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ABSTRACT
This paper proposes a generic framework for monitoring
continuous spatial queries over moving objects. The frame-
work distinguishes itself from existing work by being the
first to address the location update issue and to provide
a common interface for monitoring mixed types of queries.
Based on the notion of safe region, the client location update
strategy is developed based on the queries being monitored.
Thus, it significantly reduces the wireless communication
and query reevaluation costs required to maintain the up-
to-date query results. We propose algorithms for query eval-
uation/reevaluation and for safe region computation in this
framework. Enhancements are also proposed to take advan-
tage of two practical mobility assumptions: maximum speed
and steady movement. The experimental results show that
our framework substantially outperforms the traditional pe-
riodic monitoring scheme in terms of monitoring accuracy
and CPU time while achieving a close-to-optimal wireless
communication cost. The framework also can scale up to a
large monitoring system and is robust under various object
mobility patterns.

1. INTRODUCTION
With the advent of mobile and ubiquitous computing, mon-
itoring continuous spatial queries over moving objects has
become a necessity for various daily applications, such as
fleet management, cargo tracking, child care, and location-
aware advertisement. Such a monitoring system typically
consists of a database server, some base stations, applica-
tion servers, and a large number of moving objects (see Fig-
ure 1.1).1 The database server manages the locations of
the moving objects. The application servers register spa-
tial queries of interest at the database server, which then
continuously updates the query results until the queries are
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Figure 1.1: The System Architecture

deregistered. There are two predominant costs that deter-
mine the system performance: the wireless communication
cost for location updates and the query evaluation cost at
the database server.

Most existing studies on continuous query monitoring [13,
17, 19, 28] focused on reducing the evaluation cost only. For
the location update cost, they simplified the problem by
assuming that the update is decided solely by the moving
client itself. In other words, each autonomous client reports
its new location either periodically or whenever the loca-
tion (or velocity) changes significantly from the last update.
This assumption has several deficiencies. First, location up-
dates are query blind, i.e., location updates are performed
regardless of the existence of queries. When there are very
few queries, the precious wireless bandwidth and client bat-
tery power are wasted as most of the updates do not yield
changes to the query results. Second, the monitored query
results may deviate from the actual values because the server
is unaware of the locations of the objects between location
updates. Under the periodic update scheme, the degree of
deviation largely depends on the update frequency, which
is hard to optimize, because a high frequency may unneces-
sarily burden both the server and the client whereas a low
frequency may result in a significant degree of deviation.
Third, the server load is not balanced over time, because lo-
cation updates from all of the clients must be synchronized
in order to produce the correct query results, thus creat-
ing high workloads at the synchronization points when the
server has to handle numerous location updates and query
reevaluations simultaneously (the delayed reevaluation also
worsens the result deviation problem). In addition to the
simplification resulted from the assumption on autonomous
location updates, most of the previous studies were designed
to support specific query types only, e.g., [19] for range
queries only, [24] for k-nearest neighbor (kNN) queries only,
and [12] for distance semi-joins only.
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Figure 1.2: Example of Safe Regions

In this paper, we propose an innovative and generic mon-
itoring framework to overcome these problems by taking a
systematic approach. More specifically, the clients are aware
of the spatial queries being monitored, so the location up-
dates occur only when the results for some queries might
change. To guarantee not missing any result change, the
database server maintains a view on each moving object,
i.e., a rectangular area called a safe region,2 around the ob-
ject. The safe region of each object is computed at the server
side based on the queries in such a way that the current re-
sults of all queries are guaranteed to remain valid as long as
all objects are residing inside their respective safe regions.
Figure 1.2 shows a simple example where there are two mov-
ing objects a and b and two registered queries Q1 (an NN
query) and Q2 (a range query). The current results of these
two queries are {a} and {a, b} respectively, which will not
change if a and b are in their safe regions Sa and Sb (the
shaded boxes).

