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Abstract— In location-based services, users with location-aware
mobile devices are able to make queries about their surroundings
anywhere and at any time. While this ubiquitous computing
paradigm brings great convenience for information access, it also
raises concerns over potential intrusion into user location privacy.
To protect location privacy, one typical approach is to cloak
user locations into spatial regions based on user-specified pri-
vacy requirements, and to transform location-based queries into
region-based queries. In this paper, we identify and address three
new issues concerning this location cloaking approach. First, we
study the representation of cloaking regions and show that a
circular region generally leads to a small result size for region-
based queries. Second, we develop a mobility-aware location
cloaking technique to resist trace analysis attacks. Two cloaking
algorithms, namely MaxAccu Cloak and MinComm Cloak, are
designed based on different performance objectives. Finally, we
develop an efficient polynomial algorithm for evaluating circular-
region-basedkNN queries. Two query processing modes, namely
bulk and progressive, are presented to return query results either
all at once or in an incremental manner. Experimental results
show that our proposed mobility-aware cloaking algorithms
significantly improve the quality of location cloaking in terms
of an entropy measure without compromising much on query
latency or communication cost. Moreover, the progressive query
processing mode achieves a shorter response time than the
bulk mode by parallelizing the query evaluation and result
transmission.

Index Terms: Location-based services, location privacy, query
processing, mobile computing.

I. I NTRODUCTION

Location-based services (LBS) are emerging as a major
application of mobile geospatial technologies [7], [21], [23],
[35]. In LBS, users with location-aware mobile devices are
able to make queries about their surroundings anywhere and at
any time. Spatial range queries andk-nearest-neighbor (kNN)
queries are two types of the most commonly used queries in
LBS. For example, a user can make a range query to find out
all shopping centers within a certain distance of her current
location, or make akNN query to find out thek nearest gas
stations. In these queries, the user has to provide the LBS
server with her current location. But the disclosure of location
information to the server raises privacy concerns, which have
hampered the widespread use of LBS [18], [19], [30]. Thus,
how to provision location-based services while protectinguser
location privacy has recently become a hot research topic [6],
[13], [15], [24], [25], [26].
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(a) Location cloaking (b) Isolated cloaking

Fig. 1. Dynamic Location Cloaking

Location cloaking is one typical approach to protecting
user location privacy in LBS [13], [14], [15], [26]. Upon
receiving a location-based spatial query (e.g., a range query
or a kNN query) from the user, the system cloaks the user’s
current location into acloaking region based on the user’s
privacy requirement. The location-based spatial query is thus
transformed into aregion-based spatial query before being
sent to the LBS server. The LBS server then evaluates the
region-based query and returns aresult superset, which con-
tains the query results for all possible location points in the
cloaking region. Finally, the system refines the result superset
to generate the exact results for the query location. Figure1a
shows a sample NN query. Instead of providing the exact
locationl, the system submits a cloaking regionR to the LBS
server, which then returns the set of objects{b, c, d} that are
the nearest neighbors of at least one point inR. Finally, among
{b, c, d}, the system finds out the true nearest neighborb of
query locationl. Throughout this query processing procedure,
the LBS server knows only the regionR in which the user
is located, not the exact locationl. In the literature, a variety
of cloaking algorithms based on snapshot user locations have
been developed for different privacy metrics (e.g., [13], [14],
[24], [26]).

In this paper, we identify and address three new issues
concerning the location cloaking approach. We first show that
the representation of a cloaking region has an impact on the
result superset size of the region-based query. In general,a
small result superset is preferred for saving the cost of data
transmission and reducing the workload of the result refine-
ment process (especially if this process is implemented on
the mobile client). We find that, given a privacy requirement,
representing the cloaking region with a circle generally leads
to a smaller result superset than using other shapes.

Second, we consider the location cloaking problem for
continuous LBS queries. In such scenarios, trace analysis
attacks are possible by linking historical cloaking regions with
user mobility patterns. Assume that in our previous example,
the user issues a second query at locationl′ with a cloaking
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regionR′ (see Figure 1b). If the LBS server somehow learns
the user’s maximum possible moving speedvm, the server can
draw a regionRe (the shaded area in Figure 1b) expanded
from the last cloaking regionR based onvm and the interval
t between the two queries. The server is then able to infer that
the user must be located in the intersection area ofRe andR′,
which degrades the quality of location cloaking and may failto
meet the expected privacy requirement. The cloaking quality
will further deteriorate with the analysis of more successive
queries and cloaking regions. To address this issue, we develop
a mobility-aware location cloaking technique that resiststrace
analysis attacks. Given that the server observes a cloaking
region together with any series of historical cloaking regions,
our proposed technique makes equal the derivable probability
that the user will be located at any one point within the
cloaking region. To achieve this, we leverage the probability
theory to control the generation of cloaking regions and
design two cloaking algorithms, namelyMaxAccu Cloak and
MinComm Cloak, based on different performance objectives.
MaxAccu Cloak is designed to maximize the accuracy of query
results, whileMinComm Cloak attempts to reduce the network
communication cost.

Finally, we investigate how to evaluate efficiently circular-
region-based spatial queries on the LBS server. While the
evaluation of circular-region-based range queries is straight-
forward, we develop an efficientO(kM3) algorithm for eval-
uating circular-region-basedkNN queries, whereM is the
cardinality of the spatial object set. In addition, we present two
query processing modes, namelybulk andprogressive, which
return query results either all at once or in an incremental
manner.

We conduct simulation experiments to evaluate the perfor-
mance of the proposed location cloaking and query processing
algorithms. The results show that the proposed mobility-aware
cloaking algorithms outperform an isolated cloaking algorithm
by up to 34% in terms of an entropy measure of cloaking
quality, without compromising much on query latency or
communication cost (sometimes performing even better). Re-
garding the end-to-end system performance,MaxAccu Cloak
results in a very high query accuracy, whileMinComm Cloak
achieves a good balance between communication cost and
query accuracy. When the result superset size is small, the bulk
and progressive modes of query progressing perform similarly.
For large result sets that require a long time to evaluate
and transmit, the progressive mode achieves a shorter user-
perceived response time than the bulk mode by parallelizing
the query evaluation and result transmission.

The rest of this paper is organized as follows. Section II
surveys the related work on location privacy protection and
spatial query processing. Section III gives an overview of our
system model and location privacy metrics. Section IV studies
the representation of cloaking regions, followed by Section V,
which presents the mobility-aware location cloaking algo-
rithms. The processing of circular-region-based queries is dis-
cussed in Section VI. Section VII experimentally evaluatesthe
proposed location cloaking and query processing algorithms.
Finally, Section VIII concludes this paper.

II. RELATED WORK

Location Privacy Protection. There are two main approaches
to protecting location privacy in LBS. The first approach relies
on a trusted LBS server to restrict access to location data based
on rule-based policies [10], [11], [36]. The second category of
approaches run a trustworthy agent between the client and the
LBS server. Every time the user makes a location-based query,
the agent anonymizes the user identity and/or location before
forwarding the query to the LBS server [5], [13], [26]. Our
study falls into the second category.

