotes the counting of term t in node
N .

The following theorem establishes a relationship between
TSim(N, o, S)L and the pseudo textual similarity.

Theorem 3: Given a KcR-tree node N , an initial query q, a
missing object m, and a refined keyword set S, all the objects
indexed in N are dominators of m if and only if:

TSim∼(N,S) ≥ TSim(N, o, S)L

Proof: Based on Theorem 2, to ensure each object indexed
in N is a dominator of m, it holds that ∀o ∈ N (TSim(o, S) >
TSim(N, o, S)L). According to the definition of textual simi-

larity, TSim(o, S) = |o.doc∩S|
|o.doc∪S| ≥ TSim(N, o, S)L. Therefore,

for each object o ∈ N , the inequality |o.doc ∩ S| ≥ |o.doc ∪
S| ·TSim(N, o, S)L holds, from which we can further deduce
that:

∑

o∈N

|o.doc ∩ S| ≥
∑

o∈N

|o.doc| · TSim(N, o, S)L

Since N.doc =
⋃

o∈N o.doc, we have
∑

o∈N |o.doc ∩ S| =
∑

t∈S∩N.doc N.count(t) and
∑

o∈N |o.doc∪S| = |S|·N.cnt+
∑

t∈N.doc−S N.count(t). Thus,
∑

t∈S∩N.doc N.count(t) ≥
(|S| · N.cnt +

∑

t∈N.doc−S N.count(t)) · TSim(N, o, S)L,
which can be further rewritten as TSim∼(N,S) =∑

t∈S∩N.doc
N.count(t)

|S|·N.cnt+
∑

t∈N.doc−S
N.count(t) ≥ TSim(N, o, S)L. The the-

orem follows.

Theorem 3 implies that, given a KcR-tree node N , if the
inequality TSim∼(N,S) ≥ TSim(N, o, S)L does not hold, at
least one object in N ranks lower than the missing object m.
This suggests a possibility of estimating MaxDom(N,S,m)
and allows us to develop Algorithm 2 to derive it. We first
assume that all objects in N dominate the missing object m,
i.e., MaxDom(N,S,m) = N.cnt (Line 4). We then iteratively
virtually prune objects from N until Theorem 3 holds for the
consequent virtual node and return the number of remaining
objects as the upper bound on m’s dominators in N (Lines
5–14). As we do not know the keyword sets of each object in
N , to find the upper bound MaxDom(N,S,m), we assume
all the virtually pruned objects are irrelevant to the set of
query keywords. We associate the irrelevant (resp., relevant)
keywords with the pruned (resp., remaining) objects as many
as possible. To do so, we divide the keywords in N.doc into
two categories, i.e., N.doc− S and N.doc∩ S. The keywords
in N.doc ∩ S, which are relevant to the query keywords, are
kept for the remaining objects, except we have to associate
them with the pruned ones, i.e., N.count(t) > ans (Line 11).
The keywords in N.doc−S, which are irrelevant to the query
keywords, are pruned as long as we can associate them with
the pruned object, i.e., the keyword set TN−S ← {t | t ∈
N.doc − S ∧ N.count(t) ≥ (N.cnt − ans)} (Line 12). We
omit the details of the estimation of MinDom(N,S,m) as it
is done similarly.

Example 5: Consider a KcR-tree node N , whose
keyword-count map is {(t1, 8), (t2, 3), (t3, 7), (t4, 2), (t5, 1)}
and N.cnt = 8. Assume the query keyword set S = {t3, t4}
and that we have computed TSim(N,S, o)L = 0.395. In this
setting, S ∩N = {t3, t4} and N − S = {t1, t2, t5}. We start
by assuming all the objects indexed in N rank higher than

Algorithm 2 MaxDom(N,S,m)

INPUT: A KcR-tree Node N , a keyword set S, the missing
object m
OUTPUT: MaxDom(N,S,m)