Each moving object is aware of its safe region and issues
location updates to the server only when it moves out of the
region (this is called a source-initiated update). After the
database server receives this update, it finds and incremen-
tally reevaluates the affected queries and computes a new
safe region for the object. For a query involving the spa-
tial relations of two or more clients (e.g., a kNN query like
Q1), the location update from one client may invalidate the
safe regions of some other clients because the query result
is now undecided based on the safe regions. As an example
in Figure 1.2, when a moves out of Sa to a new location
a′, the result of Q1 becomes undecided as either of the two
objects could be the nearest neighbor. To resolve the ambi-
guity, the server has to probe some objects (in this example,
b) to request an immediate location update (this is called a
server-initiated probe and update).

Compared to the previous work, the proposed framework
exhibits the following advantages:

• To our knowledge, this is the first monitoring scheme
that addresses the location update issue. By safe re-
gions, the moving clients are query aware and report
location updates to the server only when they are very
likely to alter the results. Hence, both the wireless
communication cost and the query evaluation cost are
greatly reduced. Yet the performance gain is not achieved
by sacrificing the simplicity at the client side: the new
location update logic is as straightforward as before.

• The framework is generic in the sense that it is not
designed for a specific query type. Rather, the frame-
work provides a common interface for monitoring var-
ious types of spatial queries such as range queries and

2
We adopt a rectangular shape for the safe region because of its sim-

plicity and efficiency in query processing, as inspired from the use of
rectangle to bound index entries in spatial index structures such as
the R-tree [9].

kNN queries. Moreover, the framework does not pre-
sume any mobility pattern on moving objects.

• Since any object movement that might change the query
results is captured by the location update, the frame-
work offers us accurate monitoring results at any time,3

as opposed to deviated results as can be observed in
the previous periodic monitoring approach.

• In contrast to periodical reevaluation of queries in most
existing studies, query reevaluation in this framework
is triggered by location updates only. As these location
updates are asynchronous, the workload of the server
is evenly distributed over time.

Two fundamental issues at the database server need to be
addressed in this framework:

1. How to evaluate a newly registered query based on
the set of the safe regions and then to update the safe
regions of the objects being probed during the evalu-
ation? As these are the only objects leading to am-
biguous results, they are the only ones that need to be
aware of this new query.

2. Upon receiving a source-initiated location update from
a moving object, how to find and incrementally reeval-
uate the queries whose results are potentially affected
and to update the safe regions of this object and any
other object being probed during the reevaluation?

In the rest of this paper, we are going to answer these ques-
tions with the objective of minimizing the number of loca-
tion updates, which has a direct impact on the wireless com-
munication cost and power consumption, the most precious
resources in mobile environments. The remaining of the pa-
per is structured as follows. Section 2 reviews the related
work. We introduce the system model and the framework
overview in Section 3. In Sections 4 and 5, we discuss the
techniques for query evaluation/reevaluation and safe region
computation with respect to range and kNN queries. Two
enhancements are proposed by taking advantage of mobility
assumptions in Section 6. We conduct extensive simulation
experiments to evaluate the performance of the proposed
framework in Section 7.

2. RELATED WORK
There is a large body of research work on spatial-temporal
query processing. Early work assumed a static dataset and
focused on efficient access methods (e.g., R-tree [9]) and
query evaluation algorithms (e.g., [10, 21]). Recently, a lot of
attention has been paid to moving-object databases, where
data objects or queries (or both) move.

Assuming object movement trajectories are known a priori,
Saltenis et al. [22] proposed the Time-Parameterized R-tree
(TPR-tree) for indexing moving objects, in which the loca-
tion of a moving object is represented by a linear function
of time. Benetis et al. [3] developed query evaluation algo-
rithms for NN and reverse NN search based on the TPR-tree.
Tao et al. [25] optimized the performance of the TPR-tree
and extended it to the TPR∗-tree. Chon et al. [7] studied
range and kNN queries based on a grid model. Patel et
al. [18] proposed a novel index structure called STRIPES
using a dual transformation technique.

3
The framework guarantees this accuracy without considering the

delay between location updating and query processing.