Early studies on location privacy protection considered ob-
ject tracking applications, where a proxy server is employed to
collect exact locations from moving clients and to anonymize
location data through de-personalization before release.In [5],
once a client enters a pre-defined zone, its identity is mixed
with all other clients in the same zone. It appears that this
idea can be extended to deal with trace analysis attacks by
associating each LBS request with a different pseudonym.
Unfortunately, this approach may not be effective because
historical user locations are highly correlative and, hence, they
could be re-linked using trajectory tracking methods (e.g.,
multi-target tracking [27], [32]) even without knowing any
identity [34].

Gruteser and Grunwald [13] proposed to achieve identity
anonymity in LBS by spatio-temporal cloaking based on a
k-anonymity model, that is, the cloaked location is made
indistinguishable from the location information of at least
k−1 other users. To perform the spatial cloaking, they used a
Quad-tree-like algorithm. Gedik and Liu [14], [15] extended
this to a personalizedk-anonymity model, in which users
can specify the parameterk at a per-message level. They
also developed a new cloaking algorithm called CliqueCloak.
While the above cloaking algorithms need a centralized agent
to perform location cloaking, Chowet al. [8] proposed a peer-
to-peer cloaking algorithm based on information exchanges
among mobile clients. Ghinitaet al. [12] proposed a new
location cloaking algorithm called hilbASR, in which all user
locations are sorted and grouped by Hilbert space-filling curve
ordering. They also applied this algorithm to a distributedenvi-
ronment based on an annotated B+-tree index. In [3], Bettini
et al. presented a framework to model various background
attacks in LBS and discussed defense techniques to guarantee
users’ anonymity. The PrivacyGrid framework [2] investigated
location cloaking based on anl-diversity model. But unlike
most existing cloaking algorithms, which considered snapshot
user locations only, in this paper we investigate the location
cloaking problem for continuous LBS queries. In particular, we
focus on trace analysis attacks and propose a new mobility-
aware cloaking technique to resist them.

More recently, Xu and Cai [34] developed a trajectory
cloaking algorithm that aims to reduce the cloaking area and
the frequency of location updates. The idea is to use histor-
ical user locations as footprints in performingk-anonymity
cloaking. To make this idea work, a user needs to provide the
location cloaking agent with a future movement trajectory for
each LBS request. In contrast, our proposed mobility-aware
cloaking technique does not require future locations for any
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LBS request. We aim to prevent an adversary from utilizing
historical cloaking regions to degrade the quality of current
location cloaking.

Spatial Query Processing.A large body of research has in-
vestigated spatial query processing, in particularkNN search.
Most kNN search algorithms have focused on disk access
methods based on R-tree-like index structures [16]. The
branch-and-bound approach is often employed in query eval-
uation to traverse the index and prune search space. Various
query evaluation algorithms differ in terms of the visitingorder
of index nodes and the metric used to prune search space [17],
[28], [33]. Whereas the previous studies investigated thekNN
problem for a location point or a line segment only, our recent
work has developed an evaluation strategy for rectangular-
region-basedkNN queries that retrieve thek-nearest neighbors
of all possible location points in a rectangular region [20]. We
remark that the strategy developed in [20] is based on the
fact that a rectangle can be decomposed into a set of straight-
line segments. But because such decomposition is infeasible
for a circle, the strategy of [20] cannot be extended to
evaluate circular-region-basedkNN queries. In another related
work [6], Chenget al. developed algorithms for evaluating
probabilistic queries over imprecise object locations. Incon-
trast, we are interested in using imprecise locations to retrieve
result supersets for region-based spatial queries.

Parallel to our work, Mokbelet al. [26] and Kalnis et
al. [24] have investigated both the location cloaking and query
processing problems. But our work differs from theirs in
several respects. First, like other previous studies [13],[14],
[15], the location cloaking algorithms in [24] and [26] account
for snapshot user locations only. Neither of them considers
continuous queries and trace analysis attacks. In contrast, we
focus on how to protect against trace analysis attacks for
continuous queries through location cloaking. Second, [24]
and [26] did not study the issue of how to represent a cloaking
region. In this paper, we show that a circular cloaking region
generally leads to a small result superset size, and thus we
focus on query processing algorithms for circular regions.
Finally, [26] investigatedbulk query processing for rectangular
regions only. Though [24] developed abulk processing algo-
rithm for circular-region-basedkNN queries, the algorithm has
an exponential time complexity ofO(Mk), whereM is the
cardinality of the spatial object set. In this paper, we propose
a polynomial O(kM3) algorithm for circular-region-based
kNN queries. Furthermore, we develop a novelprogressive
query processing algorithm, which is favorable to slow mobile
networks.

III. SYSTEM MODEL AND PRIVACY METRICS

A. System Model

This section describes the system model under our study.
We consider mobile clients that are equipped with wireless
interfaces to communicate with the Internet. We assume that
mobile clients are location-aware, that is, they are able to
position their locations at any time (e.g., using GPS or other
client-based positioning techniques [31]). The users of mobile

Fig. 2. System Architecture

clients are interested in querying public spatial objects (e.g.,
hotels, restaurants, gas stations, etc.) related to their current
locations.1 We consider two types of location-based spatial
queries. A range query, specified with the user’s current
location l and a distancedr, retrieves all the objects lying in
the circle centered atl with radiusdr. A kNN query, specified
with the user’s current locationl and a parameterk, retrieves
the k nearest objects tol.

Figure 2 illustrates the procedure for processing a location-
based query. After the user issues such a query, the mobile
client sends the queryQ = {l, q}, where l is the current
location andq includes other query parameter(s), to a location
cloaking agent. The cloaking agent then cloaks the location
l into a region R (l ∈ R) based on the user’s privacy
requirement, and forwards the modified queryQ′ = {R, q}
to the LBS server. The LBS server evaluatesQ′ and returns
the result ofQ′ to the cloaking agent. Since the result ofQ′

is a superset of the result ofQ, the cloaking agent refines the
result ofQ′ to obtain the exact result ofQ and finally returns
it to the mobile client. In this procedure, we focus on two
performance objectives: (1) to optimize the quality of location
cloaking with respect to trace analysis attacks while satisfying
the user-specified privacy requirement, and (2) to make the size
of the result ofQ′ as small as possible for saving the cost of
data transmission and the workload of the cloaking agent in
downloading and refining it.

