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Abstract - Caching video objects at proxies close to clients has 
attracted a lot of attention in recent years. To meet diverse client 
bandwidth conditions, there have been research efforts to 
combine proxy caching with video layering or transcoding. 
Nevertheless, these adaptive systems suffer from either coarse 
adaptation granularity due to the inflexible structures of existing 
layered coders or high computation overhead due to the 
transcoding operations. In this paper, we propose a novel 
adaptive video caching framework that enables low-cost and 
fine-grained adaptation. The innovative approach employs the 
MPEG-4 Fine-Grained Scalable (FGS) video with post-encoding 
rate control. We demonstrate that the proposed framework is 
both network aware and media adaptive: clients can be of 
heterogeneous streaming rates, and the backbone bandwidth 
consumption can be adaptively controlled. We also examine the 
design and management issues in the framework, in particular, 
the optimal stream portions to cache and the optimal streaming 
rate to each client. Simulation results demonstrate that, 
compared to non-adaptive caching, the proposed framework 
with optimal cache management not only achieves significant 
reduction on transmission costs but also enables flexible utility 
assignment for the heterogeneous clients. Meanwhile, its 
computational overhead is kept at a low level, implying that it is 
practically deployable. 

 

I. INTRODUCTION 

Due to the increasing demands on video distribution over 
the Internet, caching video objects at proxies close to clients 
has attracted much attention in recent years. However, video 
objects have several distinct features, which make 
conventional Web caching techniques inefficient, if not 
entirely inapplicable. In particular, a video object usually has 
a high data rate and a long playback duration, which 
combined yield a very high data volume. As an example, a 
one-hour MPEG-1 video has a data volume of about 675 MB; 
caching it as a whole is clearly impractical, as several such 
large streams would exhaust the capacity of a typical cache.  

To address these problems, many partial caching 
algorithms have been proposed in recent years [3,4,21], 
demonstrating that, even if a small portion of a video is stored 
at the proxy, the network resource requirement can be 
significantly reduced. Most of these proposals, however, 

assume that the rate (either constant or variable) of the video 
is predetermined. Due to this non-adaptability, they suffer 
from two limitations: first, it is difficult to meet the diverse 
bandwidth conditions from heterogeneous clients, for a single 
streaming rate would either overuse or underuse some client 
bandwidths; second, it is not flexible enough to control the 
backbone (server-to-proxy) bandwidth consumption, since the 
streaming rate from the proxy to the clients is not adjustable.  

While rate adaptability is a salient feature of video objects, 
the use of adaptive videos poses great challenges to caching. 
The problem is particularly complicated by the fact that most 
conventional rate adaptation mechanisms are executed during 
the encoding process (e.g., adjusting quantizers [7,18]) and, 
hence, are difficult to apply to cached videos. There have been 
research efforts to combine proxy caching with video layering 
or transcoding [6,13,17]. However, these adaptive systems 
suffer from either coarse adaptation granularity (due to the 
inflexible structures of existing layered coders) or high 
computation overhead (due to the transcoding operations).  

In this paper, we propose a novel video caching framework 
to achieve low-cost and fine-grained rate adaptation. The 
innovative approach is to employ the MPEG-4 Fine-Grained 
Scalable (FGS) video with bit-plane coding, which enables 
post-encoding rate control by partitioning the video stream at 
any specific rate [8]. These operations can be efficiently 
implemented at the server or at a proxy with fast response and 
low cost. The proposed framework is both network aware and 
media adaptive: clients can be of heterogeneous access 
bandwidths, and adaptive FGS videos are used to meet the 
clients’ bandwidth conditions and to control the backbone 
bandwidth consumption.  

We examine the critical design and management issues in 
the proposed framework. Specifically, there is a two-
dimensional space to explore for how to cache an FGS video: 
the length and the rate of the portion to be cached. We stress 
that the selection must take into account the interactivities in 
video playback, i.e., the non-uniform access rates of different 
portions. Moreover, when a cached video is delivered to a 
client, different streaming rates can be selected as long as the 
rate is no higher than the client’s available bandwidth. 
Consequently, the proxy management becomes considerably 
more complex than that for a non-adaptive video based system. 
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We develop efficient solutions to the above problems. The 
objective is to offer optimal resource utilization as well as 
satisfactory and fair services to clients. 

The performance of the proposed framework with optimal 
proxy cache management is extensively examined in various 
aspects. The results demonstrate its superiority over non-
adaptive caching schemes for heterogeneous clients. More 
importantly, they reveal that our FGS video based adaptive 
caching system incurs low computation overhead and, hence, 
is practically deployable. 

The rest of this paper is organized as follows. In Section II, 
we introduce the background as well as related work.  Section 
III describes the FGS video based proxy caching system. The 
problems of optimal proxy management are formulated in 
Section IV. We also present efficient solutions to the 
problems. Their performance is evaluated in Section V. In 
Section VI, we further consider the practical issues for 
deploying our system. Finally, Section VII concludes the 
paper and offers some future directions.  

II. BACKGROUND AND RELATED WORK 

A. Video Caching for Homogeneous Clients 
Numerous cache algorithms for Web proxies have been 

proposed in the past decade [5]. However, as mentioned in 
Introduction, several distinct features of video objects like 
large volume make the conventional Web caching algorithms 
inapplicable. To this end, many segment or interval caching 
methods have been proposed, with emphases on cache 
admission and replacement policies [21]. Due to the static 
nature of video contents and the disk bandwidth 
considerations at proxies, semi-statically caching popular 
video portions over a relatively long time period, rather than 
dynamically caching them in response to individual client 
requests, has also been suggested [3,4,15]. Wang et al. [3] 
proposed a video staging scheme, in which only the part of a 
stream that exceeds a certain cut-off rate (i.e., the bursts of a 
VBR stream) is cached at the proxy. Sen et al. [4] proposed a 
prefix caching algorithm that caches the initial frames of the 
video stream. This is particularly attractive in reducing the 
client start-up latency, due to the predictable sequential nature 
of video accesses.  