The work on monitoring continuous spatial queries can be
classified into two categories. The first category assumes
known movement trajectories. Continuous kNN monitoring
has been investigated for moving queries over stationary ob-
jects [24] and linearly moving objects [11, 20]. Iwerks et al.
even extended [11] to monitor distance semijoins for two lin-
early moving datasets [12]. However, as pointed out in [23],
such an assumption does not hold for many application sce-
narios (e.g., the velocity may change constantly when a car
moves on the road).

The second category does not make any assumption on ob-
ject movement patterns. Xu et al. [27] and Zhang et al. [29]
suggested returning to a moving query the current result
as well as its validity scope where the result remains the
same. The query is reevaluated only when the query exits
the validity scope. However, these proposals work for sta-
tionary objects only. For continuous monitoring of moving
objects, the prevailing approach is periodic reevaluation of
queries [13, 17, 19, 28]. Prabhakar et al. [19] proposed the Q-
index, which indexes queries using an R-tree-like structure.
At each evaluation step, only those objects that have moved
since the previous evaluation step are evaluated against the
Q-index. While this study is limited to range queries, Mok-
bel et al. [17] proposed a scalable incremental hash-based
algorithm (SINA) for range and kNN queries. SINA in-
dexes both queries and objects, and it achieves scalability
by employing shared execution and incremental evaluation
of continuous queries [17, 26]. Kalashnikov et al. and Yu
et al. suggested grid-based in-memory structures for object
and query indexes to speed up reevaluation process of range
queries [14] and kNN queries [28]. Access methods to sup-
port frequent location updates of moving objects have also
been investigated (e.g., [13, 15]). Our study falls into this
category and distinguishes itself from these previous studies
as discussed in the Introduction.

Distributed approaches for monitoring continuous range queries
have been investigated in [5, 8]. The main idea is to shift
some load from the server to the mobile clients. Monitor-
ing queries have also been studied for distributed Internet
databases [6], data streams [1], and sensor databases [16].
However, these studies are not applicable to monitoring of
moving objects, where a two-dimensional space is assumed.

3. THE FRAMEWORK OVERVIEW
In this section, we first make some assumptions on the sys-
tem model, and then introduce the framework by describing
the structure and behaviors of the database server. The next
two sections will show the detailed query evaluation/reevaluation
and safe region computation algorithms at the database
server.

To simplify the system model, we make the following as-
sumptions:

• At the database server, all registered queries can be
fit into main memory whereas not all the moving ob-
jects can. This is a common and fair assumption in
monitoring continuous spatial queries [14, 28].

• The database server handles location updates sequen-
tially. In other words, no location updates take place
during the processing of a new query or another lo-
cation update. Although this is not a prerequisite for
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Figure 3.1: The Database Server Structure

this framework, it is a reasonable assumption to re-
lieve us from considering the read/write consistency.
In fact, in reality communication incurs a measurable
update propagation delay and thus the exact client
location and the location maintained at the database
server are not always synchronized. The violation of
this assumption affects the monitoring accuracy, which
will be measured in the experiments.

• The communication cost between every client and the
database server is constant. Throughout this paper,
Cl denotes the cost for one source-initiated location
update and Cp denotes the cost for one server-initiated
location probe and update.

• Mobile clients are able to detect their locations, through
positioning technologies such as GPS.

3.1 The Database Server
As depicted in Figure 3.1, the database server has four com-
ponents: the on-disk index for the moving objects, the in-
memory index for the queries, the location manager, and
the query processor. Upon receiving a location update, the
query processor first reevaluates those queries affected by
this update (step ➀) based on the indexes. During the
reevaluation, the query processor might need to probe some
objects for server-initiated location updates to determine
the query results (step ➁). The updated query results are
then reported to the application servers which register these
queries (step ➂). Afterwards, the location manager com-
putes the new safe regions for this object and the probed
objects (step ➃), also based on the two indexes. Finally,
these new safe regions are sent back to the corresponding
clients as the responses for their location updates (step ➄).
The server’s behaviors upon a new query being registered
are similar: it goes through steps ➀ to ➄, except that in ➀,
the query is evaluated from scratch instead of being reeval-
uated incrementally.