We remark that in the system architecture, the location
cloaking agent runs between the mobile client and the LBS
server. It may be implemented on an Internet-resident proxy
or incorporated into the mobile client. These two solutions
have different performance tradeoffs. The first proxy-based
solution greatly alleviates the workload of the mobile client by
delegating the tasks of location cloaking and result refinement
to the resource-richer proxy. But implementing the proxy-
based solution is not cost free. First, the connection between
the mobile client and the proxy has to be secured to prevent
disclosure of location data over the network transmission (e.g.,
by applying proper encryption and authentication protocols),
which incurs extra processing overhead at the mobile client.
These measures are not needed in the second client-based
solution. Second, since the proxy owns the private information
about mobile users (including their privacy preferences as
well as current and historical locations), more security risks
would be introduced owing to the presence of the proxy. The
proxy can become a new target of attacks and a potential

1It is noted that “objects” and “mobile users” are different concepts in this
paper: “objects” refer to spatial objects (such as hotels and restaurants) to be
queried by LBS requests made by “mobile users.”
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performance bottleneck. A system administrator can determine
where to implement the location cloaking agent by taking into
consideration the bandwidth budget, client capabilities,and
security requirements.

Yet, regardless of which solution the system adopts, the
following issues arising from the location cloaking approach
deserve our investigation: (1) how to represent cloaking re-
gions in terms of shape such that the result size of the
region-based queryQ′ is minimized (Section IV); (2) how to
effectively perform location cloaking on the location cloaking
agent so that the cloaking quality is optimized against trace
analysis attacks (Section V); and (3) how to efficiently evaluate
region-based spatial queries (on the LBS server) to reduce the
query response time (Section VI). It is worth noting that the
techniques proposed in this paper are beneficial to both proxy-
based and client-based solutions.

B. Privacy Metrics

We employ an intuitive privacy metric for location
anonymity, that is, the area of the cloaking region (or briefly,
the cloaking area). A user can specifies a minimum acceptable
cloaking area for each query. For example, a user can set
the minimum acceptable cloaking area to one square mile.
To consider resistance to trace analysis attacks, the quality of
location cloaking is measured byentropy, a well-known metric
for quantifying the amount of uncertainty in information
theory [1]. Suppose it can be derived that the probability
density function for the user to be at locationl in cloaking
regionR is p(l), the entropy is then defined by

−

∫

l∈R

p(l) ln p(l) dl. (1)

Given a cloaking region, entropy will be zero if it is derived
that the user is at some location with 100% probability.
Entropy will increase if the user location is more uncertain,
and will be maximized when the derivable probability for the
user to be at any location in the region is equal.

IV. REPRESENTATION OFCLOAKING REGIONS

In this section, we study the representation of cloaking
regions. Given a cloaking area, we are interested in finding out
how to represent the cloaking region in terms of shape such
that the result size of the region-based query is minimized.It
is worth noting that the representation of a cloaking region
is independent of the issue of maximizing entropy in location
cloaking. For any cloaking region of a given area, irrespective
of its shape, entropy is maximized when the derivable proba-
bility for the user to be at any location in the region is uniform
across that region.

Consider a region-basedkNN query that retrieves thek
nearest neighbors of all the points in the region. The following
theorem shows that the result of a region-basedkNN query
should include all objects in the region as well as thekNNs
of the points on the perimeter of the region.

Theorem 1: An objecto is in thekNN results of regionR
if and only if: i) o ∈ R, or ii) o is in thekNN results of some
point on the perimeter ofR.

Fig. 3. Proof of Theorem 1

(a) Convex Region

dkNN

r

(b) Circular Region

Fig. 4. Solution Space of a Region-basedkNN Query

Proof: Obviously any object insideR is the NN of the
same point it occupies. Next, we use a proof-by-contradiction
approach to show that if an object outsideR is the i-th NN
(i ≤ k) of a point insideR, this object must be in theiNN
results (and hence thekNN results) of some point on the
perimeter ofR.

As shown in Figure 3, suppose that objecta is thei-th NN
of point p insideR. Assume on the contrary thata is not in
the iNN results of any point on the perimeter ofR. Consider
the intersecting pointp′ of the segmentpa and the perimeter
of R. It follows thata is not in theiNN results ofp′. Thus, the
iNN results ofp′ andp overlap by at mosti − 1 objects. As
a result, there must exist an objectb in the iNN results ofp′

that is not in theiNN results ofp. This implies|p′b| ≤ |p′a|.
Thus, we have|pb| < |p′b| + |pp′| ≤ |p′a| + |pp′| = |pa|.
This means thatb is closer top thana, which contradicts the
hypothesis thata is the i-th NN of p, and thatb is not in the
iNN results ofp. Hence, the theorem is proven. �

To simplify our analysis, we follow the previous work of [4],
[33] and assume that the spatial objects to be queried are
uniformly distributed in the search space. Denote byρ the
object density. According to [4], [33], the average distance
between a query point and itsk-th NN is given by

dkNN =

√
k

πρ
. (2)

Following Theorem 1, the solution space for a region-based
kNN query can be approximated by the area extended from
the query region by a distance ofdkNN (see the shaded areas
in Figure 4).2 Thus, we estimate the size of thekNN results
|RkNN | by the number of objects lying in the approximated
solution space. LetA andP respectively be the area and the
perimeter length of the query region. For a general convex

2Note that this is neither a necessary nor a sufficient condition for an object
to be part of thekNN results.
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region (Figure 4a), we obtain

|RkNN | ≈ (A + P · dkNN +
∑

i

1

2
θid

2
kNN ) · ρ

= A · ρ + P ·

√
kρ

π
+ k. (3)

Similarly, for a region-based range query, we can estimate
the size of its query results as

|Rrange| = (A + P · dr + πd2
r) · ρ, (4)

wheredr is the radius of the query range.

Theorem 2: Comparing different region shapes of the same
areaA, a circle gives the smallest value for both|RkNN | and
|Rrange| in Eqs. (3) and (4).

Proof: Given the same value of areaA, from Eq. (3) (or (4)),
the relative value of|RkNN | (or |Rrange|) is determined by
the perimeter lengthP . It is well known that a circle (see
Figure 4b) has the shortest perimeter under a fixed area.�

Theorem 2 implies that given a cloaking area, a circular
region is expected to give the smallest result set for both
range andkNN queries under a uniform distribution of spatial
objects. Figure 5a compares the result sizes obtained by using
both the circular and square cloaking regions of area10−5 for
kNN queries on a dataset containing 300,000 objects randomly
distributed in a unit space. The simulation results in Figure 5a
are the average of 1,000 random queries on the dataset;3 the
analytical results are computed using Eq. (3). It can be seen
that the analytical results well match the simulation results,
and the average result size given by a circular cloaking region
is less than that given by a square region of the same area.
We also compare circular and square cloaking regions for a
real California dataset where the objects are not uniformly
distributed (see Section VII for more details about this dataset).
As shown in Figure 5b, a circular cloaking region again leads
to a smaller result size than a square cloaking region. Thus,in
the rest of this paper we will use circles to represent cloaking
regions.

