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Abstract— In location-based services, users with location-aware
mobile devices are able to make queries about their surroundings
anywhere and at any time. While this ubiquitous computing
paradigm brings great convenience for information access, it also be
raises concerns over potential intrusion into user location privay.

To protect location privacy, one typical approach is to cloak e R ee€
user locations into spatial regions based on user-specified pri- °d RE€
vacy requirements, and to transform location-based queries into
region-based queries. In this paper, we identify and address thee (a) Location cloaking (b) Isolated cloaking
new issues concerning this location cloaking approach. First, we

study the representation of cloaking regions and show that a Fig. 1. Dynamic Location Cloaking

circular region generally leads to a small result size for region- L . loaki . ical h .
based queries. Second, we develop a mobility-aware location LOcation cloaking is one typical approach to protecting

cloaking technique to resist trace analysis attacks. Two cloaking User location privacy in LBS [13], [14], [15], [26]. Upon
algorithms, namely MaxAccu_Cloak and MinComm_Cloak, are receiving a location-based spatial query (e.g., a rangeyque

designed based on different performance objectives. Finally, we or a kNN query) from the user, the system cloaks the user’s
develop an efficient polynomial algorithm for evaluating circular- current location into acloaking region based on the user’s

region-basedkNN queries. Two query processing modes, namely . . . . .
bulk and progressive, are presented to return query results either Privacy requirement. The location-based spatial queryis t

all at once or in an incremental manner. Experimental results transformed into aregion-based spatial query before being
show that our proposed mobility-aware cloaking algorithms sent to the LBS server. The LBS server then evaluates the
significantly improve the quality of location cloaking in terms  region-based query and returnsesult superset, which con-

of an entropy measure without compromising much on QUETY aing the query results for all possible location pointsthie t

latency or communication cost. Moreover, the progressive quer . . . .
processing mode achieves a shorter response time than thecl0@king region. Finally, the system refines the result sagie

bulk mode by parallelizing the query evaluation and result t0 generate the exact results for the query location. Figare
transmission. shows a sample NN query. Instead of providing the exact

location/, the system submits a cloaking regiénto the LBS
server, which then returns the set of objefisc, d} that are
the nearest neighbors of at least one poinkirFinally, among
{b, ¢, d}, the system finds out the true nearest neighbof
I. INTRODUCTION query location. Throughout this query processing procedure,

Location-based services (LBS) are emerging as a maIQP LBS server knows only the regiaR in which the user

application of mobile geospatial technologies [7], [2B3], 'S Iocate_d, not th_e exact locatidn|In the literature, a v_ariety
[35]. In LBS, users with location-aware mobile devices ar‘é‘c cloaking algorlthms_ based on snapsho'F user locations hav
able to make queries about their surroundings anywheretan gen developed for different privacy metrics (e.g., [13R][
any time. Spatial range queries akhearest-neighbork(NN) 24], [26)]).
queries are two types of the most commonly used queries infn this paper, we identify and address three new issues
LBS. For example, a user can make a range query to find &gincerning the location cloaking approach. We first show tha
all shopping centers within a certain distance of her curreff€ representation of a cloaking region has an impact on the
location, or make &NN query to find out thek nearest gas fesult superset size of the region-based query. In general,
stations. In these queries, the user has to provide the LB®all result superset is preferred for saving the cost o dat
server with her current location. But the disclosure of taga  transmission and reducing the workload of the result refine-
information to the server raises privacy concerns, whickehament process (especially if this process is implemented on
hampered the widespread use of LBS [18], [19], [30]. Thuthe mobile client). We find that, given a privacy requirement
how to provision location-based services while protectingr representing the cloaking region with a circle generalbdte
location privacy has recently become a hot research topjc [§° & smaller result superset than using other shapes.
[13], [15], [24], [25], [26]. Second, we consider the location cloaking problem for
continuous LBS queries. In such scenarios, trace analysis
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region R’ (see Figure 1b). If the LBS server somehow learns 1. RELATED WORK

the user’s maximum possible moving spegd the server can ) ) ) )
draw a regionR® (the shaded area in Figure 1b) expandegocation Privacy Protection. There are two main approaches

from the last cloaking regio® based onv,, and the interval 0 protecting location privacy in LBS. The first approachesl

¢ between the two queries. The server is then able to infer t/94t @ trusted LBS server to restrict access to location datecba
the user must be located in the intersection areR‘oand &/, ©n rule-based policies [10], [11], [36]. The second catggdr
which degrades the quality of location cloaking and mayttail @PProaches run a trustworthy agent between the client and th
meet the expected privacy requirement. The cloaking qualkBS server. Every time the user makes a location-based guery
will further deteriorate with the analysis of more successi the agent anonymizes the user identity and/or locationrbefo
queries and cloaking regions. To address this issue, wéagevedorwarding the query to the LBS server [5], [13], [26]. Our
a mobility-aware location cloaking technique that resisase Study falls into the second category.

analysis attacks. Given that the server observes a cloakindrarly studies on location privacy protection consideree ob
region together with any series of historical cloaking oegi, ect tracking applications, where a proxy server is empddye

our proposed technique makes equal the derivable protyabifollect exact locations from moving clients and to anonyeniz
that the user will be located at any one point within thécation data through de-personalization before reldagé,
cloaking region. To achieve this, we leverage the prokghbilionce a client enters a pre-defined zone, its identity is mixed
theory to control the generation of cloaking regions andith all other clients in the same zone. It appears that this
design two cloaking algorithms, namelyaxAccu_Cloak and idea can be extended to deal with trace analysis attacks by
MinComm_Cloak, based on different performance objectivegissociating each LBS request with a different pseudonym.
MaxAccu_Cloak is designed to maximize the accuracy of querynfortunately, this approach may not be effective because
results, whileMinComm_Cloak attempts to reduce the networkhistorical user locations are highly correlative and, lesticey
communication cost. could be re-linked using trajectory tracking methods (e.g.
Finally, we investigate how to evaluate efficiently ciraula _multiftarget tracking [27], [32]) even without knowing any
region-based spatial queries on the LBS server. While thdeentlty [34]. i i .
evaluation of circular-region-based range queries isgitta Grute.ser.and Grunwald .[13] proposed to.ach|eve Identity
forward, we develop an efficiert®(kM/?3) algorithm for eval- anonymity in LBS by spatio-temporal cloaking based on a
uating circular-region-base@dNN queries, whereM is the .k'a.”".”ym.”y model, that is, thg clqaked 'O,Ca“on is made
cardinality of the spatial object set. In addition, we prese/o z‘d'?tg‘t%lé'rsnzglé tltgrge:?oernlwot(;waglggalglotrzzgzi?nng Otfh:;; Jizz .
query processing modes, namébfk andprogressive, which o 14 e ke algorithm. Gedik and Liu [14], [15] extende

return query results either all at once or in an increment% . . . .
this to a personalized-anonymity model, in which users