3.2 The Object Index
The object index stores the current safe regions of all the
objects. While many spatial index structures can serve this
purpose, this paper employs the well-known R-tree based
index [2, 9]. Since the safe region changes each time the
object updates its location (either client-initiated or server-
initiated), the index should be optimized to handle frequent
updates. The existing study on this issue (e.g., [15]) can be
adopted in this framework.

3.3 The Query Index
For each query, the database server stores: (1) the param-
eters of the query (e.g., the rectangle of a range query, the
query point and the k value of a kNN query), (2) the current



query results and, (3) the quarantine area of the query. The
quarantine area is such an area that as long as all result ob-
jects stay inside it and all non-result objects stay outside it,
the results of this query do not change. This area is used to
identify the affected queries upon a source-initiated location
update. For a range query, the quarantine area is simply the
query rectangle; for a kNN query, the area can be any cir-
cle centered at the query point and completely covering the
k-th NN ok but not the k + 1-th NN ok+1. In other words,
the radius of the circle should be equal to or greater than
∆(q, ok), the maximum distance between the query point q
and the safe region of ok, but less than δ(q, ok+1), the min-
imum distance between q and the safe region of ok+1.

4 In
this paper, we set the radius as the midpoint of these two
distances.

Through the notion of quarantine area, upon a location up-
date a query Q is affected only if of the new updated lo-
cation p and the last updated location plst, one point is in
the quarantine area of Q and the other is not. To quickly
locate these affected queries, a grid-based index is built on
the quarantine areas of all registered queries in main mem-
ory. The grid-index partitions the entire space into M × M
uniform cells. The bucket for each cell stores the pointers
pointing to those queries whose quarantine areas overlap this
cell. Therefore, upon a location update, only those queries
pointed by the cell containing p and the cell containing plst

need to be checked for possible reevaluation.

So far we ignore the ordering of the k nearest neighbors for
a kNN query, i.e., the query is order-insensitive. However,
if the kNN query is order-sensitive (the result set {a, b} is
different from {b, a}), even if both p and plst are inside the
quarantine area, the results might change. Therefore, an
order-sensitive kNN query Q is not affected only if p and
plst are both outside its quarantine area.

4. QUERY EVALUATION AND REEVALU-
ATION

Algorithm 1 Overview of Database Behavior

1: while receiving a request do
2: if the request is to register query q then
3: evaluate q (probe objects’ locations if necessary);
4: compute q’s quarantine area and insert it into the

query index;
5: return the results to the application server;
6: else if the request is to deregister query q then
7: remove q from the query index;
8: else if the request is a location update from object p

then
9: determine the set of affected queries;

10: for each affected query q′ do
11: reevaluate q′ (probe objects’ locations if neces-

sary);
12: update the results to the application server;
13: recompute q′’s quarantine area and update the

query index;
14: update the safe region of p;
15: update the safe region of any probed object;

Algorithm 1 shows the skeleton code of the database server

4
Throughout this paper, d(s, t) denotes the distance between two

points s and t, δ(S, T ) (∆(S, T )) denotes the minimum (maximum)
distance between a pair of points in areas S and T . Note that S or
T could also be a point.

handling a query registration/unregistration or a source-
initiated location update. When a new query is registered,
the query processor evaluates its initial result based on the
object index. The evaluation is different from that for tra-
ditional spatial queries as the objects are represented by
safe regions rather than their exact locations. In case of
ambiguity, location probes are necessary. In order to re-
duce the number of probes, we apply a lazy probe technique
so that probes occur only when the evaluation cannot con-
tinue. Similarly, upon receiving a source-initiated location
update, the query processor finds out the affected queries us-
ing the query index. It then incrementally reevaluates these
queries and updates their results if they change. Finally, the
safe regions of the updated object and the probed objects
are recomputed by the location manager. We discuss query
evaluation and reevaluation algorithms in this section and
the computation of safe regions in the next section. Due to
space limitations, this paper presents the solutions for two
most common spatial queries, namely the range and kNN
queries, and the extension to other types of queries follows
the same rationale.

