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Abstract— With the rapid increasing capacity of flash chips,
flash-aware indexing techniques are highly desirable for flash
devices. The unique features of flash memory, such as the
erase-before-write constraint and the asymmetric read/write cost,
severely deteriorate the performance of the traditional B+-tree
algorithm. In this paper, we propose a new indexing method,
called lazy-updateB+-tree, to overcome the limitations of flash
memory. The basic idea is to defer the time of committing update
requests to the B+-tree by buffering them in a segment of main
memory. They are later committed in groups so that each write
operation can be amortized by a bunch of update requests.
We identify a victim selection problem for the lazy-update B+-
tree and develop two heuristic-based commit policies to address
the problem. Simulation results show that the proposed lazy-
update method, along with a well-designed commit policy, greatly
improves the update performance of the traditional B+-tree while
preserving the query efficiency.

I. I NTRODUCTION

Flash memory has been adopted as the main storage me-
dia for a wide spectrum of mobile and embedded devices.
Compared with traditional magnetic hard disks, flash memory
is advantageous in various aspects: faster data access, lighter
weight, smaller dimensions, better shock resistance, lower
power consumption, and less noise. Furthermore, with recent
technology breakthroughs in both capacity and reliability,
flash-based devices become capable of supporting more com-
plex and data-centric tasks. Therefore, more and more critical
DBMS applications are expected to run on these devices.

However, flash memory exhibits a number of unique fea-
tures which might have a significant impact on the efficiency of
state-of-the-art database implementations. Firstly, flash mem-
ory has a restriction that an in-place update must be preceded
by an erase operation. Even worse, the granularity of erase
operations is a block, which is composed of a number of pages.
This implies in-place updates are inefficient on flash memory.
Secondly, the page write cost is much more expensive than
the read cost, while the erase-before-write constraint makes
the write cost even higher. Table I shows the read/write/erase
speed of a Samsung flash memory chip [8]. We can observe
that the ratio of write speed to read speed is 1:2.5, while the
ratio of erase speed to read speed is about 1:18.7. Thirdly,
each block can bear a limited number of erase cycles (typically
10,000∼100,000 times). A block will be worn out when this
number is exceeded. After a significant number of blocks
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TABLE I: Access Time: Hard Disk vs. Flash Memory [8]
Media Access time

Read(2KB) Write(2KB) Erase(128KB)
Hard Disk† 12.7ms 13.7ms N/A

Flash Memory‡ 80 µs 200 µs 1.5 ms
Hard Disk†: Seagate Barracuda 7200.7 ST380011A

Flash Memory‡: Samsung K9WAG08U1A 16 Gbits

are worn-out, flash memory would become unstable. These
features of flash memory lead to a new design principle for
flash-aware data access algorithms: they should incur as few
writes as possible, even at the price of introducing more reads
or computational cost.

B+-tree is the most widely-used index structure to expedite
query processing. Although B+-tree can achieve high query
efficiency, maintaining its structure usually requires intensive,
fine-grained updates over B+-tree nodes. Obviously, the tra-
ditional B+-tree algorithm does not follow the above design
principle and hence would encounter severe performance
degradation on flash memory, especially when the workload
is update-intensive.

In view of the asymmetric read/write cost, flash-aware
indexing methods have been developed in [10], [13] to re-
duce the update cost of B+-tree by logging data changes on
flash pages. In this paper, we suggest a different approach
that buffers data updates in a segment of main memory
(calledlazy-update pool). A new indexing method, calledlazy-
updateB+-tree, is then proposed. Consider an update sequence
{q1, q2, q3, q4}, whereq1 andq3 will insert keys into leaf node
1, while q2 andq4 will insert keys into leaf node 2. Under the
traditional method, both nodes will be updated twice. In the
lazy-update B+-tree, these update requests will be temporarily
stored in the lazy-update pool. The benefit is two-folded. First,
the buffered update requests can later be committed to the
B+-tree in batch, thereby sharing some reading cost of B+-
tree in locating the leaf nodes to update. Second, the update
sequence can be re-ordered into groups, i.e.,{q1, q3} into one
group, and{q2, q4} into another group. Then, by group-based
commitment, both nodes 1 and 2 are updated only once. That
is, half of write operations can be saved. Furthermore, the
proposed lazy-update B+-tree method is complementary to
the aforementioned log-based indexing methods. They can be
preceded by our method to group update requests so as to
further improve their performance. However, the lazy-update
B+-tree is not implemented without cost. A query now will
have to search the lazy-update pool in addition to the B+-tree.