Most of these algorithms assumed non-adaptive/non-
scalable videos and bandwidth homogeneous clients, though 
some of them also considered work-ahead smoothing to 
reduce the backbone bandwidth demand for VBR videos. Our 
work is motivated by these studies, in particular, the staging 
and prefix caching algorithms, and complements them by 
focusing on the issues arising from caching scalable videos 
with heterogeneous clients.   

B. Video Caching for Heterogeneous Clients  
To handle the heterogeneity of client bandwidths, a 

straightforward method is to produce replicated video streams 

of different rates [18]. Though being used in many 
commercial streaming products, this method suffers from high 
replication redundancy. Other recent studies have introduced 
proxy services with active filtering, which reduces the 
bandwidth of a video object by transcoding [2,18]. However, 
they usually incur much higher computation overhead due to 
transcoding operations.  

A more efficient method is to use layered coding (also 
known as scalable coding), which compresses a video into 
several layers [8]: the most significant layer, called the base 
layer, contains the data representing the most important 
features of the video, while additional layers, called 
enhancement layers, contain the data that progressively refine 
the quality of the reconstructed video. Layering has been 
widely used in live video multicast to heterogeneous and 
isochronous clients [18]. For proxy-assisted streaming with 
layered videos, Rejaie et al. [6] studied cache replacement and 
perfecting policies with the objective of alleviating congestion 
for individual clients. Kangasharju et al. [13] simplified the 
system model by assuming the cached contents are semi-static 
and only complete layers are cached. They developed 
effective heuristics to maximize the total revenue based on a 
stochastic knapsack model. 

Our work differs from these previous studies in two aspects: 
First, we focus on the optimal resource allocation for a set of 
clients, rather than the performance perceived by an individual 
client. This is an important design issue from a system point 
of view. Second, the previous studies employed conventional 
layered coding, where the number of layers is restricted and 
the rate of each layer is often fixed. For example, Kangasharju 
et al. [13] focused on two layers only (base layer and one 
enhancement layer). Our work complements them by 
employing the fine-grained scalable videos to enhance 
adaptability.  

C. Fine-Grained Scalable (FGS) Video 
FGS generalizes the conventional layering (scalable coding) 

methods through a bitplane coding algorithm, which uses 
embedded representations for the enhancement layer (also 
called FGS layer) [8]. For illustration, there are 64 (8×8) DCT 
coefficients for each video block of the enhancement layer; all 
the most significant bits from the 64 DCT coefficients 
constitute bitplane 0, all the second most significant bits 
constitute bitplane 1, and so on and so forth. In the output 
stream, the bitplanes are placed sequentially to reconstruct the 
coefficients. A post-encoding filter thus can truncate this 
embedded stream of the enhancement layer to achieve any 
specified output rate, with negligible mismatches due to block 
boundary constraints for the truncation [8,12]. We stress that 
this rate control method has two advantages: (1) like 
transcoding, it enables fine-grained rate adaptation, but the 
computation overhead of the filter is much lower; (2) like 
layered adaptation, it can be applied to stored videos and 
enables the proxy to adjust the rate of a cached stream at a low 
cost. Specifically, for narrowband clients, the proxy can 
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reduce the streaming rate using the filter; for wideband clients, 
the proxy can fetch some uncached portion (i.e., higher-order 
bitplanes) from the server and assemble it with the cached 
portion to generate a higher rate stream. Such operations are 
difficult to implement using transcoding, not only because it 
has high computation overhead but also because it changes the 
stream syntax.  

FGS coding has been adopted in the MPEG-4 standard and 
is undergoing active improvement. We have seen proposals 
that make efficient use of FGS coding for adaptive video 
streaming [19]. However, they did not consider proxy caching. 
To our knowledge, the only work that employed FGS videos 
in caching is [20]. Their focus however was on developing a 
general cache management framework, in particular, the 
replacement policies for mixed-media streaming; the FGS 
coding was used to for the performance evaluation purpose.  

III. SYSTEM MODEL OF FGS VIDEO BASED CACHING 
The video streaming system consists of a server that stores a 

repository of videos, and a set of proxies on the edge of the 
network. Selected videos are partially cached at the proxies. A 
client request is first forwarded to a nearby proxy, which 
intercepts the request and computes a schedule for streaming: 
the cached portion of the video can be delivered to the client 
directly; some uncached portion, if needed, will be fetched 
from the server and then relayed to the client. Although this 
process is similar to that of many existing systems, our model 
has three novel features, making it more general and flexible. 

 First, we consider a relatively more complex network (e.g., 
Intranet) behind the proxy, instead of a simple LAN assumed 
in most existing studies. Examples include an enterprise 
network or a campus network, which remains highly 
heterogeneous in terms of client access bandwidths, due to 
such factors as hardware configurations, connection methods 
(e.g., Ethernet, ADSL, or wireless LAN), and administrative 
policies (e.g., in a campus network, the access bandwidth 
provisioned for a faculty member would be higher than that 
for a student). To reflect such heterogeneity, we assume that 
there are M classes of clients, and the maximum access 
bandwidth for a client (or simply client bandwidth) of class i  
is given by ic , 1,2,...,i M= , which is an upper bound on the 
video streaming rate from the proxy to a client of class i. 
Without loss of generality, we number the classes in 
ascending order of the client bandwidth, that is, 

1 2 Mc c c≤ ≤ ≤ .   
Second, we assume that the clients could terminate a video 

playback prematurely after they requested the playback from 
the beginning of a video. Existing studies on video server 
workloads [10] have revealed that such early terminations 
occur quite often and, hence, should be considered in system 
dimensioning. One approach for modeling early termination is 
to partition a video into two parts: a prefix and a suffix, where 
the prefix could be a preview of the video. If a client feels 
uninterested after watching the prefix, it will terminate the 

connection; otherwise, it will continue playback by retrieving 
the suffix. We denote the lengths of the prefix and the suffix 
by tL  and sL , respectively. Assume the probability of early 
terminations is ETp , 0 1ETp< < . The probability of a 
client accessing the entire video (also the probability of 
accessing the suffix) is thus 1 ETp− . While here we consider 
this simple model only, the method can be extended to a 
multiple-segment case with non-uniform access rates due to 
such interactivities as VCR-like operations in playback (some 
preliminary results can be found in [22]).  