4.1 Evaluating New Range Query
Processing a new range query on safe regions is very similar
to that on exact object locations. We start from the index
root and recursively traverse down the index entries that
overlap the query rectangle until reaching the leaf entries
where the safe regions are stored. If the safe region of an
object is fully covered by the query rectangle, the object is
a result. Otherwise, they overlap and the object must be
probed to resolve the ambiguity.

4.2 Evaluating New kNN Query
Evaluating an order-sensitive kNN query on safe regions is
more complicated than that on exact object locations. We
adopt the best-first search (BFS) as the paradigm for this
algorithm [10]. Similar to the original BFS, we maintain a
priority queue which stores intermediate or leaf index entries
(i.e., object locations). The object location is in the form
of either a safe region or the exact point (after the server
probes it). The key to sort the elements in the queue is the
(minimum) distance to the query point q. The searching
algorithm (Algorithm 2) is the same as the original BFS ex-
cept when a leaf entry, object p, is popped from the queue.
If p is already represented by a point, it is returned as a
result immediately. Otherwise p, represented by a safe re-
gion, is held until the next object u is popped. Then, the
maximum distance between p and q (∆(q, p)) is compared
with the minimum distance between u and q (δ(q, u)). If the
former is shorter, p is guaranteed closer to q than any other
objects in the queue. As such, p is returned as a result.
However, if the former is longer, the query result is unde-
cided based on the safe regions. Therefore, p is probed and
p together with its exact location is inserted back to the pri-
ority queue. And u is also inserted back to the queue. The
algorithm continues until k objects are returned as results.
In addition, in order to find the radius r of the quarantine
area for this query, the algorithm pops one more element
from the queue and the value of r is the midpoint between
the keys of the k-th NN and the last popped element.

It is worthwhile to note that this algorithm guarantees that
the object is not probed until it is about to be returned.
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Figure 4.1: Processing a kNN Query

As such, the lazy probe technique assures all the probes are
mandatory. The same technique is also exploited in reeval-
uating kNN queries in the next subsection.

Continuing on the example shown in Figure 1.2, suppose
a new NN query issued from q (see Figure 4.1(a)) is regis-
tered. At some stage, the priority queue contains b and a.
Then, b is popped from the queue; since it is represented
by a safe region Sb, it is held. Then, a is popped. Since
∆(q, Sb) > δ(q, Sa), b is probed. If b is at location b′, which is
shorter than δ(q, Sa), b is popped again prior to a; this time
it is returned as the result and r = (d(q, b′) + δ(q, Sa))/2.
Otherwise, if b is at location b′′, a is popped before b and
since ∆(q, Sa) > d(q, b′′), a is also probed. If afterwards it
turns out that a is at point a′′, a is returned as the result
and r = (d(q, a′′) + d(q, b′′))/2.

Algorithm 2 Evaluating a new kNN Query

Input: root: root node of object index
q: the query point

Output: C: the set of kNNs
r: the radius of the quarantine area

Procedure:
1: initialize the priority queue;
2: enqueue 〈root, δ(q, root)〉 into the queue;
3: while |C| < k and queue is not empty do
4: dequeue the top element to u;
5: if u is an object location then
6: if there is an object p held then
7: if ∆(q, p) ≤ δ(q, u) then
8: insert p into C;
9: else

10: enqueue 〈u, δ(q, u)〉 back to the queue;
11: probe p;
12: enqueue 〈p, d(q, p)〉 back to the queue;
13: continue;
14: if u is represented by a safe region then
15: hold u;
16: else
17: insert u into C;
18: else if u is an index entry then
19: for each child entry v of u do
20: enqueue 〈v, δ(v, q)〉 into the queue;
21: dequeue one more element to u;
22: r = (∆(q, Ck) + δ(q, u))/2;
23: return C and r;

The evaluation of an order-insensitive kNN query is the same
as Algorithm 2 except that at most k objects can be held
at the same time. Lines 7 ∼ 8 in Algorithm 2 are executed
for any p that is held and lines 10 ∼ 13 are executed only
if there are already k objects held (here p is the first held
object). As such, the number of probes is fewer than that
in an order-sensitive kNN query.

