Lazy-Update B+-Tree for Flash Devices

Sai Tung On, Haibo Hu, Yu Li, Jianliang Xu

Department of Computer Science, Hong Kong Baptist University
Kowloon Tong, Hong Kong SAR, China
{ston, haibo, yli, xujl +@comp.hkbu.edu.hk

Abstract—With the rapid increasing capacity of flash chips, TABLE I: Access Time: Hard Disk vs. Flash Memory [8]

flash-aware indexing techniques are highly desirable for flash Media Access fime
devices. The unique features of flash memory, such as the Read(2KB) | Write(2KB) | Erase(128KB)
erase-before-write constraint and the asymmetric read/write cost, -

; et Hard Disk 12.7ms 13.7ms N/A
severely deteriorate the performance of the traditional B+-tree Fiash M 0 500 15
algorithm. In this paper, we propose a new indexing method, ash Memory : 1S 1S -~ MS
called lazy-updateB+-tree, to overcome the limitations of flash Hard Disk': Seagate Barracuda 7200.7 ST380011A

memory. The basic idea is to defer the time of committing update Flash Memory: Samsung KSWAGOBU1A 16 Gbits

requests to the B+-tree by buffering them in a segment of main
memory. They are later committed in groups so that each write are worn-out, flash memory would become unstable. These
W:ﬁgte'?]?if;?vﬁ’;mar:;gﬁ?fn ?r’oaeﬁ;‘r;g:‘ tr?; :;F;?/altjep draetqe“git_s- features of flash memory lead to a new design principle for
tree and develop two heuristic-based commit policies to address fla§h—aware da}ta access algorlthms: th.ey shou.ld incur as few
the problem. Simulation results show that the proposed lazy- Writes as possible, even at the price of introducing more reads
update method, along with a well-designed commit policy, greatly or computational cost.
improvgs the update perfo_rmance of the traditional B+-tree while B+-tree is the most widely-used index structure to expedite
preserving the query efficiency. query processing. Although B+-tree can achieve high query
efficiency, maintaining its structure usually requires intensive,
fine-grained updates over B+-tree nodes. Obviously, the tra-
Flash memory has been adopted as the main storage @fi@onal B+-tree algorithm does not follow the above design
dia for a wide spectrum of mobile and embedded devicgsrinciple and hence would encounter severe performance
Compared with traditional magnetic hard disks, flash memogegradation on flash memory, especially when the workload
is advantageous in various aspects: faster data access, lighieijpdate-intensive.
weight, smaller dimensions, better shock resistance, lowen, view of the asymmetric read/write cost, flash-aware

power consumption, and Ies_s noise. Furthc_ermore, with r‘??‘ﬁ'ﬂﬁexing methods have been developed in [10], [13] to re-
technology brea_lkthroughs in both capacity and reliability,ce the update cost of B+-tree by logging data changes on
flash-based devices become capable of supporting more cesp, pages. In this paper, we suggest a different approach
plex and data-centric tasks. Therefore, more and more critieadl; puffers data updates in a segment of main memory
DBMS applications are expected to run on these devices. (calledlazy-update pod! A new indexing method, calledzy-

However, flash memory exhibits a number of unique fegnqateB+-tree, is then proposed. Consider an update sequence
tures which might have a significant impact on the efﬂaencyc{ 1,42, 03, 41}, whereg; andgs will insert keys into leaf node

