
Differentially Private High-Dimensional Data Publication
via Sampling-Based Inference

Rui Chen
∗

Samsung Research America, USA
rui.chen1@samsung.com

Qian Xiao
National University of Singapore, Singapore

xiaoqian@nus.edu.sg

Yu Zhang
Hong Kong Baptist University, Hong Kong

yuzhang@comp.hkbu.edu.hk

Jianliang Xu
Hong Kong Baptist University, Hong Kong

xujl@comp.hkbu.edu.hk

ABSTRACT
Releasing high-dimensional data enables a wide spectrum of
data mining tasks. Yet, individual privacy has been a ma-
jor obstacle to data sharing. In this paper, we consider the
problem of releasing high-dimensional data with differential
privacy guarantees. We propose a novel solution to preserve
the joint distribution of a high-dimensional dataset. We
first develop a robust sampling-based framework to system-
atically explore the dependencies among all attributes and
subsequently build a dependency graph. This framework is
coupled with a generic threshold mechanism to significantly
improve accuracy. We then identify a set of marginal ta-
bles from the dependency graph to approximate the joint
distribution based on the solid inference foundation of the
junction tree algorithm while minimizing the resultant error.
We prove that selecting the optimal marginals with the goal
of minimizing error is NP-hard and, thus, design an approx-
imation algorithm using an integer programming relaxation
and the constrained concave-convex procedure. Extensive
experiments on real datasets demonstrate that our solution
substantially outperforms the state-of-the-art competitors.

Categories and Subject Descriptors
K.4.1 [COMPUTERS AND SOCIETY]: Privacy

Keywords
Differential privacy, high-dimensional data, joint distribu-
tion, dependency graph, junction tree algorithm

1. INTRODUCTION
With the rapid development of computing technologies,

high-dimensional data has become prevalent in many appli-

∗Part of this work was done while the author was with Hong
Kong Baptist University

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3664-2/15/08 ...$15.00.
DOI: http://dx.doi.org/10.1145/2783258.2783379.

cation domains. Releasing such data has been a prerequisite
for many data mining tasks. However, individual privacy has
been a major public concern in data sharing. In this paper,
we consider the problem of releasing high-dimensional data
under differential privacy [6], a privacy notion widely advo-
cated due to its strong privacy guarantee. There have been
a series of techniques proposed for differentially private low-
dimensional data publication [1,2,6,9,12,17,18,24,25,27,30].
Unfortunately, when applied to high-dimensional data, al-
l these techniques suffer from the curse of dimensionality,
that is, they cannot achieve either reasonable scalability or
desirable utility [21,29]. Special treatment is needed to over-
come the challenges incurred by high dimensionality.

In addressing the challenges, one of the most promising
ideas is to decompose high-dimensional data into a set of
low-dimensional marginal tables C, along with an inference
mechanism that infers the joint data distribution from C.
This has been the rationale of the very recent study [29] in
which PrivBayes is proposed to learn a set of low-dimensional
conditional probabilities via a Bayesian network and approx-
imate the joint distribution by the chain rule for Bayesian
networks. While making substantial progress, it has two
major limitations due to the constraint of differential priva-
cy. First, one has to minimize probes over the underlying
dataset; otherwise the result of a probe becomes largely i-
naccurate. This implies that one often has to compromise
more sophisticated algorithms that require excessive access
to the data. For this reason, PrivBayes employs a simple
greedy algorithm to learn a Bayesian network, whose perfor-
mance is sensitive to the randomly selected initial attribute,
and limits the size of each attribute’s parent set to be iden-
tical. Second, with the increasing number of attributes, the
privacy budget used for determining each attribute’s parent
set decreases quickly, making the learned conditional prob-
abilities unreliable. As a result, PrivBayes is still not able
to adequately capture the characteristics of the underlying
data in order to maximize data utility.

In practice, the independence properties exist in many
high-dimensional datasets, which is the rationale behind prob-
abilistic graphical models [15]. It is beneficial to systemat-
ically explore such (conditional) independences among at-
tributes. However, conducting such an exploration under
differential privacy requires non-trivial efforts. The key tech-
nical challenge is how to reliably learn all attributes’ pairwise
correlations using a limited privacy budget. For a dataset
with d attributes, existing techniques require to divide the

ruichen
Text Box
This is a preprint version. See ACM's website for the final official version.

given privacy budget into
(
d

2

)
portions, each being used for a

pair of attributes. There is no doubt that none of these tech-
niques can learn the correlations with reasonable accuracy.
We address this challenge by proposing a sampling-based
testing framework and a generic threshold mechanism. This
design allows us to learn the pairwise correlations without
splitting the privacy budget in proportion to

(
d

2

)
and further

enjoy the privacy budget amplification due to sampling.
With the learned correlations, how to develop an infer-

ence model to estimate the joint distribution with minimum
error remains a second challenge. We decompose this task
into two steps. First, we build a solid statistical inference
foundation by employing the well-established junction tree
algorithm. Unfortunately, the junction tree algorithm does
not take into consideration the differential privacy constrain-
t. Directly injecting noise into the marginals of the cliques
returned by the junction tree algorithm usually leads to ex-
cessive noise. We then formulate an optimization problem
for finding the optimal marginals with the minimum error
and solve it by the constrained concave-convex procedure.

Contributions. Our key contribution is a novel sampling-
based solution for publishing high-dimensional data under
differential privacy, which features a solid statistical infer-
ence foundation. More specifically, we make the following
contributions:
First, we design a sampling-based testing framework to

systematically explore pairwise dependencies while satisfy-
ing differential privacy. This framework is made possible by
a generic threshold mechanism, which is an extended ver-
sion of the sparse vector technique [10] and the threshold
query technique [16]. This threshold mechanism allows to
use multiple thresholds and may substantially improve the
accuracy of many algorithms.
Second, we propose to apply the junction tree algorithm

to establish an inference mechanism for inferring the join-
t data distribution. How to generate differentially private
marginals to feed the inference mechanism with minimum
error is vital to the final accuracy. We prove that this opti-
mization problem is NP-hard and propose an approximation
algorithm using an integer programming relaxation and the
constrained concave-convex procedure.
Third, we extend the mutual consistency technique in [21]

to the general case where the noisy marginals are of different
sizes and attributes may not be binary, and propose a simple
yet effective thresholding strategy to mitigate the systematic
bias due to rounding negative noisy counts to 0. We also
show how to efficiently generate synthetic datasets from the
noisy marginals using the junction tree representation.
We conduct extensive experiments over five standard real

datasets for two different analysis tasks. We show that our
solution not only significantly outperforms PrivBayes [29],
the state-of-the-art technique for releasing high-dimensional
data, but also achieves comparable, and sometimes bet-
ter, accuracy to that of PriView [21], the state-of-the-art
technique tailored to generating k-way marginals over high-
dimensional data. Moreover, our solution works for both
binary and non-binary data while PriView only works for
binary data1.

1To handle non-binary data, PriView requires adapting ex-
isting covering design algorithms to the case where different
views may have different sizes [21]. To our best knowledge,
there does not exist such an algorithm.

