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Abstract—Query processing that preserves both the query
privacy at the client and the data privacy at the server is a new
research problem. It has many practical applications, especially
when the queries are about the sensitive attributes of records.
However, most existing studies, including those originating from
data outsourcing, address the data privacy and query privacy
separately. Although secure multiparty computation (SMC) is a
suitable computing paradigm for this problem, it has significant
computation and communication overheads, thus unable to scale
up to large datasets. Fortunately, recent advances in cryptography
bring us two relevant tools — conditional oblivious transfer and
homomorphic encryption. In this paper, we integrate database
indexing techniques with these tools in the context of private
search on key-value stores. We first present an oblivious index
traversal framework, in which the server cannot trace the index
traversal path of a query during evaluation. The framework is
generic and can support a wide range of query types with a
suitable homomorphic encryption algorithm in place. Based on
this framework, we devise secure protocols for classic key search
queries on B+-tree and R-tree indexes. Our approach is verified
by both security analysis and performance study.

I. INTRODUCTION

In the information age, organizations, corporations or even
individuals collect and own large amounts of data, based on
which they provide query services to subscribers. As these
data are private assets of the service providers, they should
be properly protected against the subscribers, who should get
only the query results and nothing beyond. On the other hand,
the subscribers have similar privacy requirements — neither
their queries nor the results (from which sensitive information
might be inferred) should be learnt by the service providers.
Protection of mutual privacy fits into many business models,
one of which is the NoSQL key-value store on cloud databases
(e.g., Amazon’s SimpleDB [1]). The most common query in
this model is to search a key for its corresponding value. For
example, a WiFi service provider stores the WPA2 network
security keys of all WiFi hotspots it manages. A subscriber
queries for the security key of the hotspot to which he/she
is connecting. From the service’s perspective, the subscriber
should access the key for this hotspot only; whereas from the
subscriber’s perspective, the service should not learn which
hotspot he/she is connecting since this will disclose his/her
location information.

Such application scenarios widely exist in commercial,
medical, public service and military sectors, where both

queries and data can reveal confidential intelligence. As an-
other example, a doctor accesses an electronic health record
(eHR) database for his/her patient’s recent biological test
result. The doctor should receive only this patient’s result
through a unique identifier, while the database should not
know the test result being accessed, as it was protected by
the patient-doctor confidentiality. These scenarios become even
more prevalent since the emergence of cloud computing and
database-as-a-service, where outsourced service providers are
generally distrusted by the subscribers.

The above scenarios call for a query processing model for
key-value stores that preserves mutual privacy of both parties:
the service provider can protect its data privacy by revealing
no key or value except for the returned one, and the subscriber
can protect her query privacy against the service provider by
disclosing nothing about the search key or the returned value.

In the literature, there are a lot of research efforts that ad-
dress data privacy or query privacy separately. For data privacy,
generalization [2] has been proposed to protect quasi-identifier
attributes and avoid the disclosure of sensitive information. For
query privacy, a similar technique called location cloaking has
been proposed in location-based services to generalize (i.e.,
blur) the user locations when they issue queries [3], [4], [5],
[6]. However, these techniques still disclose the data or query
in a coarser and imprecise form.

More recently, there are two categories of research that
aim at preserving strong and unconditional privacy. The first
category, introduced by data outsourcing, assumes that the user
owns and hosts data on the server in an encrypted form [7],
[8], [9], [10], [11], [12], [13]. The query from trusted parties
is also encrypted in the same form for the outsourcing server
to evaluate. Unfortunately, this approach cannot be applied to
our problem in this paper as the server still knows the returned
value or a superset of it, whether encrypted or not. The second
category of research, secure multiparty computation (SMC),
originates from cryptography. SMC computes a function from
multiple participants in a distributed network, each holding
one private input. During the computation, no information
is revealed to any participant except those implied by this
participant’s input and the function output. Some specialized
SMC algorithms have been devised for certain query types,
such as the nearest neighbor search [14], [15]. However,
SMC-based solutions in general are expensive in terms of
computation and communication costs, so they cannot scale
up to real datasets with millions of records.



These studies, however, inspire us to integrate SMC tech-
niques with database indexes for efficient privacy-preserving
query processing. As an index node only consists of a handful
of data items, the execution of an SMC algorithm on the index
becomes practical. Nevertheless, there are several challenges
along this integration. First, a database index, e.g., a B+-tree or
R-tree, consists of a hierarchy of nodes, and query processing
is essentially a traversal on these nodes. The service provider
should not be able to trace this traversal and hence to get
any clue of the query. In this paper, we propose an oblivious
index traversal framework where only the client keeps track
of the traversal through a local “shadow index”. While this
is a general-purpose framework, we then focus on the key
search query in a key-value store, and reduce it to “conditional
oblivious transfer” in SMC [16]. To support single- and multi-
dimensional key space, we design secure and efficient index-
node access protocols for two classic indexes, namely, B+-tree
and R-tree. The second challenge is for the client to retrieve
the value of the search key obliviously from the server. To this
end, we propose an oblivious value transfer protocol based on
the shadow index scheme. To summarize, our contributions in
this paper are as follows:

• To the best of our knowledge, this is the first work that
studies private search over hierarchically indexed key-
value stores for mutual privacy protection. Combining
both security and efficiency, this approach is more prac-
tical than existing theoretical solutions.

• We present a general-purpose oblivious index traversal
framework that accommodates any multi-level index.
The framework can resist traceablility from the service
provider during query processing.

• Based on this framework, we present a comprehensive set
of protocols for private key search in classic B+-tree and
R-tree indexes.

• We thoroughly analyze the security and complexity of
the proposed framework and protocols. We also conduct
experiments to evaluate the performance on real datasets.

The rest of the paper is organized as follows. Section II
reviews existing work on privacy-preserving query processing.
Section III formulates the problem and Section V presents
the oblivious index traversal framework. Section VI studies
private key search on B+-tree index and one-dimensional data.
Section VII extends to R-tree index and multi-dimensional
data. Section VIII analyzes the security of the framework
and protocols, followed by the performance optimization and
evaluation in Sections IX and X. Section XI concludes this
paper with some future research directions.

II. RELATED WORK

In this section, we review two categories of techniques that
aim at preserving unconditional (but not necessarily mutual)
privacy in query processing.

