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Abstract— Among a wide range of sensor network applications,
many of them require reliable data communications such that
data packets can be delivered to the destination without loss.
However, existing reliable transmission techniques either are too
costly for resource-constrained sensor networks or have limited
capabilities for achieving reliable data communication. In this
paper, an effective coding scheme that exploits the tradeoff
between redundant data transmission and encoding/decoding
complexity is proposed. Two key design parameters of the
proposed scheme, thedegree of repair packets and the the number
of repair packets, are derived to achieve a high data recovery
probability with minimum coding redundancy and computation
overhead. Furthermore, the proposed scheme is leveraged under
recoverable and permanent failure models for proactive trans-
mission. Accordingly, the expected probability of a destination
obtaining all data packets is analyzed. Simulations have been
conducted to verify our theoretical results. The simulation results
reveal profound insights in support of the proactive transmission
paradigm to achieve high communication reliability in wireless
sensor networks.

Index Terms— wireless sensor networks, data communication,
reliability, erasure coding

I. I NTRODUCTION

RECENT advances in hardware have made possible the
use of inexpensive, low-power miniature sensors in in-

situ sensing applications. These sensor nodes can be deployed
throughout a physical space and organized as a wireless
network to provide high-resolution measurements of physical
phenomena (such as temperature, humidity, and light). Among
a wide range of networked sensing applications, many of them
(e.g., disaster forecast, structural condition assessment) require
reliable data communications, such that a target destination can
obtain all data packets with a high probability. However, sensor
networks are unreliable in nature due to fragile sensor nodes,
error-prone wireless communications, and possibly hostile
deployment environments. Moreover, sensor nodes are con-
strained by energy, computation power and storage. Existing
reliable transmission techniques designed for Internet and ad
hoc networks are not effective (if not infeasible) for sensor
networks. In this paper, we study reliable communication
techniques for wireless sensor networks.

There are two categories of approaches for improving
communication reliability, i.e.,reactive retransmission and
proactive transmission. In reactive retransmissions [6], [11],
[23], [25], the source node is notified to retransmit a lost
packet until all data packets are correctly received at the
destination. This reactive approach has several disadvantages.
First, retransmission is triggered by packet losses, which

prolongs the communication delay and significantly incurs
the network traffic (due to NACK/ACK messages and data
retransmissions). Second, it requires the source to maintain
the transmission state and buffer all unacknowledged packets,
which entails a large buffer size at the source. To remedy these
deficiencies, proactive approaches have been recently proposed
for highly unreliable networks (e.g., wireless sensor and ad hoc
networks) [8], [34]. By transmitting redundant coded packets
to the destination, proactive reliable transmission is designed
to facilitate recovery from possible packet losses. Lost packets
can be reconstructed as long as the destination receives a
sufficient number of redundant coded packets.

Redundant coding (orcoding for short) is crucial for proac-
tive reliable transmissions. Many coding schemes have been
proposed for various fields, such as forwarding error correction
coding [3], [30], erasure channel [22] and digital fountain[24].
However, with different performance requirement, these cod-
ing schemes are not feasible for wireless sensor networks
due to either their very complicated computation in encoding
and/or decoding processes or very high coding redundancy.
In this paper, inspired by existing coding schemes [21], [22],
[31], we craft a coding scheme for wireless sensor networks by
taking into consideration its scarce bandwidth, limited energy,
and constrained computation and storage capacity.

To optimize the performance of the proposed coding scheme
in wireless sensor networks, we focus on exploring thetrade-
off between the coding computation complexity and coding
redundancy, which are controlled by two critical parameters,
the degree of repair packets (γ) and thenumber of repair
packets (k), respectively. Our research shows that these two
key parameters have major impacts on the ability of the pro-
posed coding scheme of recovering the lost data packets. We
aim at minimizing both coding redundancy and computation
complexity. Thus, the proposed coding scheme is able to
recover the lost data packets with a high probability. Moreover,
we examine the proposed coding scheme under two different
network failure models, i.e.,recoverable failure model and
permanent failure model. The proposed schemes significantly
increase the probability for a destination to obtain all data
packets. Their computation complexity and communication
overhead are shown to be suitable for wireless sensor net-
works.

Our contributions can be summarized as follows:
• We develop an efficient coding scheme for use in proac-

tive transmissions in sensor networks. Parameters critical
to our coding scheme, i.e.,the degree of repair packets
and thenumber of repair packets, are mathematically



derived to minimize the communication cost and the
computation complexity, while ensuring that the lost
packets can be recovered with a high probability.

• We mathematically analyze the recoverability of our
coding scheme. The analysis provides a guidance for trad-
ing off the reliability with the communication overhead.
The computation complexity of the coding scheme is
examined and compared with other representative coding
schemes.

• We identify two different network failure models, i.e.,
recoverable failure model and permanent failure model,
and craft two reliable transmission techniques corre-
spondingly. We analyze the expected performance of
proposed techniques under both models.

• We conduct simulations to validate our theoretical analy-
sis. The simulation results show that proposed coding
scheme and proactive reliable transmission techniques
enable the destination to obtain all data packet with
a higher probability, yet incurring less communication
overhead than existing approaches.

The remainder of the paper proceeds as follows. The related
work is reviewed in Section II. The detailed designs of the pro-
posed coding scheme and the proactive reliable transmission
techniques are presented in Section III and Section IV, re-
spectively. A performance evaluation is provided in Section V.
Finally, we conclude our work and discuss some future work
directions in Section VI.

II. RELATED WORK

The dynamic and lossy nature of wireless communications,
hostile deployment environments, and vulnerable hardware
components on sensor nodes all pose challenges for reliable
network communications in wireless sensor networks [37],
[38]. Although existing reliable transmission techniquesare
inefficient for wireless sensor networks, our work is informed
and inspired by a number of research studies. In the following,
we briefly survey the related work to our proposal. Reliable
transmission techniques are reviewed in Section II-A and
coding schemes are covered in Section II-B.

A. Reliable Transmission Techniques

The simplest reliable transmission technique is reactive end-
to-end retransmission. However, under this technique, alldata
packets have to be buffered at the source node before being
acknowledged by the destination node. A large buffer size
is not desirable for resource-scare wireless sensor networks.
Moreover, since the retransmission is triggered by NACK or
ACK messages, both communication delay and communica-
tion overhead are substantial for highly unreliable networks.
Reactive retransmission at link-layer is widely employed by
highly unreliable wireless networks [36]. However, when a set
of adjacent relay nodes on transmission path fail at the same
time, link-layer retransmission fails to achieve transmission
reliability.