2. RELATED WORK
Most of the existing works on differentially private data

publishing focus on low-dimensional data (e.g., marginal ta-
bles or histograms). Xiao et al. [24] propose to apply the
wavelet transformation to an input histogram and add noise
to wavelet coefficients. Hay et al. [12] exploit the consis-
tency constraints that should hold over the noisy output to
improve accuracy. These two methods are special cases of
a more general matrix mechanism [17], which calculates the
answers to a set of queries from another set of properly se-
lected queries called query strategy. Yaroslavtsev et al. [26]
further explore the idea of using a query strategy by adding
non-uniform noise. Yuan et al. [27] introduce the low-rank
mechanism for answering batch linear counting queries based
on low-rank matrix approximation. Hardt et al. [9] present
an algorithm based on multiplicative weights and the ex-
ponential mechanism. In another line of research, Xu et
al. [25] propose to group a histogram’s adjacent bins with
close counts to trade for smaller Laplace noise. A similar
idea is proposed by Acs et al. [1]. They design a hierarchi-
cal bisection algorithm to identify a good grouping scheme.
Zhang et al. [30] indicate that global clustering achieves bet-
ter utility than local grouping. Li et al. [18] propose to
answer range queries by taking into consideration both the
underlying data and the query set.

In general, the above methods cannot overcome the inher-
ent challenges due to the curse of dimensionality. In spite of
its wide applications, differentially private high-dimensional
data publication has been relatively rarely studied. Barak
et al. [2] show how to construct a synthetic database to pre-
serve all low-dimensional marginals by adding noise to the
Fourier domain. The problem in [2] is equivalent to publish-
ing OLAP cubes, which is studied by Ding et al. [5]. They
first compute a subset of cuboids and then generate the re-
maining cuboids from this subset. The main limitation of
these two approaches is their exponential complexity in the
dimensionality of the domain. Mohammed et al. [20] intro-
duce probabilistic generalization to overcome the curse of
dimensionality. However, with the increasing dimensionali-
ty, the benefit of generalization diminishes rapidly. Cormode
et al. [4] solely consider the scalability aspect of the prob-
lem. They design a statistical process to compute a private
summary without materializing the entire contingency table.

Very recently, Qardaji et al. [21] study how to generate
accurate k-way marginals for a binary dataset. They pro-
pose PriView that uses covering design to select a set of
low-dimensional marginals called views and then generates
k-way marginals based on maximum entropy optimization.
The work closest to ours is PrivBayes [29], which iteratively
learns the parent sets of the attributes in a Bayesian net-
work by applying the exponential mechanism with a sur-
rogate function for mutual information. Compared with
PrivBayes, our solution features a systematic exploration
of attribute correlations and a series of new generic tech-
niques, which together achieve substantially better perfor-
mance. The connection between probabilistic inference and
differential privacy is also studied in [23].

3. PROBLEM FORMULATION

3.1 Problem Statement
In this paper, we consider the following problem: Given

a dataset D with d attributes (either numerical or categori-

cal) A = {A1, A2, · · · , Ad}, we want to generate a synthetic
dataset that accurately preserves the joint distribution of the
tuples in D while satisfying differential privacy.
We denote the value domain of an attribute Ai by Ωi

and its size (i.e., the number of distinct values in Ωi) by
|Ωi|

2. Therefore, the entire output domain is defined by
Ω1×Ω2×· · ·×Ωd, whose size is |Ω1|× |Ω2|× · · ·× |Ωd|. We
focus on the case where |Ω1|×|Ω2|×· · ·×|Ωd| is too large to
be handled by the existing low-dimensional data publishing
techniques. We assume that the size of the dataset D (i.e.,
the number of tuples), denoted by |D|, is known. This is
a common assumption under our definition of neighboring
databases [6]. Note that the dataset D does not have to be
a relational table. It can also be, for example, a set-valued
dataset in which all attributes are binary.

Differential Privacy. Differential privacy is built on the
notion of indistinguishability of two neighboring databases.
We consider two databases D and D′ to be neighbors if D
can be obtained from D′ by changing the value of exactly
one tuple. Intuitively, differential privacy guarantees that
any computational result from D and D′ will be statistically
indistinguishable. A formal definition is given below.

Definition 1. (ǫ-Differential Privacy [6]) A randomized al-
gorithm M satisfies ǫ-differential privacy, if for any two
neighboring databasesD andD′, and for anyO ⊆ Range(M),

P [M(D) ∈ O] ≤ exp(ǫ) · P [M(D′) ∈ O],

where the probability is taken overM’s randomness.

Differential privacy can be achieved by the Laplace mech-
anism [6], which injects properly calibrated Laplace noise
into a function’s output to mask the impact of any single
tuple. The maximal impact of a tuple to the output of a
function f is called its sensitivity. For any two neighboring
databases D and D′, the sensitivity of f : D → R

d is defined
as ∆f = maxD,D′ ‖f(D)− f(D′)‖1.

Theorem 1. [6] For any function f : D → R
d, the mech-

anismM,

M (D) = f (D) +

〈
Lap1

(
∆f

ǫ

)
, . . . , Lapd

(
∆f

ǫ

)〉

gives ǫ-differential privacy, where Lapi
(
∆f

ǫ

)
are i.i.d Laplace

variables with scale parameter ∆f

ǫ
.

3.2 Junction Tree Algorithm
The key to overcoming the curse of dimensionality in our

problem is to factorize the joint probability distribution in-
to modular components based on conditional independences
that exist in many real-world datasets. Probabilistic graphi-
cal models are an elegant tool for identifying such a modular
structure. Markov networks are the most widely used graph-
ical model based on undirected graphs. In our problem, we
record the independences in terms of a dependency graph,
which is essentially a Markov network in that the nodes rep-
resent the attributes in a dataset, and the edges correspond
to the dependencies between the attributes [15].
The junction tree algorithm is a standard method to pa-

rameterize a Markov network so that the joint distribution
and marginal distributions can be readily calculated. The

2Continuous attributes can be discretized to fit into our so-
lution.

(a) A sample dependency graph

A4 A4

(b) A junction tree
Figure 1: A dependency graph and its junction tree

general idea is to represent the joint distribution P (A) of
all attributes A = {A1, A2, · · · , Ad} in a dataset as a func-
tion of the marginals of a set of maximal cliques and their
separators. Let Ci be a clique in the junction tree T , and
Sij = Ci ∩ Cj be the separator between cliques Ci and Cj .
The joint distribution can be calculated as follows:

P (A) =

∏
Ci∈T P (Ci)∏
Sij∈T P (Sij)

, (1)

where P (Ci) and P (Sij) are the marginal distributions of
the cliques and the separators, respectively. This establish-
es the theoretical foundation of exactly inferring the joint
distribution from a junction tree.

A junction tree can be constructed in two steps. The first
step is triangulation. An undirected graph is said to be tri-
angulated if and only if there is an edge between any two
non-successive vertices in every cycle. A triangulated graph
is guaranteed to have a junction tree. Then we can construc-
t the junction tree in one of two basic ways: (1) based on
variable elimination and (2) based on direct graph manip-
ulation. In either way, the resultant junction tree satisfies
the running intersection property : for each pair of vertices
u and v, all vertices on the path between u and v contain
the intersection u ∩ v.