1: calculate TSim(N, o, S)L
2: CS∩N ←

∑

t∈S∩N.doc N.count(t)
3: CN−S ←

∑

t∈N.doc−S N.count(t)
4: ans← N.cnt
5: while ans > 0 do
6: TSim∼(N,S)← CS∩N

|S|·ans+CN−S

7: if TSim∼(N,S) ≥ TSim(N, o, S)L then
8: return ans
9: else

10: ans← ans− 1
11: TS∩N ← {t|t ∈ N.doc ∩ S ∧N.count(t) > ans}
12: TN−S ← {t|t ∈ N.doc−S∧N.count(t) ≥ (N.cnt−

ans)}
13: CS∩N ← CS∩N − |TS∩N |
14: CN−S ← CN−S − |TN−S |

the missing object m w.r.t. S, i.e., MaxDom(N,S,m) = 8.
We try to verify our assumption using Theorem 3. We find
that TSim∼(N,S) = 9

2·8+12 = 9
28 < TSim(N,S, o)L.

Our assumption fails. Then we modify our assumption on
MaxDom(N,S,m) and virtually prune an object o from
the node by associating as many irrelevant keywords as
possible with o, which leads to a virtual KcR-tree node
N ′ that indexes 7 objects and has keyword-count map
{(t1, 7), (t2, 2), (t3, 7), (t4, 2), (t5, 0)}. Again, we test the as-
sumption and find TSim∼(N,S) = 9

23 , which is still less than
0.395. Hence, we prune one more object from N ′. However,
as N ′.count(t5) = 0, we cannot associate t5 with the pruned
objects; on the other hand, as N ′.count(t3) = N ′.cnt, we
have to associate it with the pruned object. After this iteration,
the pseudo textual similarity between the consequent node and
S is 0.4, which exceeds TSim(N,S, o)L. Thus, the function
terminates and returns 6 as MaxDom(N,S,m).

C. Optimized Bound-and-Prune Algorithm

As shown above, given a KcR-tree node N , a refined
keyword set S (a refined query), and the missing object
m, we can estimate the upper and lower bounds on the
number of objects indexed in N that dominate m w.r.t. S, i.e.,
MaxDom(N,S,m) and MinDom(N,S,m). Based on this,
we propose an optimized bound-and-prune algorithm.

The basic idea is as follows. Given a set CK of can-
didate keyword sets, we traverse the KcR-tree T starting
from the root. For each candidate keyword set S in CK,
we maintain the upper and lower bounds of the missing

object m’s ranking under S, i.e., Ř(S,m) and R̂(S,m), which
are initially estimated as MaxDom(T .root, S,m) + 1 and
MinDom(T .root, S,m)+1. By knowing m’s ranking bounds
w.r.t. a keyword set S, we can compute the penalty upper
bound and lower bound on the candidate keyword set S, i.e.,
p̂n(S) and p̌n(S). When we traverse the KcR-tree downwards
and access lower level nodes, the penalty bounds p̂n(S) and
p̌n(S) of a candidate keyword will be tightened gradually

along with updates of R̂(S,m) and Ř(S,m). We can safely
prune a keyword set S if p̌n(S) exceeds the penalty of the
known best refined query. And we can replace the known best



refined query with the query generated by S if p̂n(S) is less
than its penalty.

The optimized bound-and-prune algorithm determines the
best refined query keyword set among a set of candidates in
just one traversal of the KcR-tree. It estimates the missing
object’s ranking as well as the penalty w.r.t. each candidate
keyword set S before actually unfolding a KcR-tree node.
The algorithm is detailed in Algorithm 3. It takes as input
a currently known best refined query q′ and a set of candidate
keyword sets CK, and it returns the best refined query among
the input q′ and the queries generated by each query keyword
set in CK. The currently best refined query is initialized to
the basic refined query that just sets the number of retrieved
objects to R(m, q) and keeps the initial query keywords. Let