Transformation-based Query Processing: The first cat-
egory transforms both the query and the data into another
space for evaluation, using hashing or space filling curves.
This technique was first introduced in data outsourcing where
an untrusted service provider (SP) stores and manages the
data on behalf of the data owner, who then invites trusted
users to query on the data. Agrawal et al. proposed an

order-preserving encryption scheme (OPES) for 1D numeric
values [7]. Yiu et al. adopted the transformation technique for
2D spatial data points and proposed hierarchical space-division
(HSD) for kNN queries [10]. Alternatively, hashing (buck-
etization) and encryption schemes have also been proposed
for kNN queries [10], [13], similarity queries [12] and range
queries [17]. Since data outsourcing does not need to protect
data privacy against trusted querying users, all these transfor-
mation techniques are not required to accurately preserve the
same operation in ciphertext domain; instead, the querying user
can get a superset of the result for local refinement. To protect
mutual privacy as in this paper, Khoshgozaran and Shahabi
studied transformations for nearest neighbor search [9]. They
use space filling curves as the transformations, due to the
locality and distance-preserving properties of these curves.
However, since distance is not completely preserved in the
transformed space, the results are only approximate kNNs. An-
other disadvantage of transformation techniques is the potential
disclosure risks from the distance-preserving property [18].

SMC-based Query Processing: The second category of
research originates from the theoretical results of secure mul-
tiparty computation (SMC). The most fundamental problem in
the SMC literature is Yao’s Millionaire Problem [19], which
compares two private numbers. Theoretically, the Millionaire
problem and the secure multi-party computation problem in
general can be solved using circuit evaluation protocol. In this
protocol, the function is represented by a Boolean circuit, and
each party jointly evaluates the circuit without disclosing to
the other parties their own inputs that are fed into this circuit.
However, the communication cost of such protocols depends
on the size of the circuit, which in turn depends on the size of
the input domain and on the complexity of function expression
[20]. Since then, many research efforts, especially those from
privacy-preserving data mining community, have been made to
develop more efficient SMC protocols for specialized functions
and tasks, including secure sum [21], scalar product [22], [23],
add vector [24], [25], and set operations [21].

As for query processing, Qi and Atallah solved NN queries
for horizontally-partitioned data from two parties [14]. They
apply a blind-and-permute protocol, together with a secure
selection protocol. The computation and communication com-
plexity is linear to the dataset size. They also extended it to
kNN queries and proposed a multi-step protocol. In location-
based services, Ghinita et al. proposed a private information
retrieval (PIR) based approach for 1NN queries [15]. It parti-
tions the space into grid cells as retrieval units, and the user
can privately retrieve the content of his/her residing cell to
resolve the 1NN query. Similar to data outsourcing solutions,
this approach sends a superset of the result to the user. There
is some other research on vertically partitioned data, i.e., at-
tributes of every record are owned by different parties. Vaidya
and Clifton studied top-k queries where the sorting metric is a
sum of scores computed independently at different parties [26].
Li and Chen proposed a trusted third party to perform joins
on the data from mutually distrustful parties, with the aid of a
secure coprocessor installed at the third party [27]. Jagannathan
and Wright proposed a secure k-means clustering algorithm
for either horizontally or vertically partitioned data from two
parties [28]. As for query authentication, we have studied
privacy-preserving authentication schemes for range [29] and
kNN queries [30] in location-based services.



Differences from This Work: Our work distinguishes
itself from the others by addressing the mutual privacy pro-
tection problem for queries over large-scale, indexed data.
Unlike our previous work [31] that studied distance-based
queries (including range and kNN) on two-dimensional data,
this work deals with key search queries on indexed key-
value stores. Furthermore, this work features general-purpose
oblivious index traversal framework that accommodates any
multi-level index. It is noteworthy that privacy-preserving
search on tree-structured data has been investigated in some
existing studies [8], [32], [33]; however, these studies assumed
a three-party data outsourcing computing model, where the
owner knows both the data and the query while the outsourcing
server knows nothing. This model differs from our two-party
one where one side owns the query and the other side owns
the data.

III. PROBLEM FORMULATION

The system model consists of two parties: 1) a server who
owns a large dataset D of key-value pairs and, 2) a client who
wants to search for a particular value by providing the correct
key. The key ξ is a sensitive attribute such as the social security
number, credit card number, or location coordinates, so the
client wants to keep it anonymous from the server. On the
other hand, as the value attribute is its asset, the server wants
to return only the value that matches the search key q. This
mutual privacy model requires both q and the values (except
for the matched one) kept secret to each other during query
processing, and in the end, the client gets only the matched
value (or nothing if q does not exist) and the server knows
nothing about q.

Two apparent solutions that do not work: The first
solution applies the same hashing or encryption on both sides
and lets the server match the search key in the transformed
space and return the matched value. This does not work
because the server can learn the matched value (whether it is
encrypted or not) and thus infer the search key.1 The second
solution stores the hashed or encrypted keys (together with
their values) at the client, who can then match the search key
locally. However, in this solution the client can enumerate all
valid keys in a brute-force manner without the server’s control
at all (recall that the dataset is a private asset of the server).

A. Data Model

The keys on attribute ξ can be any data type. Without
loss of generality, we assume they are first hashed by a
cryptographic hash function such as MD5 or SHA-1. These
hash values are the actual keys that are indexed by a multi-
level index such as B+-tree and R-tree. Figure 1 illustrates an
abstraction of such an index. The index consists of a hierarchy
of nodes, each of which comprises many entries. Each entry
corresponds to a child node — it consists of a pointer p to the
child node and a range e of all keys in this node. In particular,
in an R-tree the range e is a multi-dimensional box, and in B+-
tree the upper bound of e is omitted. That is, the i-th entry in a
B+-tree node consists of a single key value ki and a pointer pi.

1For example, by judging if two search keys return the same value, the
server can tell if they are the same. As such, frequency-based attacks [34] can
be launched to infer search keys.
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Fig. 1. Multi-Level Index

The key range implied is [ki−1, ki), and k0 = −∞, kn = +∞.
The root node of a multi-level index is on the topmost level
and the leaf nodes are on the lowermost level. An entry in a
leaf node (called a “leaf entry”) stores a key-value pair in its
e and p, respectively, for example 〈e7, p7〉 in Fig. 1.

There are two remarks about the problem definition. First,
for simplicity we assume the values are accommodated in the
leaf-entry’s “pointer” fields. This assumption suffices for many
applications where the value size is moderate (e.g., the WPA2
security key or a blood test result in a set of positives or
negatives). Nonetheless, if the value size is too large to fit in
the pointer field, it will be stored in a separate array of values
at the server side and the pointer field stores its index in this
array. After obtaining such an index, the client can invoke a
standard private information retrieval protocol with the server
to retrieve the actual value. Second, our problem setting allows
the client to enumerate valid keys to the server in a brute-force
manner. While such misbehavior can be audited and prohibited
by the server through access control, captcha, or other penalties
on heavy users, our problem does not target the applications
where the valid key domain is both small and publicly known
by the client, such as the 5-digit US zip code.