Example 1. Figure 1(a) gives the dependency graph G
of a sample dataset with attributes A = {A1, A2, · · · , A6}.
Since the cycle A2 −A3 −A5 −A4 −A2 has non-successive
vertices that are not connected, we add the edge (A3, A4) to
make G triangulated, as illustrated by the dashed line. Note
that the triangulation procedure may not be unique. For ex-
ample, adding the edge (A2, A5) also makes G triangulated.
A junction tree of the triangulated graph is given in Fig-
ure 1(b), where cliques are represented by oval nodes and
separators by rectangle nodes. Similarly, the junction tree of
a triangulated graph is not unique.

4. OUR SOLUTION
Broadly, our solution first systematically explores pair-

wise dependencies to construct the dependency graph and
then differentially privately infers the joint distribution by
applying the junction tree algorithm. More specifically, our
solution is composed of the following four steps.

1. Build the dependency graph. The first step is to
learn the pairwise correlations of all attributes under
a sampling-based testing framework, from which the
dependency graph is generated.

2. Form attribute clusters. We apply the junction
tree algorithm to the dependency graph in order to

generate the set of cliques to form the inference founda-
tion and further identify a collection of attribute clus-
ters to derive all the cliques’ noisy marginals with the
minimum error.

3. Generate noisy marginals. For each attribute clus-
ter, we generate a differentially private marginal ta-
ble and enforce consistency constraints over all such
marginals.

4. Produce a synthetic dataset. We make use of the
noisy marginal tables and the inference model to effi-
ciently generate a synthetic dataset.

Since only the first and third steps require access to the
input dataset, we divide the total privacy budget ǫ into two
portions with ǫ1 being used for the first step and ǫ2 for the
third step. In the following, we will show that the first and
third steps are ǫ1- and ǫ2-differentially private, respectively.
Hence, by the composition property [6], our solution satisfies
ǫ-differential privacy as a whole, where ǫ = ǫ1 + ǫ2.

4.1 Constructing the Dependency Graph
To build the dependency graph, we propose a sampling-

based dependency testing framework. The theoretical foun-
dation of our framework is derived from log-linear model-
s [3] that have been extensively studied in the statistical
literature. The saturated log-linear model states that the
joint distribution can be modeled as a summation of effects
whose dimensionality ranges from 0 up to d (i.e., the cor-
relations of pairs of attributes, triples, quadruples, and so
forth). Yet, recent studies [13] have shown the diminishing
return of maintaining higher order correlations, suggesting
that pairwise correlations are most important to approxi-
mate the joint distribution. This result justifies why our
framework focuses on learning pairwise correlations.
In the literature, the correlation between two attributes

can be measured by several metrics, such as chi-squared test
χ2, mean-square contingency, Cramer’s V φc and mutual
information I, among others. In this paper, we choose mu-
tual information due not only to its small sensitivity but
also to its capability of capturing both linear and non-linear
correlations. Given two attributes Ak and Al, the mutual
information I(Ak, Al) is defined as

I(Ak, Al) =

|Ωk|∑

i=1

|Ωl|∑

j=1

pij log
pij

pi·p·j
,

where pij is the fraction of the tuples whose Ak = i (i.e., the
ith value in Ωk) and Al = j, pi· =

∑
j pij and p·j =

∑
i pij .

As suggested by [14], we can consider that Ak and Al are
independent if I(Ak, Al) ≤ θkl for some small θkl > 0. Yet,
how to set a reasonable θkl is unknown. In this paper, we
perform a more formal analysis on the choice of θkl by es-
tablishing the connection between mutual information and
Cramer’s V φc. Mutual information can be well approximat-

ed as I(Ak, Al) ≈
min(|Ωk|−1,|Ωl|−1)φ2

c

2
. Since φc has a well-

interpreted level of dependency (e.g., φc = 0.2 stands for
weak dependency), we design θkl = σmin(|Ωk|−1, |Ωl|−1),
where σ is a parameter controlled by the φc value represent-
ing the desired level of dependency (e.g., φc = 0.2).
We present our differentially private sampling-based frame-

work in Algorithm 1. Previous work [13] has indicated that
the sample size required for learning correlations for a spec-
ified degree of accuracy can be independent of the dataset

Algorithm 1 Generate Dependency Graph

Input: Dataset D with attributes A = {A1, A2, · · · , Ad}
Input: Privacy parameter ǫ1
Output: Dependency graph G
1: Initialize G = (V,E) with V = {A1, A2, · · · , Ad} and

E = ∅;
2: Calculate sampling rate β;
3: Generate Ds by sampling tuples in D with rate β;
4: ǫa = ln(eǫ1 − 1 + β)− lnβ;

5: η = Lap

(
2∆I
ǫa

)
;

6: for each attribute pair (Ak, Al) do

7: Ĩ(Ak, Al) = I(Ak, Al) + Lap

(
2∆I
ǫa

)
;

8: θ̃kl = θkl + η;

9: if Ĩ(Ak, Al) ≥ θ̃kl then
10: Add edge (Ak, Al) in G;
11: return G;

size. This observation is vital to allow us to enjoy the sam-
pling property of differential privacy [19].

Theorem 2. [19] Let M be an ǫ-differentially private
algorithm and Mβ be another algorithm that first indepen-
dently samples each tuple in its input dataset with probability
β and then appliesM to the sampled dataset. Mβ satisfies
ln(1 + β(eǫ − 1))-differential privacy.

In Line 2, we calculate the sampling rate β by first deter-
mining a good sample size ns. Our intuition is to select the
sample size that minimizes the ratio of noise magnitude to
the range of mutual information I on the sampled dataset,
which is equivalent to identifying the best signal-to-noise ra-
tio [29]. To quantify this size, we need to know the amplified
privacy parameter ǫa due to sampling and the sensitivity of

I. From Theorem 2, we have ǫa = ln
(
eǫ1 − 1 + ns

|D|

)
−ln ns

|D|
.

Next we give the sensitivity of I.

Theorem 3. [29]

∆I =

1

n
logn+

n− 1

n
log

n

n− 1
, if any attr. is binary

2

n
log

n+ 1

2
+

n− 1

n
log

n+ 1

n− 1
, otherwise

where n is the sampled dataset size.

Note that ∆I is insensitive to attributes’ domain sizes. It
only cares whether an attribute is binary. In Algorithm 1, if
all attributes of the input dataset are binary, we use ∆I =
1
n
log n + n−1

n
log n

n−1
; otherwise we use ∆I = 2

n
log n+1

2
+

n−1
n

log n+1
n−1

. The reason of this choice will be made clear
soon. Thus, the best sample size can be calculated as

ns =

argmin
n

1
n
logn+ n−1

n
log n

n−1

ln
(

eǫ1 − 1 + n
|D|

)

− ln n
|D|

,if all attr. are binary

argmin
n

2
n
log n+1

2
+ n−1

n
log n+1

n−1

ln
(

eǫ1 − 1 + n
|D|

)

− ln n
|D|

,otherwise

where 1 < n ≤ |D| stands for all possible sample sizes.
In Line 3, we sample the tuples in D by including each

tuple with probability β = ns

|D|
. Then we learn the pairwise

correlations between all attributes over the sampled dataset
Ds. A simple attempt is to split the privacy parameter ǫa

into
(
d

2

)
portions, each being used for a pair of attributes.