Finally and most importantly, we advocate scalable adaptive 
videos in this system, in particular, the MPEG-4 FGS videos. 
To model an FGS video, we assume that the base layer of the 
video has a constant rate baser , which cannot be further 
partitioned along the rate axis. As such, the base layer 
represents an ensured lowest playback quality. On the other 
hand, neglecting the effect of block boundaries for bitplane 
truncation, the enhancement layer can be adaptively 
partitioned into any given rate using a filter, either at the 
server or at the proxy. Thus, as illustrated in Fig. 1, a proxy 
manager can set the streaming rate to a client of class i  in the 
range of [ , ]base ir c .  
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Fig. 1. Functionalities of the video server and a proxy.  

The proxy manager also determines which portion of a 
video is to be cached. In the conventional non-adaptive video 
caching system, given a cache size for the video, the portion 
to be cached is simply determined by the length (in terms of 
playback time). However, with FGS videos, there is one 
additional dimension to explore: the rate of the portion to be 
cached. Such flexibility potentially enables better resource 
utilization, but also complicates the proxy cache management. 
In addition, there are two cases in which some uncached 
portion is to be fetched from the server: (1) the length of the 
demanded portion is longer than that of the cached portion; 
and (2) the streaming rate is higher than that of the cached 
portion. In the second case, the uncached bitplanes will be 
fetched from the server and then assembled with the cached 
portion to form a stream of higher rate.  

As in many previous studies [3,4,14], we assume that the 
contents of the proxy cache are semi-static and updated 
periodically with changes of the system workloads. For each 
period, the key issues in proxy management are to find the 
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optimal length as well as the optimal rate for caching a video, 
and to determine the streaming rate for each client of the 
video. To ensure fairness, we let the video streaming rate to 
any client of class i be identical, denoted by ib , i ib c≤ , 

1,2,...,i M= . For a multi-video case of N  videos, the proxy 
manager also needs to determine an optimal resource (cache 
space and backbone bandwidth) sharing among the videos.  

The key parameters of this model are summarized in Table 
1. We assume all these parameters are known a priori and do 
not change drastically in a period. Moreover, for ease of 
exposition, we focus on the interactions among the origin 
server, a single proxy, and the clients of the proxy. Our results, 
however, are applicable to the multi-proxy case where each 
proxy serves a non-overlapping set of clients.  

 L  Length of the video, t sL L L= +  
   tL  Length of the prefix 
 sL  Length of the suffix 
 ETp  Probability of early terminations 
 H  Proxy cache size for the video 
 baser  Base layer rate of the video 
 λ  Client request rate for the video 
 M  Number of client classes 
 ip  Probability that a client is in class i , 0ip >  
 ic  Client bandwidth of class i  
 ib  Streaming rate for a class i client ( base i ir b c≤ ≤ ) 
 iα  Utility of a client in class i , /i i ib cα =  
 V̂  Volume of the video with rate Mc ,  ˆ

MV L c= ⋅  

 B̂  Backbone bandwidth consumption with ideal 
client utility assignment and no caching 

Table 1. Model parameters for a single video. For the multi-
video case of N  videos, a superscript ( )k  is to be added to each 
parameter of video k , 1,2,...,k N= . 

IV.  THE PROXY CACHE MANAGEMENT PROBLEM 
AND SOLUTIONS 

In this section, we consider the proxy cache management 
problem for a single video object as well as for multiple 
heterogeneous videos. Our objective in designing the proxy 
cache management module is two-fold: first, to maximize the 
client utility, which is related to the streaming rate to each 
class of clients; and second, to minimize the transmission cost, 
as the video streaming imposes very high data delivery 
demands to the network. As suggested in previous studies [3], 
we assume that the local (i.e., proxy-to-client) transmission 
cost is trivial, and the overall transmission cost is a non-
decreasing function of the average backbone (i.e., server-to-
proxy) bandwidth consumption. Note that the above two 
objectives could conflict, because it is obvious that the higher 
the streaming rate (which results in a higher client utility), the 

more the uncached portion to be fetched from the origin 
server (which incurs a higher transmission cost). As such, it is 
important to find a trade-off between them. 

A. Minimizing Transmission Cost 
We first consider the transmission cost for a single video 

with specified streaming rates for each class of clients, 1b , 
2b , …, Mb , i ib c≤ , 1,2,...,i M= . We attempt to answer the 

following question: Given a limited cache size H  to the video, 
which portion of the stream is cached (referred to as a caching 
scheme) such that the transmission cost is minimized? As said, 
this objective is equivalent to minimizing the backbone 
bandwidth consumption. 

Note that the rates for different positions of the cached 
portion can be different when using FGS videos. Denote the 
rate for position l  (measured in the elapsed time from the 
beginning of the video) of the cached video by ( ), [0, ]r l l L∈ . 
A caching scheme for the video is therefore uniquely 
determined by the shape of ( )r l . We say that the scheme is 
valid if 1)    ( )r l dl H≤  and 2) for any [0... ]l L∈ , ( )baser r l≤  

Mc≤  or ( ) 0r l = . The above two constraints follow the 
cache size limit and the base layer rate limit, respectively.  

A caching scheme is optimal if it is valid and yields the 
minimum backbone bandwidth consumption for fetching the 
uncached portion. Let V̂  denote the total volume of the video 
with rate Mc (the maximum client bandwidth). Obviously, 
if ˆH V≥ , the caching scheme ( ) Mr l c= , [0, ]l L∈  is optimal. 
For the case of limited cache size, we show two lemmas that 
facilitate searching the optimal caching scheme.  