B. Security Model

We consider two kinds of adversaries: 1) a client adversary
attempts to obtain the proprietary values without actually
owning their keys; 2) a server adversary attempts to infer the
search key of a client. The privacy objective of our problem is
that no keys or values should be disclosed to the client except
its search key q and the matched value v, and the server should
not learn q. As such, we define the security model in this paper
as indistinguishability — the client cannot distinguish a valid
key (or value) s from an invalid one s′, except for the keys and
values it has searched before; the server cannot distinguish a
search key q by the client from a random key q′. Formally,

Definition 3.1: Indistinguishable Key, Value and Search
Key. Given s and s′ to the client, a probabilistic polynomial-
time adversary distinguishes s as a valid key (or value) with
probability

Pr[s = valid] ≤ 1

2
+ negl,

where negl is a negligible function. Similarly, given q and
q′ to the server, a probabilistic polynomial-time adversary
distinguishes q as the search key with probability

Pr[q = search key] ≤ 1

2
+ negl.

In this definition, the probabilistic adversary, playing the
role of a client or the server, is polynomially bounded by its



computational power and storage space. Following cryptogra-
phy conventions, we further assume an adversary: i) to know
all protocols and algorithms except for the secret keys of its
counterparts; ii) to follow a semi-honest model;2 and iii) to
possess no a-priori knowledge of the keys.3

IV. PRELIMINARY: CRYPTOGRAPHIC BUILDING BLOCKS

In this section, we introduce three secure building blocks
that are heavily used in this paper, namely, homomorphic
encryption, conditional oblivious transfer and commutative
encryption.

A. Homomorphic Encryption

A homomorphic encryption is an encryption scheme that
maps an operation on plaintexts to another (probably different)
operation on ciphertexts. Formally, let M and C denote the
plaintext and ciphertext space, respctively. For any m1,m2 ∈
M and c1, c2 ∈ C where m1 = E−1(c1) and m2 = E−1(c2),
it holds that

E−1(c1 ⊙ c2) = m1 ⊙m2,

where ⊙ is the group operation in M and C [35]. Practical
homomorphic encryptions include Paillier, El Gamal, and
Goldwasser-Micali (GM), all of which are public-key crytosys-
tems. In particular, Paillier encryption [36] is homomorphic
over a large additive group ZN , where N is its public key:

EN (m1) ·EN (m2) = EN ([m1 +m2 mod N ]).

B. GT-COT: Conditional Oblivious Transfer for “Greater
Than” Predicate

Oblivious transfer (OT) is a fundamental operation in many
SMC protocols. It helps a sender to transmit one out of a set
of data values to a receiver without it knowing which value
has been transferred. A similar cryptography notation “private
information retrieval” (PIR) relaxes the requirement of OT that
the receiver can only receive one value. As this compromises
data privacy, it cannot be applied to our problem. Conditional
oblivious transfer (COT), proposed by Crescenzo et al. [37],
is a variant of OT where the receiver does not know the value
to receive in advance, and instead, this value is determined by
the result of a predicate on private inputs from both parties.
A common predicate is “greater than” and thus leads to the
acronym “GT-COT”. Formally, let S denote the sender and
R the receiver, and let DI and DS = {s0, s1} be the input
domain and value domain (both are known to both parties).
Let R have input x and S have input y, x, y ∈ DI and x 6= y.
After the GT-COT protocol, R receives s0 if x < y, or receives
s1 if x > y. Note that the predicate result, i.e., x > y or x < y
is unknown to S but known to R.4

There are several GT-COT protocols in the literature and
the state-of-the-art one [16] is by Blake et al. It is a round-trip
protocol initiated by R, who encrypts each bit xi of x by a

2That is, it follows the designated protocol properly, but may record inter-
mediate results and try by all means to deduce about the private information
of other parties [35].

3If there is a-priori knowledge, hashing or other transformations on the key
domain can always be applied first.

4In [16], Blake and Kolesnikov proposed a stronger COT protocol where
R cannot learn the predicate result either.

homomorphic encryption Enc(·). These ciphertexts Enc(xi)
are sent to S, together with the public key pk of Enc(·). S
then computes a series of variables in the ciphertext domain
based on the homomorphic property and sends the final results
µ to R. R decrypts them using its private key sk and outputs
the only valid µi ∈ Ds as the received value. We adopt this
GT-COT protocol in our framework, but it can be switched to
any other GT-COT protocols.

C. Commutative Encryption

A commutative encryption CE(·) satisfies the property that
the order of two encryptions is irrelevant. Formally, let e1
and e2 denote the encryption keys, and m denote a plaintext
message. Then

CEe2((CEe1(m)) = CEe1((CEe2(m)).

In the literature, the Pohlig-Hellman exponentiation cipher
(abbr. PH cipher) is commutative [38]. Its key generation,
encryption and decryption can be summarized as follows:

• Key generation: Generate a prime z larger than the
maximum possible m. Pick a random e as the encryption
key, and the decryption key d is:

d = e−1 mod z − 1.

• Encryption: The ciphertext c is computed as:

c = me mod z.

• Decryption: The plaintext m can be recovered from c as:

m = cd mod z.

PH cipher is commutative with regard to the same modulus z.
That is, for encryption keys e1 and e2, we have

CEe2((CEe1(m)) = CEe1((CEe2(m)) = me1e2 mod z.

As for the security, the symmetric PH cipher is proved to
sustain known plaintext attacks (KPA) and chosen plaintext
attacks (CPA) due to the difficulty of Discrete Logarithm
Problem (DLP) [35].

V. OBLIVIOUS INDEX TRAVERSAL FRAMEWORK

The private key search problem can be resolved by ap-
plying a commutative encryption alone, as will be presented
below. However, directly applying such costly cryptographic
tools cannot scale up to large datasets. Therefore, in this
paper we integrate them with indexes for more efficient query
processing. As a key search query over an index is essentially a
traversal on the index nodes, to preserve the privacy of search
key, the client must keep the traversal path away from the
server lest the latter narrow down its range. In this section, we
propose “oblivious index traversal” as the enabling framework,
which is illustrated in Figure 2. The key idea is to let the client
keep track of the traversal path so that the server does not
know the exact node the client is accessing. To achieve this,
during initialization (step 0), the server sends to the client a
shadow index — an encrypted version of the index I (denoted
by E(I)). E(I) has the same topology as I , with the entries
of each node encrypted as follows. For an intermediate node
n, the key range of each entry (e.g., e1, e2, e3) is encrypted by
an additively homomorphic encryption E(·), while the pointers
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Fig. 2. Oblivious Index Traversal Framework

(e.g., p1, p2, p3) are not encrypted. For a leaf node, both entries
and pointers (which store the keys and values) are encrypted
by a commutative encryption CE(·). By padding with dummy
entries, each leaf and non-leaf node has the same number of
entries. The shadow index is then stored at the client side for
future access.