Nonetheless, by striking a good trade-off between the saving
from group updates and the overhead from increased query
complexity, our approach improves the overall performance.

For the lazy-update B+-tree, when a new update request
arrives and the lazy-update pool is full, a commit policy
should be adopted to select a group of update requests for
commitment in order to make room for the new request. An
efficient commit policy is important for the lazy-update B+-
tree method, as it has a great impact on the effect of update
grouping. Ideally, an optimal commit policy should always
select those groups which do not have any further update
requests to commit. As a result, the number of write operations
can be minimized. However, this is unlikely to achieve in
practice due to the following two reasons. First, the groups
without further update requests do not always exist. Second,
future update requests are not known in advance. Therefore,
an online commit policy should be carefully designed to
maximize the effect of update grouping and thus minimize
the write cost.

The rest of the paper is organized as follows. Section II gives
an overview of the lazy-update B+-tree method. In Section
III, we define the victim selection problem and propose
two practical solutions. Section IV shows the performance
evaluation results. In Section V, we review the related work on
B+-tree algorithms and flash-based data management. Finally,
Section VI concludes the paper.

II. L AZY-UPDATE B+-TREE OVERVIEW

Normally, B+-tree nodes are stored on the secondary storage
media. The main memory usually caches the nodes accessed
recently to avoid retrieving them again from the secondary
storage. Thanks to in-memory caching, updates on the cached
nodes can be committed together. However, with limited
memory, only a few nodes can be cached and hence the
cached nodes are usually swapped out before they can receive
adequate update requests to commit together. As a result,
solely relying on such a caching mechanism is unlikely to
save many write operations.

To make efficient use of the main memory resources, we
propose to divide the main memory into two parts: one for
caching corresponding pages of accessed B+-tree nodes as
usual (known aspage cache) and the other for buffering update
requests (calledlazy-update pool). Each update request is in
the form of{key, recptr, type}, wherekey is the value of the
key to be inserted/deleted,recptr is the pointer of the inserted
record (null for deletion), andtype indicates the action type
(i.e., ‘i’ stands for insertion and ‘d’ for deletion). A request
to modify a key is represented by an insert-type request and a
delete-type request. For instance, an update request to change
an entry from 5* to 6* is denoted by{5, /, d} and{6, *, i}.

Algorithm 1 gives an overview of thelazy-updateB+-
tree method. Whenever an update request arrives, instead of
being committed to the B+-tree immediately, it is temporarily
stored in the lazy-update pool. Inside this pool, we cancel
out those pair update requests which have the same key value
but opposite action types, and remove them from the pool.

Furthermore, update requests are organized ingroups. Each
set of update requests which are updating the same leaf node
forms a group. When the pool cannot accommodate more
update requests, guided by a commit policy, one group of
requests are selected as victims and committed to the B+-tree
to release space. For queries, in addition to searching over the
B+-tree by the traditional algorithm, an additional search of
the lazy-update pool is required.

while a requestR arriving do
if R is an update requestthen

if lazy-update pool is fullthen
Use a commit policy to select a group of requests
asvictims;
Commit victims to the B+-tree in bulk;

Buffer R in the lazy-update pool;
Use cancel-out policy to eliminate redundant requests;

else
/* R is a query request */
Searching overlazy-update poolto get query resultQ1;
Apply traditional algorithm on B+-tree to get query
resultQ2;
MergeQ1 andQ2 to get the final query result;

Algorithm 1 : Overview of Lazy-update B+-tree
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Fig. 1: Lazy-update B+-tree Example