Considering the limitations of link-layer retransmission, re-
searchers have proposed that the source node retransmits once
notified of the broken transmission path (and packet loss) by
any intermediate relay node (c.f., the destination node in end-
to-end retransmission) [15], [28], [29]. For retransmission, the

source node establishes a new path. However, this scheme still
suffers from a long communication delay since the new path
is built on-the-fly after being notified of the packet loss. Tore-
duce the communication delay of the above scheme, a class of
reactive multipath schemes were proposed and studied by [6],
[11], [23], [25]. In such an approach, a set ofalternative paths
are established and maintained during the period when the data
packet is transmitted along aprimary path. Upon detecting
a failure on the primary path, the source node switches to
one alternative path immediately for retransmission. However,
the reduced delay is achieved at the cost of communication
overhead caused by the maintenance of alternative paths. In
contrast, the proactive multipath paradigm employs multiple
paths for simultaneous data transmissions [20], [26], [27].
However, without mechanisms for retransmission or recovery
of lost packets, this paradigm is limited to reduce the packet
loss ratio only. High transmission reliability is not achieved.
Our work combines redundant coding with proactive multipath
routing to address this deficiency.

B. Coding Schemes

Coding schemes have been widely adapted for fault tolerant
computing for various forms of digital data communications.
For reliable data communications, a source node, based on a
coding scheme, encodes the data packets intorepair packets,
from which a destination is able to recover the lost packets.
Thus, coding schemes improve the reliability at the cost
of transmitting additional repair packets. In the following,
we briefly examine several representative coding schemes. A
detailed analysis of the computation complexity for some of
these schemes is provided in Section III-D.

Forward Error Correction (FEC) [3] is a type of error control
code that uses redundancy (extra information) to detect and
correct errors caused by thenoisy channel in a communication
system. The two main categories of FEC areblock codes and
convolutional codes. Block codes work on fixed-size blocks
of bits or symbols of predetermined size, while convolutional
codes work on bit or symbol streams of arbitrary length.
There are many types of block codes, including Hamming
code [13], BCH code [30] and Reed Solomon code (RS) [31].
The most widely used by far is RS code due to its nearly
optimal ability of error correction. Generally, RS encodes the
block’s message as points in a polynomial plotted over a finite
field. The coefficients of the polynomial are the data symbols
of the block. In addition to correct errors in bit-level (in a
information stream or a data packet), RS codes are also used
in packet-level (i.e., to recover lost data packets) [32]. More
specifically, each encoded packet (i.e., repair packet in the
paper) is generated from a polynomial calculation overn data
packets (d1, d2, · · · , dn), i.e.,F (α) = d0+d1α +· · ·+dnαn−1.
The repair packets are{F (1), F (α), F (α2), · · · }. By solving
a set oflinearly independent equations, which are represented
by the repair packets, the destination is able to recover the
lost packets. In RS code,α is usually large to minimize the
number of repair packets needed (i.e., onlym repair packets
are needed for recovery ofm lost packets in the optimal case).
Moreover, its encoding and decoding is performed in time
θ(n2) andθ(n3), respectively and the requirement for memory
space is noticeable due to the polynomial operations. In this
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paper, we focus on the transmission reliability in packet-level.
The proposed coding scheme employs much simpler XOR
operations for encoding and decoding. Hence, the computation
complexity is significantly reduced. Moreover, we minimize
the coding redundancies by deriving the optimum degree
of repair packets, a critical parameter affecting both of the
computation complexity and the coding redundancies.

Convolutional code [9], [10], [35] is a type of error-
correcting code in which ann-bit message to be encoded is
transformed into am-bit symbol, wherem/n is the code rate
(m ≥ n). The encoding is a function of the lastk information
symbols andk is the constraint length of the code. Longer
constraint lengths produce more powerful codes in terms of
error correction, but the complexity of the coding scheme
increases exponentially with constraint lengths. The Viterbi
algorithm, which employs maximum likelihood estimation
approach to make inferences about the underlying probability
distribution of the given received bits, is universally used as
decoding algorithm for convolutional codes. To ensure the
error correction ability, convolutional code requires at least
a constraint lengthk of 7 (usually less than 9) and a code
rate m/n of 1/2 (i.e., the coding redundancies is the same
as the original data). Compared with RS codes, convolutional
codes has much less computation complexity, but incur higher
coding redundancies and works well with the communication
channel with lower signal-to-noise (SNR) rate. The same
problem exists in the Turbo code [2]. Moreover, event though
being applicable, convolutional nodes usually are not used
for recovering lost data packets (which is the focus of our
study), due to its quickly increasing requirement of memory
space for encoding and decoding with the increasing amount
of information.

Another class of coding schemes [4], [21], [22] were
proposed for thedigital fountain paradigm [1], [24], which
is designed for delivery of a large amount of data over high
bandwidth, high latency Internet links. These schemes, by
using simple XOR operations for encoding, reduce the com-
putation complexity at the cost of transmitting more encoded
packets. For instance, in Luby Transform (LT) code, each
encoded packet is generated by applying XOR operations over
γ original data packets, where theγ (1 ≤ γ ≤ n) is randomly
selected from some distribution. By successively sending the
encoded packets, LT code ensures that no matter when the
destination starts to receive the packets at whatever rate,it is
able to decode all data packets as long as an enough number of
packets are received (regardless of their order). For decoding,
all encoded packets withγ = 1 are first decoded, since
they are data packets themselves. At each subsequent step,
a randomly selected, already decoded data packet is removed
from all encoded packets that have this packet encoded. This
process stops when all original data packets are decoded
from the encoded packets. LT code performs encoding and
decoding with a much lower computation complexity than RS
code, which is very attractive for resource-constrained wireless
sensor networks. However, as LT code only sends part of the
original data packets (i.e.,c ln(n/δ) out of n original data
packets for decoding with a probability1 − δ; c is some
suitable constantc > 0), it focuses on the distribution ofγ
such that there is always at least one decoded data packet that

has not been removed from the encoded packets. As such,
the decoding process can continue. However, this requirement
incurs a large number of encoded packets (i.e., n original data
packets can be decoded fromn + O(

√
nln2(n/δ) encoded

packets with a probability1 − δ) during decoding process,
which is an adversary for performing energy optimization in
wireless sensor networks. Moreover, LT code, not designed for
recovering lost packets, does not take into consideration the
the condition of the communication channel (i.e., the expected
packet losses), which however could be used to optimize the
coding performance in terms of the computation complexity
and the cost of transmitting the encoded packets. Thus, in-
spired by RS code and LT code, our approach sends both
original data packets and repair packets, and designs a two-
step decoding process, which efficiently decreases the number
of packets required for decoding the packets. Moreover, by
considering the expected lost rate of the communication chan-
nel, we take a different angle from LT code to analyze the
degree of repair packets (γ) and the number of repair packets
(k). Our designs aims at minimizing both communication
cost and computation complexity to achieve a satisfactory
communication reliability.