D̂(N,S) and Ď(N,S) denote the upper and lower bounds of
the number of objects in a KcR-tree node N that rank higher
than the missing object m, which can be computed by the two
functions MaxDom(N,S,m) and MinDom(N,S,m), respec-
tively. First, we estimate the upper bound and lower bound of
the ranking of the missing object m w.r.t. each candidate key-

word set S as Ď(T .root, S)+1 and D̂(T .root, S)+1 (Lines
2–6). Then we insert the root T into the queue Q (Line 7) and
start to traverse the KcR-tree. In each iteration, we dequeue a
KcR-tree node N from Q (Line 9). By unfolding N , we obtain
more detailed spatial and textual information. We next access

each child c of N and compute D̂(c, S) and Ď(c, S) by calling
the MaxDom(c, S,m) and MinDom(c, S,m) functions (Lines
14–15). By doing so, we get tighter upper and lower bounds
of objects in N that rank higher than the missing object, i.e.,

D̂′(N,S) =
∑

c∈N D̂(c, S) and Ď′(N,S) =
∑

c∈N Ď(c, S)

(Lines 16–17). Obviously, the difference between D̂(N,S)
and D̂′(N,S) is the number of objects that are considered
wrongly to rank higher than m when we just access N . Thus,
we can re-estimate the upper bound of m’s ranking w.r.t S
more accurately by subtracting this difference (Line 18). The
tightened lower bound of the ranking of m under S can be
computed similarly (Line 19). With the tighter bounds on m′s
ranking w.r.t S, we can compute its penalty upper bound and
lower bound according to the penalty function Eqn. (4) (Line
20). We update the currently known best refined query with
the query generated by S if the penalty upper bound p̂n(S)
of S is smaller than pc (Lines 21–23). Otherwise, we prune
a candidate S if p̌n(S) > pc (Lines 25–26). Also, we prune
the nodes that cannot further tighten the bounds (Lines 29–
30). We return the best refined query after Q or CK becomes
empty (Lines 27–28, Line 33).

D. Strategic Use of Algorithm 3

Algorithm 3 finds the best refined query among a set of
candidate keyword sets. One straightforward way of using
Algorithm 3 to answer a why-not query is to first generate all
the candidate keyword sets and input them to the algorithm.
However, the performance of Algorithm 3 is dominated by
the execution time of the MaxDom and MinDom functions,
which is proportional to the number of candidate keyword sets.
While the straightforward way of using the algorithm may
work well for a small number of candidate keyword sets, we
proceed to present a strategy to divide all the candidates into
subsets according to their penalty, i.e., the edit distance, from
the initial query keyword set. This helps speed up the process
and triggers early stop that avoids enumerating all candidates.

Algorithm 3 KcR-tree Based Algorithm for Answering Why-
not Questions

INPUT: KcR-tree T , current best refined query q′ =
(loc, doc′, k′, α), candidate keyword sets CK, missing object
m, current best penalty pc
OUTPUT: Best refined query q′ = (loc, doc′, k′, α) among
keyword sets in CK and its penalty pc

1: Q ← empty queue
2: for each keyword set S in CK do

3: D̂(T .root, S)← MaxDom(T .root, S,m)
4: Ď(T .root, S)← MinDom(T .root, S,m)
5: R̂(S) ← D̂(T .root, S) + 1 // ranking lower bound of

missing object m under keyword set S
6: Ř(S) ← Ď(T .root, S) + 1 // ranking upper bound of

m under S
7: insert T .root into Q
8: while Q is not empty do
9: N ← Dequeue(Q)

10: for each keyword set S in CK do

11: D̂′(N,S)← 0
12: Ď′(N,S)← 0
13: for each child c of N do
14: D̂(c, S)← MaxDom(c, S,m)
15: Ď(c, S)← MinDom(c, S,m)
16: D̂′(N,S)← D̂′(N,S) + D̂(c, S)
17: Ď′(N,S)← Ď′(N,S) + Ď(c, S)
18: R̂(S)← R̂(S)− (D̂(N,S)− D̂′(N,S))
19: Ř(S)← Ř(S)− (Ď′(N,S)− Ď(N,S))
20: compute p̂n(S),p̌n(S) from R̂(S),Ř(S) according to