4.3 Reevaluating Range and kNN Queries
The affected queries to be reevaluated are first identified
based on the query index, as discussed in Section 3.3. The
incremental reevaluation of an affected range query is straight-
forward. If the updated object p is now inside the query
rectangle Q, p must have moved into this rectangle from
outside, so it becomes a new result of Q. Similarly, if p is
now outside the rectangle, p is removed from the result set
of Q. In either case, the database server reports the update
to the application server.

For an order-sensitive kNN query, there are three cases in
reevaluation: 1) p is not in the quarantine area, but plst

is; 2) p is in the quarantine area, but plst is not; and 3)
both p and plst are in the quarantine area. In case 1, p
possibly becomes a non-result, so a 1NN query is issued to
find the new k-th NN. The algorithm is the same as Algo-
rithm 2 except that the remaining k−1 result objects should
be excluded from the search. In case 2, before the loca-
tion update, the set of result objects {o1, o2, · · · , ok} of this
query are strictly ordered in terms of their distances to q.
In other words, δ(q, o1) ≤ ∆(q, o1) ≤ δ(q, o2) ≤ ∆(q, o2) ≤
... ≤ δ(q, ok) ≤ ∆(q, ok). When p is updated, d(q, p) is ei-
ther between ∆(q, oi) and δ(q, oi+1) or between δ(q, oi) and
∆(q, oi) for some 1 ≤ i ≤ k (see Figure 4.1(b)). For the
former case, p directly becomes the (i + 1)-th NN. For the
latter case, oi must be probed to decide which one is closer,
oi or p. Whichever the case is, the NNs after oi have their
NN sequence numbers increased by 1 and the last NN ok is
dropped. The radius of the new quarantine area is the aver-
age of ∆(q, o′k) (o′k is the new k-th NN) and δ(q, ok). Case 3
is similar to case 2 except that p is removed from the result
set (i.e., δ(p, q) and ∆(p, q) are removed from the above se-
quence) before d(q, p) is located in this sequence as in case
2, and that the last NN is not dropped. The radius of the
quarantine area in this case does not change. It is notewor-
thy that in any case the above reevaluation algorithm needs
at most one location probe.

For an order-insensitive kNN query, only the former two
cases exist. Since there is no strict ordering among current
results, the query must be reevaluated as a new query.

5. SAFE REGION COMPUTATION
The safe region of a moving object p (denoted as p.sr) des-
ignates how far p can reach without affecting the results of
any registered query. As queries are independent of each
other, we define the safe region for a query Q (denoted as
p.srQ) as the rectangular region in which p does not affect
Q’s result. p.srQ is essentially a rectangular approxima-
tion of Q’s quarantine area or its complement. Obviously,
p.sr is the intersection of individual p.srQ for all registered
queries. To efficiently eliminate those queries whose p.srQ

do not contribute to p.sr, we require p.sr (and p.srQ) to
be fully contained in the grid cell (defined in Section 3.3)
in which p currently resides. By this means, we only need
to compute p.srQ for those queries whose quarantine areas
overlap this cell as the p.srQ for any rest query is the cell
itself. These overlapping queries are called relevant queries
and are exactly pointed by the bucket of this cell in the
query index (see Section 3.3).

Recall in Algorithm 1 that the server needs to recompute



the safe region of an object p in three cases: 1) During the
evaluation of a new query Q, if p is probed, its safe region
needs to be updated. Since none of the existing queries
change their quarantine areas, the new safe region p.sr′ is
simply the intersection of the current safe region p.sr and the
safe region for this new query Q, i.e., p.sr′ = p.sr∩p.srQ. 2)
After processing a source-initiated location update of object
p, p’s safe region needs to be completely recomputed by
computing the p.srQ for each relevant query. 3) During the
processing of a source-initiated location update, if object
p is probed, its safe region is also completely recomputed
as in case 2. Although it is still a probe as in case 1 and
only one p.srQ changes (i.e., the query which probes p), we
completely recompute p.sr since p.srQ could be enlarged by
this probe and recomputing it allows such enlargement to
contribute to p.sr.