Given a search key q, starting from the root node, the
client iteratively retrieves the next node E(n) to access from
the shadow index (step À) and repeats the following steps
ÁÂÃ until the search terminates. Before sending E(n) to the
server, the client obfuscates it to E(n′) (step Á) lest the server
recognize it. The obfuscation also changes the search key from
q to q′ accordingly. The server then decrypts E(n′) to n′ and
initiates a two-party oblivious node access (ONA) protocol
with q′ at the client (step Â). This protocol designates the
client the pointer of the next child node to access (step Ã).
It is noteworthy that this framework works for a broad set
of queries besides the key search, e.g., a selection or range
query. Algorithm 1 shows the pseudo-code of key search under
this framework. In particular, when n reaches a leaf node,
to obtain the matched value v, the client will invoke a two-
party oblivious value transfer (OVT) protocol with q and the
encrypted keys (as well as values) in this shadow node n (step
Ä).

Algorithm 1 Oblivious Index Traversal Framework

Input: q: the search key at the client
E(I): the shadow index at the client
E(·): additively homomorphic encryption from server

Output: v: the value returned to the client
Procedure:

1: client initializes n, the next node to access, as the root of E(I)
2: while the search is not terminated do
3: if n is a non-leaf node then
4: client retrieves the local E(n) // step À

5: client obfuscates it into E(n′) and sends it to the server //
step Á

6: server decrypts it into n′

7: client and server perform oblivious node access(q′, n′) //
step Â

8: else
9: // n is a leaf node

10: client and server perform oblivious value transfer(q, n)
to obtain the value v // step Ä

11: client updates n // step Ã

Algorithm 1 establishes a unified way of private key search
on various types of indexes. While the oblivious value transfer
protocol is generic and will be presented in the following
subsection, the major difference across various types of indexes
lies in the obfuscation and ONA protocols (steps Á and Â).
The next two sections will study these protocols on B+-tree
and R-tree, respectively.

A. Oblivious Value Transfer (OVT) Protocol

This protocol enables the client to test whether its query
key q matches any of the (encrypted) keys in a shadow leaf
node n. If it does, the matched value v is returned to the
client. As for the security requirement, the server is completely
oblivious — it does not learn anything about n, q or v, while
the client only learns v.

The input of this protocol is the search key q and n at
the client-side, in the form CEs(ei) and CEs(vi) of every
entry i, where CEs(·) is the commutative encryption with
the server’s key. To prevent them from being recognized by
the server, the client re-encrypts each with her own encryp-
tion key, denoted by CEc(·). As such, the server receives
CEc(q), CEc(CEs(ei)) and CEc(CEs(vi)). The server then
re-encrypts the query as CEs(CEc(q)) and matches it with
CEc(CEs(ei)) of every entry i. If there is a match, the server
decrypts the corresponding CEc(CEs(vi)) value as follows:

CE−1
s (CEc(CEs(vi))) = CE−1

s (CEs(CEc(vi))) = CEc(vi).

Once the clients receives CEc(vi), it obtains the matched value
vi with decryption:

CE−1
c ((CEc(vi))) = vi.

VI. PRIVACY-PRESERVING KEY SEARCH

OVER B+-TREE INDEXED DATA

In this section, we propose the obfuscation and oblivious
node access protocols (i.e., steps Á and Â) for private key
search on B+-tree indexed single-dimensional data.

A. Shadow Node Obfuscation

The purpose for the client to obfuscate a shadow node
E(n) to E(n′) is two-folded. First, it prevents the server from
recognizing the node n when decrypted. Second, it paves the
way for the ONA protocol — GT-COT requires the inputs on
both sides are not equal.

Let [li, ui) denote the key range of each entry i in the
shadow node E(n). To obfuscate li and ui, the client chooses
two independent and identically distributed random offsets
δi,∆i ∈ DI , and adds them on both sides of the inequalities
q ≥ li and q < ui:

q + δi ≡ qi.l ≥ li + δi ≡ l′i and (1)

q +∆i ≡ qi.u < ui +∆i ≡ u′

i. (2)

To ensure qi.l 6= l′i and qi.u 6= u′

i for subsequent GT-COT
calls, the client further doubles both sides of the inequalities
and increments the left hand side by 1:

2qi.l+ 1 > 2l′i and (3)

2qi.u+ 1 < 2u′

i. (4)



Since all variables are in the integer domain, Inequalities 1
and 2 are equivalent to Inequalities 3 and 4, and both sides
of the latter two cannot be equal. To further obfuscate the
node, the resulted entries are then randomly permutated. The
complete node obfuscation procedure is summarized in Alg. 2.
Note that the client has the public key of E(·), and is able to
perform encryptions as well as additions in ciphertext.

Algorithm 2 Shadow Node Obfuscation

Input: q: the query at the client
E(n): the shadow index node at the client
E(·): the encryption from the server

Output: E(n′): the obfuscated shadow node
q′: the corresponding obfuscated query

Procedure:

1: for each entry [li, ui) of E(n) do
2: generate random offsets δi and ∆i

3: add δi to qi.l and E(δi) to li
4: add ∆i to qi.u and E(∆i) to ui

5: qi = 2qi + 1, li = 2li and ui = 2ui

6: randomly permutate q and E(n) into q′ and E(n′)

B. Oblivious Node Access Protocol

Now we present the oblivious node access protocol for
private key search on a B+-tree node. As for the input, the
client has the set of obfuscated query keys for a shadow index
node in the form of 〈q′i.l, q′i.u〉, and the server has the set of
corresponding decrypted entries in the form of 〈l′i, u′

i〉, 1 ≤
i ≤ m, where m is the number of entries in this node. After
executing this protocol, the client obtains the only entry i that
satisfies l′i < q′i.l and q′i.u < u′

i.

A straightforward ONA protocol is as follows (let s0 and s1
denote the received values by the client after a GT-COT call).
For each entry i, the client and server run GT-COT(q′i.l, l

′

i) and
GT-COT(q′i.u, u

′

i), respectively. If the client receives s1 and s0
as the results, the result entry is found. The disadvantage of this
approach is that it invokes GT-COT protocols for 2m times.

To reduce GT-COT calls, we design a randomized 2-phase
ONA protocol as follows. The client first fills all m entries in
an

√
m-by-

√
m matrix in column-first order (see Fig. 3). If m

is not a square root, we use ⌈√m⌉ and pad the last column
with dummy entries. Each entry is then indexed by its row
and column numbers, such as e(i, j). The protocol calls GT-
COT in two phases. In the first phase, the client chooses, from
each column, a random pivot entry (marked in black), sends
them to the server, and invokes GT-COT. After this phase,
the client learns the pivot entry e(i, j), the first entry that
satisfies l′i > q′i.l. In the second phase, the client sends all
entries between e(i, j) and the pivot entry prior to it (the latter
inclusive, marked in grey) to the server.5 The sequential order
of B+-tree entries ensures that the result must come from one
of these entries. Then the client invokes GT-COT again to find
out the result, which is the first entry that satisfies q′i.u < u′

i.

As for the cost, the first phase calls GT-COT for
√
m times,

and the second phase for
√
m times on average and 2

√
m− 1

times in the worst case (when there are 2
√
m−1 grey entries).