The proposed method groups small updates for the same
B+-tree node, thereby reducing the number of write opera-
tions. Consider the B+-tree in Figure 1(a), where four update
requests are issued, i.e., inserting keys 6 and 30, and then
deleting keys 5 and 90. Under the traditional method, these
updates are committed in their arrival order. First, the insertion
of key 6 will trigger a split for leaf page D, which propagates
the update further to pages E, B and A. Next, key 30 will
be stored on leaf page E. Finally, the deletions of keys 5 and
90 will incur updates on pages D and H, respectively. As a
result, seven pages (i.e., D, E, B, A, E, D, H) will be updated
sequentially. Under the proposed method, the update requests
will be stored in the lazy-update pool first (see Figure 1(b)).
Later on, these requests can be propagated to the B+-tree in
groups. First,{5, /, d} and {6, *, i} will be committed to
page D together, and then{30, *, i} and {90, /, d} will be
committed to page E and H, respectively. As no rebalancing
operations (i.e., splitting/merging/redistributing) are required,
only three pages (i.e., D, E, H) will be updated — a cost
saving of 57% compared to the traditional method.

In the lazy-update B+-tree method, how to select victims
when the lazy-update pool is full is a critical issue, because



it affects the number of small updates that can be gathered.
Continue with the example in Figure 1. Suppose that besides
those four update requests, we have another sequence of four
update requests – deleting keys 40 and 95 and then inserting
keys 99 and 100. As the lazy-update pool can hold only four
requests, this request sequence will be committed in several
batches. Consider a commit policy which always selects all
in-pool requests as victims. As a result, these requests are
committed in two batches, i.e.,{6, *, i}, {30, *, i}, {5, /, d}
and{90, /, d} in the first batch, while{40, /, d}, {95, /, d},
{99, *, i} and {100, *, i} in the second batch. As described
previously, pages D, E and H will be updated in the first batch.
In the second batch,{40, /, d} is committed to page E, while
{95, /, d}, {99, *, i} and{100, *, i} are committed to page H
together, Therefore, there are totally five pages (i.e., D, E, H,
E, H) updated using this policy. However, if we choose another
policy which commits the requests in three batches: batch 1
— {6, *, i} and{5, /, d}, batch 2 —{30, *, i} and{40, /, d}
and batch 3 —{90, /, d}, {95, /, d}, {99, *, i} and{100, *, i},
then in batch 1 only page D is updated; similarly in batches 2
and 3, only pages E and H are updated, respectively. That is,
only three pages are updated using this policy. As the commit
policy has a great impact on the performance of the lazy-
update B+-tree method, in the next section, we will develop
two policies which differ in how the victim is selected.

III. C OMMIT POLICIES

A. Victim Selection Problem

The victim selection problem is to schedule an optimal com-
mitting sequence of the lazy-update requests with minimum
I/O cost. In detail, we formulate it as follows:

Definition 1: Given a request sequenceS = σ1σ2 · · ·σm, each
of which represents a key insertion/deletion on the B+-tree.
Consider a lazy-update pool which can hold up toN update
requests. LetPi be the set of update requests residing in the
pool whenσi arrives, andVi be the victim group selected to
release space. Initially, the pool is empty, thusP1 = φ and
V1 = φ . For all Pi (i = 2, · · · ,m, m + 1)

Pi =
{

Pi−1 ∪ σi−1, Vi−1 = φ if |Pi−1| < N
Pi−1 ∪ σi−1 − Vi−1, Vi−1 ⊆ Pi−1 if |Pi−1| = N

.

(1)
The Victim Selection Problemis to find a sequenceV =

V1V2 · · ·Vm which satisfies (1) and minimizes the following
cost function:

F (S) =
m∑

i=1

cost(Vi) + cost(Pm+1), (2)

wherecost(Vi) and cost(Pm+1) are the costs of committing
update requests inVi andPm+1, respectively.

In this paper, we focus on the online case when the request
sequence is unknown in advance. Hence, the selection of
victims can only base on the knowledge of past update
requests. It is without doubt that an optimal commit policy
is hard to obtain in such cases. In the following, we propose
two heuristic-based solutions.