manner ) ) . can specify the parametér at a per-message level. They

We conduct simulation experiments to evaluate the perfirso developed a new cloaking algorithm called CliqueCloak
mance of the proposed location cloaking and query proogssifyhile the above cloaking algorithms need a centralized agent
algorithms. The results show that the proposed mobilitpraw perform location cloaking, Choet al. [8] proposed a peer-
cloaking algorithms outperform an isolated cloaking aljon  to_peer cloaking algorithm based on information exchanges
by up to 34% in terms of an entropy measure of cloakingmOng mobile clients. Ghinitat al. [12] proposed a new
quality, without compromising much on query latency Ofpcation cloaking algorithm called hilbASR, in which allars
communication cost (sometimes performing even better). Rgcations are sorted and grouped by Hilbert space-fillinyeu
garding the end-to-end system performandexAccu-Cloak  ordering. They also applied this algorithm to a distribusesi-
results in a very high query accuracy, whMenComm.Cloak  yonment based on an annotated B+-tree index. In [3], Bettini
achieves a good balance between communication cost aidy. presented a framework to model various background
query accuracy. When the result superset size is small, tke bgtacks in LBS and discussed defense techniques to guarante
and progressive modes of query progressing perform similan,gerg’ anonymity. The PrivacyGrid framework [2] investigh
For large result sets that require a long time to evalugig:ation cloaking based on aadiversity model. But unlike
and transmit, the progressive mode achieves a shorter usgst existing cloaking algorithms, which considered shaps
perceived response time than the bulk mode by parallelizipger |ocations only, in this paper we investigate the locati
the query evaluation and result transmission. cloaking problem for continuous LBS queries. In particubes

The rest of this paper is organized as follows. Section fiocus on trace analysis attacks and propose a new mobility-
surveys the related work on location privacy protection ar@are cloaking technique to resist them.
spatial query processing. Section Il gives an overviewwf o More recently, Xu and Cai [34] developed a trajectory
system model and location privacy metrics. Section 1V @isidicloaking algorithm that aims to reduce the cloaking area and
the representation of cloaking regions, followed by Sectp the frequency of location updates. The idea is to use histor-
which presents the mobility-aware location cloaking algdeal user locations as footprints in performirkganonymity
rithms. The processing of circular-region-based quesetis- cloaking. To make this idea work, a user needs to provide the
cussed in Section VI. Section VIl experimentally evaludtess location cloaking agent with a future movement trajectany f
proposed location cloaking and query processing algosgthneach LBS request. In contrast, our proposed mobility-aware
Finally, Section VIII concludes this paper. cloaking technique does not require future locations for an



LBS request. We aim to prevent an adversary from utilizing
historical cloaking regions to degrade the quality of cotre
location cloaking. o (DO={la}

@Q'=(RaqlleR)

>
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Spatial Query ProcessingA large body of research has in-  ¥& . .~ ¥ 4 Restof 0 2@2
vestigated spatial query processing, in particulisiN s_,earch. (5 4——-Reﬁmr N re—r—
Most kNN search algorithms have focused on disk accesSMobile Client L.BS Server
methods based on R-tree-like index structures [16]. The Location Cloaking Agent

branch-and-bound approach is often employed in query evaily. 2. System Architecture

uation to traverse the index and prune search space. Various

query evaluation algorithms differ in terms of the visitiogler ~ clients are interested in querying public spatial objeets).(

of index nodes and the metric used to prune search space [{Pfels, restaurants, gas stations, etc.) related to thefert
[28], [33]. Whereas the previous studies investigatedikal locations! We consider two types of location-based spatial
problem for a location point or a line segment only, our réceflueries. Arange query, specified with the user's current
work has developed an evaluation strategy for rectangulé@cation! and a distance,, retrieves all the objects lying in
region-basedNN queries that retrieve thenearest neighbors the circle centered dtwith radiusd,.. A kNN query, specified

of all possible location points in a rectangular region [20F with the user’s current locatiohand a parametek, retrieves
remark that the strategy developed in [20] is based on tHte k nearest objects th

fact that a rectangle can be decomposed into a set of straightFigure 2 illustrates the procedure for processing a lonatio
line segments. But because such decomposition is infeasiBsed query. After the user issues such a query, the mobile
for a circle, the strategy of [20] cannot be extended t@ient sends the quer®) = {/,¢}, wherel is the current
evaluate circular-region-basé®N queries. In another relatedlocation and includes other query parameter(s), to a location
work [6], Chenget al. developed algorithms for evaluatingcloaking agent. The cloaking agent then cloaks the location
probabilistic queries over imprecise object locationscém- [ into a region R (I € R) based on the users privacy
trast, we are interested in using imprecise locations tieret requirement, and forwards the modified quepy = {R, ¢}
result supersets for region-based spatial queries. to the LBS server. The LBS server evaluatgsand returns

f ) )
Parallel to our work, Mokbelet al. [26] and Kalnis et the result of@’ to the cloaking agent. Since the result@f

al. [24] have investigated both the location cloaking and que'rsé‘éa super/set of th? result ¢, the cloaking agfent refines the
. . .~ .result of @’ to obtain the exact result @ and finally returns
processing problems. But our work differs from theirs i

. : . . r& to the mobile client. In this procedure, we focus on two
several respects. First, like other previous studies [[13]], erformance objectives: (1) to optimize the quality of kma
[15], the location cloaking algorithms in [24] and [26] ace P ) ‘ P q y

for snapshot user locations only. Neither of them consideclsoakIng with respect to trace analysis attacks while satig

continuous queries and trace analysis attacks. In contrest the user-specified privacy requirement, and (2) to makeiee s

, ; .
focus on how to protect against trace analysis attacks {é)frthe result ofQ’ as small as possible for saving the cost of

continuous queries through location cloaking. Second] [2 ata transmission and the workload of the cloaking agent in

and [26] did not study the issue of how to represent a cloakincjjwnIO"’ldlng and refining it.

region. In this paper, we show that a circular cloaking regio | WE_ remark tthat mb t?\z sysiﬁm ar(t:)r_wlnec;[_uret, ths tlr?cailgg
generally leads to a small result superset size, and thus faaking agent runs between the mobrie client and the

focus on query processing algorithms for circular region‘g?rver' It may be implemented on an Internet-resident proxy

Finally, [26] investigatedulk query processing for rectangularor incorporated into the mobile client. These two solutions

regions only. Though [24] developedbalk processing algo- have_ different perfo_rmance tradeoffs. The first proxy-tiase
rithm for circular-region-base&lNN queries, the algorithm hasSOIUtlon greatly alleviates the workload of the mobile sliby
an exponential time complexity aP(M*) 'whereM is the delegating the tasks of location cloaking and result refgr@m