Eqn. (4)
21: if p̂n(S) < pc then
22: pc ← p̂n(S)
23: doc′ ← S
24: for each keyword set S in CK do
25: if p̌n(S) > pc then
26: prune S from CK
27: if S is empty then
28: return (loc, doc′, k′, α), pc
29: for each child c of N do
30: if c is an object or D̂(c, S) = Ď(c, S) for all S in

CK then
31: continue
32: insert c into Q
33: return (loc, doc′, R̂(doc′), α), pc // R̂(doc′) = Ř(doc′) at

last

We access the subsets in ascending order of their penalty, and
for each such subset, we invoke Algorithm 3 to determine the
best refined query. The process stops when the penalty of the
known best refined query is no larger than that of the next
retrieved subset.

The details are shown in Algorithm 4. The first step is to
determine the ranking of the missing object under the initial
query, i.e., R(m, q) (Line 1). This can be done by slightly
modifying the underlying spatial-keyword top-k algorithm by
changing the stop condition from retrieving top-k objects
to retrieving the missing object m. Then we initialize the
currently best refined query to be the basic one (Line 2).
Afterwards, we iteratively find the subset of query keywords
in ascending order of their edit distance to the initial query
keywords and invoke Algorithm 3 until the next subset’s



penalty in the textual dimension is no less than that of the
known best refined query (Lines 3–7).

Algorithm 4 Answering Why-not Query

INPUT: KcR-tree T , original query q = (loc, doc0, k0, α),
missing object m
OUTPUT: Best refined query q′ = (loc, doc′, k′, α)

1: determine R(m, q)
2: doc′ ← doc0, k

′ ← R(m, q), pc ← λ // initialize the best
refined query and the penalty threshold with the very basic
refined query

3: for k from 1 to |doc0 ∪m.doc| do

4: if (1− λ) · k
|doc0∪m.doc| ≥ pc then

5: break
6: CK ← NextKeywordSets() // find the next set of

keyword sets that has k edit distance from doc0
7: invoke Algorithm 3 using (T , q′, CK, pc,m) to deter-

mine the currently best refined query q′ and its penalty
pc

8: return q′ = (loc, doc′, k′, α)

VI. MULTIPLE MISSING OBJECTS AND APPROXIMATE

ALGORITHM

A. Multiple Missing Objects

Both proposed algorithms can be extended to handle
queries with multiple missing objects. In particular, two issues
must be addressed to contend with multiple missing objects.
The first is to find those candidate keyword sets to consider.
The second is to include all missing objects when applying
the algorithms.

Regarding the first issue, recall that the candidate keyword
sets for the refined query is obtained from modifying the
initial query keywords doc0 by adding keywords to doc0 and/or
deleting existing keywords from doc0. In queries with multiple
missing objects, we consider adding only the keywords in

M.doc, where M.doc =
⋃j

i=1 mi.doc. There are two reasons.
First, adding a keyword that is not in M.doc makes the set
of query keywords less relevant to the user’s query intention,
i.e., less relevant to any of the missing objects. Second, if we
were to consider adding a keyword t not in M.doc, it is best to
add a keyword that is not even in the whole dataset, as such
a keyword does not also increase any other object’s textual
similarity. However, this would also make the refined queries
less relevant to the missing objects.

To achieve the inclusion of all missing objects, we slightly
modify the algorithms. First, we use R(M, q) instead of
R(m, q) when estimating the penalty (Eqn. (4)). In the basic
algorithm, the largest modification is to stop a generated
spatial keyword query when all missing objects are retrieved.
Similarly, in the KcR-tree based algorithm, for each candidate
keyword set, MaxDom(T , S,M) and MinDom(T , S,M)
are estimated as maxmi∈MMaxDom(T , S,mi) and
minmi∈MMinDom(T , S,mi), respectively. The estimation

of the missing objects’ rankings (R̂(S) and Ř(S)) and the
penalty (p̂n(S) and p̌n(S)) w.r.t. each candidate keyword set
S is changed accordingly. All the optimization techniques can
be adapted similarly to support queries with multiple missing
objects.