V. M OBILITY-AWARE LOCATION CLOAKING

We now study how to generate circular cloaking regions
based on privacy requirements. Under isolated cloaking, for
each query with a cloaking area requirementAmin, a circle
with radius

√
Amin/π covering the user locationl is randomly

generated to serve as the cloaking region. But this scheme
is vulnerable to trace analysis attacks. As discussed in the
Introduction, by correlating the query trace and the mobility
pattern, the LBS server (adversary) is likely to derive the
probabilities of user locations in the cloaking region. This
leads to a significant degradation of the quality of location
cloaking. In this section, we develop an optimal mobility-
aware cloaking technique that works as follows. For the first
query, a random cloaking region is generated. For each sub-
sequent query, we control the generation of cloaking regions

3To allow for fair comparison, both the circular and square cloaking regions
are formed with the query point at the centroid.

(a) Uniform Dataset

(b) California Dataset

Fig. 5. Size of thekNN Results

such that the cloaking quality (in terms of entropy as definedin
Eq. (1)) is maximized, that is, given that the server observes a
cloaking region together with any series of historical cloaking
regions, the derivable probability for the user to be located at
any point in the cloaking region should be equal.

A. Problem Formulation

We consider a general user mobility pattern that is known
to the mobile client. We assume, in the worst case, that the
adversary also knows the user mobility pattern and thus has the
potential to conduct trace analysis attacks. The user mobility
pattern may be built by the adversary based on traces (of non-
privacy-conscious users of the same type) [37] or mobility
scenarios (e.g., the random walk model is good to model the
mobility pattern of pedestrians in small-scale urban areas) [22].

Denote byO the center of the old cloaking region produced
for the last query (with a radius ofr =

√
Amin/π). Let u(x)

be the probability density function of the new user location
being distancex away fromO at the time of the new query,
assuming that the user location is uniformly distributed inthe
old cloaking region. It follows that

∫ D

0

u(x)dx = 1, (5)

where D is the farthest possible distance that the user can
travel since the last query,D = min{y | u(x) = 0,∀x ≥ y}.

O O′

y

z

old cloaking region new cloaking region

Fig. 6. Old and New Cloaking Regions

Assume that the user is currently distancey away fromO
(see Fig. 6). Denote byO′ the center of the new cloaking
region andz the distance betweenO′ andO. Definep(z|y) as
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the probability density function ofz given y. In order for the
new cloaking region to cover the user,O′ must be within a
distance ofr from the user’s current location. Thus, we have

∫ min{D−r,y+r}

max{0,y−r}

p(z|y)dz = 1. (6)

Essentially, the location cloaking is to determine thep(z|y)
function with the objective of maximizing entropy, i.e., the
user is equally likely to be at any point in the new cloaking
region. To mathematically characterize this objective, wede-
fine q(y|z) as the probability density function of the new user
location being distancey away from the old centerO given
that the centerO′ of the new region is distancez away from
O. Since the user is equally likely to be at any point in the
cloaking region,q(y|z) is proportional to the length of the arc
(centered atO and with radiusy) overlapping with the new
cloaking region (as indicated by the bold arc in Figure 7b;
hereafter referred to as theoverlapping arc length). Below we
analyze the value ofq(y|z) under maximum-entropy cloaking:

• Assumez ≥ r. In Figure 7a (i.e.,0 ≤ y ≤ z − r) and
Figure 7c (i.e.,z+r ≤ y), the overlapping arc length is 0.
In Figure 7b (i.e.,z−r ≤ y ≤ z+r), the overlapping arc
length is2αy = 2 · arccos y2+z2−r2

2yz
· y. Therefore, after

normalizing to the integration over all possibley values
within the conditioned range in whichq(y|z) is not zero,
we obtain

q(y|z) =






2·arccos y2+z2
−r2

2yz
·yR

z+r

z−r
2·arccos y2+z2

−r2

2yz
·ydy

if z − r ≤ y ≤ z + r,
0 otherwise.

(7)

y

z

r

α y
z

r

y

r

z

OO O

O′ O′ O′

(a) (b) (c)

Fig. 7. z ≥ r

• Assumez < r. In Figure 8a (i.e.,0 ≤ y ≤ r − z), the
overlapping arc length is2πy. In Figure 8b (i.e.,r− z ≤
y ≤ z + r), the overlapping arc length is2αy = 2 ·

arccos y2+z2−r2

2yz
· y. In Figure 8c (i.e.,z + r ≤ y), the

overlapping arc length is 0. Therefore, after normalization
we obtain

q(y|z) =






2πy

π(r−z)2+
R

z+r

r−z
2·arccos y2+z2

−r2

2yz
·ydy

if 0 ≤ y ≤ r − z,
2·arccos y2+z2

−r2

2yz
·y

π(r−z)2+
R

z+r

r−z
2·arccos y2+z2

−r2

2yz
·ydy

if r − z ≤ y ≤ z + r,
0 otherwise.

(8)

Having known q(y|z) as in Eqs. (7) and (8) under
maximum-entropy cloaking, our problem becomes to deter-
mine p(z|y) given q(y|z). Note that the relation between

y

αy
z

r

y
OO O zz

rrO′ O′ O′

(b) (c)(a)

Fig. 8. z < r

p(z|y) andq(y|z) can be established by the Bayes’ rule, that
is,

q(y|z) =
p(z|y) · u(y)

∫ min{R−r,x+r}

max{0,x−r}
p(z|x) · u(x)dx

. (9)

We will discuss how to solvep(z|y) from Eqs. (6), (7), (8),
and (9) in the next subsection.

We remark that in our approach, only the last cloaking
region is needed to generate a new maximum-entropy cloaking
region. The following theorem shows the correctness of this
approach.

Theorem 3: Given that the server observes the new cloaking
region and all old cloaking regions, the user is equally likely
to be at any point in the new cloaking region.

Proof: Denote by(xn, yn) the user’s location andGn the
cloaking region at the time of then-th query. Definep(xn, yn)
as the probability density function of the user being at location
(xn, yn) in regionGn. We prove the claim by induction: given
that the server observesG1 throughGn, for any two points
(xn, yn), (x′

n, y′
n) in Gn, p(xn, yn) = p(x′

n, y′
n).

First, it is obvious thatp(x1, y1) = p(x′
1, y

′
1) for n = 1

since the first cloaking region is randomly generated.
Next, we assume that the claim holds for somen (n ≥ 1).

Then,p(xn, yn) is a constant 1
πr2 . We are going to prove that

the claim also holds forn + 1. Given G1 throughGn+1, for
any two points(xn+1, yn+1), (x′

n+1, y
′
n+1) in Gn+1, we have

p(xn+1, yn+1)

=

∫∫

Gn

p((xn+1, yn+1), (xn, yn)) dxndyn

=

∫∫

Gn

p((xn+1, yn+1)|(xn, yn)) · p(xn, yn) dxndyn

=

∫∫

Gn

p((xn+1, yn+1)|(xn, yn)) ·
1

πr2
dxndyn. (10)

Satisfying Eqs. (7) and (8), our cloaking approach ensures
∫∫

Gn

p((xn+1, yn+1)|(xn, yn)) ·
1

πr2
dxndyn

=

∫∫

Gn

p((x′
n+1, y

′
n+1)|(xn, yn)) ·

1

πr2
dxndyn.