B. Biggest Size Policy

A hit occurs if a newly arrived update request has an existing
group in the pool to join. In order to increase the hit ratio, we
should keep as many groups as possible in the pool. Therefore,
it is more profitable to evict one large group than to evict a
bunch of small ones to reclaim the same amount of space.
Moreover, as a large group has more update requests, the
amortized update cost for each request is usually low enough
for commitment. This motivates us to propose thebiggest size
policy. Here, the size of a group is defined as the number
of update requests residing in the group. This strategy is
simple and is easy to implement — among all groups of
requests, select the one with the largest size as the victim
group, breaking ties by choosing the least-recently-hit group.

C. Cost-based Policy

While the biggest size policy aims to maximize the hit
ratio, the objective of the cost-based policy is to minimize the
price resulting from evicting victim groups, which is defined
as follows. Intuitively, a group gradually expands as long as
it stays in the pool to receive new requests. In other words,
keeping a group is profitable as it can gather more update
requests so that the update cost can be amortized by more
requests. A gain function is defined to quantify that profit for
each groupg:

gain(g) = cost(R) + cost(R′)− cost(R ∪R′), (3)

whereR is the set of update requests residing ing, R′ is the
set of new update requests issued in some future periodT ,
the first two items are the write costs of committingR andR′

separately, and the last item is the write cost of committing
them together. In essence, the gain value of a group is the
saving of write operations which can be obtained if this group
is kept in the pool during the periodT . We define the price
for evicting a groupg as its gain value.

In the following, we will discuss how to compute the
gain value. To facilitate our analysis, we further define the
following notations:
• D: the set of leaf nodes to be updated ifR is committed.
• dk: the k-th leaf node inD.
• rangek: the value range ofdk.
• f(k; r; t) : the probability of havingk update requests

whose key values are in the ranger during the periodt.
For eachrangek, if ∃r′ ∈ R′,r′.key ∈ rangek, then as

both ofcost(R) andcost(R′) include a write on the leaf node
dk, we can save one page write ifR and R′ are committed
together. Otherwise, there is no saving on write operations.
Therefore, the saving ondk is (1 − f(0; rangek;T )) · Cw,
whereCw is the cost of one page writing. By adding up the
cost savings on each leaf node inD, we can get the value of
gain(g). That is, we have the following formula:

gain(g) '
∑

dk∈D

((1− f(0; rangek; T )) · Cw). (4)

The approximation is due to the omission of some cost
savings which do not frequently happen (e.g., all requests in



R are cancelled out due to matched pairs inR′, which results
in more cost savings; also, cost savings due to updating the
same non-leaf nodes are omitted). In order to calculate the
gain value for a group in (4), we must first identify a suitable
periodT and the probability function. In order to reduce the
calculation overhead, we setT = ∞. Sincef(0; r;∞) = 0,
(4) can be simplified as:

gain(g) '
∑

dk∈D

Cw. (5)

Thus, the gain value is linear to the number of leaf nodes
that are updated ifR is committed. Note that although the
update requests in a group are applied on a single leaf node,
neighboring leaf nodes will also be updated when rebalancing
operations are involved (in that case,|D| > 1).

The amount of space reclaimed by evicting a group is
proportional to its size. In order to minimize the total price
for evicting groups, a heuristic solution is to spend the lowest
price for each unit of reclaimed space, i.e., to evict the group
with the minimum value given byH(g) = gain(g)/g.size
whenever the pool is full. We call thiscost-basedpolicy.
Similar to the biggest size policy, the cost-based policy breaks
ties by choosing the least-recently-hit group.

To compute the gain value for a group, we need to access
its corresponding leaf node to know the node size (i.e., the
number of entries in the node). This leads to many additional
read operations. However, as we only need to find out the
group with the lowest heuristic value during each victim
selection process, we propose some pruning techniques to
avoid calculating the exact gain value for every group. Due to
space limitations, the detailed pruning algorithms are omitted
here. Interested readers are referred to [12] for details.

It is easy to see that the cost-based policy degenerates
to the biggest size policy when no rebalancing operations
are involved in committing the victims, because under this
circumstance|D| = 1 for each group and thus each group has
an equal evicting price (i.e.,Cw).