III. D ESIGN OF ACODING SCHEME

In this section, we discuss the detailed design of our
proposed coding scheme. The basic idea of encoding and
decoding is presented in Section III-A. The mathematical
analysis of the tradeoff between thedegree of repair packets
and thenumber of repair packets, which are critical parameters
for determining the computation complexity and the coding re-
dundances is presented in Section III-B. Section III-C derives
the expected performance of proposed coding scheme. Finally,
Section III-D analyzes the complexity of the proposed coding
schemes and compares it with RS code and LT code in terms
of the number of arithmetic operations.

A. Encoding and Decoding

In this section, we describe the encoding and decoding
process of proposed coding scheme. Without causing con-
fusion, we call the encoded packets as repair packets that
are used for recovering the data packets lost during the
transmission. The process of a source node generating a repair
packet is conceptually very easy to describe. We define the
degree of a repair packet as the number of data packets used
to generate a repair packet, denoted byγ. Encoding involves
the following two steps:

• randomly chooseγ distinct original data packets, which
are calledinputs of the repair packet;

• generate the repair packet by exclusive-oring (⊕) its
inputs

Figure 1 illustrates the encoding process, where each repair
packet (denoted byri) is produced fromγ = 3 randomly
chosen data packets out ofd1, ..., dn. Our coding scheme,
similar to some existing schemes [4], [21], employs XOR
operations such that the computation complexity for both
encoding and decoding (described below) is minimized.

When using the repair packets to recover the original data
packets, the destination needs to know the degree of repair
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Fig. 1. Encodingγ = 3

packetsγ and the inputs of each repair packet. The simplest
way for conveying this information is to include it into
each repair packet. However, the communication overhead
is proportional toγ. To minimize this overhead and hence
conserve energy, we let the source node and the destination
employ the same pseudo random number generator (e.g.,
linear congruential generator). Thus, the source only need
to send theseed of the random generator with the repair
packet. The seed together with packet sequence id is used for
generating/re-generating the ids of data packets (i.e., inputs)
used for encoding a repair packet.

After identifying the inputs for each repair packet, the next
step is decoding these repair packets to reconstruct the lost
data packets. The decoding process consists of two steps.
The first step is similar to the decoding process used by
LT code [21]. More specifically, the destination node divides
the received packets into three sets. The first set consists of
unprocessed data packets, the second consists ofprocessed
data packets, and the last set holds all the repair packets.
Initially, all received data packets are in the unprocessedset
and the processed set is empty. For instance, ifm data packets
are lost, the unprocessed set hasn − m packets. Moreover,
at the beginning of the decoding, all repair packets have the
same degree (i.e.,γ1 = γ2 = ... = γ). At each subsequent
process, the destination randomly picks a data packetdi from
the unprocessed set and scans the repair packet set.di is
removed from the repair packetj that encodesdi and γj

decreases by 1. Whenγj = 1, this repair packet is completely
decoded and is moved to the unprocessed set. After scanning
all repair packets,di is moved to the processed set. The above
procedure stops when the unprocessed set is empty, or all lost
data packets are recovered. [21] has shown that to recover all
packets with this approach, a large number of repair packets
are needed. However, this is against our goal of designing
a low-overhead reliable communication technique. Therefore,
we design the second decoding step, which takes place if the
first step stops without recovering all data packets, but leaving
some of repair packets un-decoded.

In the second step, the destination collects the remaining
repair packets that have not been completely decoded by the
first step, and views each repair packet as an equation with a
number of variables (i.e., the lost packets not recovered yet).
Therefore, decoding the remaining repair packets is a process
of solving a set of equations and the solutions are the lost
packets. In fact, this step can also be independently used for
decoding without the first step. However, there are two reasons
for us not to do so. First, the complexity of solving a set of
equations is a quadratic growth in the number of equations,
which is much more significant than the decoding complexity

of the first step. Moreover, solely using this method,none
of the lost packets can be recovered if not enough number of
repair packets are received. In contrast, with the first decoding
step, the destination is still likely to recover some of lost
packets, even when the number of repair packets received is
less than the number of data packets lost. Therefore, our design
takes advantages of both schemes by incorporating them into
a two-step decoding process.

Comparing with RS code, our coding scheme, involving
XOR operations only, is obviously more attractive for sen-
sor nodes which have constrained computation and storage
capabilities. However, this simplicity raises critical research
challenges on other performance aspects, i.e., the robustness
and the communication cost. In this coding scheme,γ and
k are critical parameters for the proposed coding scheme.
Determining the number of data packets encoded into each
repair packet,γ has an important impact on the ability of
recovering the lost packets and the computation complexity
of the encoding and decoding process. On the other hand,
k, representing the coding redundancies, also affects the ro-
bustness of the coding scheme. Therefore, with a satisfactory
probability of recovering lost data packets, we aim at deriving
the value ofk such that the communication cost is minimized,
while keeping the computation complexity as low as possible
as well. In the following, by deriving the key design parameter
γ and k of proposed coding scheme, analyzing its expected
performance, and examining its computation complexities,we
carefully examine our design choices.

B. Analysis of γ and k

A necessary condition for recovery of all lost data packets
is that the repair packets received at the destination have each
lost data packet encoded at least once. Otherwise, the recovery
has no way to succeed. The degree of repair packetsγ is a
key design parameter for this condition. As one can expect
that if γ is small, each repair packet encodes a small number
of data packets, which leads to a low probability that a lost
packet is covered by the repair packets. Thus, more repair
packets, i.e., largerk (reflecting the communication overhead)
are needed to achieve a high recovery probability. On the
other hand, ifγ is very large, the computation complexity
of both encoding and decoding processes increases at least
linearly. More importantly, it becomes harder to decode all
repair packets. Considering the first decoding step with a large
γ, it is less likely thatγ reduces to 1 after removing all
received data packets from the repair packets, which results
in a decoding failure. For the second decoding step, when
γ is very large, it becomes more difficult to formlinearly
independent equations. The impact ofγ on the coding per-
formance will be further studied by simulation experimentsin
Section V-A. In the following, we derive the expected number
of repair packets required for recovering lost data packets
and anoptimal γ, such that the number of repair packets
is minimized without dramatically increasing the computation
complexity or jeopardizing the effectiveness of the decoding
process.