5If no e(i, j) exists in the first phase, the client sends all entries after the
last pivot entry.
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It is noteworthy that the use of random pivot entries prevents
the server from narrowing down the position of the result —
otherwise if the pivots are fixed, the entries sent in the second
phase are fewer than normal when e(i, j) does not exist or
is the first pivot entry. Alg. 3 lists the pseudo-code of this
protocol.

Algorithm 3 oblivious node access: Randomized 2-Phase
ONA Protocol for Key Search on B+-tree

Input: q: the query at the client
E(n): the shadow index node at the client
E(·): the encryption from the server

Output: n: the next node to access
Procedure:

1: client randomly chooses
√
m pivot entries from the matrix of

E(n) and organizes it into a virtual node E(n.
√
m)

2: client obfuscates it to E(n.
√
m

′

) and sends the latter to server
3: client and server invoke GT-COT(q′i.l, l

′

i) for
√
m entries, where

client learns e(i, j)
4: client organizes entries between e(i, j) and the pivot entry prior

to it into a virtual node E(n.v)
5: client obfuscates it to E(n.v′) and sends the latter to server
6: client and server invoke GT-COT(q′i.u, u

′

i) for these entries,
where client learns n

VII. EXTENSION TO MULTI-DIMENSIONAL INDEX

While the same oblivious index traversal framework works
for private key search on a multi-dimensional index, such as
R-tree, the server should generate different private-public key
pairs of encryption E(·) for each dimension in the shadow
index. This prevents dimension correlation attacks: even if
E(·) in a single dimension is breached (e.g., by background
knowledge attacks), the remaining dimensions will not be
affected.

The major difference of multi-dimensional index is that
the entry values in an R-tree node are no longer sorted as in
B+ tree. As such, in the oblivious node access protocol, all
entries whose key ranges cover (in all dimensions) the query
point should be further accessed. The idea is for the client to
adopt the best-first search paradigm, maintain these entries in
a priority queue, and always choose the most promising entry
to access next (see Section VII-B). Nonetheless, the major
challenge is that the matrix-based 2-phase ONA protocol also
relies on the linearity of the entry keys, which is no longer
available. In the next subsection, we extend the 2-phase ONA
protocol with a linear embedding technique.
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A. 3-Phase ONA with Linear Embedding

A linear embedding re-imposes a linear order on the entries
so that the original matrix-based protocol can still work. It
has the advantage of incurring minimal cost and applicable to
arbitrary dimensions — although it is more efficient in lower
dimensions such as 2D or 3D space. It works as follows.
In the shadow index, besides the key range, each entry e is
also embedded with (i.e., mapped to) an interval, denoted by
map(e).6 The mapping scheme is public and known to the
client, so the client can obtain map(q) for the query point q and
filter out those entries whose map(e) do not cover map(q).
To retain as much filtering power as possible, the mapping
scheme should preserve most of the locality. There are a
lot of mature dimension-reduction mappings, most famous of
which are space filling curves. Fig. 4 shows a Hilbert curve
of order 3 that partitions the space into 23 by 23 grid cells.
The curve labels each cell with a Hilbert value from 0 to 63.
The embedded interval of an entry is the lowest and highest
Hilbert values covered by this entry. In the figure, entry N1

overlaps the lower-left 16 cells, so map(N1) = [0, 15], while
map(q) = 11 is covered by this entry.

With this embedding technique in place, the ONA protocol
for a multi-dimensional index is extended to a 3-phase one
as follows (see Fig. 5 for illustration). Initially, the entries
in a shadow index node are sorted in ascending order of the
left endpoints of their map intervals and accommodated into
the same

√
m-by-

√
m matrix, in column first order. In the

first phase, the client chooses a random pivot entry from each
column, sends them to the server, and invokes GT-COT. After
this phase, the client learns e(i, j), the first pivot entry that
satisfies map(e).l > map(q). In the second phase, the client
organizes all entries prior to e(i, j) into a second matrix, in
ascending order of the right endpoints of their map intervals.7

The client then chooses another set of pivots and invokes GT-
COT. After this phase, the client learns e(s, t), the first pivot
entry that satisfies map(e).u > map(q). In the third phase,
the client organizes all entries next to e(s, t) including itself,
sends their key ranges, and invokes GT-COT to find all entries
that satisfies q′i.l < l′i and q′i.u < u′

i.

B. Cost Model for Best-First Search

At any time during the search, the client maintains a
priority queue of entries to be further explored, the top of
which becomes the next entry n to access. To reduce the

6As with the key range, map is encrypted by the server’s encryption E(·).
7This order should be embedded in the shadow node.
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search cost, the queue should sort the entries by their cost-
effectiveness, i.e., the probability of containing the search key
divided by the cost to find it. To model the CPU cost, we
use the number of modular exponentiations in ONA and OVT
for this entry and its subtree. As we assume the keys are
distributed uniformly in space after cryptographic hashing, the
cost-effectiveness of an entry e can be approximated as

cost effect(e) ≃ ||keys||
1
2

∑
i∈int ONA(i) + 1

2

∑
i∈leaf OV T (i)

,

where keys, int, and leaf are the sets of keys, intermediate,
and leaf nodes in e, and ONA and OV T are the costs of
one protocol invocation. These variables are all accessible to
the client from the shadow index except ONA(i), which is
dominated by remain(i), the number of entries that are not
filtered by the mapping scheme on node i. In what follows,
we present a heuristic algorithm for the client to estimate
remain(i) based on the two entry lists in shadow node i.
Recall that the two lists are sorted in ascending order of their
left and right endpoints of map intervals, respectively. Fig. 6
illustrates the two lists, where a line connects the same entry.
The algorithm generates two queries q1 and q2 at the midway
of two lists, and attempts to find their images in the other list.
As the keys are uniformly distributed and both queries are in
the center of node i, the number of remaining entries in both
queries should be (approximately) the same. As such, starting
from both ends, this algorithm in turn shifts the images of
q1 and q2 in opposite directions until their remaining entries
are approximately the same. In this figure, after one round of
shifting, q1’s image is between e2 and e1, and q2’s image is
between e7 and e8. This leads to remain(i) = {e1, e3, e4} for
q1 and {e3, e7, e6} for q2, which terminates the algorithm. It
is noteworthy that this estimation algorithm can work offline
when the shadow index is first received by the client, so it
does not incur any CPU overhead during query processing.



VIII. SECURITY ANALYSIS

In this section, we analyze the security aspect of the
proposed framework and protocols. We in turn prove that the
building blocks and the oblivious index traversal framework
preserve privacy. To demonstrate that a protocol does not
leak private information of the client or the server, we adopt
the security proof by simulation [20]: A protocol privately
computes function f(·) if whatever a semi-honest party can
obtain after participating in the protocol, could be essentially
obtained from the input and output available to that party. In
simulation terminology, this protocol suffices to “simulate the
view” of each semi-honest party, which is formally defined as
follows:

Definition 8.1: (Privacy w.r.t semi-honest behavior): Let f:
{0, 1}∗×{0, 1}∗ 7→ {0, 1}∗×{0, 1}∗ be a functionality where
f1(x, y) (resp. f2(x, y)) denotes the first (resp. second) element
of f(x, y), and π be a two-party protocol for computing f(·).
The view of the first (resp. second) party during an execution of
π on (x, y), denoted by V IEWπ

1 (x, y) (resp. V IEWπ
2 (x, y)),

is (x, r,m1, ...,mt) (resp. (y, r,m1, ...,mt)), where r is the
outcome of the internal coin tosses, and mi is the i-th message
it has received.