IV. PERFORMANCEEVALUATION

A. Simulation Setup & Performance Metrics

We conducted a simulation study on a PC running Windows
XP SP2 with an Intel Quad 2.4GHz CPU and 4GB memory.
We implemented an FTL module [5] to emulate a 2GB flash
memory whose block size and page size are 128 KB and 2
KB, respectively.

We implemented both the lazy-update B+-tree method and
the traditional B+-tree method upon the FTL for performance
comparison. Specifically, the algorithms under evaluation in-
clude: traditional B+-tree (calledBasic), lazy-update B+-tree
with the biggest size policy (calledBig), and lazy-update
B+-tree with the cost-based policy (calledCost). In order
to verify the effectiveness of the proposed commit policies,
we also implemented the lazy-update method with the LRU
policy (called LRU) and the FIFO policy (calledFIFO) for
comparison. As mentioned earlier, we do not compare the
lazy-update method with the existing flash-aware B+-tree

TABLE II: Default Simulation Parameter Settings
Parameter Setting
Page size/Block size 2 KB/128KB
Key entry /Update request size 12 bytes
Index size 610,907 key entries
B+-tree order 85 by default
Memory size 1% of index size
Buffer Pool size 50% memory space by default

algorithms (e.g., BFTL) because they are complementary to
our proposed method.

For a fair comparison, the total main memory allocated for
each algorithm is the same (1% of the index size). LRU was
used as the replacement policy of the page cache. Both the
size of a key entry in each node and the size of an update
request are 12 bytes (8 bytes for the key value and 4 bytes for
the page address). The order of B+-tree is set to 85 so that
each node can exactly fit in a page. By default, the buffer pool
of the lazy-update B+-tree algorithms is configured to be 50%
of the assigned memory. We summarize the fault parameter
settings in Table II.

In our evaluation, we constructed a dataset from DBLP,1

which contains 610,907 distinct authors. A B+-tree index was
built on their names. The authors who appeared in DBLP
before year 2007 were used to build the initial B+-tree index
(with 540,936 entries). Then, each algorithm was tested by
running the following workloads:

• W-Query (query-intensive workload): contains 80%
queries, 20% updates.

• W-Update (update-intensive workload): contains 20%
queries, 80% updates.

In order to evaluate the performance with differ-
ent delete/insert ratios, we subdivided the above work-
loads into W-Query(Insert-only),W-Update(Insert-only),W-
Query(Mix) and W-Update(Mix). In the former two work-
loads, the authors who appeared after year 2007 are inserted
into the index. In the latter two, 60% of updates are of insert-
type, while 40% are of delete-type. The performance metrics
include the numbers of page reads/writes and the CPU time of
the algorithms. We also report the overall I/O cost based on
the write/read speed given in Table I. The number of blocks
erased is omitted as erase operations seldom happen during
our simulation.
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Fig. 2: Performance under W-Query(Insert-only)

1DBLP database: http://www.informatik.uni-trier.de/∼ley/db/.
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Fig. 3: Performance under W-Update(Insert-only)
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Fig. 4: Performance under W-Query(Mix)

B. Overall Evaluation

Figures 2 through 5 show the performance of all algorithms
under different workloads. We can observe that the lazy-
update algorithms greatly outperform the traditional B+-tree
algorithm: the number of page writes is reduced by half for
both query-intensive and update-intensive workloads. More-
over, the number of page reads is about 16% less for the query-
intensive workload, while it is over 33% less for the update-
intensive workload. This is because with the lazy-update
method, the update cost of each B+-tree node is amortized by a
group of requests and thus considerable write/read operations
can be saved. In addition, the overall computational cost of
lazy-update algorithms is not hindered by the extra cost of
searching over the lazy-update pool for query processing, as
their computational cost to update a node is also amortized by
a group of requests.

Among different commit policies, the proposed biggest size
policy and cost-based policy outperform conventional replace-
ment policies (i.e., LRU and FIFO) on both read and write
costs. Specifically, the number of page writes is 16%∼20%
less than that of conventional replacement policies, while it
is 10%∼26% less for the number of page reads. In general,
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Fig. 5: Performance under W-Update(Mix)

the cost-based policy incurs the fewest write operations and
achieves the best overall performance, whereas the biggest
size policy requires the fewest read operations and least
computational cost. This can be explained as follows. Since
the cost-based policy takes the rebalancing cases into account,
it can save more write operations. However, as the victim
selection of the cost-based policy requires accessing the leaf
nodes for calculating gain values, additional read operations
and computational cost are incurred.