Since a source node, at the time of encoding, does not have
the knowledge about which data packets would be lost during
transmission, the above requirement of covering all lost data
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packets by the repair packets becomes that each data packet
has to be encoded (or covered) by at least one repair packet.
The question is how many repair packets are needed to satisfy
this requirement. This is similar to the classicalballs and bins
process [16], which states that a number of balls are thrown to
a collection ofn bins, and each ball goes into a random bin. In
order to have at least one ball in each bin, how many balls are
needed. Considering our problem, then bins are analogy to
the n data packets, and each repair packet representsγ balls.
Let Xi be the number of balls that are thrown such that a new
bin is hit given i − 1 bins already contain balls. Afteri − 1
bins contain balls, a new ball has ai−1

n chance of hitting the
i−1 bins, and a1− i−1

n chance of hitting a new bin. Thus,Xi

follows a Geometric distribution,Xi ∼ Geometric (1 − i−1
n ).

Let X denote the number of balls thrown before alln bins are
non-empty,

X = X1 + X2 + ...Xn

Given E(Xi) = 1
1−(i−1)/n , we obtain

E(X) =
n
∑

i=1

1

1 − (i − 1)/n
= n

n
∑

i=1

1

i
= nHn

As the harmonic seriesHn = lnn+r+O( 1
n ), we approximate

E(X) asE(X) = n lnn
Sincek denotes the number of repair packets collected and

each repair packet representsγ balls, we must have

k · γ ≥ n ln n (1)

We now analyze the expected number of repair packets (E(k))
needed to recoverm lost packets. To simplify our discussion,
we does not consider the impact of the first decoding step
since it only helps to reduce decoding complexity. Hence, the
problem now becomes solvingm variables fromk equations.

Based on the encoding process discussed in Section III-A,
all packets, including data packets and repair packets generated
by the source node, have the following matrix relation:
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a11d1 ⊕ a12d2 ⊕ ... ⊕ d1ndn

a21d1 ⊕ a22d2 ⊕ ... ⊕ a2ndn

...
ak1d1 ⊕ ak2d2 ⊕ ... ⊕ akndn























,

whereIn is a diagonal matrix with all diagonal elements equal
to 1. Each vectorai, formed randomly by the source node,
consists of a random combination of 0’s and 1’s (i.e.,aij =
0 or 1), such that:

j=n
∑

j=1

aij = γ, where1 ≤ j ≤ n and 1 ≤ i ≤ k

For the matrix at the right-hand side of the equation, the first
n rows are the original data packets and are always sent as
they are, and the remaining rows are the repair packets, which
are also sent to the destination for possible packet recovery.

To solvem variables fromk equations, at leastm linearly
independent equations are needed. Without loss of generality,
we assume them lost packets ared1, · · · , dm. Thus, the
packetsdm+1, · · · , dn are correctly received. Letr1, · · · , rk

be thek repair packets received. Thus, the destination node
can obtain the followingk equations fromk repair packets:















a11d1 ⊕ a12d2 ⊕ ... ⊕ a1mdm = r1 ⊕
∑⊕ n

i=m+1 a1idi

a21d1 ⊕ a22d2 ⊕ ... ⊕ a2mdm = r2 ⊕
∑⊕ n

i=m+1 a2idi

...

akmd1 ⊕ ak2d2 ⊕ ... ⊕ akmdm = rk ⊕∑⊕ n
i=m+1 akidi

where
∑⊕

i denotes XOR summation. We define arepair
matrix A(l, h),

A(l, h) =









a11, a12, ..., a1m

a21, a22, ..., a2m

...
al1, al2, ..., alm









=











a
(m)
1

a
(m)
2

...

a
(m)
l











,

where l denotes the number of rows in a repair matrix,
and h denotes the matrix rank (i.e., the number of linearly
independent rows). The destination node is able to build a
repair matrix based on received repair packets. When its repair
matrix A(l, h) satisfies thath = m, all m lost packets can be
recovered andl = k is the number of repair packets needed.
We analyzeE(k) in the following.

Initially, the destination has an empty repair matrixA(0, 0).
Adding a

(m)
1 (obtained from the first repair packet) to repair

matrix A(0, 0), the destination getsA(1, 1), if and only if

m
∑

i=1

a1i ≥ 1

For simplicity, we assume that a packet has an equal prob-
ability of being selected and not being selected by a repair
packet. Thus, the probability ofA(0, 0) transiting toA(1, 1)

after addinga
(m)
1 is 1 − 1

2m , and the probability ofA(0, 0)
transiting toA(1, 0) is 1

2m . Given A(1, 1), a newly added m-
tuple a

(m)
2 is able to increase the rank of repair matrix (i.e.,

A(2, 2)), if and only if the new tuple is not all 0’s and not
equal toa

(m)
1 . More generally, given a repair matrix A(l, h),

the matrix rank is increased by one after adding a new m-
tuple, if and only if the newly added tuple is not the linear
combination of the previousl rows. In other words,A(l, h)
becomesA(l + 1, h + 1) when

c1 a
(m)
1 + c2 a

(m)
2 + ... + ch a

(m)
h 6= a

(m)
l+1 ,

wherec1, c2, · · · , ch are constant values equal to 0 or 1 owing
to its binary linear combination. There are totally2h cases
that addingal+1 does not increaseA(h, l)’s rank. Thus, the
probability that adding a m-tuple toA(l, h) results inA(l +

1, h + 1) is 1 − 2h

2m .
Figure 2 depicts the probability transition of the rank of

repair matrix increasing from 0 up tom. Let S(i) denote the
expected number of m-tuples needed for reaching rankm from

5



-1-1
1- 1-1-1-

m

i

2

2
m2

1

1 i M
m2

21

m

i

2

2
m2

210
m2

1
1-

m

i

2

2
m

m

2

2

Fig. 2. State Transition Diagram for Repair Matrix

statei, we obtain the following equations:






















S(0) =
(

1
2m

)

(S(0) + 1) +
(

1 − 1
2m

)

(S(1) + 1)

S(1) =
(

21

2m

)

(S(1) + 1) +
(

1 − 21

2m

)

(S(2) + 1)

...

S(i) =
(

2i

2m

)

(S(i) + 1) +
(

1 − 2i

2m

)

(S(i + 1) + 1)

By recursively applying the above equations, we obtain
the expected number of repair packets (denoted asE(k)) for
recoveringm lost packets as follows

E(k) = S(0) =

⌈

m +

m
∑

i=1

1

2i − 1

⌉

(2)

Given the sum of the degree of repair packets (in Equa-
tion 1) kγ ≥ n ln n, we derive the average degree for each
repair packet is

E(γ) ≥ MIN

{

n,

⌈

n

m +
m
∑

i=1

1

2i − 1

lnn

⌉}

(3)

The aboveE(k) and E(γ) are derived by aiming at min-
imizing the number of repair packets needed for recovering
all lost packets with the minimum computation complexity,
such that the data communication reliability is achieved atthe
minimum cost. In the next section, we further analyze and
verify our results.