Lemma 1: If base tH r L≤ ⋅ , the caching scheme  
, [0, / ]

( )
0, ( / , ]
base base

base

r l H r
r l

l H r L

 ∈=  ∈
 is optimal. 

 Proof:  This scheme is clearly valid. For any client request, 
a video portion of volume H  is saved from being transmitted 
over the backbone. This is the maximum saving per client 
request that a valid caching scheme could achieve under cache 
sizeH .                                            □ 

Lemma 2:  If ˆ
base tr L H V⋅ < < , assuming that the size of 

the cached prefix is fixed to tH   ( [ , ]base tr L H∈ ⋅ ), there 
exists an optimal caching scheme: 

  ,

, [0, ]
( , ]( )

0, ( , ]

t t

s t c

c

r l L
r l L Lr l
l L L

 ∈ ∈=  ∈

, 

where tr and sr respectively represent (constant) rates of the 
cached prefix and cached suffix, and are given by 

/t t tr H L=  and max { ,( )/ }s base t sr r H H L= − ; cL is the 
total length of the cached portion, cL = ( )/t t sL H H r+ − . 

The proof of this lemma can be found in [22]. Let’s 
concentrate on this case ( ˆ

base tr L H V⋅ < < ) with a 
given tH . It is easy to show that t sr r≥ for an optimal 

0

L

∫
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caching scheme because a cached prefix will serve both early 
terminated requests and all other requests. The backbone 
bandwidth consumption for all requests from class i  is 
therefore given by 

, ( )

[(1 )( ) ( )],

(1 )[ ( )],

(1 ) ( ),

t
i
H H i

i ET i ET i t t

t i M

i ET i s s c t s i t

i ET i c base i s

B b

p p b L H p b L H

r b c

p p b L r L L r b r

p p b L L r b r

λ

λ

λ

=

 − − + − ≤ ≤ − − − < < − − ≤ ≤

  (1) 

which can be easily validated from Fig. 2 (for s i tr b r< < ). 
It follows that the optimal caching scheme for base tr L⋅  
H< < V̂  can be accomplished by a one-dimensional search 

on tH  in the range of [ , ]base tr L H⋅ . The optimal solution, or 
the minimum backbone bandwidth consumption, is thus  

  ,1,
min ( )

t
base t t t s

M i
H H H iir L H H r r
B B b=⋅ ≤ ≤ ≥
= ∑ .            (2) 

Assume the minimum cache grain is v , which could be the 
size of a disk block or the size of a GOP (Group-of-Pictures) 
of the video; the cache size H , as well as tH , is always a 
multiple of the grain v . Then the complexity to search HB is 

( / )O H v . 

For H ≥ V̂  and base tH r L≤ ⋅ , the optimal caching 
scheme can also be uniquely represented using tr , sr , and cL . 
The corresponding backbone bandwidth consumption thus can 
be calculated by Eqs. 1 and 2 as well. 

 
Fig. 2. Illustration of different portions of an FGS video stream. 

B. Trading off Backbone Bandwidth with Client Utility  

In the above optimization, we assume that the streaming 
rates for the clients of the video are specified. We now 
consider a more general and flexible scheme that makes 
effective use of FGS.  

Define the utility of a class i client as /i i ib cα =  for 
base i ir b c≤ ≤ . The ideal utility assignment is 1iα = , 

1,2,...,i M= , i.e., the client bandwidth is fully utilized for 
every class. However, it is clear that the higher the client 
utility, the more the transmission cost or the backbone 
bandwidth consumption. To reduce bandwidth consumption, 
one solution is to block some of the client requests. Although 

this has been suggested in previous studies, it is unfair to the 
blocked clients. The FGS video, however, offers an alternative 
method by trading off bandwidth with client utility, that is,  
assigning a somewhat lower yet acceptable streaming rate to 
each class of clients.  

More explicitly, we would like to investigate whether there 
exists some utility assignment to each class of clients of the 
video, such that the backbone bandwidth consumption is no 
more than B̂η , where B̂  is the backbone bandwidth 
consumption with the ideal utility assignment and zero-size 
cache (i.e., no caching); η thus reflects the factor of backbone 
bandwidth reduction. We are particularly interested in a utility 
assignment that achieves the best “social welfare”, i.e., the 
total utility of the clients is maximized. This utility 
optimization problem for the single video can be formally 
described as follows: 

MU-SV:   max    , 1
M

H i ii
U pη λ α

=
=∑ ,                     (3) 

                        . .s t      / 1base i ir c α≤ ≤ , 1,2,...,i M= , 
                                   1 1i i i ic cα α− − ≤ ,   2, 3,...,i M=  , 
                                   ˆ

HB Bη≤ , 

where ,HU η is the total client utility per unit time for a cache 
size H  and a backbone bandwidth reduction factor η . The 
constraint 1 1i i i ic cα α− − ≤  (equivalent to 1i ib b− ≤ ) is to 
preserve the order (priority) of the client classes in resource 
sharing.  

Assume that there is a minimum bandwidth grainw ; the 
backbone bandwidth consumption for a certain class of clients 
is rounded to a multiple of w . Fig. 3 presents an algorithm to 
solve the problem instance of a given size of the cached prefix, 
tH . MU-SV thus can be accomplished by a search on tH , 

similar to that in the previous subsection. 
In this algorithm, , ,i j ku  represents the maximum total utility 

per unit time for classes 1 through i , with backbone 
bandwidth j  consumed by classes 1 through i , and backbone 
bandwidth k  consumed by class  i . Function 1

,( ) ( )
t

i
H HB k−  is 

a generalized inverse of  , ( )
t

i
iH HB b  (see Eq. 1), representing 

the highest streaming rate for a class i  client given that the 
backbone bandwidth consumed by this class is k . A special 
case is k =0. Recall that we assume 0ipλ >  and  
1 0ETp− > in the system; zero backbone bandwidth 
consumption implies that cL L=  and the streaming rate is 
no higher than sr . Therefore, if cL L= , we let 1

,( ) (0)
t

i
H HB −  

be sr  to maximize the total utility; otherwise, we set 
1

,( ) (0)
t

i
H HB −  to 0 and 

1
, (0)
t

i
H HB
−

 to −∞ . Finally, note that  
, ( )
t

i
iH HB b  is undefined for i baseb r<  and i Mb c> ; if directly 

inversing Eq. 1 yields a value in these two ranges, we set 
1

,( ) ( )
t

i
H HB k−  to 0  and Mc , respectively. 