C. Effect of Buffer Pool Size

In this set of the experiment, we evaluate the perfor-
mance of lazy-update algorithms by running the workload W-
Query(Mix) under different buffer pool sizes. Figure 6 shows
the results while the buffer pool ratio is varied from 0.1 to
0.94. Note that 0.94 is the maximum ratio we can set as the
page cache should hold at least 2 pages (one for caching the
root node, and the other for caching the current processing
node). When the ratio increases from 0.1 to 0.9, the number of
page reads/writes decreases. This can be explained as follows.
The bigger is the buffer pool, the more can update requests be
buffered. As a result, it is more likely to group update requests
and hence each update cost can be amortized by more requests.
When the ratio is higher than 0.9, however, as there is little
space for caching nodes, frequent page swappings in the page
cache are incurred and hence the performance becomes worse.

80K

105K

130K

155K

180K

205K

230K

0.1 0.3 0.6 0.7 0.8 0.85 0.9 0.92 0.94

Buffer Pool Ratio

N
u

m
b

er
 o

f 
P

ag
e 

W
ri

te
s Big Cost

1200K

1300K

1400K

1500K

1600K

1700K

0.1 0.3 0.6 0.7 0.8 0.85 0.9 0.92 0.94

Buffe r Pool Ratio

N
u

m
b

er
 o

f 
P

ag
e 

R
ea

d
s Big Cost

(b): Number of Page Writes(a): Number of Page Reads

80K

105K

130K

155K

180K

205K

230K

0.1 0.3 0.6 0.7 0.8 0.85 0.9 0.92 0.94

Buffer Pool Ratio

N
u

m
b

er
 o

f 
P

ag
e 

W
ri

te
s Big Cost

1200K

1300K

1400K

1500K

1600K

1700K

0.1 0.3 0.6 0.7 0.8 0.85 0.9 0.92 0.94

Buffe r Pool Ratio

N
u

m
b

er
 o

f 
P

ag
e 

R
ea

d
s Big Cost

80K

105K

130K

155K

180K

205K

230K

0.1 0.3 0.6 0.7 0.8 0.85 0.9 0.92 0.94

Buffer Pool Ratio

N
u

m
b

er
 o

f 
P

ag
e 

W
ri

te
s Big Cost

1200K

1300K

1400K

1500K

1600K

1700K

0.1 0.3 0.6 0.7 0.8 0.85 0.9 0.92 0.94

Buffe r Pool Ratio

N
u

m
b

er
 o

f 
P

ag
e 

R
ea

d
s Big Cost

(b): Number of Page Writes(a): Number of Page Reads

Fig. 6: Effect of Buffer Pool Size

100K

120K

140K

160K

180K

200K

32 37 42 62 77 85
B+-tree  Orde r

N
u

m
b

er
 o

f 
P

ag
e 

W
ri

te
s Big Cost

1300K

1400K

1500K

1600K

1700K

1800K

1900K

32 37 42 62 77 85
B+-tre e Order

N
u

m
b

er
 o

f 
P

ag
e 

R
ea

d
s Big Cost

(b): Number of Page Writes(a): Number of Page Reads

100K

120K

140K

160K

180K

200K

32 37 42 62 77 85
B+-tree  Orde r

N
u

m
b

er
 o

f 
P

ag
e 

W
ri

te
s Big Cost

1300K

1400K

1500K

1600K

1700K

1800K

1900K

32 37 42 62 77 85
B+-tre e Order

N
u

m
b

er
 o

f 
P

ag
e 

R
ea

d
s Big Cost

100K

120K

140K

160K

180K

200K

32 37 42 62 77 85
B+-tree  Orde r

N
u

m
b

er
 o

f 
P

ag
e 

W
ri

te
s Big Cost

1300K

1400K

1500K

1600K

1700K

1800K

1900K

32 37 42 62 77 85
B+-tre e Order

N
u

m
b

er
 o

f 
P

ag
e 

R
ea

d
s Big Cost

(b): Number of Page Writes(a): Number of Page Reads

Fig. 7: Effect of B+-tree Order

D. Effect of B+-Tree Order

We conducted a study on the impact of B+-tree order on the
performance of lazy-update algorithms with the biggest size
and cost-based policies. Figure 7 shows the W-Query(Mix)
results when the order is varied from 32 to 85. The number of
page reads/writes decreases when the B+-tree order increases.