C. Analysis of the recoverability
As we pointed out, to fully recoverm lost data packets, two

requirements have to meet. First, all data packets have to be
encoded by at least one repair packet. Second, given the second
decoding step, at leastm linearly independent equations are
formed out ofk repair packets. In this section, we deepen our
study and investigate the probability of satisfying the above
two requirements givenγ andk.

First, we consider the probability of allm lost data packets
being encoded by at least one repair packet givenk repair
packets. LetBi be the event that a lost data packeti (1 ≤ i ≤
m) is not covered by any repair packet,

P{Bi} =
(

1 − γ

n

)k

Thus, the probability of allm lost packets being covered by
at least one repair packet is

P

{ m
⋃

i=1

BC
i

}

=

(

1 − P{Bi}
)m

=

(

1 −
(

1 − γ

n

)k
)m

Now we study the second requirement: givenk repair
packets, what is the probability of allm lost packets being

recovered? We denote this probability byΥ(k,m). To simplify
the analysis, we assume the rank transition of repair matrix
A(l, h) follows the state transitions shown in Figure 2. Let
P (m,m) denote the probability thatm repair packets can
recoverm lost packets,P (m,m) (equal toΥ(m,m)), is given
by:

P (m,m) =
2m − 1

2m
· 2m−1 − 1

2m−1
· . . . · 1

2

Similarly, letP (m+1,m) denote the probability thatexactly
m+1 repair packets can recoverm lost packets.P (m+1,m)
is derived as:

P (m + 1,m) = P (m,m)

(

1

2m
+

1

2m−1
+ . . . +

1

2

)

Denoted byΥ(m+1,m), the probability ofm lost packets
being recovered fromm + 1 repair packets as follows:

Υ(m + 1, m) = P (m, m) + P (m + 1, m)

= P (m, m)

�
1 +

1

2m
+

1

2m−1
+ . . . +

1

2

�
=

2m+1 − 1

2m+1
·

2m − 1

2m
· ... ·

22 − 1

22

Similarly, we derive

Υ(m + 2,m) =
2m+2 − 1

2m+2
· 2m+1 − 1

2m+1
· ... · 23 − 1

23

...

Υ(k,m) =
2k − 1

2k
· 2k−1 − 1

2k−1
· ... · 2k−m+1 − 1

2k−m+1

Hence, givenk repair packets andγ, the probability ofm

P

{ m
⋃

i=1

BC
i

}

· Υ(k,m) (4)

D. Analysis of Computation Complexity

The recoverability analysis of the proposed coding scheme
in the previous sections offers guidance for designing a robust
coding scheme at a low cost. In this section, we further
study the computation complexity of our coding scheme and
compare it with RS code and LT code.

Instead of only considering the number of operations with
traditional Big-O notations, we look deeper into the approxi-
mate number of arithmetic operations for each coding scheme.
This is because, given the extremely constrained resource on
each sensor node, executing different arithmetic operations
have very different requirements for memory space and clock
cycles, which in turn determines the time and energy cost of
an operation. Taking sensor nodes in [12] as an example, one
addition, subtraction or XOR operation takes one clock cycle
only, one multiplication operation takes 6 clock cycles, while
one division operation takes up to 37 cycles. Moreover, sensor
motes [14] even does not support division operations, which
requires the compiler to transform the division into other
operations, which further complicates the overall computation.
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XOR ADD MUL DIV

Our Coding Scheme 2n ln n ∼ n ln n + n
3 0 0 0

RS codes 0 nm + n
3

nm + n
3

n
3

LT codes (n + 1)(n ln n +
√

n ln3
n) 0 0 0

TABLE I

BREAKDOWN OF ARITHMETIC OPERATIONS FORTHREE CODING SCHEMES

The impact of the computation complexity on energy and
storage cost is easy to understand. The latency of an operation
may also have an impact on the data transmission rate. More
specifically, when an encoding process is long (i.e., taking
more clock cycles), it is more likely that the data transmission
rate is constrained by the rate of generating repair packetsat
the source node. In this section, we estimate the approximate
numbers of different types of arithmetic operations in both
encoding and decoding processes for the proposed coding
scheme, RS code, and LT code, which gives us a general idea
for the complexity of these coding schemes.

First, for RS code, each repair packet is created byF (α) =
d0 + d1α + · · · + dnαn−1. This polynomial equation can be
calculated by(((dn α + dn − 1) α + dn−2) α + · · · ) + d0.
Therefore, encoding each packet requiresn multiplication
operations andn addition operations. Form repair packets,
a total of nm multiplication andnm addition operations is
used. We assume decoding uses the Gaussian Elimination, the
total computation complexity isO(n3), which includes ap-
proximatelyn3 multiplication,n3 division, andn3 subtraction
operations [33].

For LT code, [21] shows that each repair packet encodes
lnn data packets on average, and at least(n +

√
n ln2 n)

repair packets needed for decodingn data packets (since
LT codes only sends the repair packets, not the data pack-
ets). Therefore, the source needs at leastlnn(n +

√
n ln2 n)

XOR operations for encoding. The decoding process needs
n lnn XOR operations for each repair packet, thus a total
of
(

n lnn (n +
√

n ln2 n)
)

XOR operations is consumed for
decoding all packets.

Now turn to our proposed coding scheme. Since each repair
packet encodesγ original data packets, the total number of
operations involved in generatingk = m +

∑m
i=1 1/(2i − 1)

repair packets isk ·γ = n ln n XOR operations. For decoding,
in one extreme case, all repair packets can be decoded by
using the first-step decoding process, which requiresn ln n
XOR operations. On the other hand, it is possible the first
decoding step does not recover any lost packet. In this case,
the decoding requires approximatelyn3 XOR operations in
total. Table I summaries the breakdown of different arithmetic
operations needed for each coding scheme.

As we can see that compared with RS code, our cod-
ing scheme requires a much less number of operations and
involves simple XOR operations only. Our scheme in the
best case has less computation complexity than LT code,
while even in the worst case, the computation complexity is
still competitive, considering a much less number of packets
needed for recovering all lost packets. The above discussions
give us some insights for the complexity of our scheme, RS
code, and LT code in terms of computation, storage, and
latency. More detailed evaluation of the computation cost will
be our future work.