state—of-the—art. dgtabase implementations. Firstly, flash me-,pije ¢2 andg will insert keys into leaf node 2. Under the
ory has a restriction that an in-place update must be precedggiitional method, both nodes will be updated twice. In the
by an erase operation. Even worse, the granularity of ergggy._pdate B+-tree, these update requests will be temporarily
operations is a block, which is composed of a number of pagggyred in the lazy-update pool. The benefit is two-folded. First,
This implies in-place updates are inefficient on flash memoRye pyffered update requests can later be committed to the
Secondly, the page write cost is much more expensive tha yree in batch, thereby sharing some reading cost of B+-
the read cost, while the erase-before-write constraint makess i locating the leaf nodes to update. Second, the update
the write cost even higher. Table | shows the read/write/era§(_gquence can be re-ordered into groups, {@.,¢3} into one
speed of a_Samsupg flash memory chip [8]_. We can opse up, and{gs, ¢4} into another group. Then, by group-based
thqt the ratio of write speed to read s.peed is 1:2.5, wh|le_t Bmmitment, both nodes 1 and 2 are updated only once. That
ratio of erase speed to read speed is about 1:18.7. Thirgly, haif of write operations can be saved. Furthermore, the
each block can bgarallmlted numper of erase cycles (typ"?aﬂyoposed lazy-update B+-tree method is complementary to
10,006~100,000 times). A block will be worn out when thisyhe aforementioned log-based indexing methods. They can be
number is exceeded. After a significant humber of bloc'bsreceded by our method to group update requests so as to

_ _ further improve their performance. However, the lazy-update

This work was supported by the Research Grants Council of Hong Ko

(Grants HKBU210808 and HKBU211307) and Natural Science Foundati +-tree is not implemented without _COSt' A query now will
of China (Grant No. 60833005). have to search the lazy-update pool in addition to the B+-tree.

I. INTRODUCTION

Nonetheless, by striking a good trade-off between the savikgrthermore, update requests are organizedragups Each

from group updates and the overhead from increased quest of update requests which are updating the same leaf node

complexity, our approach improves the overall performanceforms a group. When the pool cannot accommodate more
For the lazy-update B+-tree, when a new update requesgtdate requests, guided by a commit policy, one group of

arrives and the lazy-update pool is full, a commit policyequests are selected as victims and committed to the B+-tree

should be adopted to select a group of update requests timrelease space. For queries, in addition to searching over the

commitment in order to make room for the new request. AB+-tree by the traditional algorithm, an additional search of

efficient commit policy is important for the lazy-update B+the lazy-update pool is required.

tree method, as it has a great impact on the effect of update

grouping. Ideally, an optimal commit policy should alway Wh”i? ?%rgq;r?sﬁdzrtgviggu%%hen

select those groups which do not have any further update if lazy-update pool is fulthen
requests to commit. As a result, the number of write operations Use a commit policy to select a group of requests
can be minimized. However, this is unlikely to achieve i asvictims

Commitvictimsto the B+-tree in bulk;

practice due to the following two reasons. First, the groups .
without further update requests do not always exist. Second, Buffer R in the lazy-update pool

. Use cancel-out policy to eliminate redundant requests;
future update requests are not known in advance. Therefore,| gjse
an online commit policy should be carefully designed t /* R is a query request */

maximize the effect of update grouping and thus minimize Searching ovefazy-update pooto get query resul):;
the write cost. ﬁ;pszlh/ga.dltlonal algorithm on B+-tree to get query
2,

The rest of the paper is organized as follows. Section Il gives
an overview of the lazy-update B+-tree method. In Section -
lll, we define the victim selection problem and propose Algorithm 1: Overview of Lazy-update B+-tree
two practical solutions. Section IV shows the performance
evaluation results. In Section V, we review the related work on A
B+-tree algorithms and flash-based data management. Finally,
Section VI concludes the paper.

Merge @1 and Q- to get the final query result;

{6, i}

{30, %, 1}

Cc
80
F SG H

{90, /, d}

Il. LAzY-UPDATE B+-TREE OVERVIEW

Normally, B+-tree nodes are stored on the secondary storage_D :
media. The main memory usually caches the nodes accesse20 [

recently to avoid retrieving them again from the secondary (@) B+-tree (order = 1) (b) Lazy-Update
storage. Thanks to in-memory caching, updates on the cached Pool (size = 4)
nodes can be committed together. However, with limited Fig. 1: Lazy-update B+-tree Example