However, when d is relatively large, this simple scheme can
barely obtain reliable results. In addressing this problem, we
generalize the threshold query technique [16], which is de-
rived from the sparse vector technique [10]. The key differ-
ence is that in our problem, for different pairs of attributes
Ak and Al, I(Ak, Al) needs to be compared with differen-
t thresholds θkl = σmin(|Ωk| − 1, |Ωl| − 1), while in [16]
all queries are compared with the same threshold. We call
this generalized mechanism the threshold mechanism. The
general intuition is that if what one wants to learn from a
sequence of queries is a sequence of yes-or-no answers with
respect to some threshold values (i.e., whether a query an-
swer can pass the threshold), instead of the noisy values of
the queries, there is no need to split the privacy parame-
ter in proportion to the number of queries. Intuitively, this
is possible if the single tuple difference changes all yes-or-no
answers in the same way with respect to the thresholds. The
threshold mechanism is instantiated in Lines 5-10. We will
give its formal privacy guarantee later.
In Line 5, we draw a random Laplace variable η with s-

cale 2∆I
ǫa

to add randomness to all thresholds, where ∆I is

the maximum sensitivity of all I(Ak, Al). That is, if there
is at least an attribute Ai in D with |Ωi| > 2, we should

use ∆I = 2
|Ds|

log |Ds|+1
2

+ |Ds|−1
|Ds|

log |Ds|+1
|Ds|−1

, where |Ds| is

the actual size of Ds
3. This is a must to establish the priva-

cy guarantee of the threshold mechanism. In Lines 6-10, for
each pair of attributes Ak and Al, we calculate the noisy ver-

sion of I(Ak, Al), denoted by Ĩ(Ak, Al), by adding Lap(2∆I
ǫa

).
Here the noise scale does not depend on the number of
queries, which is the key benefit of employing the thresh-

old mechanism. In Line 9, Ĩ(Ak, Al) is compared with the

noisy threshold θ̃kl = θkl +η. If Ĩ(Ak, Al) ≥ θ̃kl, it indicates
that Ak and Al are correlated, and we record this correlation
by adding an edge between them in the dependency graph.
Now we formally prove the privacy guarantee of Algorith-

m 1, including that of the threshold mechanism.

Theorem 4. Algorithm 1 is ǫ1-differentially private.

Proof. Let M be the version of Algorithm 1 without
sampling (i.e., without Lines 2-3) andMs be Algorithm 1.
We first prove that M is ǫa-differentially private and then
make use of Theorem 2 to show thatMs is ǫ1-differentially
private. Essentially, M outputs a vector v = [v1, · · · , vw],
where vi takes a binary value to indicate whether the cor-
responding pair of attributes is correlated, and w =

(
d

2

)
.

Let P (v = a) and P ′(v = a) be the probabilities that a ∈
{0, 1}w is produced by two neighboring databases D and D′,
respectively. By definition, we want to prove that for all D

andD′ and for all output vectors a ofM, P (v=a)
P ′(v=a)

≤ exp(ǫα).

Let v<i denote the answers to the first (i− 1) elements in v

and ai ∈ {0, 1} be an answer.

P (v = a)

P ′(v = a)
=

∏w

i=1 P (vi = ai|v
<i)∏w

i=1 P
′(vi = ai|v<i)

=
∏

i:ai=1

P (vi = 1|v<i)

P ′(vi = 1|v<i)
·
∏

i:ai=0

P (vi = 0|v<i)

P ′(vi = 0|v<i)

(2)

3Note that |Ds| may not equal ns due to the Bernoulli sam-
pling process (Line 3) required by Theorem 2.

Once v<i is fixed, vi = 1 iff Ii + Lap(2∆I
ǫa

) ≥ θi + η, where Ii
and θi are the mutual information and threshold being used
for generating vi. Let Hi(η) be the probability that vi = 1
on D when the threshold is θi + η and H ′

i(η) be that on D′.
Let λ = 2∆I

ǫa
. We have

Hi(η) = P (vi = 1|v<i) = P (Lap(λ) + Ii − θi ≥ η | v<i)

Let f(y|µ, λ) = 1
2λ

exp
(
− |y−µ|

λ

)
. We can rewrite Hi(η) as

Hi(η) =
∫∞

η
f(y|Ii−θi, λ)dy. After making the substitution

u = y −∆I, we get

Hi(η) =

∫ ∞

η−∆I

f(u|Ii − θi −∆I, λ)du

By definition of sensitivity,Hi(η) ≤
∫∞

η−∆I
f(u|I ′i−θi, λ)du =

H ′
i(η−∆I). Recall that η is a random Laplace variable with

scale 2∆I
ǫa

. It holds that p(η = x) ≤ exp(ǫa
2
)p(η = x−∆I),

where p(·) is the probability density function. We have

∏

i:ai=1

P (vi = 1|v<i) =

∫ ∞

−∞

p(η = x)
∏

i:ai=1

Hi(x)dx

≤ exp(
ǫa
2
)

∫ ∞

−∞

p(η = x−∆I)
∏

i:ai=1

Hi(x)dx

≤ exp(
ǫa
2
)

∫ ∞

−∞

p(η = x−∆I)
∏

i:ai=1

H ′
i(x−∆I)dx

= exp(
ǫa
2
)

∫ ∞

−∞

p(η = x)
∏

i:ai=1

H ′
i(x)dx

= exp(
ǫa
2
)
∏

i:ai=1

P ′(vi = 1|v<i) (3)

Similarly, we can prove that
∏

i:ai=0

P (vi = 0|v<i) ≤ exp(
ǫa
2
)
∏

i:ai=0

P ′(vi = 0|v<i) (4)

Using Formulae 2, 3 and 4, we derive

P (v = a)

P ′(v = a)
≤ exp(

ǫa
2
) · exp(

ǫa
2
) = exp(ǫa) (5)

That is, M is ǫa-differentially private. Due to Theorem 2,
Ms achieves ǫ1-differential privacy because

ln (1 + β(eǫa − 1)) = ln

(
1 + β(

eǫ1 − 1

β
+ 1− 1)

)
= ǫ1.

This concludes the proof.

We would like to stress that in general, to make the thresh-
old mechanism work, all queries do not need to have the
same sensitivity as long as we add noise to the queries and
thresholds based on the maximum sensitivity of all queries.
This explains why we have to use the larger ∆I if there is an
attribute that is not binary. The randomness added to all
threshold values must come from the same Laplace variable;
otherwise we cannot establish the above proof.

For ease of discussion, in the following sections, we as-
sume that the dependency graph is connected. Otherwise,
we simply process each connected component separately.

4.2 Forming Attribute Clusters
With the learned dependency graph, we can feed it into

the junction tree algorithm introduced in Section 3.2 to ob-
tain the set of cliques and separators. A simple idea is to

directly generate noisy marginals based on these cliques so
that we can infer the joint distribution. There is no need to
generate marginals for the separators as they can always be
derived from the cliques. However, the junction tree algo-
rithm selects the cliques irrespective of the differential pri-
vacy constraint. In fact, the number of marginals is directly
related to the accuracy of the estimated joint distribution.
Our insight is that we can properly merge the cliques into
larger and fewer clusters from which we can derive the joint
distribution with less noise.
Consider merging cliques C1, · · · , Ck into a cluster CL,

which contains the set of attributes in C1, · · · , Ck. Let the
set of attributes be {A1, · · · , Al}, ǫ2 be the privacy budget
for generating the noisy marginals and the total number
of marginals be m. Clearly, we can generate the cliques’
marginals from CL’s marginal with the total noise variance
k × 2(2m

ǫ2
)2 × |Ω1| × · · · × |Ωl|, where 2(2m

ǫ2
)2 is the noise

variance added to each entry. We illustrate the benefit of
merging cliques by the following example.