It is noteworthy, however, that a party’s view in a protocol
(in particular the intermediate messages it receives) sometimes
depends on the coin tosses of other parties (e.g., the choice of
random numbers). In practice, we only need to simulate the
distributions of these random elements in the view, rather than
their exact values. Furthermore, sometimes a protocol cannot
be simulated without some a-priori knowledge K, besides the
party’s input and output. In this case, this protocol is no longer
completely private, and we say it is private with K disclosure.

In the rest of this section, we prove the security of the
proposed protocols and framework. As the GT-COT protocol
has been proved semantic security in semi-honest model [37],
in the following, we first prove the security of the building
blocks, i.e., the node obfuscation, OVT and ONA protocols,
followed by the entire oblivious index traversal framework.

A. Security Proofs for Building Blocks

Lemma 8.2: The shadow node obfuscation protocol (Al-
gorithm 2) hides the shadow node E(n) from the server S.

Proof: We prove that there is a polynomial-time view
simulator SimS(I) for server S, which generates a distribution
statistically close to what is viewed from S, i.e., n′. Here I
is the original index at S. SimS(I) works as follows. First, it
randomly chooses a node n̂ from I . For each entry ei in n̂,
it adds random offsets δi and ∆i ∈ DI for lower and upper
bounds, respectively. It then doubles both bounds and finally
permutates all entries in n̂ in a random order . Let n̂′ denote
the output. It is easy to conclude that n̂′ is statistically the
same as n′, because each value in n̂′ or n′ is a pure random
value in DI and is independent of all other values.

Similarly, we can prove the security of the oblivious value
transfer protocol.

Lemma 8.3: The oblivious value transfer protocol hides
the shadow leaf node E(n) and query q from the server S,
and hides the other contents of n from the client R, except for
the returned value vi.

Proof: We first prove that there is a polynomial-time view
simulator SimS(I) for server S, which generates a distribution
statistically close to what is viewed from S, i.e., CEc(q),
CEc(CEs(e)) and CEc(CEs(v)) of all entries. SimS(I)
works as follows. First, it randomly chooses a leaf node n̂
from I and generates a random ĉ as the key for commutative
encryption CEĉ(·). Due to the semantic security of CE(·),
CEc(q) and CEĉ(q̂) are statistically the same, so are CEc(e)
and CEĉ(ê), and CEc(v) and CEĉ(v̂).

We then prove that there is a polynomial-time view simula-
tor SimR(CEs(n)) for client R, which generates a distribution
statistically close to what is viewed from R, i.e., CEc(vi).
SIMR(CEs(n)) works by simply choosing a random CEsv̂i
from CEs(n). Due to the semantic security of CE(·), CEs(v̂i)
and CEc(vi) are statistically the same.

On the other hand, the ONA protocol discloses to the
client the GT-COT result between each non-leaf entry e
and the query q. Specifically, the client has the boundary
knowledge of whether e is larger or smaller than q. Without
this knowledge K, this protocol cannot be simulated. To model
it, we define the following boundary knowledge K.

Lemma 8.4: The oblivious node access protocol (Algo-
rithm 3) hides the shadow node E(n) and query q from the
server S, and hides the contents of n from the client R, with
boundary knowledge K disclosure.

Proof: The proof has two directions. First, we show there
is a polynomial-time view simulator SimS(I) for server S,
which generates a distribution statistically close to the view

of S, i.e., {n.√m
′
, n.v′}, where n.

√
m

′
and n.v′ are the

obfuscated nodes in the first and second phase, respectively.8

SimS(I) works as follows. In the first phase, it randomly
chooses a node n̂ from I and maps it into a

√
m-by-

√
m

matrix. It then randomly chooses a pivot entry in each column,
denoted by ê(i1, 1), ê(i2, 2), · · · . It organizes and obfuscates

this virtual node into n̂.
√
m

′
. Due to the randomness of q

and the semantic security of obfuscation, n̂.
√
m

′
has the same

distribution of values as n.
√
m

′
. Then in the second phase,

it chooses a random column j and organizes entries from
ê(ij−1, j−1) to ê(ij , j) into another virtual node n̂.v. Finally,
it obfuscates n̂.v into n̂.v′. Due to the randomness of q and the
semantic security of obfuscation, n̂.v′ has the same distribution
of values as n.v′.

As for the second direction, we show there is a polynomial-
time view simulator SimR(q, E(n),K) for the client R, which
generates a distribution statistically close to the view of R,
i.e., {e(i, j), n}, where n is the next node to access. First,
SimR maps the entries in E(n) to a matrix, and then randomly
chooses pivot entries in each column. According to the bound-
ary knowledge K, SimR can locate the entry ê(i, j) as the first
entry whose lower bound is larger than q. Since both q and
the choice of pivot entries are random, ê(i, j) is statistically
the same as e(i, j). Finally, SimR can locate n̂, the next node
to access, as the first entry whose upper bound is larger than
q. Obviously, n̂ = n since q and E(n) do not change.

8This proof is for 2-Phase ONA on B+-tree, and the proof for 3-Phase
ONA follows and is thus omitted.



B. Security Proof for Oblivious Index Traversal Framework

Now we proceed to prove the security of the oblivious
index traversal framework. According to the composition the-
orem [20], we only need to prove the above building blocks are
invoked in a secure manner, which is equivalent to having an
oracle read the inputs from both parties and send the outputs
to them.

Theorem 8.5: The oblivious index traversal framework
(Algorithm 1) securely finds the value to the key q, by hiding q
from the server S, and hiding the contents of the original index
I from the client R with boundary knowledge K disclosure.

Proof: In each round of node access, the server S receives
an obfuscated node n′ from the client R. By Lemma 8.2,
the actual accessed node n is indistinguishable from other
nodes in I , thus hiding q from S. Then R and S invoke the
ONA protocol, which is proved to keep hiding q from S by
Lemma 8.4. The iterative rounds follow the same protection of
q and eventually when the value is retrieved, the OVT protocol
is proved to keep hiding q from S by Lemma 8.3. Therefore,
the framework hides q from S.

On the other hand, Lemma 8.4 shows that in each round
of node access, the framework hides the contents of I from
R with boundary knowledge K disclosure. The OVT protocol
also hides the other contents of n from the client R, except
for the returned value vi. Since vi is the value for a leaf entry,
the boundary knowledge K disclosure is preserved.