The correctness of this algorithm can be found in [22]. 
Given the cache grain v , applying the algorithm for each tH  
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solves problem MU-SV in time 3ˆ( / / )O M B w H vη ⋅ ⋅   . 
Since the accuracy of this algorithm depends on v  and w , we 
shall investigate their impact in the next section through 
simulation experiments.  

 

1, ,j ku ← −∞   /* Initialization */  

for 0k =  to B̂η  step  w  do     

for j k=  to B̂η  step  w  do     

1, ,j ku 1 1
1 , 1[( ) ( )]/

tH Hp B k cλ −←  
 

for 2i =  to M do   /* Table filling */ 
for 0k =  to B̂η  step  w  do     

           1
,( ) ( )
t

i
H Hy B k−←  

              for j k=  to B̂η  step  w  do  
max ← −∞  
 for 0x =  to 1

, ( )
t

i
H HB y−  step w  do  

1, ,/i i i j k xtemp p y c uλ − −← +  

if max temp<   
then max temp← ,  bw x←  

               , ,i j ku max← , , ,i j kh bw←  

*u ← −∞    /* Extract optimal results */ 
for 0bw =  to B̂η  step w  do 

    , / ,M B w w bwtemp u η  ⋅ 
←  

if *u temp<   
then *u temp← ,  *bw bw←   

ˆ /b B wη ′ =    , *bw bw′ =   

for i M=  down to 1do 
* 1

,( ) ( )/
t

i
i H H iB bw cα − ′←   

b b bw′ ′ ′← − , , ,i b bwbw h ′ ′′ ←  

Output: 
*u :  maximum expect utility for the givenH , tH , η  
*
iα : corresponding utility assignment of a class i client 

Fig. 3. Algorithm for an instance of MU-SV with given tH . 

C. Proxy Management for Multiple Heterogeneous Videos 

We now extend the above proxy cache management policies 
to the case of multiple heterogeneous videos. Assume that 
there are N  videos, indexed as 1 through N . Given the total 
cache size TH and the total bandwidth reduction factor Tη  
for all the videos, our objective is to find a cache partitioning 
( ( )kH , 1,2,...,k N= ) as well as bandwidth partitioning ( ( )kη , 

1,2,...,k N= ) for these videos, such that the system utility 
(total utility of all the clients for the videos) is maximized. 
This problem can be formally described as follows:  

MU-MV:   max     ( ) ( )
( )

,1 k k
N k

Hk
U η=∑ ,                            (4) 

                         . .s t       ( )
1

N k T
k
H H

=
≤∑ , 

                                         ( )
( ) ( )

1 1
ˆ

k

N Nk kT
Hk k
B Bη

= =
≤∑ ∑ . 

This is a 2-dimesional (bandwidth and space) version of the 
knapsack problem. Given cache grain v  and backbone 
bandwidth grainw , it can be solved by extending the known 
pseudo-polynomial time algorithm for 1-D knapsack [1:Ch 
16], and the time complexity of this solution is  bounded by 

( )( )2 2
1
ˆN kT T

k
O N H H v B B wη− −

=
 ′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅  ∑ , where B ′ =  

( )

1
ˆmin{ ,
kNT

k
Bη

=∑ ( )ˆmax }kk B  and H ′ =  min { ,TH  
( )ˆmax }kkV  [22].  

V.  PERFORMANCE EVALUATION 
In this section, we evaluate the performance of our FGS-

based caching system through simulation experiments. We 
examine the system along two dimensions: 1) the transmission 
cost, or backbone bandwidth consumption; and 2) the quality 
of the delivered streams, i.e., the client utility.  
A. System Settings  

For the single video case, we assume that there are five 
classes of clients, and the client bandwidths of the classes are 
exponentially spaced, i.e., c1=128 Kbps and 12i ic c −=  for 

2, 3, 4,5i = , which cover the bandwidths of a broad spectrum 
of access technologies. For the client population distribution 
among the classes, ( 1 1 5, ,...,p p p ), we have evaluated various 
settings in our experiments. Due to space limitation, in this 
paper we present the simulation results for three typical 
distributions: 

(1) Uniform: (0.2,  0.2,  0.2,  0.2,  0.2) ;    
(2) S-narrow: (0.5, 0.2, 0.15, 0.1, 0.05) ; 
(3) S-wide:   (0.05, 0.1, 0.15, 0.2, 0.5) . 

The latter two are skewed distributions, respectively 
dominated by narrowband clients and wideband clients. The 
lengths of the entire video and the prefix are set to 100 
minutes and 20 minutes, respectively. The probability of early 
terminations is set to 0.3. Although a rigorous evaluation of 
the client termination behavior is beyond the scope of this 
work, we note that higher probabilities of early terminations 
have been observed in reality [10]; in this case, more benefits 
can be expected from the caching paradigm advocated in our 
system.  