PR : - : to the resource-richer proxy. But implementing the proxy-
cardinality of the spatial object set. In this paper, we ps® o . .
a polynomial O(kM?) algorithm for circular—region-basedtbh"’lsed Zpllutl?n Its no(; ;?St free. I:rst,t ths connectljo? berwe ¢
kNN queries. Furthermore, we develop a nopebgressive € mobile client and the proxy has 1o be secured to preven

guery processing algorithm, which is favorable to slow ”mbidisclosur_e of location data over the network _trar!smisseiaog.(
by applying proper encryption and authentication protsyol

networks. which incurs extra processing overhead at the mobile client
These measures are not needed in the second client-based
Il. SYSTEM MODEL AND PRIVACY METRICS solution. Second, since the proxy owns the private infoionat
A. System Model about mobile users (including their privacy preferences as

This section describes the svstem model under our stu&ve” as current and historical locations), more securigksi
y \/\)(Ijuld be introduced owing to the presence of the proxy. The

We consider mobile clients that are equipped with Wirelessr W can become a new taraet of attacks and a potential
interfaces to communicate with the Internet. We assume thap”” 9 P

mobile clients are location-aware, that is, they are able to . _ _ _ i
It is noted that “objects” and “mobile users” are differenhcepts in this

p‘?Sition their Ioc_a_tions at any. time (e.g., using GPS O.r Iothﬁaper: “objects” refer to spatial objects (such as hotetsrastaurants) to be
client-based positioning techniques [31]). The users dfifeo queried by LBS requests made by “mobile users.”



performance bottleneck. A system administrator can determ b
where to implement the location cloaking agent by taking int l
consideration the bandwidth budget, client capabilitiesd

security requirements. '

Yet, regardless of which solution the system adopts, the
following issues arising from the location cloaking appioa
deserve our investigation: (1) how to represent cloaking re
gions in terms of shape such that the result size of the
region-based querg)’ is minimized (Section IV); (2) how to Fig. 3. Proof of Theorem 1
effectively perform location cloaking on the location dtoay , .
agent so that the cloaking quality is optimized againstetrac \?;.'deN , ‘d\kNN
analysis attacks (Section V); and (3) how to efficiently aasd 5_0_2
region-based spatial queries (on the LBS server) to rechee t
query response time (Section VI). It is worth noting that the 9.%
techniques proposed in this paper are beneficial to bothyprox >’
based and client-based solutions.

'04: : 63
B. Privacy Metrics (a) Convex Region (b) Circular Region

We employ an intuitive privacy metric for location
anonymity, that is, the area of the cloaking region (or hyjefl

the cloaking area). A user can specifies a minimum acceptable _ ) ) o )
cloaking area for each query. For example, a user can 5&pOf: Obviously any object insidef? is the NN of the

the minimum acceptable cloaking area to one square mi&Me point it occupies. Next, we use a proof-by-contraficti
To consider resistance to trace analysis attacks, thetguadli 2PProach to show that if an object outsidieis thei-th NN
location cloaking is measured legtropy, a well-known metric (¢ < ¥) of a point insideR, this object must be in theNN
for quantifying the amount of uncertainty in informationf€Sults (and hence theNN results) of some point on the

theory [1]. Suppose it can be derived that the probabilifjerimeter ofR. o ‘
density function for the user to be at locatiorin cloaking S Shown in Figure 3, suppose that objeds thei-th NN

region R is p(l), the entropy is then defined by of point p inside R. Assume on the cor)trary thatis not[ in
the iNN results of any point on the perimeter & Consider

,/. p() Inp(1) di. (1) the intersecting poinp’ of the segmenpa and the perimeter
lER of R. It follows thata is not in theiNN results ofp’. Thus, the

Given a cloaking region, entropy will be zero if it is derivedNN results ofp” and p overlap by at most — 1 objects. As

that the user is at some location with 100% probabilityt result, there must exist an objécin the iNN results ofy’
Entropy will increase if the user location is more uncertaidhat is not in theiNN results ofp. This implies|p'd| < [p'al.

Fig. 4. Solution Space of a Region-basedN Query

and will be maximized when the derivable probability for thd hus, we havelpb| < [p'b] + [pp'| < |p'a| + |pp'| = |pal.
hypothesis that: is thei-th NN of p, and thatb is not in the

IV. REPRESENTATION OFCLOAKING REGIONS iNN results ofp. Hence, the theorem is proven. O

In this section, we study the representation of cloaking To simplify our analysis, we follow the previous work of [4],
regions. Given a cloaking area, we are interested in findirig d33] and assume that the spatial objects to be queried are
how to represent the cloaking region in terms of shape sughiformly distributed in the search space. Denote /byhe
that the result size of the region-based query is minimitied.object density. According to [4], [33], the average dis&nc
is worth noting that the representation of a cloaking regidretween a query point and itsth NN is given by
is independent of the issue of maximizing entropy in loaatio
cloaking. For any cloaking region of a given area, irresipect dnn = ﬁ @)
of its shape, entropy is maximized when the derivable proba- ' T
bility for the user to be at any location in the region is unifio
across that region.

Consider a region-basebNN query that retrieves thé
nearest neighbors of all the points in the region. The fathgw
theorem shows that the result of a region-bas8iN query
should include all objects in the region as well as HNNs
of the points on the perimeter of the region.

Theorem 1. An objecto is in the kNN results of regionR
if and only if: i) o € R, or ii) o is in the kNN results of SOme  2yqte that this is neither a necessary nor a sufficient candftr an object
point on the perimeter oR. to be part of thekNN results.

Following Theorem 1, the solution space for a region-based
kNN query can be approximated by the area extended from
the query region by a distance @f x v (see the shaded areas
in Figure 4)? Thus, we estimate the size of ti&lN results
|Rinwn| by the number of objects lying in the approximated
solution space. Letd and P respectively be the area and the
perimeter length of the query region. For a general convex



O Square (Analysis)
M Square (Simulation)
15 4 BCircle (Analysis)

E Circle (Simulation)

region (Figure 4a), we obtain

1
|Rinn| = (A+P-dinn + Z §9idiNN) p
:

k
- A-p+P-1/7p+k. 3)

Size of Result Superset
=

Similarly, for a region-based range query, we can estimate 0
the size of its query results as k=1 k=5
a) Uniform Dataset
Rrangel = (A+ P dy +7d?) - p, @) @ o
25 4 . .
i . - O Square (Simulation)
whered,. is the radius of the query range. 8 50| WCircle (Simulation)
Theorem 2: Comparing different region shapes of the same @ 15|
areaA, a circle gives the smallest value for bd®y ~| and 2 10l
[Rrange| in Egs. (3) and (4). <
Proof: Given the same value of aref from Eq. (3) (or (4)), 8 59
the relative value ofRinn| (OF [Rrange|) i determined by 0
the perimeter lengthP. It is well known that a circle (see k=1 k=5
Figure 4b) has the shortest perimeter under a fixed aféa. (b) California Dataset

Theorem 2 implies that given a cloaking area, a circul&f9- 5 Size of theiNN Resuits

region is expected to give the smallest result set for bolfych that the cloaking quality (in terms of entropy as defined
range andszN qgueries under a uniform d_|str|but|on of spaual'_zq_ (1)) is maximized, that is, given that the server obseave
objects. Figure 5a compares the result sizes obtained by us|oaking region together with any series of historical kiog

both the circular and square cloaking regions Of.a'@as for  regions, the derivable probability for the user to be lodaie
kNN queries on a dataset containing 300,000 objects randorgtyy point in the cloaking region should be equal.