Theorem 8.5 proves the framework is secure with K
disclosure. In what follows, we show that such disclosure does
not compromise the security model defined in Section III.
Recall that in this model, the genuine keys or values are
indistinguishable by the client (except for the keys or values it
has searched), and the genuine search key is indistinguishable
by the server. Note that the following proof assumes that the
keys are uniformly distributed in the key domain, as achieved
by the preprocessing of cryptographic key hashing.

Corollary 8.6: A probabilistic adversary A who eaves-
drops the entire communication of a protocol run of the obliv-
ious index traversal framework achieves a success probability
Pr[v = genuine] bounded by 1

2
+negl, and Pr[q = genuine]

bounded by 1
2
+ negl, as in Definition 3.1.

Proof: Let ∪jqj denote the sorted search keys by the
client. By Theorem 8.5, A only knows K of non-leaf entries.
That is, A only knows e(i) < qj ≤ e(i + 1), i ∈ [1,m − 1],
for any accessed non-leaf node n. For a new key v /∈ ∪jqj
from the key domain, what A can learn from K is that there
exists some j where qj < v < qj+1. The smallest granularity
this information can narrow down v to occur when qj and
qj+1 belongs to a leaf node n′, which imposes v on n′, too.
However, since all keys in n′ are uniformly distributed as
all other leaf nodes, knowing v ∈ n′ does not add more to
probability Pr[v = genuine] than a random guess, which is
bounded by 1

2
+negl. The proof of Pr[q = genuine] bounded

by 1
2
+ negl follows.

IX. PERFORMANCE OPTIMIZATIONS

In this section, we propose two optimization techniques.
These techniques are orthogonal to the above processing
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Fig. 7. Shadow Index Node Layout of Keys for Flexible-Length GT-COT

techniques and can thus be used altogether. Note that they
both come with security tradeoffs, which are discussed below.

A. Flexible-Length GT-COT

A key observation of this optimization is that the GT-COT
protocol compares q and an N -bit key in a bit-wise manner.
When this algorithm is invoked by the ONA protocol, the keys
to be compared come from the same index node — they share
the most significant bits and meanwhile still distinguish each
other without the least significant bits. Let k and t denote
the numbers of these bits for this node, respectively. Then the
ONA protocol can invoke a flexible-length GT-COT protocol
instead, whose algorithm is the same as the general GT-COT,
but only takes bits k + 1 · · ·N − t for comparison.

To support flexible-length GT-COT, in each shadow index
node, the k shared most significant bits of all entry keys are
encrypted separately, and so are the t least significant bits in
each entry key. Fig. 7 compares the flexible-length node layout
of keys with the basic one. e1...k is the k shared bits and e′i
are the remaining bits of entry ei, which are further partitioned
into bits k + 1 · · ·N − t and bits N − t+ 1 · · ·N . Given this,
before invoking the GT-COT for all or a set of entries in a node
as in 2-Phase or 3-Phase ONA, some preprocessing steps are
added to the protocol to prepare the bits to compare in the
GT-COT. First, it tests the equality between the shared k most
significant bits and those of q, using CEs(e1...k).

9 If they are
not equal, then the bits to compare are from 1 · · · k, and q
is either larger or smaller than all entries; if they are equal,
the remaining N − k bits are the bits to compare. To further
narrow down these bits, the protocol runs one more equality
test between q and all entries of bits k+1 · · ·N− t. If there is
no match, the bits to compare are reduced to k + 1 · · ·N − t;
otherwise, some entry ej matches q, and the bits to compare
are N − t+ 1 · · ·N between q and ej .

The major security concern of this optimization is that the
client learns the two equality test results. If the first test result
is “equal”, the client learns the first k bits of keys in this
node; if the second test is also “equal”, the client further learns
the next N − k − t bits of some entry. However, by properly

9This equality test is similar to the oblivious value transfer (OVT) pro-
tocol and works as follows. The client encrypts the k most significant
bits of q into CEc(q1...k) and sends it to the server; the client also
encrypts CEs(e1...k) into CEc(CEs(e1...k)). The server further encrypts
CEc(q1...k) into CEs(CEe(q1...k)) and sends it back. The client then tests
if CEs(CEe(q1...k)) = CEc(CEs(e1...k)).
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setting k and t according to the security profile of the system,
such security impact can be well controlled. For example, if
the security profile requires the current node and each of its
children to occupy a portion 1/m and 1/r of the entire key
domain, then setting k = logm and t = N−log r will disclose
no more information about the node to the client.

B. Shared Encryption

Algorithm 4 share enc: Randomized Shared Encryption

Input: xi: the private values in GT-COT
λ: the independency threshold
Enc(·): the encryption scheme

Output: xi(k): labels of ciphertexts
si: the list of shared ciphertexts

Procedure:

1: share all bits with a single Enc(1) and Enc(0)
2: for each 1 ≤ i < w do
3: for each 0 ≤ j < i do
4: while max |xi − xj | < λ do
5: randomly selects k ∈ [1, N ] s.t. T (xi(k), xj(k)) = 0
6: filps xj(k) to a new ciphertext

This optimization reduces the communication cost in the
batch GT-COT calls from the ONA protocol. We observe that:
1) in a GT-COT call, the receiver (i.e., the client) sends the
ciphertext of every bit (either 0 or 1) of its private input x and,
2) GT-COT is batch invoked in an ONA protocol, where the
client has a set of private inputs x1, x2, ..., xw (for example,
l′i and u′

i). If we allow some “0” bits of xi to share the same
ciphertext Enc(0) and “1” bits to share the same ciphertext
Enc(1), the communication cost can be greatly reduced. The
consequence, however, is that these private inputs are no longer
perfectly independent, thus disclosing their correlations to the
server. To model the loss of independency, let max |xi − xj |
denote the maximum difference induced by the encryptions on
xi and xj . It can be calculated as follows:

max |xi − xj | =
N∑

k=1

2N−kT (xi(k), xj(k)),

where T (s, t) takes 1 if s and t are both shared ciphertexts,
and 0 otherwise. As a special case, x0 = 0 is the origin,
so max |xi − x0| is the maximum induced difference on xi

itself. Obviously, without any sharing, max |xi, xj | = 2N − 1
for any i 6= j, reaching perfect independency. So the loss of
independency by shared encryption can be captured by λ, the
minimum of max |xi − xj | between any pair of inputs,

λ = min
i,j

max |xi − xj |, ∀0 ≤ i, j ≤ w, i 6= j.