Therefore, Eq. (10) can be rewritten as

p(xn+1, yn+1)

=

∫∫

Gn

p((x′
n+1, y

′
n+1)|(xn, yn)) ·

1

πr2
dxndyn

=

∫∫

Gn

p((x′
n+1, y

′
n+1), (xn, yn)) dxndyn

= p(x′
n+1, y

′
n+1).

Hence, the theorem follows. �
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B. Problem Discretization

Now what we are left is to solvep(z|y) from Eqs. (6), (7),
(8), and (9). Unfortunately, a closed-form solution is difficult
to obtain. In this section, we present a discretization-based
numerical method. We divide the plane into a set of rings of
sufficiently small width∆. The rings are centered atO. As
shown in Figure 9, ring1 is enclosed by a circle centered at
O with a radius of∆, i.e., ring1 contains all points that are
within distance∆ from O. For eachi > 1, ring i is enclosed
by two circles centered atO with radii of (i − 1)∆ and i∆
respectively, i.e., ringi includes all points that are(i − 1)∆
to i∆ away fromO.

O ∆ ∆∆∆∆

51 2 3 4

Fig. 9. A Set of Rings

Without loss of generality, we assume that the radius of a
region r = K∆, and the farthest possible distance that the
user can travel since the last queryD = L∆, whereK and
L are integers. Based on the assumption of mobility pattern,
the probabilityU(i) of the new user location being in ringi
is given byU(i) =

∫ i∆

(i−1)∆
u(x)dx, and it follows that

U(1) + U(2) + · · · + U(L) = 1.

We defineQ(i|j) as the probability of the new user location
being in ring i given that the center of the new region is in
ring j. For ring i, we use the average radius of two enclosing
circles (i.e., (i∆+(i− 1)∆)/2 = (i− 1/2)∆) to approximate
its distance toO. Thus, following (7) and (8),Q(i|j) should
satisfy the following. Ifj ≥ K,

Q(i|j) =






arccos
(i− 1

2
)2+(j− 1

2
)2−K2

2(i− 1
2
)(j− 1

2
)

·(i− 1
2 )Pj+K−1

m=j−K+1 arccos
(m−

1
2
)2+(j− 1

2
)2−K2

2(m−

1
2
)(j− 1

2
)

·(m− 1
2 )

if j − K + 1 ≤ i ≤ j + K − 1,
0 otherwise.

(11)

If j < K,

Q(i|j) =




π(i− 1
2 )PK−j

m=1 π(m− 1
2 )+

Pj+K−1
m=K−j+1 arccos

(m−

1
2
)2+(j− 1

2
)2−K2

2(m−

1
2
)(j− 1

2
)

·(m− 1
2 )

if 1 ≤ i ≤ K − j,
arccos

(i− 1
2
)2+(j− 1

2
)2−K2

2(i− 1
2
)(j− 1

2
)

·(i− 1
2 )PK−j

m=1 π(m− 1
2 )+

Pj+K−1
m=K−j+1 arccos

(m−

1
2
)2+(j− 1

2
)2−K2

2(m−

1
2
)(j− 1

2
)

·(m− 1
2 )

if K − j + 1 ≤ i ≤ j + K − 1,
0 otherwise.

(12)

What we want to find out isP (j|i) — the probability of the
center of the new region being in ringj given that the new user
location is in ringi. Following (6), the definable probabilities

are listed as a matrix in Figure 10. The sum of each row in the
matrix equals 1, i.e.,

∑min{L−K+1,i+K−1}
j=max{1,i−K+1} P (j|i) = 1. After

discretization, our problem becomes to determine theP (j|i)
function givenQ(i|j) as in Eqs. (11) and (12).

Following the Bayes’ rule, for anyi and j,

P (j|i) =
Q(i|j)

U(i)
·
∑

m

(P (j|m) · U(m)).

Let vj =
∑

m(P (j|m) · U(m)). Thus, we have

P (j|i) =
Q(i|j)

U(i)
· vj . (13)

The matrix we want to compute can be rewritten as
shown in Figure 11. Our problem further becomes to find
v1, v2, · · · , vL−K+1 such that the sum of each row in the
matrix equals 1:





∑min{L−K+1,i+K−1}
j=max{1,i−K+1} P (j|i)

=
∑min{L−K+1,i+K−1}

j=max{1,i−K+1}
Q(i|j)
U(i) vj = 1, 1 ≤ i ≤ L,

vj ≥ 0, 1 ≤ j ≤ L − K + 1.

(14)

C. Practical Cloaking Algorithms

The linear equation set (14) does not always have a feasible
solution since the number of equations (L) is more than the
number of variables (L−K +1). Thus, we have to relax some
of the constraints. To this end, we allow the sum of each row
in the matrix to be less than 1, i.e., user locations may not be
cloaked for some queries. Thus, the set of linear equations is
relaxed to

{ ∑min{L−K+1,i+K−1}
j=max{1,i−K+1}

Q(i|j)
U(i) vj ≤ 1, 1 ≤ i ≤ L,

vj ≥ 0, 1 ≤ j ≤ L − K + 1.
(15)

To protect location privacy, the queries whose locations are
not cloaked will beblocked and are not sent to the LBS server.
To answer blocked queries, we propose to cache the last result
superset for potential reuse. Note that the amount of cache
memory needed is minimal since only the result superset for
the last query is cached. In fact, if a new query is issued from
ring i ≤ K (i.e., from the old cloaking region; calledinner
query), we should block it in order to save communication cost
as the precise results can be computed from the cached last
result superset. Thus, all the inner queries are blocked, except
those sent to the server to achieve optimal cloaking. On the
other hand, if a query issued from ringi > K (called outer
query) is blocked, the client might obtain an inaccurate query
result based on the cached last result superset and, hence,
the accuracy of query results might be sacrificed. Therefore,
we formulate two linear programs with different objective
functions:

MaxAccu Cloak:

minimize (1 −
∑L

i=K+1

∑min{L−K+1,i+K−1}
j=max{1,i−K+1}

Q(i|j)
U(i) vj)(16)

MinComm Cloak:

minimize (1 −
∑L

i=K+1

∑min{L−K+1,i+K−1}
j=max{1,i−K+1}

Q(i|j)
U(i) vj)

−(1 −
∑K

i=1

∑min{L−K+1,i+K−1}
j=max{1,i−K+1}

Q(i|j)
U(i) vj) (17)
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Fig. 10. Probability Matrix (showing the upper-left cornerand lower-right corner only)

Fig. 11. Rewritten Probability Matrix (showing the upper-left corner and lower-right corner only)

The first objective function MaxAccuCloak attempts to
minimize the outer query blocking probability fori = K +
1,K + 2, · · · , L, thereby maximizing the query accuracy. In
contrast, the second MinCommCloak trades query accuracy
for communication cost. It also aims to maximize the inner
query blocking probability fori = 1, 2, · · · ,K to increase the
result reuse rate and save remote queries. The performance
of these two cloaking algorithms will be evaluated by experi-
ments in Section VII-C.