To implement our proposal on real sensor nodes, the pro-

posed coding scheme needs to be customized according to the
hardware features of current sensor nodes (e.g., 4Mhz 8-bit
ATMega128 CPU from Atmel, 4KB RAM, 128KB program
flash, 512KB data flash [14]). Similar to the implementation
of RS code [17], each data packet is divided into small sub-
data packets (e.g., 8 bits) and encoding is applied over a set
of sub- data packets. Each repair packet then consists of a
set of sub- repair packets and the destination node each time
decodes a sub- repair packet.

IV. A NALYSIS OF PROACTIVE RELIABLE

COMMUNICATION

In this section, we apply the proposed coding scheme
to proactive transmission under two representative network
failure models, i.e.,recoverable failure model andpermanent
failure model, and analyze the communication performance.
To be focused, the failure models exclude the network fail-
ures that can be recovered by the link-layer retransmissions,
although our proposal can be used together with link-layer
retransmissions to improve the communication reliability.
Recoverable Failure Model. In this model, the path failure
is temporary. More precisely, each packet forwarded along a
path has a probability of failure, which is however independent
from that of other packets forwarded along the same path. Re-
coverable failures could be caused by short-period adversary
conditions, e.g., radio interference, communication collision,
and network congestion. To overcome the recoverable failures,
the existing studies adopted either reactive end-to-end retrans-
mission or proactive transmission that sends several copies
of packets along different paths [5], [26]. As we pointed out
in Section II-A, both approaches involve significant overhead,
due to control messages in reactive approach and duplicate
data packets in proactive approach. Moreover, end-to-end
retransmission suffers from prolonged communication delay.

Here we propose a redundant-coding based proactive trans-
mission approach to overcome the recoverable network fail-
ures, with the objective of minimizing both communication
delay and communication overhead. More specifically, given
an estimate of packet loss rate, a source node sends all data
packets and a reasonable number of repair packets which
are generated based on the encoding scheme discussed in
Section III-A. The destination, by decoding the received repair
packets, is able to recover the lost data packets. In the
following, we first analyze the recovery probability given that
a total ofKs repair packets is sent by the source node. Given
a packet loss probabilityp, the total number of repair packets
received at the destination node (denoted by a random variable
Z) follows a Binomial distribution, as each packet has an
independent probability of failure. LetKr be the total number
of repair packets received at the destination node. Thus,

P{Z = Kr} =

(

Ks

Kr

)

(1 − p)KrpKs−Kr ,
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which can be approximated by a normal distribution with
expectationKs(1 − p) and variance

√

Ks(1 − p)p.
Hence, combining with Equation 4, the probability that,

given Ks, the destination is able to obtain all packets under
recoverable failure model is

Ks
∑

Kr=m

P {Z = Kr} · P
{ m
⋃

j=1

BC
i

}

· Υ(Kr,m)

Recall that in Section III-B, the parameter of the proposed
coding schemeE(k) is derived without assuming any packet
losses. Now we derive the number of repair packets needed
to be sent by the source node,Es(k), such that at leastE(k)
(Equation 2) repair packets are received at the destination. We
have

P {Z ≥ E(k)} = 1 − P {Z ≤ E(k) − 1

2
} (5)

Given the cumulative density function forZ which follows
a normal distribution,

Φ(Z) = P {Z ≤ z} =
1

2

[

1 + erf

(

z√
2

)]

,

where erf(·) is the error function and erf(z) =
∫ z

0
e−t2dt.

Sinceerf(−z) = erf(z), Equation 5 can be rewritten as

P{Z ≥ E(k)} =
1

2
+

1

2
erf

(

Es(k)(1 − p) − E(k) + 1
2

√

2Es(k)(1 − p)p

)

Thus, the solution toEs(k) · P{Z ≥ E(k)} = E(k), which
can be numerically solved, is the desired number of repair
packets sent by the source node with the proposed coding
scheme.
Permanent Failure Model. This model assumes that a net-
work failure is permanent or longer than the maximum delay
that one data communication can perceive. Thus, when failure
happens, all packets routed along the path are lost. This kind of
failures is usually caused by the network dynamics, malfunc-
tions of sensor nodes, or adversary environmental conditions
(e.g., fire and flooding). To overcome permanent failures, most
existing studies [11], [23], [25] employed a reactive multipath
scheme to retransmit the lost packets along a new path or
a proactive multipath scheme to send different packets along
different paths. The reactive multipath scheme has negative
impacts on communication delay and energy efficiency. On
the other hand, the proactive multipath scheme without re-
covery incorporated, has limited capabilities of improving
communication reliability. Therefore, we propose to combine
our coding scheme with proactive multipath transmission to
increase packet recovery rate.

We assume that all paths are mutually disjoint, i.e., the paths
do not share the same nodes, which can be formed by the
algorithms proposed by [19], [27]. A path, indexed asi (i =
1, · · · , s), is assigned a failure probabilitypi, wheres is the
total number of paths used for communication. Since there are
no common nodes among the paths, the failure probabilities
of paths are independent in the sense that success or failure
of one path does not imply the state of another. Moreover, the
estimation of the number of lost packetsm has been studied
under various network conditions in the literature [7], [18]. Let

variableyi denote the event that all repair packets forwarded
along pathi (1 ≤ i ≤ s) can be received by the destination. If
pathi fails, all the repair packets (and the data packets as well)
sent along this path are lost such thatyi = 0 andP{yi = 0} =
pi, otherwiseyi = 1 and P{yi = 1} = 1 − pi. yi follows a
Bernoulli distribution. LetY denote the total number of paths
that successfully forward the packets, i.e.,Y =

∑s
i=1 yi.

In the following, again, we first analyze the recovery prob-
ability given that a total ofKs repair packets is sent by the
source node. LetKr denote the total number of repair packets
received at the destination. Thus, the total number of pathsthat
successfully forward the packets is⌈s Kr/Ks⌉. Combining
with Equation 4, the probability that, givenKs, the destination
obtains all data packets under permanent failure model is

Ks
∑

Kr=m

P

{

Y =

⌈

s Kr

Ks

⌉}

· P
{ m
⋃

j=1

BC
i

}

· Υ(Kr,m)

When all paths have the same probability of failurep,

P

{

Y =

⌈

s Kr

Ks

⌉}

=





⌈

s Kr

Ks

⌉

s



 (1 − p)⌈
s Kr

Ks
⌉ ps−⌈ s Kr

Ks
⌉

We next derive number of repair packets needed to be sent
by the source node,Es(k), such that at leastE(k) (Equation
2) repair packets are received at the destination. Based on the
Central Limit Theorem, we have

Ynorm =

∑s
i=1 yi −

∑s
i=1(1 − pi)