memory, only a few nodes can be cached and hence the
cached nodes are usually swapped out before they can receivEhe proposed method groups small updates for the same
adequate update requests to commit together. As a resBlt;tree node, thereby reducing the number of write opera-
solely relying on such a caching mechanism is unlikely tons. Consider the B+-tree in Figure 1(a), where four update
save many write operations. requests are issued, i.e., inserting keys 6 and 30, and then
To make efficient use of the main memory resources, vaeleting keys 5 and 90. Under the traditional method, these
propose to divide the main memory into two parts: one farpdates are committed in their arrival order. First, the insertion
caching corresponding pages of accessed B+-tree nodesfdsey 6 will trigger a split for leaf page D, which propagates
usual (known apage cachpand the other for buffering updatethe update further to pages E, B and A. Next, key 30 will
requests (calledazy-update pogl Each update request is inbe stored on leaf page E. Finally, the deletions of keys 5 and
the form of {key, recptr, type}, wherekeyis the value of the 90 will incur updates on pages D and H, respectively. As a
key to be inserted/deletetkcptr is the pointer of the inserted result, seven pages (i.e., D, E, B, A, E, D, H) will be updated
record (null for deletion), andype indicates the action type sequentially. Under the proposed method, the update requests
(i.e., ‘' stands for insertion and ‘d’ for deletion). A requeswill be stored in the lazy-update pool first (see Figure 1(b)).
to modify a key is represented by an insert-type request andlaer on, these requests can be propagated to the B+-tree in
delete-type request. For instance, an update request to chagrgeips. First,{5, /, d} and {6, *, i} will be committed to
an entry from 5% to 6* is denoted by5, /, d} and {6, *, i}. page D together, and thef80, *, i} and {90, /, d will be
Algorithm 1 gives an overview of thdazy-updateB+- committed to page E and H, respectively. As no rebalancing
tree method. Whenever an update request arrives, insteadpérations (i.e., splitting/merging/redistributing) are required,
being committed to the B+-tree immediately, it is temporarilpnly three pages (i.e., D, E, H) will be updated — a cost
stored in the lazy-update pool. Inside this pool, we cancghving of 57% compared to the traditional method.
out those pair update requests which have the same key valuln the lazy-update B+-tree method, how to select victims
but opposite action types, and remove them from the pow@lhen the lazy-update pool is full is a critical issue, because

it affects the number of small updates that can be gather&l. Biggest Size Policy

Continue with the example in Figure 1. Suppose that besidesy hjt occurs if a newly arrived update request has an existing
those four update requests, we have another sequence of {gfip in the pool to join. In order to increase the hit ratio, we
update requests — deleting keys 40 and 95 and then inseri{hgy|d keep as many groups as possible in the pool. Therefore,
keys 99 and 100. As the lazy-update pool can hold only foyris more profitable to evict one large group than to evict a
requests, this request sequence will be committed in sevajghch of small ones to reclaim the same amount of space.
patches. Consider a cpr_nmit policy which always selects §fioreover, as a large group has more update requests, the
in-pool requests as victims. As a result, these requests gfortized update cost for each request is usually low enough
committed in two batches, i.e{f, *, i}, {30, * i}, {5, /, d' for commitment. This motivates us to propose Higgest size
and{90, /, d: in the first batch, while{40, /, d}, {95, /, d', policy. Here, the size of a group is defined as the number
{99, *, i} and{100, *, i} in the second batch. As describegyt ypdate requests residing in the group. This strategy is
previously, pages D, E and H will be updated in the first batcg-,mme and is easy to implement — among all groups of
In the second batcHA40, /, d- is committed to page E, while requests, select the one with the largest size as the victim

{95, /, d}, {99, *, i} and {100, *, i} are pommitted FO page H group, breaking ties by choosing the least-recently-hit group.
together, Therefore, there are totally five pages (i.e., D, E, H