distributed in a unit space. The simulation results in Fégba

are the average of 1,000 random queries on the databet;
analytical results are computed using Eq. (3). It can be se’%n
that the analytical results well match the simulation ressul We consider a general user mobility pattern that is known
and the average result size given by a circular cloakingregito the mobile client. We assume, in the worst case, that the
is less than that given by a square region of the same ar@@versary also knows the user mobility pattern and thustteas t
We also compare circular and square cloaking regions forPgtential to conduct trace analysis attacks. The user ityobil
real California dataset where the objects are not uniformBattern may be built by the adversary based on traces (of non-
distributed (see Section VII for more details about thisadat). Privacy-conscious users of the same type) [37] or mobility
As shown in Figure 5b, a circular cloaking region again leagsenarios (e.g., the random walk model is good to model the
to a smaller result size than a square cloaking region. Tihusmobility pattern of pedestrians in small-scale urban grgzy.

the rest of this paper we will use circles to represent clugki Denote byO the center of the old cloaking region produced

regions. for the last query (with a radius of = \/A,,:, /7). Let u(x)
be the probability density function of the new user location

being distance: away fromO at the time of the new query,

) . . assuming that the user location is uniformly distributedhie
We now study how to generate circular cloaking regiongy cloaking region. It follows that

based on privacy requirements. Under isolated cloaking, fo L

each query with a cloaking area requiremeht.,,, a circle / w(z)de = 1 )
with radiusy/A,,:, /7 covering the user locatiohs randomly 0 ’

generated to serve as the cloaking region. But this sche)fere D is the farthest possible distance that the user can

is vulnerable to trace analysis attacks. As discussed in thge| since the last query) = min{y | u(z) = 0,Vz > y}.
Introduction, by correlating the query trace and the mupili T

pattern, the LBS server (adversary) is likely to derive the
probabilities of user locations in the cloaking region. sThi
leads to a significant degradation of the quality of location
cloaking. In this section, we develop an optimal mobility-
aware cloaking technique that works as follows. For the first old cloaking region new cloaking region
query, a random cloaking region is generated. For each Sy 6. 0ld and New Cloaking Regions

sequent query, we control the generation of cloaking region

Problem Formulation

V. MOBILITY-AWARE LOCATION CLOAKING

Assume that the user is currently distancaway fromO

3To allow for fair comparison, both the circular and squareaking regions (Se? Fig. 6). Der.]Ote by’ the center of the _neW cloaking
are formed with the query point at the centroid. region and: the distance betweefi’ andO. Definep(z|y) as



the probability density function of giveny. In order for the
new cloaking region to cover the us&p), must be within a
distance ofr from the user’s current location. Thus, we have % ‘
min{D—r,y+r} )
/ plzly)dz = 1. ©®)
max{0,y—r}

Essentially, the location cloaking is to determine tie|y) () (b) (c)
function with the objective of maximizing entropy, i.e.,eth Fig9- 8. =z <r
user is equally likely to be at any point in the new cloaking;|,) and¢(y|z) can be established by the Bayes’ rule, that
region. To mathematically characterize this objective,dee g
fine ¢(y|z) as the probability density function of the new user (zly) - uly)
location being distancg away from the old cente© given qlylz) = mm{R_fﬁTy} 4
that the centeD)’ of the new region is distance away from fmax{07r_}}

0. Since the user is equally likely to be at any point in thg\/e will discuss how to solve(z|y) from Egs. (6), (7), (8),
cloaking regiong(y|z) is proportional to the length of the arc,ng (9) in the next subsection

(centered alD and with radiusy) overlapping with the new We remark that in our approach, only the last cloaking

cloaking region (as indicated by the bold arc in Figure 7heiqn is needed to generate a new maximum-entropy cloaking
hereafter referred to as thwerlapping arc length). Below we  oinn The following theorem shows the correctness of this
analyze the value af(y|z) under maximum-entropy cloaking: approach.

« Assumez > r. In Figure 7a (i.e.0 <y < z—r) and  Theorem 3: Given that the server observes the new cloaking
Figure 7c (i.e.z+r < y), the overlapping arc length is 0.region and all old cloaking regions, the user is equallyljike

In Figure 7b (i.e.z—r <y 2§+22+7;), the overlapping arc to be at any point in the new cloaking region.
i —9. y+r? .
length is2ay = 2 - arccos “=5 = - y. Therefore, after p .t penote by (zn,y.) the users location andy, the

nqrhmaliﬁing tothe in(tjegration_ overz]r. all pos_sityevalues cloaking region at the time of the-th query. Defineo(z,,, y.,)
within the conditioned range in whicj(y|2) is not zero, as the probability density function of the user being at tioce

: 9)
p(z|z) - u(z)de

we obtain s . (zn,yn) in regionG,,. We prove the claim by induction: given
2-arccos1’f;T’“:y that the server observes, throughG,,, for any two points
q(y|z) _ JZE) 2-arccos y2+2?y2;r2 ydy (7) (wnv yn)a (‘T/nv y’:],) in Gy, p(xnv yn) = p(wlm y;L)
if z—r<y<z+r, First, it is obvious thatp(z1,y1) = p(a),y}) for n = 1
0 otherwise. since the first cloaking region is randomly generated.
Next, we assume that the claim holds for somén > 1).
Then,p(z,,y,) is a constantl;. We are going to prove that
the claim also holds forn + 1. Given G throughG,, 1, for
any two points(z,, 41, Yn+1)s (5,41, ¥ 41) IN Gny1, We have
‘ ‘ p(xn-ﬁ-la yn+l)
@ m [ Pnrvme). @) dady,
Gn
| , — [ Pt vs)l @) ) Ay,
(®) (b) (©) a,
Fig. 7. z>r 1
. Assumez < = In Figure 8a (|eD < y <r— z)' the = //an((anrlaynJrl)meyn)) . mdmndyn (10)

overlapping arc length i8ry. In Figure 8b (i.e.ys — 2z <

Satisfying Egs. (7) and (8), our cloaking approach ensures
y < z+ 7‘)2, the overlapping arc length i8ay = 2 - fying Egs. (7) ® gapp

2+z —r2 H H 1
arccos yT ~y. In _Flgure 8c (ile.z+r <vy), t_he . // P(@ns1, Yns1)| (@0, yn)) - —5 dwndyy,
overlapping arc length is 0. Therefore, after normalizatio G, r
we obtain / / 1
= nsYn)) " d nd n-
S PGt sl ) - g deady