Example 2. Continue with Example 1. Assume that the
domain sizes of A1, A2, A3, A4, A5, A6 are 2, 2, 3, 4, 3
and 2, respectively. If we directly add Laplace noise to the
marginals of the cliques A1A2, A2A3A4, A3A4A5 and A4A6,
the total variance of the marginals is 8960

ǫ2
2

. Alternatively,

we can merge A1A2 and A2A3A4 into A1A2A3A4, merge
A3A4A5 and A4A6 into A3A4A5A6, add Laplace noise to
A1A2A3A4 and A3A4A5A6, and derive the cliques’ marginal-
s from A1A2A3A4 and A3A4A5A6. The total variance of
the cliques’ marginals is 7680

ǫ2
2

. Finally, it is also possible to

merge A1A2 and A4A6 into A1A2A4A6 and merge A2A3A4

and A3A4A5 into A2A3A4A5, and achieve a total variance
6656
ǫ2
2

.

There are two important observations from Example 2:
(1) If we properly merge the cliques and then derive their
marginals from the merged clusters, we are able to reduce
the magnitude of noise; (2) the merging procedure does not
have to depend on the junction tree structure (e.g., merging
A1A2 and A4A6, which are not adjacent in the junction tree,
leads to an even smaller variance). We formally define the
OptimalMerging problem as follows.

Definition 2. (OptimalMerging) Given a set of attributes
A = {A1, · · · , Ad} and the set of cliques C = {C1, · · · , Ck}
derived from A, merge the cliques into the set of clusters
CL = {CL1, · · · , CLm} such that: (1) The total noise vari-

ance of the cliques’ marginals
∑m

i=1
8m2

ǫ2
2

|CLi|
∏

Aj∈CLi
|Ωj |

is minimum w.r.t. all possible m values, (2) each clique is in
exactly one cluster, and (3) the clusters contain all cliques.

While it has been clear that finding the optimal merging
scheme may substantially improve the accuracy of the es-
timated joint distribution, the OptimalMerging problem is,
unfortunately, NP-hard to solve.

Theorem 5. The OptimalMerging problem is NP-hard.

Proof. We establish the NP-hardness of our problem by
the reduction from 3-PARTITION [7]: Given a multiset S
of n = 3m positive integers {I1, I2, · · · , In} such that ∀i ∈
{1, 2, · · · , n}, B

4
< Ii < B

2
and

∑
i Ii = mB, can S be

partitioned into m disjoint subsets S1, S2, · · · , Sm such that
∀j
∑

Ii∈Sj
Ii = B and ∪jSj = S?

Algorithm 2 Form Attribute Clusters

Input: Dependency graph G
Input: Attribute set A = {A1, A2, · · · , Ad}
Output: Junction cliques C
Output: Separators S
Output: Attribute clusters CL
1: (C,S) ← JunctionTreeAlgorithm(G);
2: for i = |C| to 1 do

3: CLi ← IdentifyOptimalMerging(C, i);
4: Calculate the total noise variance V ar(CLi) of the

cliques’ marginals derived from CLi;
5: CL = argminCLi

(V ar(CLi));
6: return C, S, and CL;

Since B
4

< Ii < B
2
, each Si must contain exactly three

integers from S. We now show a polynomial-time reduction
from 3-PARTITION to OptimalMerging. Given an instance
of 3-PARTITION with n positive integers {I1, I2, · · · , In}
and a bound B, we construct the corresponding instance of
OptimalMerging as follows. We transform the input inte-
gers to 3-PARTITION to {m10I1 ,m10I2 , · · · ,m10In} as the

input to OptimalMerging, where ∀i ∈ {1, 2, · · · , n}, m
10B
4 <

m10Ii < m
10B
2 . We restrict OptimalMerging to just consid-

er merging n non-overlapping cliques into m clusters. Given

a fixed m, since 8m2

ǫ2
2

is a constant, OptimalMerging aims

to minimize
∑m

i=1 |Si|
∏

m
10Ij∈Si

m10Ij , which we call the

objective function. Now ask whether one can obtain a val-
ue of the objective function at most 3m10B+2. It is easy
to see that if there is a 3-PARTITION, putting all integers
in a subset into a cluster gives at most m · 3m · m10B for
the objective function. Conversely, suppose that there is a
merging scheme such that the objective function value is at
most m · 3m ·m10B . We can map the clusters to the subset-
s in 3-PARTITION. Note that no subset can add to more
than B, since otherwise the product in that cluster would
be at least m10B+10, which is already more than the objec-
tive function value m · 3m · m10B . Since each Ii is in the
range of (B

4
, B

2
) and

∑
i Ii = mB, it follows that all subsets

in 3-PARTITION have size exactly 3. This establishes the
proof.

Considering the hardness of OptimalMerging, we design
an approximation algorithm using an integer programming
relaxation and the constrained concave-convex procedure.
Algorithm 2 gives the pseudocode of our solution. For each
possible number m of clusters, we identify the corresponding
optimal merging scheme by the IdentifyOptimalMerging

procedure, which will be discussed next in detail.
We first introduce the notations for modeling the Opti-

malMerging problem for a given number m of clusters. For
simplicity of notation, we slightly abuse some notations we
used before. Suppose there are a total of d attributes and
the junction tree contains n cliques. The size of the ith at-
tribute is denoted by ci. We define the occurrence matrix
O = [oi,j]d×n where oi,j equals 1 when the ith attribute is
contained in the jth clique and 0 otherwise. Let pi be the
product of the attributes’ domain sizes in the ith clique Ci.
We define zi,k ∈ {0, 1} as the indicator of the ith clique in
the kth cluster, i.e., zi,k = 1 implies that the ith clique Ci

has been merged into the kth cluster. The objective func-
tion to find an optimal merging scheme for a given number

m of clusters is formulated as

min
Z,r

ln

m∑

k=1

∏n

i=1 p
zi,k
i

∑n

i=1 zi,k
∏d

i=1 c
∑

n
j=1

zj,koi,j−1

i

− λr

s.t. zi,k ∈ {0, 1}, ∀i, k
m∑

k=1

zi,k = 1, ∀i

‖zi − zj‖
2
2 ≥ r, ∀i 6= j

n∑

i=1

zi,k ≥ 1, ∀k (6)

where Z is an n×m matrix with zi,k as its (i, k)th elemen-
t, zi denotes the ith column of Z, λ is a positive constant
to balance the trade-off between the two terms, and ‖ · ‖2
denotes the ℓ2 norm of a vector. Note that the first ter-
m in the objective function is to minimize the logarithm of
the total noise variance derived from the m marginals (see
Definition 2), the first two constraints guarantee that each
clique is merged into exactly one cluster, and the last con-
straint ensures that each cluster contains at least one clique.
Moreover, the third constraint enforces the assignments of
any two clusters to be different, and we expect that the d-
ifference between the assignments captured by r is as large
as possible, leading to the term ‘−λr’ in the objective func-

tion. Since the factor 8m2

ǫ2
2

is a constant for each term in the

summation of the logarithmic function, it is omitted from
the objective function.
We introducem new variables {tk}

m
k=1 which upper-bound

each term in the summation of the first term in the objective
function of Problem (6) via the exponential function, i.e.,
∏n

i=1
p
zi,k
i

∑n
i=1

zi,k

∏
d
i=1

c

∑n
j=1

zj,koi,j−1

i

≤ exp{tk}, which implies that

ln

(
n∑

i=1

zi,k

)
+

n∑

i=1

zi,k ln pi ≤ tk+
d∑

i=1

(
n∑

j=1

zj,koi,j − 1

)
ln ci.