We assume that the requests follow a Poisson arrival 
process with a mean rate of one request per minute. We 
normalized the backbone bandwidth by B̂  (the backbone 
bandwidth consumption with ideal utility assignment and no 
caching) and the cache size by V̂  (the total volume of the 
video with rate Mc ) for all presented results. Hence, our 
conclusions are generally applicable when the parameters are 

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



 

proportionally scaled. Unless explicitly specified, the default 
cache grain and backbone bandwidth grain are set at 

ˆ1/200V and ˆ1/200B , respectively. 
For the multiple video case of N  objects, we use similar 

client settings as described above for each single video, and 
assume that the access probabilities of the videos follow a 
Zipf distribution, which has been suggested by workload 
measurements of media servers. With this distribution, the 
access probability of video k  is 

1
(1/ ) / (1/ )N

j
k jθ θ

=∑ , 
where θ  reflects the skewness among the client populations 
of the videos.  

B. Evaluation Results for Single Video  

B.1 Backbone Bandwidth Reduction 
In the first set of experiments, we investigate the backbone 

bandwidth consumption. We are interested in examining the 
backbone bandwidth reductions by employing the optimal 
caching scheme, compared to the following two baseline 
schemes: 

(1) MaxLen: 
, [0, / ]

( )
0, ( / , ]

r l H r
r l

l H r L

′ ′ ∈=  ′∈
, ,max{ / }baser r H L′ = ; 

(2) MaxRate:
, [0, / ]

( )
0, ( / , ]
M M

M

c l H c
r l

l H c L

 ∈=  ∈
. 

These two schemes are non-adaptive because they are not 
aware of the client bandwidth distributions. They also 
resemble the caching schemes for a coarse-grained layering of 
2 layers, i.e., caching the base layer only and caching both the 
base and enhancement layers.  

Fig. 4 shows the backbone bandwidth reductions for 
different cache sizes and class distributions. The client 
bandwidth is assumed to be fully utilized for all classes, that is, 

1iα = , 1,2,...,i M= . We observe remarkable reductions 
achieved by our optimal scheme over the two baseline 
schemes, which is generally over 10% and sometimes over 
50%. The reduction depends on the class distributions, e.g., 
for the S-narrow distribution (Fig. 4b), the reduction is 
particularly high when compared with the MaxRate scheme, 
as most of the clients have a relatively low bandwidth and 
hence, caching the stream of the highest rate becomes 
wasteful. In this case, increasing the length of the cached 
stream becomes a better alternative. However, compared to 
our optimal scheme, the MaxLen scheme still suffers from 
more than 10% bandwidth excess, because it is not flexible in 
setting the rates for the cached prefix and suffix to better 
accommodate early terminated requests. On the contrary, with 
the S-wide distribution (Fig. 4c), since most clients have high 
bandwidth demands, the MaxRate scheme is better than the 
MaxLen scheme, but is still suboptimal. Finally, with the 
Uniform distribution (Fig. 4a), both the MaxLen and the 
MaxRate schemes are far from satisfactory. 

It is worth noting that, compared to the two non-optimal 
schemes, there is virtually no extra cost in employing the 

optimal scheme in our FGS video based caching framework. 
Hence, we believe that our optimal scheme is an effective 
means to improve the system performance.   

B.2 Utility Improvement 
We now examine the tradeoff between the client utility and 

the backbone bandwidth consumption, given that the 
streaming rates to the clients can be regulated using the 
filter/assembler at the proxy. We employ the optimal caching 
and utility assignment algorithms for our system, as described 
in Section IV.B. Fig. 5 shows the expected utility for all 
clients as a function of the backbone bandwidth consumption 
for different cache sizes and class distributions. Note that the 
normalized backbone bandwidth is essentially equal to η , as 
shown in Eq. 3.   

It can be seen that, to achieve the optimal utility ( 1= ), a 
relatively high backbone bandwidth is to be consumed if the 
cache size is very small, e.g., 40% of backbone bandwidth B̂  
with a cache size 0.3V̂  for the uniform class distribution (Fig. 
4a). However, there is a nonlinear relation between the 
backbone bandwidth consumption and the client utility. As a 
result, for the same setting, we can achieve an expected client 
utility of 0.9 by consuming only 15% of B̂ , that is, a 10%  
utility reduction leads to a 62.5% backbone bandwidth 
reduction. This is particularly evident for the S-narrow 
distribution, not only because a relatively high volume is 
cached for the stream to a narrowband client, but also because 
a slight reduction of the streaming rate to a wideband client 
will benefit the set of narrowband clients. In this case, the 
expected utility is over 0.8 even with very limited resources 
(e.g., backbone bandwidth of 0.05 B̂  and cache size of 0.1V̂ ).  
For the S-wide class distribution, the reduction is not that 
significant. However, in this case, the absolute backbone 
bandwidth consumption is much higher than that for the other 
two distributions; hence, a slight reduction on the normalized 
bandwidth would still lead to a great reduction in the absolute 
backbone bandwidth consumed.  

Such an adaptive setting of utility clearly offers a flexible 
space for a designer to explore to either maximize the overall 
revenue or minimize the overall cost. On the contrary, if the 
cache size is less than ˆ0.1V and the backbone bandwidth is 
less than ˆ0.5B , a non-adaptive system that fixes the client 
utility to one does not even work for any class distribution.  

B.3  Sensitivity to  Allocation Grains 
In our experiments, the default cache grain v and backbone 

bandwidth grain w  are set at ˆ1/200V and ˆ1/200B , 
respectively. To investigate their impact, we repeat the 
experiments of the previous subsection with various grain 
settings. Fig. 6a shows the maximum gaps in terms of optimal 
client utilities between each setting and a finer-grained 
setting: ˆ1/1000B  (bandwidth grain) and ˆ1/1000V  (cache 
grain). We can see that the performance gap quickly decreases 
with the refinement of the grains, and the gap for the default 
setting (1/200V̂  and 1/200 B̂ ) is already lower than 0.008.  
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                           (a)                                                                                  (b)                                                                                (c) 

Fig. 4. Backbone bandwidth reductions achieved by the optimal caching scheme. 
(a) Uniform class distribution; (b) S-narrow class distribution; (c) S-wide class distribution. 
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Fig. 5. Expected client utility as a function of backbone bandwidth consumption. 
(a) Uniform class distribution; (b) S-narrow class distribution; (c) S-wide class distribution. 