- PR p—
Tr(rfz)QJerj; 2-arccos £ +2zy2 — .ydy

f0<y<r 2, Therefore, Eqg. (10) can be rewritten as

2,2 2 z 7
q(ylz) = 2arccos My 8) P(@nt1,Yn+1) 1
Tr(’r‘—z)2+f:j:2-a.rccos er22777".ydy = // p((m%+17y;+1)‘(;pmyn)) . m dwndyn
Ifr_z§y§2+r1 G
0 otherwise.
- // p(('r{ﬂ+17y:z+1)7 (xruyn)) dx,dyy,
Having known ¢(y|z) as in Egs. (7) and (8) under o G :
maximum-entropy cloaking, our problem becomes to deter- ~ P\¥n+12Ynt1)-

mine p(z|y) given ¢(y|z). Note that the relation between Hence, the theorem follows. O



B. Problem Discretization are listed as a matrix in Figure 10. The sum of each row in the
Now what we are left is to solve(z|y) from Egs. (6), (7), Matrix equals 1, i-e-Z}“;‘ijij{fffﬁiﬁ’” P(jli) = 1. After

(8), and (9). Unfortunately, a closed-form solution is difft discretization, our problem becomes to determine Fig|i)

to obtain. In this section, we present a discretizatiorelasfunction givenQ(i|j) as in Egs. (11) and (12).

numerical method. We divide the plane into a set of rings of Following the Bayes’ rule, for any and j,

sufficiently small widthA. The rings are centered &. As . Q(ilj) ‘

shown in Figure 9, ring is enclosed by a circle centered at P(jli) = 00 Y (P(jlm) - U(m)).

O with a radius ofA, i.e., ring1 contains all points that are m

within distanceA from O. For eachi > 1, ring i is enclosed  Letv; =" (P(j|lm)-U(m)). Thus, we have

by two circles centered ab with radii of (i — 1)A andiA [

respectively, i.e., ring includes all points that ar& — 1)A P(jli) = QU(zLj))

to A away fromO.
The matrix we want to compute can be rewritten as
shown in Figure 11. Our problem further becomes to find

. Uj. (13)

v, V2, -+ ,vr_k41 Such that the sum of each row in the
matrix equals 1:
in{L—K+1,i+K—1 s
@ E?;lxrjax{l{,i—lg-i-l} }P(f|l)
o min{L—K+1,i+K—-1} Q(i|j) o .
=2 mmax{Li—K+1} UETJ) vi=11<i<L, (14)
v; >0, 1<j<L-K+1.

C. Practical Cloaking Algorithms

The linear equation set (14) does not always have a feasible
Without loss of generality, we assume that the radius ofsmlution since the number of equations) (s more than the
regionr = KA, and the farthest possible distance that theumber of variables/{— K +1). Thus, we have to relax some
user can travel since the last queby= LA, where K and of the constraints. To this end, we allow the sum of each row
L are integers. Based on the assumption of mobility patteiin,the matrix to be less than 1, i.e., user locations may not be
the probabilityU (i) of the new user location being in ring cloaked for some queries. Thus, the set of linear equat®ns i

Fig. 9. A Set of Rings

is given byU (i) = f(ﬁlm u(z)dz, and it follows that relaxed to
min{L—K+1,i+K—1} Q(ilj) .
U(l) + U(2) + A + U(L) == 1 Zj:max{l,i—K+1} U(,L'J) Uj S 17 1 S 2 S L? (15)
v; >0, 1<j<L-K+1.

We define)(i|j) as the probability of the new user location
being in ringi given that the center of the new region is in To protect location privacy, the queries whose locatioms ar
ring j. For ringi, we use the average radius of two enclosingot cloaked will beblocked and are not sent to the LBS server.
circles (i.e.,, (A+(i—1)A)/2 = (i —1/2)A) to approximate To answer blocked queries, we propose to cache the last resul
its distance ta0. Thus, following (7) and (8)@Q(i|j) should superset for potential reuse. Note that the amount of cache

satisfy the following. Ifj > K, memory needed is minimal since only the result superset for
G-1)24G-bP-? the last query is cached. In fact, if a new query is issued from

arccos TG (73 ring « < K (i.e., from the old cloaking region; calleiciner

JHE-1 (m—3)2+G—-3)2—K>2 1 - o
Q(ilj) = S T arecos TB S BT (m-d)  (17) guery), we should block it in order to save communication cost
if j— K +1 "’<JZ z i+ K—1 as the precise results can be computed from the cached last
0 otherwise. result superset. Thus, all the inner queries are blockembpx

. those sent to the server to achieve optimal cloaking. On the

Ifj <K, other hand, if a query issued from ring> K (called outer
Q(ilj) = query) is blocked, the client might obtain an inaccurate query

result based on the cached last result superset and, hence,
the accuracy of query results might be sacrificed. Therefore
) ] ] we formulate two linear programs with different objective
if1<i<K-—7j, . .
. : functions:
(-34G5> K> .
arccos 2-DG-D) (i=3) (12)

T3 12 2

K—j 1 j+K—1 . (m=3)°+(G-35)°—K 1

ot mm—g)+ 300 T arccos ——2 =2 ——(m—3)
- 2m-5)G-1)

L L min{L—K+1,i+K—1} Q(i|j
if K—j+1<i<j+K—1, mMinimize (1—30 ki1 D mac(ii-K+1} 5 ;)(L6)
0 otherwise. MinComm _Cloak:
What we want to find out i$>(j|i) — the probability of the | inimize (1 — S min{L—K+1,i+K -1} Q(ilj), -
center of the new region being in ringgiven that the new user ( Zi[{“ ijgllazﬁl‘ffljli} v i)
location is in ringi. Following (6), the definable probabilities —(1 = 3 i k1) QU(ELJ))W) (7)

w(i—%)
(m—3)2+(—5)% K2

K—j 1 j+K—1 1
St m(m—5)+327 %, 4, arccos 2m-DG-D) ((m—3)

MaxAccu_Cloak:
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Fig. 10. Probability Matrix (showing the upper-left correand lower-right corner only)
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Fig. 11. Rewritten Probability Matrix (showing the uppefticorner and lower-right corner only)

The first objective function MaxAccCloak attempts to Algorithm 1 Overview of Mobility-Aware Location Cloaking
minimize the outer query blocking probability far= K +  Input: mobility patternU(-), old cloaking region centered at
1,K +2,---, L, thereby maximizing the query accuracy. In O, new user location in ring
contrast, the second MinCom@loak trades query accuracy Output: the center of the new cloaking region
for communication cost. It also aims to maximize the innerProcedure:
query blocking probability for = 1,2,---, K to increase the 1. computeQ(i|j)’'s using Egs. (11) and (12)
result reuse rate and save remote queries. The performangeconstruct a linear program formed by Egs. (15) and (16)
of these two cloaking algorithms will be evaluated by experi  (for MaxAccu.Cloak), or Egs. (15) and (17) (for Min-

ments in Section VII-C. Comm.Cloak), depending on the performance objective
On solving the linear program and obtaining 3. solve the linear program to get’s
v1,v2, " ,UL-K41, WE can compute P(jli)'s using 4. computeP(j|i)'s using Eq. (13)

Eq. (13). Then, given a new query with user location ins; determine whether the query is blocked based on the
ring 4, the query has a probability dft —>_, P(j|i)) to be probability of (1 — 3. P(jli))
blocked. If the query is not blocked, the distance betweem: if the query is not blockethen

the new cloaking region and the old cloaking region can be: generate the distance of the new cloaking region from
randomly generated based on the probabilitiesPdfi|i)’s. O by following P(j|i)’s

Given the distance, the center of the new cloaking region cag.  randomly generate the center of the new region on the
be randomly generated on the corresponding arc. A summary  corresponding arc

of the optimal mobile-aware cloaking technique is desdribe
in Algorithm 1.