E, H) updated using this policy. However, if we choose anothér Cost-based Policy

policy which commits the requests in three batches: batch 1While the biggest size policy aims to maximize the hit
— {6, *,i} and{5, /, d}, batch 2 —{30, *, i} and{40, /, d ratio, the objective of the cost-based policy is to minimize the
and batch 3 —90, /, d}, {95, /, d}, {99, *, i} and{100, *, i}, price resulting from evicting victim groups, which is defined
then in batch 1 only page D is updated; similarly in batchesa follows. Intuitively, a group gradually expands as long as
and 3, only pages E and H are updated, respectively. Thatiisstays in the pool to receive new requests. In other words,
only three pages are updated using this policy. As the comrkéeping a group is profitable as it can gather more update
policy has a great impact on the performance of the lazgequests so that the update cost can be amortized by more
update B+-tree method, in the next section, we will develaggquests. A gain function is defined to quantify that profit for

two policies which differ in how the victim is selected. each groupy:
IIl. CoMMIT POLICIES gain(g) = cost(R) + cost(R') — cost(RUR'), (3)
A. Victim Selection Problem where R is the set of update requests residingginR’ is the

The victim selection problem is to schedule an optimal conset of new update requests issued in some future périod
mitting sequence of the lazy-update requests with minimuthe first two items are the write costs of committiRgand R’
I/O cost. In detail, we formulate it as follows: separately, and the last item is the write cost of committing

them together. In essence, the gain value of a group is the

Definition I Given a request sequenSe= o102 - - - 01, €aCh saving of write operations which can be obtained if this group
of which represents a key insertion/deletion on the B+-treg. kept in the pool during the periofl. We define the price
Consider a lazy-update pool which can hold upNoupdate fqor evicting a groupy as its gain value.
requests. Let’; be the set of update requests residing in the |n the following, we will discuss how to compute the
pool wheng; arrives, andV; be the victim group selected t0gain value. To facilitate our analysis, we further define the
release space. Initially, the pool is empty, ths = ¢ and following notations:

Vi=¢.ForalP; (i=2,---,mm+]1) « D: the set of leaf nodes to be updatedifis committed.

p— { P 1Uo;_q, Vici=¢ if |Pi,1| <N e dj: the k-th leaf node inD.
T PoiUoiy —Viey, Viei C Py if|P—1i|=N e rangeg: the value range ofl;,.
(1) o f(k;r;t) : the probability of havingk update requests
The Victim Selection Problents to find a sequenc& = whose key values are in the rangeluring the period-.
ViVa - - -V, which satisfies (1) and minimizes the following Eqr eachrangey, if 3" € R'y'.key € rangey, then as
cost function: both of cost(R) andcost(R') include a write on the leaf node
Ui di, we can save one page write i and R’ are committed
F(5) = Zlco‘%(vi) + cost(Prnt1), © together. Otherwise, there is no saving on write operations.

_ Therefore, the saving oy, is (1 — f(0;rangex;T)) - Cu,
where cost(V;) and cost(Py,+1) are the costs of committing where C,, is the cost of one page writing. By adding up the
update requests i; and P, 1, respectively. cost savings on each leaf node/in we can get the value of

In this paper, we focus on the online case when the requgatn(g). That is, we have the following formula:
sequence is unknown in advance. Hence, the selection of

victims can only base on the knowledge of past update 9¢in(g) = > ((1—f(0;range;T)) - Cu). (4)
requests. It is without doubt that an optimal commit policy dr €D

is hard to obtain in such cases. In the following, we proposeThe approximation is due to the omission of some cost
two heuristic-based solutions. savings which do not frequently happen (e.g., all requests in

R are cancelled out due to matched pairghify which results TABLE II: Default Simulation Parameter Settings
in more cost savings; also, cost savings due to updating thBarameter Setting

same non-leaf nodes are omitted). In order to calculate thBage size/Block size 2 KB/128KB

gain value for a group in (4), we must first identify a suitable Key entry /Update request size 12 bytes _
period T and the probability function. In order to reduce the 'ndex size 610,907 key entries