In essence, λ is the extra deviation that any two private values
can have in the worst case when the server is able to decrypt
all shared ciphertexts. Obviously, the larger the λ, the fewer
ciphertexts can be shared. In what follows, we propose for the
client a randomized shared encryption algorithm that achieves
maximal sharing, given a λ threshold. Fig. 8 illustrates the
procedure. As for the input, we organize all bits to be encrypted
into a matrix, each column corresponding to a private input
xi. The output is a list of ciphertexts (s1, s2, ...) and their
labels on each matrix element. Initially, all ciphertexts share
a single Enc(1) and Enc(0), randomly denoted by s1 and
s2. Then from left to right we scan each xi and randomly
flip a shared ciphertext to a new non-shared one until xi no
longer violates the λ threshold with any xj , 0 ≤ j < i.
For example, in Fig. 8, when x1 is scanned, it violates the
λ threshold with x0, so the client chooses x1(2) and flips it
from s1 to a new ciphertext s3. As this process continues,
all remaining ciphertexts s4, s5, s6, ... in the list are created.
Algorithm 4 shows the pseudo-code of this algorithm. Note
that as the scan guarantees all max |xi − xj | would increase
monotonically, each xi only needs to be scanned once.

X. PERFORMANCE ANALYSIS

In this section, we analyze the performance of our pro-
posed framework, protocols and optimization techniques under
various datasets and parameter settings. The 1D dataset is a
dictionary of 100,000 English words; and the 2D dataset con-
sists of 100,000 points from a real spatial database of 123,593
postal addresses in New York, Philadelphia and Boston [39].
The keys in both datasets are hashed by MD5 before being
indexed by the B+-tree and R-tree. As such, each individual
key is 128 bits and a value is set to be the same 128-bit length.
We set a page size to 4KB, so the resulted fanouts of a B+ tree
and R-tree shadow index node are 110 and 50, respectively.
The shadow indexes take 9.2 and 25.2 seconds to construct,
and their sizes are 3.1 MB and 24.5 MB, respectively. Table I
summarizes the parameter settings used in the experiments.

We use two machines with the same configuration for the
client and server. Each features Intel Xeon X5650 @ 2.67GHz,
8GB RAM and runs CentOS 5.6 x64. The code is implemented
and executed in OpenJDK 1.6. Paillier and Pohlig-Hellman
encryptions are used for the shadow indexes and the OVT
protocol, all with 1024-bit keys unless otherwise stated. As
for the GT-COT protocol, we adopt the same security settings
for Paillier encryption as in [40]. The metrics to measure are
the server CPU time, client CPU time, and the communication
bandwidth. For each measurement, we execute 1,000 queries
and report their average costs.

A. B+-tree Search Performance

Fig. 9 shows the performance of successful and unsuccess-
ful search with respect to various dataset sizes. Our oblivious
index traversal framework enables a private key search with



Parameter Sym. Default Range

# of B+-tree records N 100, 000 1,000-100,000

# of R-tree records N 100, 000 1,000-100,000

page size – 4KB –

key bits – 128 –

value bits – 128 –

independency threshold λ 232 216-2128

order of Hilbert curve — 32 –

TABLE I. PARAMETER SETTINGS
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Fig. 9. B+-tree Key Search Performance

up to 6 seconds on the server and up to only 0.6 second
on the client, whereas applying GT-COT directly on such
a large number of keys is infeasible. Furthermore, both the
CPU and communication bandwidth increase very slowly as
the number of keys increases, thanks to the slow increase
of the B+-tree depth. It is noteworthy that the performance
of successful and unsuccessful search is consistent. This is
an essential requirement for cryptographic algorithms, which
guarantees that no party (or eavesdropper) is able to infer the
result from one’s CPU or communication bandwidth.

B. R-tree Search Performance

We vary the size of the 2D dataset and plot the performance
of successful and unsuccessful search in Fig. 10. We observe
that the costs are more significant than those in B+-tree, which
is attributed to the loss of linear order in the R-tree nodes.
Nonetheless, the increase of costs is much flatter than that
of N , partially because of the linear embedding technique
that filters the entries whose map intervals do not cover the
query. Another contributing technique is the best-first search
strategy based on cost-effectiveness estimation. Table II shows
the client CPU time when applying a simple first-in-first-
out or first-in-last-out strategy, in terms of a multiple of that
when applying the estimation. Thanks to both techniques, our
framework takes up to about 130 seconds on the server and up
to only 13 seconds on the client. The CPU time can be further
reduced by standard multithreading as our ONA protocol is
highly parallelizable when it boils down to GT-COT calls.
The communication bandwidth is up to 2-3 MB, which is
also moderate. It is noteworthy that there is some performance
discrepancy between successful and unsuccessful search, as
the latter has to exhaust all entries in the priority queue. To
remedy this without delaying responses to the user, the client
can invoke dummy ONA protocols after the result is found. In
the sequel, we only show the results of successful search in
the interest of space.

C. Effect of Optimization Techniques

In this subsection, we evaluate the performance of the two
optimization techniques, namely, flexible-length GT-COT and
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h
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h
h
h
h
h
h
h

Dataset (N)
Strategy

Cost Est. (base) FIFO FILO

1,000 1 0.68 1.2

10,000 1 1.44 1.41

100,000 1 1.47 1.43

TABLE II. CLIENT CPU TIME VS. STRATEGIES IN BEST FIRST

SEARCH

shared encryption. In flexible-length GT-COT, we allow each
node to maximize the bits to share, i.e., there is no constraint
on k or t; in shared encryption, we set the independency thresh-
old λ to 232. Since they come with different security trade-offs,
their performance cannot be directly compared. Figs. 11(a)
and 11(b) show the performance of all combinations for B+-
tree and R-tree, respectively, under the default system settings.
Both figures consistently show that: 1) flexible length GT-COT
greatly reduces the CPU time of both parties by up to 90%; 2)
shared encryption reduces the client CPU time and communi-
cation bandwidth by up to 50% and 40%, respectively; 3) by
applying both optimizations, the communication bandwidth is
about 40% of the original.

To further evaluate the performance of shared encryption,
we vary the independency threshold λ from 216 to 2128 and
plot the CPU and communication bandwidth in Fig. 12. As
λ increases, the costs of client CPU and bandwidth increase
because fewer “0” and “1” ciphertexts can be shared; mean-
while the server CPU time drops a little, as this technique
comes with a small overhead at the server to “decompress”
the shared encryption. To conclude, in both B+-tree and R-
tree, the choice of λ leads to a steady and robust performance
gain in terms of the client CPU time and bandwidth.

XI. CONCLUSIONS

In this paper, we have studied the problem of private
key search on hierarchically indexed key-value stores for
mutual privacy protection. We have presented an oblivious
index traversal framework, based on which secure protocols
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have been devised for private key search on single- and
multi-dimensional key spaces. Through theoretical proofs and
performance evaluation, this approach has been shown to
be secure and efficient under various parameter settings and
security threats. We believe this work steps towards practi-
cal applications of SMC protocols to large-scale, structured
datasets. As for future work, we plan to extend the key search
query to complex queries such as selection, semi-join and top-k
queries. This calls for not only a new schema design of shadow
index nodes but also more sophisticated oblivious node access
protocols that address the query semantics.
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