VI. REGION-BASED QUERY PROCESSING kCRNN query include all the objects in the circular region and

This section discusses how to process circular-regiorebaghe kNNs of the points on the perimeter of the circle (denoted
gueries on the server side. The evaluation of a region—ba@ﬂﬂ)-
range query is straightforward since it is still a range guer In the following, we propose twé&CRNN processing al-
(with an extended range), which simply retrieves all theeoty gorithms: abulk algorithm that generates the query results
within the spatial range. Thus, we focus on the evaluation all at once at the end of query evaluation angregressive
circular-region-base@NN queries (hereafter calledCRNN algorithm that produces the results incrementally duringrg
queries) in this section. Following Theorem 1, the resufta o evaluation.




A. Bulk Query Processing of KCRNN

Denote the set of spatial objects By, p2,--- ,par}. The _ T —e-— ‘Afterscan‘ning P1 |
basic idea is to scan the objects one by one, and during eacH® ~ ~ T - ——

scan we maintain the set of arcs Qrfor each object to which P

this object is the 1st, 2nd, -, and k-th NN. The example

After scanning p2

shown in Figure 12a is used to illustrate the idea for a 2CRNN P ":.N Z'EN
query. Suppose that there are three objegtsp,, and ps. P2 B a
Initially p; is the 1st NN to the circumferende. Then,p; is After scanning p3
scanned, and the perpendicular bisectopofind p, splits 2 ; ;Nyz 02?[1
into arcsa. and 8. As a resultp, takes overp, to be the 1st p; 31;33 B
NN to 5 — p; is the 1st NN toa and the 2nd NN tg3; po P3 B1,03 @b

is the 1st NN tos and the 2nd NN tav. Next, p3 is scanned
and we check it againg; andp,. The perpendicular bisectors (a) Query Processing
further splita into oy, as, andag, and split3 into 5y, Ss,
and 3. Now p3 takes overp, to be the 1st NN forxs and
the 2nd NN forgsy; p3 takes ovemp, to be the 2nd NN foky,
and the 1st NN fors;. In general, when objegt; is scanned,
initially we assume thap; is farther away from any arc than
any candidaté&éCRNN result. Afterwards, we chegk against
eachp; in the candidate:CRNN result set. Given a;, the
perpendicular bisector gf; andp; splits the existing arcs at
two points at most. For each of the arcs located orpth&ide
of the perpendicular bisectgs; moves backward in theNN N
list (e.g., the 2nd NN becomes the 3rd NN), whileadvances (b) Stop Condition
in the ENN list (e.g., the 3rd NN becomes the 2nd NN). AfteFig. 12. FindingkCRNN Results

each scan, those objects which have at leastigheNN arc
(I < k) constitute the candidate set 8CRNN results; and
if the order of some objegt to an arc exceeds, this arc is
removed forp. The algorithm works by scanning the entir :
set of objects to obtain the fin&ICRNN results of(2. Recall evaluation. , . )

that the results of @CRNN query also include all the objects We now analyze the _compIeX|ty qf Algorl_thm 2. Given a
in the circular region. Thus, when scanning the objects, tﬁgRNN query with}/ objects, the while loop iterates through

algorithm also checks whether they are in the circular megi t mostM scans. Since each scan increases the number of
and if so. includes them in the finACRNN results. arcs by2M in the worst case, the total number of arcs for all

: : 5
Furthermore, in order to speed up the convergence of tﬁ%ndldatd{:CRNN results is bounded t9(1/”). Each arc can

kCRNN candidate set, we sort the objects and apply a heuristiecar I the arc set§ Of. at mc;stobjects. '_rhus, the WO_rSt'
- . . case storage complexity @(kM=). For the time complexity,
(Heuristic 1) to scan the objects closestidirst because they eachF (p; Ab) entrv may be undated at makt times. once in
are most likely to appear in the finAlCRNN results. pj, @ y may P : iy 3
o _ ~each scan. Hence, the worst-case time complexi€y(is)/°).
~ Heuristic 1. The objects are sorted and scanned in thevertheless, in practice the cost would be far less bedhese
increasing order of their minimum distances{?0 And those candidate set ofCRNN results is normally not large and the

objects whose minimum distances(oare2r (r is the radius scanning may terminate early with the stop condition predos
of Q) farther than the:-th NN of some arc are removed fromin Heuristic 1.

scanning. o -
The second statement of Heuristic 1 sets a stop condition

for the scan, because those objects thatarfarther from¢) B. Progressive Query Processing of XCRNN

than the currenk-th NN of some arc must be farther away The bulk query processing algorithm generatesitG&NN

from any arc ofQ2 than the curren&NNs of this arc. This results at the end of query evaluation. Therefore, the serve

can be explained in Figure 12b for a 3CRNN query. For theannot start transmitting the results to the client untl émd

moment,p;, p2, andps are the 3NNs of an arc &2 andp; is  of query evaluation. We now propose an alternapinegressive

the third NN. The minimum distance fromy to 2, denoted query processing algorithm to parallelize the query evalna

by max_kN N _dist, is used to prune faraway objects in futureind result transmission.

search. More specifically, if any object2s+max kN N _dist The idea is to determine whether an object will be a

away from any point orf (i.e., outside the outermost circlefinal KCRNN result earlier. The query progressing procedure

in Figure 12b), the object does not need to be scanned simgmains the same as in Algorithm 2 except that i) any object in

it must be farther away from any arc 6f thanp;, ps, and in_circle results is immediately returned to the client when

p3. it is scanned, and ii) after the scan of each object, we add a
The complete query processing algorithm is described @hecking procedure (see Algorithm 3). We randomly pick an

maxkaNidist\ .