. . B+-tree order 85 by default
calculation o_verhead, we sét = oco. Since f(0;7;00) = 0, Memory size 1% of index size
(4) can be simplified as: Buffer Pool size 50% memory space by default
gain(g) ~ Z Cy. (5) -
dreD algorithms (e.g., BFTL) because they are complementary to

Thus, the gain value is linear to the number of leaf nod &' propospd meth‘?d- .
that are updated i? is committed. Note that although the For a fa|r comparison, the total main memory allocated for
update requests in a group are applied on a single leaf no@ch algorithm is the same (1% of the index size). LRU was

neighboring leaf nodes will also be updated when rebalanciHjed @s the replacement policy of the page cache. Both the
operations are involved (in that cas®)| > 1). size of a key entry in each node and the size of an update

The amount of space reclaimed by evicting a group fequest are 12 bytes (8 bytes for the key vglue and 4 bytes for
proportional to its size. In order to minimize the total pricéhe page address). Thg Qrder of B+-tree is set to 85 so that
for evicting groups, a heuristic solution is to spend the lowe§fch node can exactly fitin a page. By default, the buffer pool
price for each unit of reclaimed space, i.e., to evict the gro@ the 1azy-update B+-tree algorithms is configured to be 50%
with the minimum value given by (¢) = gain(g)/g.size of the assigned memory. We summarize the fault parameter

whenever the pool is full. We call thisost-basedpolicy. settings in Table 1I.

Similar to the biggest size policy, the cost-based policy breaksl_n our evz_aluation, we (?orjstructed a dataset from DBLP,
ties by choosing the least-recently-hit group. which contains 610,907 distinct authors. A B+-tree index was

To compute the gain value for a group, we need to accé%lé"t on their names. The authors who appeared in DBLP

its corresponding leaf node to know the node size (i.e., thgfore year 2007 were used to build the initial B+-tree index
number of entries in the node). This leads to many addition/ith 540,936 entries). Then, each algorithm was tested by
read operations. However, as we only need to find out tH&NNg the following workloads:

group with the lowest heuristic value during each victim « W-Query (query-intensive workload): contains 80%
selection process, we propose some pruning techniques to dueries, 20% updates.

avoid calculating the exact gain value for every group. Due tos W-Update (update-intensive workload) contains 20%
space limitations, the detailed pruning algorithms are omitted ~dueries, 80% updates.

here. Interested readers are referred to [12] for details. In order to evaluate the performance with differ-

It is easy to see that the cost-based policy degeneragzd delete/insert ratios, we subdivided the above work-
to the biggest size policy when no rebalancing operatiolmads into W-Query(Insert-only),W-Update(Insert-only),W-
are involved in committing the victims, because under thiQuery(Mix) and W-Update(Mix). In the former two work-
circumstanceD| = 1 for each group and thus each group hadsads, the authors who appeared after year 2007 are inserted
an equal evicting price (i.eG). into the index. In the latter two, 60% of updates are of insert-
type, while 40% are of delete-type. The performance metrics
include the numbers of page reads/writes and the CPU time of
A. Simulation Setup & Performance Metrics the algorithms. We also report the overall I/O cost based on

We conducted a simulation study on a PC running Windowie write/read speed given in Table |I. The number of blocks
XP SP2 with an Intel Quad 2.4GHz CPU and 4GB memorgrased is omitted as erase operations seldom happen during
We implemented an FTL module [5] to emulate a 2GB flagbur simulation.
memory whose block size and page size are 128 KB and 2
KB, reSpeCtiVEly. 600K W Page Writes [Page Reads

We implemented both the lazy-update B+-tree method ar
the traditional B+-tree method upon the FTL for performanc
comparison. Specifically, the algorithms under evaluation ir
clude: traditional B+-tree (calleBasiq, lazy-update B+-tree
with the biggest size policy (calledig), and lazy-update
B+-tree with the cost-based policy (call€dos). In order
to verify the effectiveness of the proposed commit policies,
we also implemented the lazy-update method with the LRU Fig 2: performance under W-Query(Insert-only)
policy (called LRU) and the FIFO policy (calledrIFO) for
comparison. As mentioned earlier, we do not compare the
lazy-update method with the existing flash-aware B+-tree!DBLP database: http://www.informatik.uni-trier.degy/db/.