B. Approximate Algorithm

So far, we have focused on finding the exact solution with
the least penalty among all candidate keyword sets. The num-
ber of candidate keyword sets grows fast when |doc0∪M.doc|
increases. Although several optimizations and an index-based
algorithm are proposed for the why-not question, the exact
algorithm could still be costly when the number of the query
keywords is huge. In such cases, we can trade solution quality
for execution time. Instead of taking into consideration of all
the candidate keyword sets, we apply the algorithms only to
a sample of all sets to find an approximate solution. As with
typical sampling-based methods [13], [15], two key issues need
to be addressed: the sample size and how to obtain high quality
keyword sets in the sample.

A larger sample size is more likely to yield a higher
quality solution. However, a larger sample size will also result
in longer processing time. A nice property of the proposed
algorithms is that they can work on samples of any size, which
lends themselves naturally to enable a tradeoff between result
quality and running time. We shall study the effect of the
sample size T experimentally in Section VII-B.

To sample high quality keyword sets, based on the analysis
of the enumeration order that we discussed in Section IV-C2,
we greedily choose the first T keyword sets with the highest
total particularity w.r.t. the missing objects due to editing the
initial query keyword set.

VII. EMPIRICAL STUDY

The ensuing experimental study primarily considers three
methods: the basic algorithm developed in Section IV-B (re-
ferred to as BS), the basic algorithm with the optimizations
from Section IV-C (referred to as AdvancedBS), and the KcR-
tree approach with the optimizations developed in Section V
(referred to as KcRBased). We also implement the approximate
algorithm and evaluate its performance and solution quality.

A. Experimental Setup

1) System Setup and Metrics: All experiments are con-
ducted on a PC with an Intel Core i7 3.4GHz CPU and
16GB memory running Windows 7 OS. The algorithms are
implemented in Java, and the maximum main memory of the
Java Virtual Machine is set to 4GB. The index structures, the
SetR-tree and the KcR-tree, are both disk-resident. The page
size is set to 4KB, the buffer size is set to 4MB, and the
capacity of a node is set to 100. For all algorithms under
evaluation, we use two metrics, the number of I/Os and the
query time, to evaluate their performance. For each experiment,
we randomly generate 1,000 queries and report the average
result.

2) Datasets: We use two real datasets, EURO and GN, in
the experiments. EURO is a dataset of points of interest like
ATMs, hotels, and stores in Europe (www.allstays.com); and
GN is obtained from the US Board on Geographic Names
(geonames.usgs.gov) and contains a set of geographic objects.
Both of them are commonly used in spatial keyword related
research [4], [5], [8], [23], [31]. Each dataset contains a
number of objects represented by a spatial location and a set
of keywords. More details about the datasets are provided in
Table II.



TABLE II. DATASET INFORMATION

Dataset EURO GN

Total # of objects 162,033 1,868,821

Total # of distinct words 35,315 222,407

3) Parameters: We evaluate the performance of our al-
gorithms by varying different parameters. The parameters
together with their default values (in bold face) are shown
in Table III. Unless specified otherwise, the experiments are
conducted using the dataset EURO, and we set the missing
object as the one ranked at 5 · k0 + 1 in the initial query.

TABLE III. PARAMETER SETTING

Parameter Setting

k0 3, 10, 30, 100

# of keywords 2, 4, 6, 8

α 0.1, 0.3, 0.5, 0.7, 0.9

R(m, q) 31, 51, 101, 151, 201

λ 0.1, 0.3, 0.5, 0.7, 0.9

# of missing objects 1, 2, 3, 4

B. Experimental Result

1) Varying k0: We first vary parameter k0 in the initial
query to observe its effect on the performance of the algo-
rithms. The ranking of the missing object varies along with k0,
i.e., R(m, q) = 5 · k0 +1. For instance, when the initial query
is varied from a top-3 to a top-10 query, corresponding why-
not queries are posed to identify keyword sets that retrieve
objects that rank from 16 to 51. Fig. 4 shows the results.
Recall that in the basic algorithm, a spatial keyword query
is executed for each candidate keyword set until the missing
object is retrieved. Since the ranking of the missing object
drops as k0 increases, the time for executing a spatial keyword
query increases. Thus, the basic algorithm is quite sensitive to
changes in k0. On the other hand, thanks to the optimization
techniques developed, AdvancedBS and KcRBased scale much
better when k0 increases, and KcRBased achieves the best
performance. For example, when k0 = 100, KcRBased runs
almost 5 times faster than BS and reduces the I/O by more
than 70%.
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Fig. 4. Varying k0