Then we can reformulate Problem (6) as

min
Z,t,r

ln

(
m∑

k=1

exp{tk}

)
− λr

s.t. zi,k ∈ {0, 1}, ∀i, k
m∑

k=1

zi,k = 1, ∀i

r − ‖zi − zj‖
2
2 ≤ 0, ∀i 6= j

n∑

i=1

zi,k ≥ 1, ∀k

n∑

i=1

zi,k ln pi − tk −
d∑

i=1

(
n∑

j=1

zj,koi,j − 1

)
ln ci

+ ln

(
n∑

i=1

zi,k

)
≤ 0, ∀k (7)

where t = [t1, . . . , tm]T . Problem (7) is an NP-hard integer
programming problem. Here we relax the first constraint of
Problem (7) to zi,k ≥ 0, ∀i, k, that is, zi,k is relaxed to lie
in [0, 1], instead of belonging to the binary set {0, 1}. After
the relaxation, zi,k can be viewed as the probability of the

ith clique belonging to the kth cluster. We call this relaxed
Problem (7).

Relaxed Problem (7) is a non-convex problem since the
third and fifth constraints are non-convex. Here we use the
constrained concave-convex procedure (CCCP) [28] to solve
it. The CCCP method requires that the non-convex con-
straints can be formulated as the difference of two convex
functions. To guarantee that relaxed Problem (7) can be
solved by the CCCP method, we reformulate the third and
fifth non-convex constraints as

r︸︷︷︸
Convex

−‖zi − zj‖
2
2︸ ︷︷ ︸

Convex

≤ 0

n∑

i=1

zi,k ln pi − tk −
d∑

i=1

(
n∑

j=1

zj,koi,j − 1

)
ln ci

︸ ︷︷ ︸
Convex

−

(
− ln

(
n∑

i=1

zi,k

))

︸ ︷︷ ︸
Convex

≤ 0

Through the reformulation, we can see that the requirement
of the CCCP method is satisfied, making it capable of solv-
ing relaxed Problem (7). The CCCP method is an iterative
method. In each iteration, the CCCP method first replaces
the concave parts in the objective function and constraints
with their first-order Taylor expansions based on the solu-
tion in the previous iteration and then solves the resulting
convex subproblem. Specifically, for relaxed Problem (7),
the lth iteration of the CCCP method solves the following
problem as

min
Z,t,r

ln

(
m∑

k=1

exp{tk}

)
− λr

s.t. zi,k ≥ 0, ∀i, k
m∑

k=1

zi,k = 1, ∀i

r − 2(zi − zj)
T
p
(l−1)
i,j + q

(l−1)
i,j ≤ 0, ∀i 6= j

n∑

i=1

zi,k ≥ 1, ∀k

n∑

i=1

zi,k ln pi − tk −
d∑

i=1

(
n∑

j=1

zj,koi,j − 1

)
ln ci

+ ln

(
n∑

i=1

z
(l−1)
i,k

)
+

∑n

i=1(zi,k − z
(l−1)
i,k)

∑n

i=1 z
(l−1)
i,k

≤ 0, ∀k (8)

where z
(l−1)
i,k is the solution in the (l − 1)th iteration of

the CCCP method, p
(l−1)
i,j = z

(l−1)
i − z

(l−1)
j , and q

(l−1)
i,j =

‖p(l−1)
i,j ‖22. Note that the last two terms in the third and

fifth constraints of Problem (8) compose the first-order Tay-

lor expansion of the corresponding convex parts at Z(l−1),
the solution in the previous iteration of the CCCP method.
Problem (8) is obviously convex since both the objective
function and constraints are convex, and we can use some
solver such as the CVX [8] to solve it. Moreover, the CCCP
method can guarantee to converge to a local optimum of re-
laxed Problem (7) by solving Problem (8) in each iteration.

Recall that the above solution gives the probabilities of
a clique belonging to different clusters. We thus assign a
clique to the cluster with the largest probability. We cal-
culate the total noise variance for this merging scheme. We
iterate the IdentifyOptimalMerging procedure for all possi-
ble numbers of clusters from 1 to |C|, and return the scheme
with the minimal total noise variance.

4.3 Generating Noisy Marginals
Given the clusters identified by Algorithm 2, we use the

Laplace mechanism to generate their corresponding noisy
marginal tables. Let the number of clusters be m. For each
cluster’s marginal table, we add Laplace noise Lap(2m

ǫ2
) to

each entry’s count. Therefore, the noisy marginals satisfy
ǫ2-differential privacy. In our problem, mutual consistency
among different noisy marginals is critical because for any
separator Sij = Ci∩Cj we need to guarantee that the noisy
marginal of Sij constructed from Ci is identical to that con-
structed from Cj so as to obtain consistent inference. We
extend the post-processing technique in [21] to the gener-
al case where the noisy marginals are of different sizes and
attributes may not be binary.
Consider a set of clusters CL1, · · · , CLl. Let A = CL1 ∩

CL2∩· · ·∩CLl 6= ∅. We use TCLi
to denote CLi’s marginal,

TCLi
[A] to denote A’s marginal constructed from CLi and

TCLi
[A] ≡ TCLj

[A] to denote that the two marginals are
identical. We want to ensure TCL1

[A] ≡ · · · ≡ TCLl
[A]. We

achieve this goal in two steps. The first step is to derive the
best approximation of A’s marginal table. Let a be a possi-
ble value in A’s domain and TA(a) be the count of a in A’s
marginal. Since each TCLi

(a) is an independent observation
of TA(a), we use inverse-variance weighting [11] to give the
approximation of TA(a) that minimizes the variance of the
weighted average as follows:

TA(a) =

∑l

i=1 TCLi
(a)/σ2

i∑
i 1/σ

2
i

,

where σ2
i =

∏
Aj∈(CLi\A) |Ωj | is proportional to the variance

of TCLi
[A](a). The second step is to update all TCLi

’s to
be consistent with TA. The general idea is to distribute the
difference between TA and TCLi

[A] to all entries in TCLi

with A = a, that is

TCLi
(e)← TCLi

(e) +
TA(a)− TCLi

(a)∏
Aj∈(CLi\A) |Ωj |

,

where e is the entries with their A = a.
To make all marginals consistent, we need to perform a

sequence of mutual consistency steps. The order of these
steps is critical, otherwise previously consistent results may
be invalidated by subsequent steps. As suggested in [21],
this problem can be avoided by enforcing a partial order
under the subset relation on all non-empty intersections of
some subset of the clusters and following a topological order
over these intersections. For space reasons, we refer the
interested reader to [21] for more details.
In addition to mutual consistency, we propose a simple

yet effective thresholding strategy to mitigate the systemat-
ic bias due to rounding negative noisy counts to 0. We select
a positive integer threshold such that the noisy counts above
the threshold sum up to a number N that is closest to |D|.
We then normalize all noisy counts above the threshold by
multiplying |D|/N and set all noisy counts below the thresh-

Table 1: Dataset statistics
Dataset Type Data Attr. Domain

Size Number Size

AOL Binary 619,418 45 245

Retail Binary 88,162 50 250

BR2000 Non-binary 38,000 14 ≈ 232

Adult Non-binary 45,222 15 ≈ 252

TPC-E Non-binary 40,000 24 ≈ 277

old to 0. The rationale behind this strategy is that we want
to filter out the bias introduced by the positive Laplace noise
added to low true counts.