IV. PERFORMANCEEVALUATION

mIio ocpPU

N
a
=}

N
=
S}

-
@
=}

=
15
S

o
=}

120K 63 59 54 48

Number of Page Reads / Writes
Avg Response Time (us /request)

0K

o

Basic LRU FIFO Big Cost Basic LRU FIFO Big Cost

Number of Page Reads / Writes

Number of Page Reads / Writes

200K

B
| ST
o 2
=~ X

S ©
=} =}
= =

=}
=

] i o
Page Writes Page Reads mIO O CPU

BN W s g
o 9 & g g9
& & ©o o o

Avg Response Time (us /request)

S}

Basic LRU FIFO Big Cost Basic LRU FIFO Big

Cost

Fig. 3: Performance under W-Update(Insert-only)

1800K

1440K

1080K

720K

360K

0K

W Page Writes O Page Reads

=}[0) ocpPu

o B8 & 8 ¥

Avg Response Time (us / request)

o

Basic LRU FIFO Big Cost Basic LRU FIFO Big

Fig. 4: Performance under W-Query(Mix)

B. Overall Evaluation

Figures 2 through 5 show the performance of all algorith
under different workloads. We can observe that the IazX
update algorithms greatly outperform the traditional B+-treé
algorithm: the number of page writes is reduced by half for
both query-intensive and update-intensive workloads. Mort
over, the number of page reads is about 16% less for the que
intensive workload, while it is over 33% less for the update
intensive workload. This is because with the lazy-updat
method, the update cost of each B+-tree node is amortized b €
group of requests and thus considerable write/read operatic ~

Cost

the cost-based policy incurs the fewest write operations and
achieves the best overall performance, whereas the biggest
size policy requires the fewest read operations and least
computational cost. This can be explained as follows. Since
the cost-based policy takes the rebalancing cases into account,
it can save more write operations. However, as the victim
selection of the cost-based policy requires accessing the leaf
nodes for calculating gain values, additional read operations
and computational cost are incurred.

C. Effect of Buffer Pool Size

In this set of the experiment, we evaluate the perfor-
mance of lazy-update algorithms by running the workload W-
Query(Mix) under different buffer pool sizes. Figure 6 shows
the results while the buffer pool ratio is varied from 0.1 to
0.94. Note that 0.94 is the maximum ratio we can set as the
page cache should hold at least 2 pages (one for caching the
root node, and the other for caching the current processing
node). When the ratio increases from 0.1 to 0.9, the number of
page reads/writes decreases. This can be explained as follows.
The bigger is the buffer pool, the more can update requests be
buffered. As a result, it is more likely to group update requests
and hence each update cost can be amortized by more requests.
mVé/hen the ratio is higher than 0.9, however, as there is little
space for caching nodes, frequent page swappings in the page
ache are incurred and hence the performance becomes worse.

700K 230K

——Big---a-- Cost —<—Big ---a-- Cost

Reads
=
ites

1600K 205K 1\

180K
&,1500K

& 155K
« 1400K

o 130K

1300K 105K

Number of Page Wri

1200K

T T T T T T T 1 80K
0.1 03 06 0.7 0.8 0.85 0.9 0.920.94

0.1 0.3 0.6 0.7 0.8 0.85 0.9 0.920.94

can be saved. In addition, the overall computational cost « Bufer Pool Ratio Bufer Pool Ratio

lazy-update algorithms is not hindered by the extra cost ot

(a): Number of Page Reads (b): Number of Page Writes

searching over the lazy-update pool for query processing, as Fig. 6: Effect of Buffer Pool Size
their computational cost to update a node is also amortized by
a group of requests.