2) Varying the number of initial query keywords: This set
of experiments evaluates the effect of varying the number of
query keywords in the initial query. The results are shown
in Fig. 5. Intuitively, the number of keywords influences the
performance of the algorithms in two aspects. First, more
query keywords mean that more time will be consumed to
compute the textual similarity between tree nodes/objects and
query keywords; second, the candidate query keyword sets may
grow exponentially when the number of initial query keywords
increases.

The number of candidate keyword sets is a dominant factor.
As the basic algorithm needs to process a spatial keyword
query to determine the rank of the missing object under each

candidate keyword set, the query time of BS increases dramat-
ically when the number of initial query keywords increases. In
contrast, AdvancedBS and KcRBased increasingly outperform
BS when the number of initial query keywords increases. For
queries with 6 or more query keywords, KcRBased runs 1.5
times faster than AdvancedBS and outperforms BS by an order
of magnitude in query time.
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Fig. 5. Varying the number of initial query keywords

3) Varying α: In this set of experiments, we study the
effect of parameter α. Fig. 6 plots the results. According to
the ranking function in the spatial keyword top-k query, i.e.,
Eqn. (1), a smaller α means a higher weight to the textual
similarity, which reduces the importance of spatial distance.
As a result, the pruning ability of the R-tree based indexes
decreases, and more tree nodes may need to be accessed. That
is the main reason why a smaller α causes more I/O in all
tested algorithms. On the other hand, as a large (resp., small)
α gives higher weight to the spatial (resp., textual) dimension
in the ranking function, this reduces the pruning capability in
the other dimension. This may be the reason why a medium
α has the least execution time.
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Fig. 6. Varying α

4) Varying λ: Next we investigate the effect of parameter
λ in the penalty function, which allows users to indicate
their preferences on modifying the query keywords versus
modifying k. As shown in Fig. 7, the basic algorithm is
almost unaffected by λ. The reason is that in BS, λ is only
used to compute the penalty of a candidate keyword set
after the generated spatial keyword query determines the rank
of the missing object; the computation is exactly the same
for different λ values. However, in both AdvancedBS and
KcRBased, the currently best refined query and its penalty
are maintained for further pruning, which is initialized using
the basic refined query that keeps the query keywords and
sets k0 to R(m, q) to include the missing object. According to
Eqn. (4), the penalty of the basic refined query is λ. A smaller
λ leads to a smaller initially seen penalty in AdvancedBS and
KcRBased, which can improve the pruning ability. Therefore,
the query time of AdvancedBS and KcRBased increases with
λ. However, KcRBased is more stable than AdvancedBS.

5) Varying the rank of the missing object: In this set of
experiments, we study the performance when the initial rank
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Fig. 7. Varying λ

of the missing object is varied. Since the initial query is a
spatial keyword top-10 query, we ask five different why-not
questions with the missing object ranked 31, 51, 101, 151,
and 201. As shown in Fig. 8, the performance of BS is much
more sensitive to changes in the rank of the missing object,
whereas AdvancedBS and KcRBased are affected only slightly.
The reason is the same as when varying k0. In fact, the results
of this set of experiments and those of varying k0, i.e., Fig. 8
and Fig. 4, are quite similar. This implies that the performance
of the algorithms is affected significantly by the initial rank of
the missing object and has little to do with k0.
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Fig. 8. Varying the missing object’s initial ranking