 
           (a)                                               (b)  

Fig. 6.  Performance gaps as compared to a fine-grained setting 
v =  ˆ1 / 1000V , ˆ1/1000w B= . (a) Max gap; (b) Average gap.  

This is negligible from a client perception point of view. 
We also show the average gaps in Fig. 6b, which are in fact 
much smaller than the corresponding maximum gaps shown 
in Fig. 6a. Therefore, we believe that the default setting is 
reasonably good, especially considering that the computation 
times with this setting are generally less than 30 ms on a 
common PC (Pentium III 1 GHz). 

C. Evaluation Results for Multiple Videos 

Finally, we investigate the performance of the proxy 
management algorithm for multiple videos. We implement 
the joint optimization scheme MU-MV for cache and 
bandwidth partitioning (see Section IV.C), as well as a 

baseline scheme with a uniform cache partitioning 
( ( ) /k TH H N= ) among the videos and a bandwidth 
partitioning proportional to the client population of each 
video ( ( )kη = ( ) ( )

1 1
( / ) (N Nk j T

j j
λ λ η

= =
⋅∑ ∑ B̂ ( )( ) ˆ)/ ki B ).  The 

utility assignment for each single video is optimized using 
the algorithm for MU-SV. It is easy to verify that the system 
utility for the baseline scheme is independent of the skew 
factor θ . Fig. 7 shows the system utility improvement by the 
joint optimization scheme for ( )

1
ˆ0.2 NT k

k
H V

=
= ∑ , 

and 0.1Tη = . It is clear that the joint optimization 
significantly improves the system utility, in particular, with 
large skew factors, i.e., the client populations of the videos 
are highly heterogeneous. For the S-wide distribution (Fig. 
7c), which has a relatively low system utility for the baseline 
scheme under the given settings, the utility improvement is 
over 30% for high skew factors.  

To identify respective contributions of the two 
optimization dimensions (i.e., space and bandwidth), we also 
show in Fig. 7 the improvements achieved by employing the 
optimal cache partitioning alone (Cache Optimal) and the 
optimal bandwidth partitioning alone (Band Optimal). Their 
corresponding bandwidth and cache partitionings are 
proportional and uniform, respectively. It can be seen that,  
though using either optimal partitioning alone also improves 
the system utility, there remain remarkable gaps as compared 
to that of the joint optimization, especially for higher skew 
factors. This is because the utility of each video is a 
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Fig. 7. System utility improvement as a function of skew factor θ  ( ( )
1

ˆ0.2 NT k
k

H V
=

= ∑ , 0.1Tη = ) for multi-video allocation. The 
system utilities of the baseline scheme for the Uniform, S-narrow, and S-wide distributions are 0.77, 0.92, and 0.56, respectively. (a) 
Uniform distribution; (b) S-narrow distribution; (c) S-wide distribution.  

nonlinear function of cache space or backbone bandwidth 
consumed by the video and, hence, the uniform cache 
partitioning or the proportional bandwidth partitioning alone 
is suboptimal for these heterogeneous videos. As such, we 
believe that it is important to use the joint optimization for 
the videos.  

 VI.  COMPARISONS AND PRACTICAL CONSIDERATIONS 

A. Scalable Video or Replicated Video?  
As mentioned in Section II, yet another approach to handle 

the client heterogeneity is stream replication [9,18]; that is, 
on the server’s side, replicated streams are generated to meet 
the bandwidth condition of each class of clients. Stream 
replication has several advantages, such as simplicity and 
compatibility with conventional non-scalable video coders. 
Hence, it has been widely used in existing commercial 
streaming systems, e.g., the RealNetwork’s SureStream. 
Nevertheless, replication also leads to data redundancy, not 
only in server storage but also in proxy cache and bandwidth 
consumption.  

Scalable video and replicated video based streaming 
systems have been compared in [9] with no proxy caching. A 
cache-aware comparison was shown in [16]. They considered 
coarse-grained layering (two layers) and the metric of 
interest is the request blocking probability. In this set of 
experiments, we try to complement these works from a client 
utility and bandwidth consumption point of view with the use 
of FGS videos.  

We first investigate the backbone bandwidth consumptions 
of the two approaches when the client bandwidth is to be 
fully utilized. To make a fair comparison, we develop the 
optimal caching scheme for the stream replication based 
system. In this system, the cached portion of a stream serves 
the clients of its own class only, and its rate is equal to the 
client bandwidth of the class. The problem is thus how to 
partition a cache with given size H for the M replicated 
streams of the video. This is a variation of the cache 
allocation problem for multiple heterogeneous videos, as 
solved in [14]. 

Using the optimal caching schemes, we calculate the 
backbone bandwidth reduction of the FGS video based 
system against the stream replication based system, as shown 
in Fig. 8. For the Uniform and S-narrow distributions, the 
reduction is significant, often over 40% and sometimes over 
60%. For the S-wide distribution, the reduction is relatively 
smaller because the backbone bandwidth consumption is 
dominated by the requests from the wideband clients. 
Nevertheless, the absolute value of saved bandwidth remains 
high enough in this case, as discussed in Section V-B.2.  
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Fig. 8. Backbone bandwidth reduction of FGS video 

based caching against stream replication based caching for 
different cache sizes and class distributions.  