√
∑s

i=1 pi(1 − pi)
∼ N (0, 1)

Hence,

P

�
Ynorm ≥

⌈ s E(k)
Es(k)

⌉ −
P

s

i=1(1 − pi)pP
s

i=1 pi(1 − pi)

�
= 1 − P

�
Ynorm ≤

⌈ s E(k)
Es(k)

⌉ − 1
2
−
P

s

i=1(1 − pi)pP
s

i=1 pi(1 − pi)

�
(6)

Similarly, the cumulative density function for variableY
that follows a standard normal distribution is

Φ(Ynorm) = P{Ynorm ≤ y} =
1

2

[

1 + erf

(

y√
2

)]

Thus, Equation 6 is rewritten as

P

�
Ynorm >

⌈ s E(k)
Es(k)

⌉ −
P

s

i=1(1 − pi)pP
s

i=1 pi(1 − pi)

�
=

1

2
+

1

2
erf

 P
s

i=1(1 − pi) − ⌈ s E(k)
Es(k)

⌉ + 1
2p

2
P

s

i=1 pi(1 − pi)

!
The solution toEs(k)·P

{

Ynorm >
⌈

s E(k)
Es(k)

⌉−
P

s

i=1(1−pi)√P
s

i=1 pi(1−pi)

}

=

E(k) is the desired number of repair packets sent by the source
node with the proposed coding scheme.
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V. EXPERIMENTAL RESULTS

In this section, we present our simulation results, from
which we expect to further understand the performance trade-
off between the communication reliability and overhead for
the proposed coding scheme under both recoverable and per-
manent failure models. Moreover, we intend to, via simulation,
validate the theoretical results obtained in Section III and
Section IV, which provide important guidance for selecting
the coding parameter to achieve reliable communication at a
low cost. In the following, we examine the performance of
our proposed coding scheme by comparing with two state-
of-the-art coding schemes (i.e., RS code and LT code, which
are described in Section II-B) in Section V-A. Section V-B
and Section V-C evaluate the strategies which leverage the
proposed coding scheme in proactive transmission paradigm
for recoverable and permanent failure models, respectively.
In the simulation, we do not assume a specific data rout-
ing algorithm, rather compare the proposed techniques with
existing reliable transmission techniques including end-to-end
retransmissions, reactive multipath transmissions and proactive
multipath transmissions. We implement all the schemes under
comparison in MATLAB and C++. The performance results
are obtained by averaging the results over 100 runs for each
scheme.

A. Study of Proposed Coding Scheme

This section evaluates the effectiveness of proposed coding
scheme (Section III), which is expected to recover the data
packets lost during the transmission.

Figures 3(a) and 3(b) plots the number of repair packets
(k) needed to recoverm lost packets for a variety of values
of m, given n of 10 and 100, respectively. We compare the
simulation result of our coding scheme with those of LT
code and of RS code. Moreover, in order to evaluate the
performance of the expected number of repair packets (E(k))
derived from Equation 2, we also plot the theoretical result
of E(k). Both Figures 3(a) and 3(b) show that for our coding
scheme, the theoretical result ofE(k) matches the simulation
result of k well. Comparing with different coding schemes,
as we pointed out earlier, RS code is able to minimize the
number of repair packets at a high computation cost. Thus, in
terms of the number of repair packets needed (transferred to
communication overhead), RS represents the best case. The
figures show that the performance of our proposed coding
scheme is close to that of RS. On the other hand, LT code,
which is not designed for transmission recovery, significantly
increases the number of repair packets needed. It is observed
that the simulation results are consistent forn = 10 and
n = 100. Therefore, in the following, we only present the
results withn = 100 to save space.

Next, we study the impact of the degree of repair packets (γ)
on the performance of proposed code. As we have argued in
Section III-B, with a largerγ, more computation is involved
since more data packets are encoded and decoded for each
repair packet, but a less number of repair packets are expected
to cover any lost packet. Figure 4 shows the impact ofγ on the
communication overhead (i.e., the number of repair packetsk)
given different values ofm. The simulation results verify our
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Fig. 3. Proposed Coding Scheme

intuitions and provide more insights. As we expected, when
γ is small, more repair packets are needed to fully recover
the lost packets. However, whenγ is large enough (e.g.,
γ = 11 for the case ofm = 40), the coding scheme reaches
the optimal number of repair packets (i.e.,k = m); further
increasingγ does not further reduces the repair overhead.
More interestingly, whenγ is very large (e.g.,γ = 82 for
m = 20), the number of repair packets needed increases
dramatically. This is because when too many data packets are
encoded for each repair packet, more repair packets are needed
to constructm linearly independent equations. We marked the
derivedγ (from Equation 3) for differentm’s in the figure.
For instance, whenm = 20, the derivedγ = 21; and when
m = 60, γ = 8. We observe that the derivedγ approaches
closely to theoptimal γ which yields the minimum number
of repair packets while incurring the minimum computation
overhead. This is appreciated by sensor networks with limited
computation powers and energy resources.

The above performance study has shown that by carefully
selecting the degree of repair packets (γ) based on our
analytical result, the proposed code is able to fully recover
the lost packets with the minimum number of repair packets
and the minimum computation overhead. In the following
two sections, we investigate how the proposed coding scheme
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improves communication reliability under recoverable failure
model and permanent failure model, respectively.

B. Proactive Reliable Transmission under Recoverable Fail-
ure Model

First, we study the impact of communication failure proba-
bility p and total number of packets sent by the source node
on the performance of proactive reliable transmission schemes
proposed in Section IV. We definecommunication reliability
as the probability of a destination node obtainingall data
packets (with possible recovery). The metriccommunication
cost is defined as the total number of packets involved in
communications, including the original data packets, redun-
dant repair packets, and NACK/ACK control messages.

In Figure 5(a), we study the communication reliability of
proposed proactive multipath transmission scheme on Z-axis,
by varying p on X-axis from 0.1 to 0.5 and varying the
communication cost (i.e.,n+Ks) on Y-axis from 100 to 250.
Whenp increases, the source node has to send more packets
(moreKs) to achieve the same level of reliability. Furthermore,
communication reliability is not linear to the communication
cost. More specifically, before reaching a certain threshold,
increasing number of (repair) packets sent by a source node
almost does not improve the reliability probability. This is be-
cause that the first decoding step has limitation for recovering
lost packets, while in the second decoding step, there are no
enough repair packets to form sufficient number of linearly
independent equations, which results in no recovery of lost
packets at all. Once the communication cost reaches a certain
threshold, this reliability quickly increases to 100%. We also
observe with a higher failure probabilityp, the communication
reliability grows slower with increasing communication cost.