4.4 Producing Synthetic Datasets
With the junction tree and the noisy marginals, we can

calculate the joint distribution by Equation 1. However, di-
rectly sampling a synthetic dataset from the joint distribu-
tion is computationally prohibitive. To this end, we provide
an efficient way to generate a synthetic dataset by a series of
local computations. We start by randomly choosing an ini-
tial clique from the junction tree and sampling its attributes
from its marginal distribution, and then continuously sam-
ple other attributes in the cliques adjacent to the cliques
whose attributes have been fully sampled from their condi-
tional distribution. A clique is adjacent to another clique if
they share a common separator. We terminate this process
when all attributes have been sampled. It is easy to verify
that all these probability distributions are available from the
noisy marginals of the cliques and that the joint distribution
of the synthetic dataset will be identical to that calculated
from Equation 1.

5. EXPERIMENTAL EVALUATION
In this section, we demonstrate the performance of our so-

lution (referred to as JTree) by comparing with two state-of-
the-art techniques, namely PrivBayes [29] and PriView [21].
Moreover, for SVM classification, we also compare with Pri-
vateSVM [22], a method specialized for SVM classification.

We make use of five standard real datasets (both binary
and non-binary) in our experiments. For binary datasets, we
deliberately choose the ones with larger domain sizes to test
the performance of JTree. We use AOL, the real dataset with
the largest domain size used in [21], and another benchmark
frequent itemset mining dataset Retail

4. AOL is a search
log dataset that includes users’ search keywords and is pre-
processed to contain 45 binary attributes [21]. Retail is a
retail market basket dataset, where each record consists of
the distinct items purchased in a shopping visit. We prepro-
cess Retail to include 50 binary attributes (for the reason of
reproducibility, we choose the top 50 most frequent items as
the binary attributes). For non-binary datasets, we use the
same datasets used in [29]. BR2000 contains the demograph-
ics information collected from Brazil in 2000. Adult contains
census data from the 1994 US census. TPC-E contains infor-
mation of “Trade”, “Security”, “Security status” and “Trade
type” tables in the TPC-E benchmark. We summarize the
statistics of the datasets in Table 1.

5.1 Evaluation Methodology
We consider the same analysis tasks in [29], namely k-

way marginals and SVM classification. Since PriView on-

4
Retail is available at http://fimi.ua.ac.be/data/.

ly works for binary datasets and cannot generate synthetic
datasets for SVM classification, for binary datasets we only
report the results on k-way marginals. We follow the same
evaluation scheme used in PriView : We use privacy budget
ǫ ∈ {0.1, 1.0} and generate 200 random k-way marginals for
each k ∈ {4, 6, 8}. We then plot the average L2 error, which
is normalized by the data size.
For non-binary datasets, when k is relatively large (e.g.,

4, 6 or 8), a k-way marginal is normally very sparse, and
therefore the evaluation scheme used by PriView may be
significantly biased. As such, we choose to follow the same
methodology used in PrivBayes. We generate all 2-way and
3-way marginals and report the average total variation dis-
tance between the original datasets and the noisy datasets.
In addition, we test the classification results with SVM clas-
sifiers. Due to space limitation, we only report the results on
Adult, which is the most widely used benchmark dataset for
classification analysis. We train SVM classifiers on Adult to
predict whether an individual (1) is a male, (2) holds a post-
secondary degree, (3) has salary > 50K per year, and (4)
has never married. We evaluate each classification task with
privacy budget ǫ ∈ {0.2, 0.5, 0.8, 1.0}. Each task uses 80%
of the tuples in Adult as the training set and the remaining
20% for prediction. As in PrivBayes, we also employ the
misclassification rate as the performance metric.
For PriView , we report the results based on its full version

with the ripple non-negativity technique. For PrivBayes, as
suggested in [29], we allocate half of the privacy budget on
the construction of the Bayesian network and the other half
on generating conditional distributions. We set θ = 4 (for θ-
usefulness) to select the appropriate value of the degree of a
Bayesian network, as recommended in [29]. For JTree, when
ǫ = 0.1, we allocate ǫ1 = 0.05 on junction tree construction
and ǫ2 = 0.05 on marginal generation. For all other ǫ values,
we allocate ǫ1 = 0.1 on junction tree construction and the
rest on marginal generation. All experimental results we
report below are the average of ten runs.

5.2 Results on Binary Datasets
In the first set of experiments, we compare the perfor-

mance of the three solutions on the binary datasets under
different privacy budgets, as presented in Figure 2. It can
be seen that the accuracy of JTree is substantially better
than that of PrivBayes in most cases. Note that the Y-axis
is in log-scale. Compared with PriView , JTree also achieves
comparable accuracy. The superiority of JTree is more ob-
servable when ǫ is small (e.g., ǫ = 0.1). For the only case
where JTree is less accurate than PriView , the L2 error of
JTree is already very small. Furthermore, we deem that
this represents an acceptable trade-off as JTree is a gener-
ic framework that publishes synthetic datasets for different
analysis tasks, while PriView is the state-of-the-art tech-
nique specifically tailored for k-way marginals. In addition,
JTree can work seamlessly on non-binary datasets, which is
important for many real-world applications.

5.3 Results on Non-Binary Datasets
k-Way Marginals. In the second set of experiments, we
study the average total variation distance of PrivBayes and
JTree for varying ǫ values on non-binary datasets and present
the results in Figure 3. Recall that PriView cannot pro-
cess non-binary datasets, and therefore it is not reported
here. As can be observed, JTree substantially outperform-

 0.001

 0.01

 0.1

 1

4 6 8

L2
 e

rr
or

k way marginals

JTree
PriView

PrivBayes

 0.001

 0.01

 0.1

 1

4 6 8

L2
 e

rr
or

k way marginals

JTree
PriView

PrivBayes

(a) Retail, ǫ = 0.1 (b) Retail, ǫ = 1.0

 0.001

 0.01

 0.1

 1

4 6 8

L2
 e

rr
or

k way marginals

JTree
PriView

PrivBayes

 0.001

 0.01

 0.1

 1

4 6 8

L2
 e

rr
or

k way marginals

JTree
PriView

PrivBayes

(c) AOL, ǫ = 0.1 (d) AOL, ǫ = 1.0

Figure 2: L2 error of k-way marginals on binary

datasets

s PrivBayes in almost all cases. In some cases, the total
variation distance of JTree is just half of that of PrivBayes.
The only case that PrivBayes performs better than JTree
is ǫ = 0.2 on TPC-E, but even in this case, the accuracy of
JTree is still close to that of PrivBayes.
SVM Classification. In the last set of experiments, we
compare JTree, PrivBayes and PrivateSVM for SVM classi-
fication. Due to space limitation, we only report the results
on Adult, the benchmark dataset for classification. Figure 4
shows the misclassification rate of each method under dif-
ferent ǫ values. The misclassification rate of the original
dataset (denoted as Non Private) stands for the best per-
formance we can achieve. We can observe that JTree con-
sistently outperforms PrivBayes on Adult. Compared with
PrivateSVM that is specialized for SVM classification, JTree
also achieves comparable performance. We interpret the s-
light performance degradation as the reasonable price for
providing a generic data publishing solution.