Among different commit policies, the proposed biggest Siz 4.«
policy and cost-based policy outperform conventional replaci
ment policies (i.e., LRU and FIFO) on both read and write
costs. Specifically, the number of page writes is 1&20%
less than that of conventional replacement policies, while
is 10%~-26% less for the number of page reads. In genere

Number of Page Reads / Writes

@
=}
=}

400K

300K

200K

100K

=}
=

B Page Writes O Page Reads

mio ocpPU

BN W A @
o 9 9 8 9
S & ©o o o

Avg Response Time (us / request)

o

Basic LRU FIFO Big Cost Basic LRU FIFO Big

Fig. 5: Performance under W-Update(Mix)

Cost

—*—Big -4~ Cost —e—Big --a--- Cost

.00k |
1700K
1600K
1500K

Number of Page Reads
Number of Page Writes

o |
@

32 37 42 62 7 32 37 42 62 7 85
B+-tree Order B+-tree Order

(a): Number of Page Reads (b): Number of Page Writes

Fig. 7: Effect of B+-tree Order

D. Effect of B+-Tree Order

We conducted a study on the impact of B+-tree order on the
performance of lazy-update algorithms with the biggest size
and cost-based policies. Figure 7 shows the W-Query(Mix)
results when the order is varied from 32 to 85. The number of
page reads/writes decreases when the B+-tree order increases.

This is due to the following two reasons. First, as each notlath and Kansal [10] developed FlashDB, which uses a self-
can hold more entries, the total number of B+-tree nodestiming B+-tree that dynamically adapts its storage structure to
decreased. As a result, the probability of update requests beiing workloads and storage devices. Although these indexing
applied on the same leaf nodes is greatly increased and hemethods degrade the query performance due to the need of
more cost savings can be achieved. Second, when the oralegessing multiple log pages when searching a single node,
increases, the frequency of rebalancing occurrences is reduttedupdate cost is successfully reduced.
as well. We can further observe from Figure 7(b) that the
performance improvement @ostover Big becomes smaller
when the B+-tree order increases. Specifically, compared within this paper, we discussed the challenges of maintain-
Big, Costcan save 16454 (i.e., 8.5%) write operations wheAg B+-tree on flash memory. To overcome the asymmetric
the order is 32, but it is reduced to 5433 (i.e., 4.3%) when ttigad/write limitation, we proposed a new indexing method,
order is 85. This is because the cost-based policy outperforfidled lazy-update B+-tree, to group update requests in order
the biggest size po“cy by taking into account reba|anciﬁ,'g reduce the number of write operations. For the Iazy-update
cases, which seldom happen when the tree order is |arge_ B+-tree, we identified a critical problem of victim selection,
and proposed two commit policies. Simulation results show
V. RELATED WORK that the lazy-update B+-tree significantly improves the update

Data management on flash-based media has received mefformance of the traditional B+-tree while still preserving
attention from research community in recent years. To enalii¢ query efficiency.
a quick deployment of flash-memory technology, early work
attempted to hide the unique characteristics of flash memorﬁ.

; ; . ST] Aleph one Itd., embedded debian, yaffs: A nand-flash file system.
They focused on simulating traditional magnetic disks by flas http://www,alephl. co.ukyaffs, 2002,

memory chips. Kawaguchi et al. [5] proposed a software modsz] .-p. chang and T.-W. Kuo. An efficient management scheme for large-
ule called flash translation layer (FTL) to transparently access scale flash-memory storage systems. SIKC '04: Proceedings of the

; ieles ; 2004 ACM symposium on Applied computinmages 862-868, New
flash memory, so that conventional disk-based algorithms and York, NY, USA, 2004. ACM.

access methods can work as usual. To overcome the eragg-|.-p. Chang, T.-W. Kuo, and S.-W. Lo. Real-time garbage collection for
before-write constraint, an out-of-place update scheme was flash-memory storage systems of real-time embedded systgrass.