Next, we consider the case of flexible utility assignment, 
where the client utility can be lower than one. The problem 
of optimal caching and client utility assignment for the 
stream replication based system can be formulated as follows: 

 MU-REP:   max    , 1
M

H i ii
U pη λ α

=
=∑ ,                       (7) 

                     . .s t     min / 1i ir c α≤ ≤ , 1,2,...,i M= ,  
                           1 1 , 2, 3,...,i i i ic c i Mα α− − ≤ = , 

                               
1

M
ii
h H

=
≤∑ , and ˆ

HB Bη≤ ,   

where ih  is the cache size allocated to stream i , and minr is 
the lowest streaming rate, which is set to baser in the 
experiments to ensure a fair comparison. This problem can 
also be solved by checking different partitionings of the 
cache and, for each partitioning, the optimal utility 
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assignment can be obtained using an algorithm similar to that 
for problem MU-SV. Fig. 9 shows the utility improvement of 
FGS based caching against stream replication based caching 
for the uniform class distribution. It can be seen that, when 
the backbone bandwidth consumption is lower than 0.25 B̂ , 
the improvement is often higher than 20%. It diminishes with 
increasing backbone bandwidth, since the client utility 
becomes saturated (optimal) for both systems. Nonetheless, 
compared with Figs. 4 and 5, it is clear that the stream 
replication based system requires far more resources to reach 
such maximum. For example, with the uniform class 
distribution, the client utility for our FGS based system has 
reached one for a cache size of 0.5 V̂  and backbone 
bandwidth consumption of 0.25 B̂  (see Fig. 5a); however, 
according to Figs. 5a and 9, the client utility for replication 
based system is still below 0.9 in this case. 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Utility improvement of FGS video based caching 
against stream replication based caching for the uniform 
class distribution. 

In the above experiments, we used the function 
/i i ib cα =  to measure client utility. It is worth noting that 

the FGS coding incurs extra overhead for stream scaling, 
which potentially leads to quality degradation. A 
comprehensive study on this issue involves the use of 
perception-aware utility functions, which is out of the scope 
of this paper and is indeed an open research problem. 
However, we are aware that current studies indicate that the 
quality degradation caused by such overhead is generally less 
than 10%, where the quality is measured by the Peak Signal-
to-Noise Ratio (PSNR) [8]. The degradation can be further 
minimized using smart reference schemes, such as those 
introduced in the Progressive FGS [11]. In view of these, and 
considering that FGS has been adopted by the MPEG-4 
standard as well as supported by quite a few industry giants, 
we believe our FGS video based caching offers a promising 
cost effective vehicle for video streaming to heterogeneous 
clients.   

B. Efficiency of FGS Filtering and Assembling 

 Another important practical concern of our system is its 
computational efficiency. Since the cache allocation and 
utility assignment are updated periodically and the allocation 

algorithms are reasonably fast, we mainly focus on 
examining the efficiency of the filter/assembler module, 
which is invoked for each client request.  

We use a MPEG-4 standard test sequence News (CIF) in 
our experiments. The rate of the sequence is 2 Mbps, and the 
base layer rate for FGS coding is set to 128 Kbps, which is 
consistent with our previous experiments. For the sake of 
comparison, we also examine three other filters that have 
been widely used in transcoding proxies [2,7,18]: simple 
frame-dropping (SFD), frame-dropping with drift-
compensation (FD-DC), and re-quantization (RQ). A frame-
dropping filter discards some B-frames or P-frames to 
achieve bandwidth reduction. Since a P-frame depends on its 
preceding I or P frame, to avoid quality drift, if a P frame is 
discarded, the SFD filter simply discards all subsequent P 
frames until an I frame arrives. The FD-DC filter avoids this 
by performing drift compensation for the subsequent P 
frames. Finally, the RQ filter reduces the stream rate by re-
scaling quantizers, which yields better perceptual quality 
than discarding a whole frame. For each filter/assembler, we 
repeat filtering/assembling 10 times on the entire sequence, 
with target rates distributed between 128 Kbps and 2 Mbps.  

Fig. 10 shows the average computation times of these 
various filters as well as the FGS filter/assembler. It can be 
seen that the computation time of the FGS filter/assembler is 
about two orders of magnitude lower than that of the FD-DC 
or RQ filters. Given a frame interval of 30 ms, our PC can 
support about 300 concurrent filter/assembler modules, and a 
powerful proxy server would support much more. In this case, 
the bottleneck of the system is likely the backbone 
bandwidth, but not the computation power of the proxy. This 
is however not true for the FD-DC or RQ filters; in particular, 
the number of concurrent RQ filters cannot be more than 3 
on our PC.  The SFD filter, though having similar 
computation time as ours, suffers from the coarse granularity 
and confined dynamic ranges for rate adaptation as 
mentioned before.  

1

10

100

1000

10000

     FGS     
Fil ter

FGS
Assembler

     SFD     
Fi lter

    FD-DC   
Fil ter

     RQ       
Filter  

C
om

pu
ta

tio
n 

Ti
m

e 
xx

 ( 
µ

s/
 fr

am
e 

) 

 
Fig. 10. Average computation time per frame. 

VII.  CONCLUSIONS AND FUTURE WORK 
In this paper, we addressed the problem of proxy-assisted 

video streaming to a set of heterogeneous clients. We 
proposed an adaptive proxy caching framework using fine-
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grained scalable (FGS) videos, and explored the benefits 
associated with FGS in handling client heterogeneity as well 
as reducing transmission costs. We also developed effective 
solutions to two important proxy management problems in 
this framework: which portion to be cached for each FGS 
video, and which streaming rate to be employed for 
delivering the stream to each client?  

Simulation results showed the proposed framework not 
only achieves significant backbone bandwidth reduction but 
also enables flexible utility assignment for heterogeneous 
clients. Meanwhile, its computation overhead is kept at a low 
level. We also conducted a systematic comparison between 
the FGS-based and the replication-based video caching 
systems, which  demonstrated the superiority of the FGS-
based caching. 

Given the low computation overheads of the FGS 
filter/assembler, we believe that our rate-adaptive caching 
framework is practically deployable. However, implementing 
a whole system remains a challenging undertaking, as it 
involves not only the optimization of individual components, 
but also their convergence. There are many possible research 
issues worth further investigation. For example, what is the 
impact of the nonlinear relation between video quality and 
streaming rate? We plan to employ perception-aware utility 
functions in our future experiments, e.g., those built on the 
rate-distortion framework. We are also extending our scheme 
to multiple segments with non-uniform access rates.  
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