6) Varying the number of missing objects: We also study
performance when the number of the missing objects changes.
In this set of experiments, the initial query is a top-10 spatial
keyword query with 4 query keywords. The missing objects
are randomly selected from the objects ranked between 11
and 51 w.r.t. the initial query. Fig. 9 plots the results. We can
observe that the number of missing objects has a remarkable
effect on the performance of the algorithms. The reason is
that for multiple missing objects, we need to consider the
union of all the missing objects’ keywords as the search space,
which means that the number of the candidate keyword sets
may increase dramatically along with the increasing number
of missing objects. We can also see that AdvancedBS and
KcRBased scale much better than BS when the number of
missing objects grows.
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Fig. 9. Varying the number of missing objects

7) Varying the number of threads: In Fig. 10, we further
evaluate the performance of the algorithms when the spatial
keyword queries are processed in parallel. The KcRBased algo-
rithm is parallelized by dividing the set of candidate keyword

sets into several smaller sets and running the algorithm on each
set while the currently known best refined query and its penalty
are synchronized for pruning and early termination. The per-
formance of the algorithms can be accelerated significantly by
using up to 8 threads.
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8) Pruning abilities of optimizations: We show the query
performance of different optimizations in Fig. 11, where Opt1,
Opt2, and Opt3 represent the strategies of early stopping,
considering the enumeration order, and keyword set filtering,
respectively. Each optimization reduces the query time. In
particular, keyword set filtering is the most effective, as it
prunes candidate keyword sets before even processing the
corresponding spatial keyword queries.
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9) Approximate Algorithm: In this set of experiments,
we evaluate the performance of the approximate algorithm
(Section VI-B). The initial query is a top-10 query with 8
query keywords. The approximate algorithm is implemented
by sampling different numbers, between 100 and 800, of
keyword sets from all the candidate sets. The query time and
the average penalty of the returned best refined query w.r.t.
the sample size together with those of the exact algorithm
are shown in Fig. 12. We can see that the query time of
BS is linear to the sample size. This is because, for each
sample, a spatial keyword query needs to be processed until
retrieving the missing object. Moreover, for each sample size,
the penalties of the refined queries are the same when using
the different algorithms. This is because the sample space is
the same and each algorithm returns the best refined query
among the samples. We can also observe that the penalty
generally decreases as the sample size increases. In particular,
for KcRBased, when the sample size is 800, the approximate
algorithm sacrifices only 12% of the penalty while saving 30%
of the query time.

10) Scalability: Finally, we test the scalability of the
algorithms. We randomly select different numbers of objects
from the GN dataset to evaluate the query performance under
different dataset sizes. The initial spatial keyword query is a
top-10 query. Fig. 13 plots the result. As we can see, the query



time and page access of the algorithms grow almost linearly
when the dataset cardinality increases. Since we do not change
the candidate keyword sets with the increase of the dataset size,
the number of spatial keyword queries varies only little. The
cost of processing a spatial keyword query increases linearly
with the dataset size, which then explains the performance
trend of our algorithms under different dataset sizes.
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VIII. CONCLUSION

In this paper, we have studied the problem of answer-
ing why-not queries in the context of spatial keyword top-
k queries by refining the original query keywords, which
provides users with keywords that better describe their query
intention. We have proposed a basic algorithm with a set of
optimization techniques that finds the best solution based on
testing the candidate keyword sets one by one. Furthermore,
we have proposed a more efficient KcR-tree-based algorithm
that quickly determines the best solution among all candidates
using a bound-and-prune strategy. We have also extended these
algorithms to handle multiple missing objects and presented a
sampling-based approximate algorithm. Extensive experiments
on real datasets demonstrate that the optimized algorithm and
the KcR-tree-based algorithm are scalable and able to reduce
the query time by up to an order of magnitude in various
settings. In addition, the approximate algorithm achieves a
good tradeoff between result quality and running time.

In future work, it is of interest to investigate the refinement
of query location in spatial keyword top-k queries. Based on
this, we plan to build an integrated framework that supports
the answering of why-not questions on spatial keyword top-k
queries while considering different parameters, including the
refinement of parameter α, the query keyword set, and the
location in a concerted fashion.
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