; : ; on Embedded Computin 4):837-863, 2004.
adopted and various garbage collection mechanisms [3], [5[]4] Y.-H. Chang, J.-W. Esieﬁ’ iﬁ(%_w‘ Kuo. Endurance enhancement of

[7] were proposed to reclaim invalidated space. To lengthen” fiash-memory storage systems: an efficient static wear leveling design.
the lifetime of flash memory, wear-leveling algorithms that In DAC '07: Proceedings of the 44th annual conference on Design

ietp ; automation pages 212-217, New York, NY, USA, 2007. ACM.
attempted to evenly distribute writes/erases across all pagE? A. Kawaguc%i,gs. Nishioka, and H. Motoda. A flash-memory based file

were developed in [2], [4]. system. INUSENIX Wintey pages 155-164, 1995.
Besides these fundamental achievements, recent wolfd H. Kimand S. Ahn. Bplru: a buffer management scheme for improving

; ; ot _random writes in flash storage. FAST'08: Proceedings of the 6th
shifted to exploit the characteristics of flash memory to en USENIX Conference on File and Storage Technologpesyes 1-14,

hance the performance of file systems and DBMSs. In view gerkeley, CA, USA, 2008. USENIX Association.
of the slow write speed on flash memory, the log structur@] H-j. Kim and S.-g. Lee. A new flash memory management for

: ; flash storage system. @OMPSAC '99: 23rd International Computer
was adopted to reduce the number of write operations. Along 2 * °/%9° xpplicaﬁons Conferencpage 284, Washmgton’pDC’

this direction, some flash-aware log-based file systems like ysa, 1999. IEEE Computer Society.
YAFFS [1] and JFFS [11] were proposed. For DBMSs running8] S.-W. Lee and B. Moon. Design of flash-based dbms: an in-page logging

_ ; approach. InSIGMOD '07: Proceedings of the 2007 ACM SIGMOD
on flash-based media, Lee and Moon [8] presented a novel international conference on Management of dapages 55-66, New

design of data logging called in-page logging (IPL) to further vork, NY, USA, 2007. ACM.

improve the logging performance. Kim and Ahn [6] proposed9] ﬁVr\{ Lee, B. Mféon, C. Park, Jd-M- tt<im, and| S.-W. Kim. A case for
i : : ; : ash memory ssd in enterprise database applicationSIGMOD '08:

to use the in-device write buffer to improve the random write Proceedings of the 2008 ACM SIGMOD international conference on

performance of flash storage. Lee et al. [9] conducted a case Management of datapages 1075-1086, New York, NY, USA, 2008.

study to investigate how the performance of conventional ACM.

[; _ S. Nath and A. Kansal. Flashdb: dynamic self-tuning database for nand
database applications is affected by the new flash-based d[%% flash. InIPSN '07: Proceedings of the 6th international conference on

Research efforts have also been put into optimizing B+- |nformation processing in sensor networkeges 410-419, New York,
tree algorithms. To overcome the asymmetric read/write speed NY, USA, 2007. ACM. _ _ _
and the erase-before-write limitation on flash-based mediit! Ef' t\r?f%??ﬁgsgﬁ;fxi LT"TEX‘C’S“;:q%'gg%ggggsf”fﬁﬁtg;';)%E?Ed'”gs
some flash-aware B+/B-tree algorithms were developed. Wy s. T. on, H. Hu, Y. Li, and J. Xu. Lazy-update B+-tree for flash devices.
et al. [13] introduced BFTL, an optimized B-tree layer for Technical Report, Hong Kong Baptist Univeristy, 2009. ,
flssh memory. In BFTL, all changes are writen on log" & WiT fuendLo R Chang A efcenti e e impiementtor
pages and therefore expensive update cost for each node isg(3):19, 2007.
avoided. As a side effect, an in-memory Node Translation
Table (NTT) is required to maintain the list of log pages for
each node. Observing that the log-based indexing scheme is

not suitable for read-intensive workload on some flash devices,

VI. CONCLUSION

REFERENCES