To further evaluate the performance of proposed proactive
reliable transmission under recoverable failure model, wecom-
pare our solution against twoNACK schemes. In both schemes,
the destination, once detecting the lost packets (e.g., by packet
sequence number), sends a NACK message to the source node
for the missing packets. In the first NACK scheme, called
separated NACK, the destination sends a NACK for each lost
packet to the source node for retransmission, while in the

second scheme, calledaggregated NACK, the destination waits
until it receives all the non-lost packets, and sends only one
aggregate NACK message for all missing packets. As one can
expect, the separated NACK may incur a significant overhead
for NACK messages with a short communication delay, while
the aggregated NACK could suffer from a long communication
delay with much less NACK overhead. In the following, we
compare our approach with both of the NACK schemes.

Figure 5(b) shows the communication cost for achieving
a 100% communication reliability. In addition to the sim-
ulation results of proactive reliable transmission, separated
NACK, and aggregated NACK schemes, we also plot the
theocratical result of the communication cost for proactive
multipath transmission with the proposed redundant coding
scheme (i.e.,n+Ks, whereKs is derived in Section IV). We
observe that the simulation result for the communication cost
is very close to our analytical result. Our approach constantly
outperforms both NACK schemes under various values of
p, i.e., 30% less packets than aggregated NACK and up to
45% less packets than separated NACK scheme.1 Meanwhile,
the communication delay in our approach is expected to be
lower than both NACK schemes, since the destination does
not need to send NACK for retransmissions, which causes
another round trip delay. The quantitative evaluation of the
communication delay is left as a future work.

C. Proactive Reliable Transmission under Permanent Failure
Model

The proactive reliable transmission technique under per-
manent failure model takes advantage of multipath. In this
section, we compare the proactive multipath transmission tech-
nique based on the proposed coding scheme against reactive
multipath transmission in terms of communication reliability
and communication cost defined in Section V-B.

We first study the coding based proactive multipath trans-
mission. Figure 6(a) plots the communication reliability by
varying the total number of packets sent by the source node
(i.e., communication cost). Each curve in the figure represents
a different number of paths (s) used for the proactive multipath
transmission. As we can see, the proactive transmission does
not necessarily improve the probability of a destination obtain-
ing all packets, even though the total number of packets re-
ceived by the destination does increase (which is not shown in
the figure). We use an example to explain this fact. Assuming a
failure probability ofp = 0.2 and 20 out of 100 data packets
are lost. Thus, approximately 22 repair packets needs to be
sent to recover the lost 20 packets. If all packets are routed
along one path, there is a 80% chance that the destination
receiving all packets (even without recovery). Now assuming
the total number of packets are divided into two equal-size
sets, which are sent along two disjoint paths each withp = 0.2.
It only one path succeeds, 50 data packets are lost, which
cannot be recovered by the 11 repair packets received from the
other path. Thus, even though the probability of the destination
receives nothing is dramatically reduced to0.2 ∗ 0.2 = 0.04,
the destination can only recover all packets when both paths

1The gain of our approach over NACK schemes further increases whenp

is further increased.
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Fig. 5. Recoverable Failure Model

succeed which has a probability of0.8 ∗ 0.8 = 0.64, lower
than that of transmission along only one path.

However, transmission along one path which could have a
permanent failure cannot ensure the communication reliability.
Figure 6(a) shows that by increasing the number of packets
sent by the source node (i.e., the communication costn+Ks,
transmission along multiple path eventually is able to achieve
a 100% reliability. Moreover, we observe that the more paths
used (i.e., largers), the less communication cost is required
to achieving a 100% reliability.

Figure 6(b) compares the performance of proactive mul-
tipath transmission combined with proposed coding scheme
and of reactive multipath transmission schemes. By varying
the probability of path failure from 0 to 0.5, we study
both communication cost (show by the left Y-axis) and the
communication reliability (shown by the right Y-axis). Since
the underlying network issues are not the focus of this paper,
we borrow some existing research results for simulating the
reactive multipath transmission. Based on a representative
reactive multipath transmission algorithm for wireless sensor
networks [11], we simulated the average maintenance over-
head for each alternative path disjoint from the primary path
is 0.15 times of the communication cost along the primary
path. Since the alternative paths are pre-established together
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Fig. 6. Permanent Failure Model

with the primary path, the reactive multipath transmission
stops when both primary path and the alternative paths fail.
We assume the same number of paths used for both reactive
and proactive approaches (s = 10). As we observed from
the figure, the proactive scheme constantly sends less number
of packets than the reactive scheme for achieving the same
level of reliability. More importantly, we observe a dramatic
decrease of the probability of a destination obtaining all data
packets in reactive multipath transmission whenp increases.
Yet the proactive scheme maintains a very high probability
around 0.95 in all cases. Furthermore, this high reliability
achieved by the proactive scheme has even less communi-
cation cost than the reactive approach which has much lower
communication reliability. In summary, the proactive multipath
transmission with proposed coding scheme is able to achieve
significantly high communication reliability with reasonable
communication costs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a low-computation, low-
communication, loss-resilient coding scheme, suitable for
resource-constrained wireless sensor networks. The proposed
coding scheme simplifies the encoding and decoding process
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by only using XOR operations. A two-step decoding scheme is
crafted for improving its robustness with reduced communica-
tion and computation costs. Our analysis of the two key design
parameters (i.e., the degree of repair packets and the number
of repair packets), and of the expected recoverability of the
proposed coding scheme empowers the sensing applications
with an ability to minimize the redundant repair packets, thus
reducing the computation cost. Moreover, we look deeper
into the reliable communication problem in wireless sensor
networks and identify two distinct failure models, i.e., recover-
able and permanent failure model. We leveraged the proposed
coding scheme upon the proactive reliable transmission with
two different strategies, such that the communication reliability
in two failure models are both significantly improved. We
have conducted simulations to evaluate the performance of our
proposals and compare them against with other representative
coding schemes (i.e., RS code and LT code), NACK schemes
and reactive multipath schemes. The experimental results show
that our proposal saves up to 45% communication overhead
for achieving 100% reliability, in comparison with NACK
schemes under recoverable failure model. Under permanent
failure model, our proposal is up to three times more reliable
than that of proactive multipath schemes with even less
communication overhead.

The proposed coding scheme has shown promising features
for significantly improving the communication reliabilityat
reasonable computation and communication cost. We plan to
evaluate its computation complexity and communication delay
in detail by experimentations. Moreover, we plan to study the
overall performance of proposed coding scheme and proactive
reliable transmission with real sensor nodes.
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