6. CONCLUSION
Publishing high-dimensional data with differential privacy

guarantees is one of the most fundamental and challenging
problems. In this paper, we have proposed a novel sampling-
based inference framework to preserve the joint distribution
of high-dimensional data under differential privacy. This
framework features a sophisticated systematic exploration
of pairwise attribute dependencies and establishes the solid
inference foundation based on the junction tree algorithm,
along with a series of new techniques. Extensive experiments
on real benchmark datasets demonstrate that our solution
substantially outperforms the state-of-the-art competitors.

7. ACKNOWLEDGMENTS
We would like to thank all reviewers for their valuable

suggestions. This work was supported by RGC/GRF Grants
HKBU 211512 and 12200114 and NSFC 61305071.

8. REFERENCES
[1] G. Acs, C. Castelluccia, and R. Chen. Differentially private

histogram publishing through lossy compression. In ICDM,
2012.

0.0

0.1

0.2

0.3

0.2 0.5 0.8 1
privacy budget ε

JTree
PrivBayes

average variation distance

0.0

0.1

0.2

0.3

0.4

0.2 0.5 0.8 1
privacy budget ε

JTree
PrivBayes

average variation distance

(a) BR2000, 2-way (b) BR2000, 3-way

0.0

0.1

0.2

0.3

0.2 0.5 0.8 1
privacy budget ε

JTree
PrivBayes

average variation distance

0.0

0.1

0.2

0.3

0.4

0.2 0.5 0.8 1
privacy budget ε

JTree
PrivBayes

average variation distance

(c) Adult, 2-way (d) Adult, 3-way

0.0

0.1

0.2

0.3

0.2 0.5 0.8 1
privacy budget ε

JTree
PrivBayes

average variation distance

0.0

0.1

0.2

0.3

0.4

0.2 0.5 0.8 1
privacy budget ε

JTree
PrivBayes

average variation distance

(e) TPC-E, 2-way (f) TPC-E, 3-way

Figure 3: Total variation distance of k-way marginals

on non-binary datasets

[2] B. Barak, C. Dwork, S. Kale, F. McSherry, and K. Talwar.
Privacy, accuracy, and consistency too: a holistic solution
to contingency table release. In PODS, 2007.

[3] Y. M. Bishop, S. E. Fienberg, and P. W. Paul. Discrete
multivariate analysis. MIT Press, 1975.

[4] G. Cormode, C. M. Procopiuc, D. Srivastava, and T. T. L.
Tran. Differential private summaries for sparse data. In
ICDT, 2012.

[5] B. Ding, M. Winslett, J. Han, and Z. Li. Differentially
private data cubes: optimizing noise sources and
consistency. In SIGMOD, 2011.

[6] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis. In
TCC, 2006.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractability: a guide to the theory of NP-Completeness.
W. H. Freeman, 1979.

[8] M. Grant and S. Boyd. CVX: Matlab software for
disciplined convex programming, version 2.1.
http://cvxr.com/cvx, 2014.

[9] M. Hardt, K. Ligett, and F. McSherry. A simple and
practical algorithm for differentially private data release. In
NIPS, 2012.

[10] M. Hardt and G. N. Rothblum. A multiplicative weights
mechanism for privacy-preserving data analysis. In FOCS,
2010.

[11] J. Hartung, G. Knapp, and B. K. Sinha. Statistical
meta-analysis with applications. John Wiley & Sons, 2008.

[12] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the
accuracy of differentially private histograms through
consistency. PVLDB, 3(1):1021–1032, 2010.

[13] I. F. Ilyas, W. Markl, P. Haas, P. Brown, and
A. Aboulnaga. CORDS: Automatic discovery of
correlations and soft functional dependencies. In SIGMOD,
2004.

15%

20%

25%

30%

35%

40%

0.2 0.5 0.8 1
privacy budget ε

JTree
PrivBayes
PrivateSVM
Non Private

svm misclassification rates

 0%

20%

40%

60%

0.2 0.5 0.8 1
privacy budget ε

JTree
PrivBayes
PrivateSVM
Non Private

svm misclassification rates

(a) Adult, Y=gender (b) Adult, Y=education

 15%

20%

25%

30%

0.2 0.5 0.8 1
privacy budget ε

JTree
PrivBayes
PrivateSVM
Non Private

svm misclassification rates

10%

15%

20%

25%

30%

0.2 0.5 0.8 1
privacy budget ε

JTree
PrivBayes
PrivateSVM
Non Private

svm misclassification rates

(c) Adult, Y=salary (d) Adult, Y=marital

Figure 4: SVM misclassification rates on non-binary

datasets

[14] G. D. Kleiter. The posterior probability of Bayes nets with
strong dependences. Soft Computing, 3:162–173, 1999.

[15] D. Koller and N. Friedman. Probabilistic graphical models:
principles and techniques. MIT Press, 2009.

[16] J. Lee and C. Clifton. Top-k frequent itemsets via
differentially private FP-trees. In SIGKDD, 2014.

[17] C. Li, M. Hay, G. Miklau, and A. McGregor. Optimizing
linear counting queries under differential privacy. In PODS,
2010.

[18] C. Li, M. Hay, G. Miklau, and Y. Wang. A data- and
workload-aware query answering algorithm for range queries
under differential privacy. PVLDB, 7(5):341–352, 2014.

[19] N. Li, W. H. Qardaji, and D. Su. On sampling,
anonymization, and differential privacy or, k-anonymization
meets differentail privacy. In ASIACCS, 2012.

[20] N. Mohammed, R. Chen, B. C. M. Fung, and P. S. Yu.
Differentially private data release for data mining. In
SIGKDD, 2011.

[21] W. Qardaji, W. Yang, and N. Li. Priview: practical
differentially private release of marginal contingency tables.
In SIGMOD, 2014.

[22] B. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft.
Learning in a large function space: privacy-preserving
mechanisms for SVM learning. Journal of Privacy and
Confidentiality, 4(1):65–100, 2012.

[23] O. Williams and F. McSherry. Probabilistic inference and
differential privacy. In NIPS, 2010.

[24] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via
wavelet transform. In ICDE, 2010.

[25] J. Xu, Z. Zhang, X. Xiao, and G. Yu. Differentially private
histogram publicaiton. In ICDE, 2012.

[26] G. Yaroslavtsev, G. Cormode, C. M. Procopiuc, and
D. Srivastava. Accurate and efficient private release of
datacubes and contingency tables. In ICDE, 2013.

[27] G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and
Z. Hao. Low-rank mechanism: optimizing batch queries
under differential privacy. PVLDB, 5(11):1352–1363, 2012.

[28] A. Yuille and A. Rangarajan. The concave-convex
procedure. Neural Computation, 15(4):915–936, 2003.

[29] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and
X. Xiao. Privbayes: Private data release via bayesian
networks. In SIGMOD, 2014.

[30] X. Zhang, R. Chen, J. Xu, X. Meng, and Y. Xie. Towards
accurate histogram publication under differential privacy.
In SDM, 2014.