On solving the linear program and obtaining
v1, v2, · · · , vL−K+1, we can compute P (j|i)’s using
Eq. (13). Then, given a new query with user location in
ring i, the query has a probability of(1 −

∑
j P (j|i)) to be

blocked. If the query is not blocked, the distance between
the new cloaking region and the old cloaking region can be
randomly generated based on the probabilities ofP (j|i)’s.
Given the distance, the center of the new cloaking region can
be randomly generated on the corresponding arc. A summary
of the optimal mobile-aware cloaking technique is described
in Algorithm 1.

VI. REGION-BASED QUERY PROCESSING

This section discusses how to process circular-region-based
queries on the server side. The evaluation of a region-based
range query is straightforward since it is still a range query
(with an extended range), which simply retrieves all the objects
within the spatial range. Thus, we focus on the evaluation of
circular-region-basedkNN queries (hereafter calledkCRNN
queries) in this section. Following Theorem 1, the results of a

Algorithm 1 Overview of Mobility-Aware Location Cloaking

Input: mobility patternU(·), old cloaking region centered at
O, new user location in ringi

Output: the center of the new cloaking region
Procedure:
1: computeQ(i|j)’s using Eqs. (11) and (12)
2: construct a linear program formed by Eqs. (15) and (16)

(for MaxAccu Cloak), or Eqs. (15) and (17) (for Min-
CommCloak), depending on the performance objective

3: solve the linear program to getvj ’s
4: computeP (j|i)’s using Eq. (13)
5: determine whether the query is blocked based on the

probability of (1 −
∑

j P (j|i))
6: if the query is not blockedthen
7: generate the distance of the new cloaking region from

O by following P (j|i)’s
8: randomly generate the center of the new region on the

corresponding arc

kCRNN query include all the objects in the circular region and
thekNNs of the points on the perimeter of the circle (denoted
by Ω).

In the following, we propose twokCRNN processing al-
gorithms: abulk algorithm that generates the query results
all at once at the end of query evaluation and aprogressive
algorithm that produces the results incrementally during query
evaluation.
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A. Bulk Query Processing of kCRNN

Denote the set of spatial objects by{p1, p2, · · · , pM}. The
basic idea is to scan the objects one by one, and during each
scan we maintain the set of arcs onΩ for each object to which
this object is the 1st, 2nd,· · · , and k-th NN. The example
shown in Figure 12a is used to illustrate the idea for a 2CRNN
query. Suppose that there are three objectsp1, p2, and p3.
Initially p1 is the 1st NN to the circumferenceΩ. Then,p2 is
scanned, and the perpendicular bisector ofp1 andp2 splits Ω
into arcsα andβ. As a result,p2 takes overp1 to be the 1st
NN to β — p1 is the 1st NN toα and the 2nd NN toβ; p2

is the 1st NN toβ and the 2nd NN toα. Next, p3 is scanned
and we check it againstp1 andp2. The perpendicular bisectors
further split α into α1, α2, andα3, and splitβ into β1, β2,
and β3. Now p3 takes overp1 to be the 1st NN forα3 and
the 2nd NN forβ2; p3 takes overp2 to be the 2nd NN forα2

and the 1st NN forβ1. In general, when objectpi is scanned,
initially we assume thatpi is farther away from any arc than
any candidatekCRNN result. Afterwards, we checkpi against
eachpj in the candidatekCRNN result set. Given apj , the
perpendicular bisector ofpj andpi splits the existing arcs at
two points at most. For each of the arcs located on thepi side
of the perpendicular bisector,pj moves backward in thekNN
list (e.g., the 2nd NN becomes the 3rd NN), whilepi advances
in thekNN list (e.g., the 3rd NN becomes the 2nd NN). After
each scan, those objects which have at least onel-th-NN arc
(l ≤ k) constitute the candidate set ofkCRNN results; and
if the order of some objectp to an arc exceedsk, this arc is
removed forp. The algorithm works by scanning the entire
set of objects to obtain the finalkCRNN results ofΩ. Recall
that the results of akCRNN query also include all the objects
in the circular region. Thus, when scanning the objects, the
algorithm also checks whether they are in the circular region
and if so, includes them in the finalkCRNN results.

Furthermore, in order to speed up the convergence of the
kCRNN candidate set, we sort the objects and apply a heuristic
(Heuristic 1) to scan the objects closest toΩ first because they
are most likely to appear in the finalkCRNN results.

Heuristic 1: The objects are sorted and scanned in the
increasing order of their minimum distances toΩ. And those
objects whose minimum distances toΩ are2r (r is the radius
of Ω) farther than thek-th NN of some arc are removed from
scanning.

The second statement of Heuristic 1 sets a stop condition
for the scan, because those objects that are2r farther fromΩ
than the currentk-th NN of some arc must be farther away
from any arc ofΩ than the currentkNNs of this arc. This
can be explained in Figure 12b for a 3CRNN query. For the
moment,p1, p2, andp3 are the 3NNs of an arc ofΩ andp1 is
the third NN. The minimum distance fromp1 to Ω, denoted
by max kNN dist, is used to prune faraway objects in future
search. More specifically, if any object is2r+max kNN dist
away from any point onΩ (i.e., outside the outermost circle
in Figure 12b), the object does not need to be scanned since
it must be farther away from any arc ofΩ than p1, p2, and
p3.

The complete query processing algorithm is described in

(a) Query Processing

p
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(b) Stop Condition

Fig. 12. FindingkCRNN Results

Algorithm 2, where the data structureF(pi, âb) maintains the
order of objectpi to arc âb. We call it abulk algorithm as all
the candidatekCRNN results are finalized at the end of query
evaluation.

We now analyze the complexity of Algorithm 2. Given a
kCRNN query withM objects, the while loop iterates through
at mostM scans. Since each scan increases the number of
arcs by2M in the worst case, the total number of arcs for all
candidatekCRNN results is bounded byO(M2). Each arc can
appear in the arc sets of at mostk objects. Thus, the worst-
case storage complexity isO(kM2). For the time complexity,
eachF(pj , âb) entry may be updated at mostM times, once in
each scan. Hence, the worst-case time complexity isO(kM3).
Nevertheless, in practice the cost would be far less becausethe
candidate set ofkCRNN results is normally not large and the
scanning may terminate early with the stop condition proposed
in Heuristic 1.

B. Progressive Query Processing of kCRNN

The bulk query processing algorithm generates thekCRNN
results at the end of query evaluation. Therefore, the server
cannot start transmitting the results to the client until the end
of query evaluation. We now propose an alternativeprogressive
query processing algorithm to parallelize the query evaluation
and result transmission.