Algorithm 2, where the data structusé(p;, aAb) maintains the
order of objectp; to arcab. We call it abulk algorithm as all
éhe candidat&:CRNN results are finalized at the end of query
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Algorithm 2 Bulk Query Processing cfCRNN
Input: query circleQ with radiusr, spatial object sef
Output: the kCRNN results of(
Procedure:
1: enqueue the objects & into a priority queue in increasing
order of their (minimum) distances t@ (denoted by
minDist(p;, Q))

2: dequeue the first objegt R
3 F(p1,Q) := 11 F(p;, ab) maintains the order gf; to ab
4: cand_kCRN N _results := {p1 }
5. max_kN N _dist := co
6: dequeue the next objept
7: while minDist(p;, Q) < 2r + max_kN N _dist do
8. if p; is inside() then
9: in_circle_results = in_circle_-results U p;
10: initialize F(p;, ab) := |cand kC RN N results| + 1
for any arcab // initially assumingp; is farther
/I than any candidatéCRNN result
11:  for each objecp; in cand_kCRN N _result do
12: split existing arcs bylLp;p; — the perpendicular
bisector ofp; andp;
13: for any arcab located onp; side of Lp;p; do
14: if entry }‘(pj,aAb) existsthen }'(pj,cﬁ))++
R Il movep; backward in thé:NN list
15: F(pi,ab)—— Il movep; forward in thekNN list
16: let S be the set of scanned objects including
cand_kCRNN _results =
{p | p € 5,3 an arcab, F(p, ab) < k}
17:  removeF() entries withF(p,ab) > k forp e S
18:  max_kNN _dist := min{max_kN N _dist, R
min{minDist(p,Q?) | p is thek-th NN of arcab}}
19: gglaueue the next objept

20: returnin_circle_resultsUcand_kN N _results as the final
results

Algorithm 3 Checking Procedure in Progressive Query Pro-
cessing ofkCRNN

Input: F(p;, cﬁ)) entries, the queue of unscanned objects

Output: the kNN results of a check point

Procedure: // this procedure is added to between lines
/I 17 and 18 of Algorithm 2

- randomly select an unchecked split poinas the check
point R
: retrieve the tentativélNN results ofs: {p | F(p,ab) <
k,s € ab}
. current_kN N _distance := distance of the current-th
NN
. dequeue the next objept
: while minDist(p;, Q) < current_kNN _distance do
if Dist(p;,s) < current_k NN _distance then
update the tentativéNN results
updatecurrent_kN N _distance
dequeue the next objept
: return the finalkNN results if not yet

Parameter

kNN Query )

Query Interval {)
Privacy Requirementr]
Spatial Object Set Size
Object Record Size
Query Size

Data Transfer Rate

| Setting

5

4 min

0.001

2,249,727 objects
1kb

20 bytes

114 kbps

TABLE |
DEFAULT PARAMETER SETTINGS

agent were implemented on an O2 Xda Atom Exec PDA with
Intel PXA 27x 520 MHz Processor and 64 MB RAM. The
PDA supports GSM/GPRS/EGDE and WiFi communications.
The LBS server was implemented on a Redhat 7.3 Linux
server with Intel Xeon 2.80 GHz processor and 2 GB RAM.
We assume that the client and the server communicate through

unchecked split point of2 as the check point, and go througha wireless network at a data transfer rate of kigs.

the list of unscanned objects to compute its #NIN results. If
any of thekNN results has not been returned to the client, it

~ The spatial object set used in the experiments contains
13,249,727 objects representing the centroids of the street

output for immediate transmission. For our running exampg%gmems in California [29]. We normalize the data space to a

shown in Figure 12a, after scanning, we may selects;
as the check point. We then computgs 2NN results ag,

unit space and index the spatial objects by an R-tree (with a
page fanout of 200 and a page occupancy of 70%) [16]. The

and p; and return them immediately. Compared to the buljze of an object record is set atkh. To process &CRNN
query processing, since the checking procedure here incy(gery of a circleq, we first use our previously developed disk-

extra overhead, the overall query processing time woulahbe
creased. Nevertheless, the worst-case time complexitginsm

based access method [20] to retrieve #MN results for the
minimum bounding rectangle d@@. By definition, this set of

O(kM?) since the checking procedure adds a complexity @iN results is a superset 6Fs XCRNN results. Th&<CRNN

O(kM?) only. On the other hand, the progressive algorithiyocessing algorithms developed in Section VI are theriegpl
can start returning theCRNN results earlier and, hence, likelyon, this superset to get tHeCRNN results of.

to result in a shorter user-perceived response time, asowill

demonstrated in Section VII-D.

VIl. PERFORMANCEEVALUATION
A. Experiment Setup

We simulate a well-known random walk model [22], in
which the user moves in steps. In each step, the user selects
a speed and travels along an arbitrary direction for a durati
of 2 min. We test two speed settings: 1) constant speed:
the moving speed is fixed at 0.000&ih; 2) random speed:

We have developed a testbed [9] to evaluate the performarice each step, a speed is randomly selected from a range of
of the proposed location cloaking and query processing-alg0.0001 min, 0.0005 /nin]. By default, the random speed

rithms. The client-side query interface and location cingk

setting is adopted. The user makes privacy-conscidubl
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queries from time to time. The query intervalis set at 4 C. Comparison of Mobility-Aware Cloaking Algorithms

min by default. The user specifies the privacy requirementpis section compares the two cloaking algorithms devel-
by a2rad|_USr (iLe., the minimum acceptable cloaking are@peq in Section V based on the optimal cloaking technique,
is 7r), with a default setting of 0.001. The size ofiIN 5 mely MaxAccuCloak (abbreviated aslaxAccu) and Min-
query message is set at Z9tcs. For the numerical method comm cloak (abbreviated adinComm). Recall that Max-

of optimal Ioc;atlon. cloaking,A is set at 0.0QOl, and the ooy aims at a higher query accuracy by minimizing the
Simplex algorithm is employed to solve the linear progranter query blocking probability while MinComm attempts
The default parameter settings are summarized in Tabled. Tf} ;chieve a balance between communication cost and query

experimental results repqrted below are averaged OVe'Ol’%curacy by maximizing the inner query blocking probapilit
randomly generated queries. at the same time.

As shown in Figure 15a, MaxAccu has an outer query
B. Effectiveness of Mobility-Aware Cloaking blocking probability gf zero. Hence, its query resul_ts abe%
hi . h imal i accurate as shown in Figure 15b. In contrast, MinComm has
In this section, we compare the proposed optimal mobilityy, o ter query blocking probability of about 15%. For those
aware cloaking technlqu_e (Algorithm 1)_ag_a|nst the |s_an|at locked outer queries, approximate results are obtainsdda
cloalgmgr;] sr]chemg (?eS(:erlpetlj atdthle bsgmnlnﬁ Qf Se_cyo.n n cached result supersets. Figure 15b shows that the averag
For both the optimal and isolated cloaking techniquesialiyt error (measured by the ratio of the distance of an approximat

a cloaking region is randomly generated based on the USRIN result to the actuatNN distance) is pretty small. In the

location. In other words, the user is equally likely to bemy a worst case, the approximak&IN distance is no more than 2.3
location in the cloaking region. We measure the quality ef tr}imes of the actual distance

cloaking region for a subsequent query in terms of entropyFigure 15a also shows that MinComm has a much higher