This is due to the following two reasons. First, as each node
can hold more entries, the total number of B+-tree nodes is
decreased. As a result, the probability of update requests being
applied on the same leaf nodes is greatly increased and hence
more cost savings can be achieved. Second, when the order
increases, the frequency of rebalancing occurrences is reduced
as well. We can further observe from Figure 7(b) that the
performance improvement ofCost over Big becomes smaller
when the B+-tree order increases. Specifically, compared with
Big, Cost can save 16454 (i.e., 8.5%) write operations when
the order is 32, but it is reduced to 5433 (i.e., 4.3%) when the
order is 85. This is because the cost-based policy outperforms
the biggest size policy by taking into account rebalancing
cases, which seldom happen when the tree order is large.

V. RELATED WORK

Data management on flash-based media has received much
attention from research community in recent years. To enable
a quick deployment of flash-memory technology, early work
attempted to hide the unique characteristics of flash memory.
They focused on simulating traditional magnetic disks by flash
memory chips. Kawaguchi et al. [5] proposed a software mod-
ule called flash translation layer (FTL) to transparently access
flash memory, so that conventional disk-based algorithms and
access methods can work as usual. To overcome the erase-
before-write constraint, an out-of-place update scheme was
adopted and various garbage collection mechanisms [3], [5],
[7] were proposed to reclaim invalidated space. To lengthen
the lifetime of flash memory, wear-leveling algorithms that
attempted to evenly distribute writes/erases across all pages
were developed in [2], [4].

Besides these fundamental achievements, recent work
shifted to exploit the characteristics of flash memory to en-
hance the performance of file systems and DBMSs. In view
of the slow write speed on flash memory, the log structure
was adopted to reduce the number of write operations. Along
this direction, some flash-aware log-based file systems like
YAFFS [1] and JFFS [11] were proposed. For DBMSs running
on flash-based media, Lee and Moon [8] presented a novel
design of data logging called in-page logging (IPL) to further
improve the logging performance. Kim and Ahn [6] proposed
to use the in-device write buffer to improve the random write
performance of flash storage. Lee et al. [9] conducted a case
study to investigate how the performance of conventional
database applications is affected by the new flash-based disk.

Research efforts have also been put into optimizing B+-
tree algorithms. To overcome the asymmetric read/write speed
and the erase-before-write limitation on flash-based media,
some flash-aware B+/B-tree algorithms were developed. Wu
et al. [13] introduced BFTL, an optimized B-tree layer for
flash memory. In BFTL, all changes are written on log
pages and therefore expensive update cost for each node is
avoided. As a side effect, an in-memory Node Translation
Table (NTT) is required to maintain the list of log pages for
each node. Observing that the log-based indexing scheme is
not suitable for read-intensive workload on some flash devices,

Nath and Kansal [10] developed FlashDB, which uses a self-
tuning B+-tree that dynamically adapts its storage structure to
the workloads and storage devices. Although these indexing
methods degrade the query performance due to the need of
accessing multiple log pages when searching a single node,
the update cost is successfully reduced.

VI. CONCLUSION

In this paper, we discussed the challenges of maintain-
ing B+-tree on flash memory. To overcome the asymmetric
read/write limitation, we proposed a new indexing method,
called lazy-update B+-tree, to group update requests in order
to reduce the number of write operations. For the lazy-update
B+-tree, we identified a critical problem of victim selection,
and proposed two commit policies. Simulation results show
that the lazy-update B+-tree significantly improves the update
performance of the traditional B+-tree while still preserving
the query efficiency.
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