The idea is to determine whether an object will be a
final kCRNN result earlier. The query progressing procedure
remains the same as in Algorithm 2 except that i) any object in
in circle results is immediately returned to the client when
it is scanned, and ii) after the scan of each object, we add a
checking procedure (see Algorithm 3). We randomly pick an
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Algorithm 2 Bulk Query Processing ofkCRNN
Input: query circleΩ with radiusr, spatial object setS
Output: the kCRNN results ofΩ
Procedure:
1: enqueue the objects inS into a priority queue in increasing

order of their (minimum) distances toΩ (denoted by
minDist(pi,Ω))

2: dequeue the first objectp1

3: F(p1,Ω) := 1 // F(pi, âb) maintains the order ofpi to âb
4: cand kCRNN results := {p1}
5: max kNN dist := ∞
6: dequeue the next objectpi

7: while minDist(pi,Ω) < 2r + max kNN dist do
8: if pi is insideΩ then
9: in circle results := in circle results ∪ pi

10: initialize F(pi, âb) := |cand kCRNN results| + 1
for any arcâb // initially assumingpi is farther

// than any candidatekCRNN result
11: for each objectpj in cand kCRNN result do
12: split existing arcs by⊥pipj — the perpendicular

bisector ofpi andpj

13: for any arcâb located onpi side of⊥pipj do
14: if entryF(pj , âb) existsthen F(pj , âb)++

// movepj backward in thekNN list
15: F(pi, âb)−− // movepi forward in thekNN list
16: let S be the set of scanned objects includingpi;

cand kCRNN results :=
{p | p ∈ S,∃ an arcâb,F(p, âb) ≤ k}

17: removeF() entries withF(p, âb) > k for p ∈ S
18: max kNN dist := min{max kNN dist,

min
∀ bab

{minDist(p,Ω) | p is thek-th NN of arc âb}}

19: dequeue the next objectpi

20: returnin circle results∪cand kNN results as the final
results

unchecked split point onΩ as the check point, and go through
the list of unscanned objects to compute its fullkNN results. If
any of thekNN results has not been returned to the client, it is
output for immediate transmission. For our running example
shown in Figure 12a, after scanningp2, we may selects1

as the check point. We then computes1’s 2NN results asp1

and p2 and return them immediately. Compared to the bulk
query processing, since the checking procedure here incurs
extra overhead, the overall query processing time would be in-
creased. Nevertheless, the worst-case time complexity remains
O(kM3) since the checking procedure adds a complexity of
O(kM2) only. On the other hand, the progressive algorithm
can start returning thekCRNN results earlier and, hence, likely
to result in a shorter user-perceived response time, as willbe
demonstrated in Section VII-D.

VII. PERFORMANCEEVALUATION

A. Experiment Setup

We have developed a testbed [9] to evaluate the performance
of the proposed location cloaking and query processing algo-
rithms. The client-side query interface and location cloaking

Algorithm 3 Checking Procedure in Progressive Query Pro-
cessing ofkCRNN

Input: F(pi, âb) entries, the queue of unscanned objects
Output: the kNN results of a check point
Procedure: // this procedure is added to between lines

// 17 and 18 of Algorithm 2

1: randomly select an unchecked split points as the check
point

2: retrieve the tentativekNN results ofs: {p | F(p, âb) ≤
k, s ∈ âb}

3: current kNN distance := distance of the currentk-th
NN

4: dequeue the next objectpi

5: while minDist(pi,Ω) < current kNN distance do
6: if Dist(pi, s) < current kNN distance then
7: update the tentativekNN results
8: updatecurrent kNN distance
9: dequeue the next objectpi

10: return the finalkNN results if not yet

Parameter Setting
kNN Query (k) 5
Query Interval (I) 4 min

Privacy Requirement (r) 0.001
Spatial Object Set Size 2,249,727 objects
Object Record Size 1 kb

Query Size 20 bytes

Data Transfer Rate 114 kbps

TABLE I

DEFAULT PARAMETER SETTINGS

agent were implemented on an O2 Xda Atom Exec PDA with
Intel PXA 27x 520 MHz Processor and 64 MB RAM. The
PDA supports GSM/GPRS/EGDE and WiFi communications.
The LBS server was implemented on a Redhat 7.3 Linux
server with Intel Xeon 2.80 GHz processor and 2 GB RAM.
We assume that the client and the server communicate through
a wireless network at a data transfer rate of 114kbps.

The spatial object set used in the experiments contains
2,249,727 objects representing the centroids of the street
segments in California [29]. We normalize the data space to a
unit space and index the spatial objects by an R-tree (with a
page fanout of 200 and a page occupancy of 70%) [16]. The
size of an object record is set at 1kb. To process akCRNN
query of a circleΩ, we first use our previously developed disk-
based access method [20] to retrieve thekNN results for the
minimum bounding rectangle ofΩ. By definition, this set of
kNN results is a superset ofΩ’s kCRNN results. ThekCRNN
processing algorithms developed in Section VI are then applied
on this superset to get thekCRNN results ofΩ.

We simulate a well-known random walk model [22], in
which the user moves in steps. In each step, the user selects
a speed and travels along an arbitrary direction for a duration
of 2 min. We test two speed settings: 1) constant speed:
the moving speed is fixed at 0.0003 /min; 2) random speed:
for each step, a speed is randomly selected from a range of
[0.0001 /min, 0.0005 /min]. By default, the random speed
setting is adopted. The user makes privacy-consciouskNN
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queries from time to time. The query intervalI is set at 4
min by default. The user specifies the privacy requirement
by a radiusr (i.e., the minimum acceptable cloaking area
is πr2), with a default setting of 0.001. The size of akNN
query message is set at 20bytes. For the numerical method
of optimal location cloaking,∆ is set at 0.0001, and the
Simplex algorithm is employed to solve the linear program.
The default parameter settings are summarized in Table I. The
experimental results reported below are averaged over 1,000
randomly generated queries.

B. Effectiveness of Mobility-Aware Cloaking

In this section, we compare the proposed optimal mobility-
aware cloaking technique (Algorithm 1) against the isolated
cloaking scheme (described at the beginning of Section V).
For both the optimal and isolated cloaking techniques, initially
a cloaking region is randomly generated based on the user
location. In other words, the user is equally likely to be at any
location in the cloaking region. We measure the quality of the
cloaking region for a subsequent query in terms of entropy
based on 1,500 sample locations and 1,000 random queries.
As shown in Figures 13a and 13b, when the query interval
is small (i.e., 1min), the entropy of isolated cloaking is
nearly 20% lower than that of optimal cloaking for all queries
tested. With increasing query interval, the average entropy of
isolated cloaking improves (see Figure 13c) but is still far
lower than that of optimal cloaking. When the query interval
is 8 min, Figure 13a and 13b show that the entropy of isolated
cloaking is 40% lower than that of optimal cloaking for over
15% of the queries tested and 20% lower for over 40% of
the queries tested. Note that the results shown here are for
one successive query only. With more successive queries, the
quality of isolated cloaking would further degrade.