Zaseg on 15|20 sampl1e3 Iocazoggbandhl,oog random_querlﬁﬁer guery blocking probability than MaxAccu. Recall that
S Shown in Figures Lsa an » when the query 'mer\ﬁ‘?\her queries are sent to the server for evaluation merely

is small (i.e., 1min), the entropy of isolated cloaking isfor the purpose of optimal cloaking. They do not affect
0 ! : :
nearly 20% lower than that of optimal cloaking for all quenequery accuracy but communication cost. With more queries

tested. With increasing query interval, the average etuip including both inner and outer queries) being blocked, the

isolated cloaking improves (see Figure 13c) but is still f ommunication cost incurred by MinComm is about half that
lower than that of optimal cloaking. When the query interv J MaxAccu (see Figure 15c)

is 8 min, Figure 13a and 13b show that the entropy of isolate
cloaking is 40% lower than that of optimal cloaking for over
15% of the queries tested and 20% lower for over 40% &F. Comparison of XCRNN Query Processing Algorithms

the queries tested. Note that the results shown here are fof, this section, we evaluate the performance oftibkk and
one successive query only. With more successive queries, Hﬂogrve kKCRNN query processing algorithms developed
quality of isolated cloaking would further degrade. in Section VI. Figure 16 shows the user-perceived response
To highlight the benefit of achieving higher entropy, weime for both algorithms. Whe# or r is small, the bulk and
conduct two pOSSibIe attacks. Recall that through traCB/ﬂiBa progressive a|gorithms perform s|m||ar|y However, whien
attacks, the LBS server can derive the probabilities of tl’(\_ﬁ r is large, the progressive algorithm clearly outperforms
user being at different locations in a cloaking region. Thge bulk algorithm. To explain, we show in Figures 17a and
first attack attempts to limit the possible user location to B’b the timeline performance of two samp|e queries with
sub-region with 95% confidence. The second attack cal@ilaje0.25<10~3 andr=4x 103, respectively. For the query with
the highest aggregate probability for any sub-region witle s -=0.25x<10~3 (Figure 17a), both the bulk and progressive
equal to 5% of the cloaking region. Figures 14a and 14figorithms took a short time to process. Thus, parallaiizin
show the results when the number of cloaking regions usediie query evaluation and result transmission does not help a
trace analysis attacks is increased from 1 to 10. We can $§€in user-perceived response time. On the other hand, when
from the results that our optimal cloaking is robust againgtgx10-3 (Figure 17b), the result superset size is large and
the attacks: for example, with the first attack (Figure 148, the query requires a long time (over 100@) to evaluate; then
sub-region size is as large as 95% of the cloaking regioresingy returning the:CRNN results incrementally, the progressive

the derivable probability for the user to be at any locati®n pigorithm completes the result transmission earlier.
uniform across the region. In contrast, with the same level

of confidence, the sub-region size under isolated cloakin

could be much smaller due to a skewed probability distriuti E- End-to-End System Performance

(see Figure 14c for a sample distribution we observed in theThis section evaluates the end-to-end system performance.
experiment). Similarly, with the second attack (Figure )Y14bin this set of experiments, we used the progres&i@&RNN
under isolated cloaking, the server would be able to derigeiery processing. In addition to the MaxAccu and MinComm
the probability for the user to be in a sub-region of 5% sizeloaking algorithms, the existing isolated cloaking meth®

of the cloaking region with a confidence of 16%-99%. Thalso included for comparison. For all the cloaking algarith
confidence for the same sub-region is only 5% under optirtéle inner queries (i.e., the queries inside the last clapkén
cloaking. gion) reuse cached result supersets and compute their enswe
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immediately. The inner queries are not sent to the server t®sults based on cached result supersets.

default. However, with MaxAccu and MinComm, some of Figures 18a and 18b show the average end-to-end query
them might need to be sent to the server to achieve optini@ency, which is defined as the period from the time when
cloaking, depending on the inner query blocking probabilitthe user issues a location-based query to the time when the
Moreover, as discussed before, the blocked outer queries éact query results are obtained. It can be seen that MinComm
MaxAccu and MinComm compute their approximat®N outperforms MaxAccu in all cases tested. This is explaireed a
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Fig. 19. Network Traffic Performance

follows. As shown in Figure 18c, the query evaluation antthe value ofk (see Figure 18a).

result transmission time dominates the overall query Bten  Figures 19a and 19b show the average amount of network
Since MinComm has a higher outer query blocking rate amghffic incurred for each query, which is a good indicator of
hence a higher result reuse rate (Figure 18d), it results inedergy consumption on the client. The less is the network
lower average query latency. For the same reason, MinCongfic, the lower is the energy consumption. As expected,
outperforms Isolated when the region size is small (see FiginComm incurs less network traffic than MaxAccu due to
ure 18b). When the region size is large, Isolated performashigher query blocking rate. Both MaxAccu and MinComm
better than both MaxAccu and MinComm due to a highejre competitive compared to Isolated; in particular Min@om
result reuse rate. Their relative performance is insefestd  outperforms Isolated for most cases tested. Summariziag th



results of Figures 13, 18, and 19, it can be concluded that the
price to pay for resisting trace analysis attacks is not .high
Our proposed MaxAccu and MinComm cloaking algorithmsm

improve the cloaking quality over Isolated without comprem
ing much on query latency or communication cost (sometimes

performing even better).

This paper has presented a complete study on processin
privacy-conscious location-based queries in mobile emvir

VIII. CONCLUSION

(8]

El

oy

ments. The technical contributions made in this paper gue|
summarized as follows:

» We have studied the representation of cloaking regions)
and showed that a circular region generally leads to a

small result superset.

We have developed an optimal mobility-aware Iocatio[n

13]

cloaking technique to resist trace analysis attacks. Tviig!

cloaking algorithms, namelyvlaxAccu_Cloak and Min-

formance objectives.
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G. Myles, A. Friday, and N. Davies. Preserving privagyenvironments
with location-based applicationsEEE Pervasive Computing, 2(1):56—
64, 2003.

G. Ghinita, P. Kalnis, and S. Skiadopoulos. Prive: Ayroous location-
based queries in distributed mobile systemBroc. WMWW 07, pages
371-380, 2007.

M. Gruteser and D. Grunwald. Anonymous usage of locatiased
services through spatial and temporal cloakiAGM MobiSys, 2003.
B. Gedik and L. Liu. A customizable k-anonymity model foof®cting
location privacy.ICDCS, 2005.
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. . 15] B. Gedik and L. Liu. Protecting location privacy with ngenalized k-
Comm_Cloak, have been designed to favor different per-

We have developed two efficient polynomial algorithmé,le]
namely bulk and progressive, for processing circular- [17]

region-based:NN queries.

. . . 18

We have also conducted simulation experiments to evaluclslte]
the proposed algorithms. Experimental results show that th9]
optimal mobility-aware cloaking algorithms is robust atsi

trace analysis attacks without compromising much on qu

&Ry

latency or communication cost. MaxAcelioak gets a 100% [21]

guery accuracy while MinComr@loak achieves a good bal

ance between communication cost and query accuracy.
also shown that the progressive query processing algoritlias]

generally achieves a shorter user-perceived responsehane

the bulk algorithm.
As for future work, we are going to extend the mobility-
aware location cloaking technique to other privacy metri¢e!

(e.g., thek-anonymity model and thé-diversity model) and

1158

(24]

road networks. We are also interested in investigating hitpbi [26]
aware peer-to-peer cloaking techniques.
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