To highlight the benefit of achieving higher entropy, we
conduct two possible attacks. Recall that through trace analysis
attacks, the LBS server can derive the probabilities of the
user being at different locations in a cloaking region. The
first attack attempts to limit the possible user location to a
sub-region with 95% confidence. The second attack calculates
the highest aggregate probability for any sub-region with size
equal to 5% of the cloaking region. Figures 14a and 14b
show the results when the number of cloaking regions used in
trace analysis attacks is increased from 1 to 10. We can see
from the results that our optimal cloaking is robust against
the attacks: for example, with the first attack (Figure 14a),the
sub-region size is as large as 95% of the cloaking region since
the derivable probability for the user to be at any location is
uniform across the region. In contrast, with the same level
of confidence, the sub-region size under isolated cloaking
could be much smaller due to a skewed probability distribution
(see Figure 14c for a sample distribution we observed in the
experiment). Similarly, with the second attack (Figure 14b),
under isolated cloaking, the server would be able to derive
the probability for the user to be in a sub-region of 5% size
of the cloaking region with a confidence of 16%-99%. The
confidence for the same sub-region is only 5% under optimal
cloaking.

C. Comparison of Mobility-Aware Cloaking Algorithms

This section compares the two cloaking algorithms devel-
oped in Section V based on the optimal cloaking technique,
namely MaxAccuCloak (abbreviated asMaxAccu) and Min-
CommCloak (abbreviated asMinComm). Recall that Max-
Accu aims at a higher query accuracy by minimizing the
outer query blocking probability while MinComm attempts
to achieve a balance between communication cost and query
accuracy by maximizing the inner query blocking probability
at the same time.

As shown in Figure 15a, MaxAccu has an outer query
blocking probability of zero. Hence, its query results are 100%
accurate as shown in Figure 15b. In contrast, MinComm has
an outer query blocking probability of about 15%. For those
blocked outer queries, approximate results are obtained based
on cached result supersets. Figure 15b shows that the average
error (measured by the ratio of the distance of an approximate
kNN result to the actualkNN distance) is pretty small. In the
worst case, the approximatekNN distance is no more than 2.3
times of the actual distance.

Figure 15a also shows that MinComm has a much higher
inner query blocking probability than MaxAccu. Recall that
inner queries are sent to the server for evaluation merely
for the purpose of optimal cloaking. They do not affect
query accuracy but communication cost. With more queries
(including both inner and outer queries) being blocked, the
communication cost incurred by MinComm is about half that
of MaxAccu (see Figure 15c).

D. Comparison of kCRNN Query Processing Algorithms

In this section, we evaluate the performance of thebulk and
progressive kCRNN query processing algorithms developed
in Section VI. Figure 16 shows the user-perceived response
time for both algorithms. Whenk or r is small, the bulk and
progressive algorithms perform similarly. However, whenk
or r is large, the progressive algorithm clearly outperforms
the bulk algorithm. To explain, we show in Figures 17a and
17b the timeline performance of two sample queries with
r=0.25×10−3 andr=4×10−3, respectively. For the query with
r=0.25×10−3 (Figure 17a), both the bulk and progressive
algorithms took a short time to process. Thus, parallelizing
the query evaluation and result transmission does not help a
lot in user-perceived response time. On the other hand, when
r=4×10−3 (Figure 17b), the result superset size is large and
the query requires a long time (over 1000ms) to evaluate; then
by returning thekCRNN results incrementally, the progressive
algorithm completes the result transmission earlier.

E. End-to-End System Performance

This section evaluates the end-to-end system performance.
In this set of experiments, we used the progressivekCRNN
query processing. In addition to the MaxAccu and MinComm
cloaking algorithms, the existing isolated cloaking method is
also included for comparison. For all the cloaking algorithms,
the inner queries (i.e., the queries inside the last cloaking re-
gion) reuse cached result supersets and compute their answers
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Fig. 16. Performance Comparison ofkCRNN Query Processing Algorithms

immediately. The inner queries are not sent to the server by
default. However, with MaxAccu and MinComm, some of
them might need to be sent to the server to achieve optimal
cloaking, depending on the inner query blocking probability.
Moreover, as discussed before, the blocked outer queries for
MaxAccu and MinComm compute their approximatekNN

results based on cached result supersets.
Figures 18a and 18b show the average end-to-end query

latency, which is defined as the period from the time when
the user issues a location-based query to the time when the
exact query results are obtained. It can be seen that MinComm
outperforms MaxAccu in all cases tested. This is explained as
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Fig. 18. End-to-End Latency Performance
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Fig. 19. Network Traffic Performance

follows. As shown in Figure 18c, the query evaluation and
result transmission time dominates the overall query latency.
Since MinComm has a higher outer query blocking rate and
hence a higher result reuse rate (Figure 18d), it results in a
lower average query latency. For the same reason, MinComm
outperforms Isolated when the region size is small (see Fig-
ure 18b). When the region size is large, Isolated performs
better than both MaxAccu and MinComm due to a higher
result reuse rate. Their relative performance is insensitive to

the value ofk (see Figure 18a).

Figures 19a and 19b show the average amount of network
traffic incurred for each query, which is a good indicator of
energy consumption on the client. The less is the network
traffic, the lower is the energy consumption. As expected,
MinComm incurs less network traffic than MaxAccu due to
a higher query blocking rate. Both MaxAccu and MinComm
are competitive compared to Isolated; in particular MinComm
outperforms Isolated for most cases tested. Summarizing the
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results of Figures 13, 18, and 19, it can be concluded that the
price to pay for resisting trace analysis attacks is not high.
Our proposed MaxAccu and MinComm cloaking algorithms
improve the cloaking quality over Isolated without compromis-
ing much on query latency or communication cost (sometimes
performing even better).

VIII. C ONCLUSION

This paper has presented a complete study on processing
privacy-conscious location-based queries in mobile environ-
ments. The technical contributions made in this paper are
summarized as follows:

• We have studied the representation of cloaking regions
and showed that a circular region generally leads to a
small result superset.

• We have developed an optimal mobility-aware location
cloaking technique to resist trace analysis attacks. Two
cloaking algorithms, namelyMaxAccu Cloak and Min-
Comm Cloak, have been designed to favor different per-
formance objectives.

• We have developed two efficient polynomial algorithms,
namely bulk and progressive, for processing circular-
region-basedkNN queries.

We have also conducted simulation experiments to evaluate
the proposed algorithms. Experimental results show that the
optimal mobility-aware cloaking algorithms is robust against
trace analysis attacks without compromising much on query
latency or communication cost. MaxAccuCloak gets a 100%
query accuracy while MinCommCloak achieves a good bal-
ance between communication cost and query accuracy. It is
also shown that the progressive query processing algorithm
generally achieves a shorter user-perceived response timethan
the bulk algorithm.

As for future work, we are going to extend the mobility-
aware location cloaking technique to other privacy metrics
(e.g., thek-anonymity model and thel-diversity model) and
road networks. We are also interested in investigating mobility-
aware peer-to-peer cloaking techniques.
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