As the objective of a safe region is to reduce the number
of location updates, we first give a theorem which shows
that minimizing the number is equivalent to maximizing the
perimeter of the safe region.
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Figure 5.1: Computing Safe Regions

Theorem 5.1. Assume that the object p moves in a ran-
domly chosen direction with a constant speed φ (see Fig-
ure 5.1(a)). Given a convex safe region R and the updated
location p, the amortized location update cost for p over time,
Costp, is

Costp = Cl ·
(

∫ 2π

0

k(θ)dθ

2πφ

)

−1
=

Cl · 2πφ

Perimeter(R)
,

where Cl is the cost for one location update, θ is the angle
between the moving direction and the positive x-axis, k(θ) is
the length of segment pr, r is the intersection point of this
direction and the boundary of R, in other words, r is the
location at which the next location update occurs.

Proof. First of all, r must be unique for every θ. Oth-
erwise, if there were another r′, the points in segment rr′

do not belong to R, which contradicts the convex assump-
tion. As such, given θ, the elapsed time before the next

location update is k(θ)
φ

. The average elapsed time over all θ

is
∫ 2π
0

k(θ)
φ

dθ
∫

2π
0 dθ

=
∫ 2π

0

k(θ)dθ

2πφ
. Therefore, we have

Costp = Cl ·
(

∫ 2π

0

k(θ)dθ

2πφ

)

−1
=

Cl · 2πφ

Perimeter(R)
,

because
∫ 2π

0
k(θ)dθ = Perimeter(R).

Therefore, the problem of computing p.srQ is to find the
rectangle with the longest perimeter which is inside p’s grid

cell as well as Q’s quarantine area (or its complement) and
yet contains the updated location of p. In what follows, we
first discuss the computation of p.srQ for a range query and
a kNN query, and then propose an efficient algorithm to
compute the safe region for a batch of range queries.

5.1 Safe Region for Range Query
If Q is a range query and p is in its quarantine area (i.e.,
the query rectangle), the safe region p.srQ is simply the
quarantine area itself. Otherwise, p is outside the quarantine
area, and there are four possible rectangles within the cell
that can serve as p.srQ, each of which has one of its sides
coincide with a side of the cell (see Figure 5.1(b)). p.srQ

should be the one with the longest perimeter. There is a
chance that the quarantine area is not fully contained in the
cell; in such cases, only the area within the cell is considered
as Q’s quarantine area.

5.2 Safe Region for kNN Query
For an order-insensitive kNN query, if p is in its quarantine
area (a circle), p.srQ should be the inscribed rectangle of
this circle with the longest perimeter which contains p, or
for short the Ir-lp of the circle. Otherwise, p.srQ should be
the Ir-lp of the complement of this circle, which is the grid
cell subtracted by the circle. However, for an order-sensitive
kNN query, the movement within the quarantine area might
still affect the kNN order. Therefore, we need to restrain
p from interfering with other kNNs. Suppose p is the i-
th NN and q is the query point, we have ∆(q, oi−1.sr) ≤
d(q, p) ≤ δ(q, oi+1.sr). In other words, p must be inside the
ring centered at q with inner radius ∆(q, oi−1) and outer
radius δ(q, oi+1). So p.srQ should be the Ir-lp of this ring.
If i = 1, the ring degrades to a circle and if i = k, the
ring degrades to the complement of a circle. In case the
safe region of oi−1 is invalid (oi−1 might be probed and its
safe region is not recomputed yet), we replace ∆(q, oi−1.sr)
with (d(q, oi−1)+ d(q, p))/2 as the inner radius. The similar
replacement is made if the safe region of oi+1 is invalid.

In the following, we propose the solution to find the Ir-lp of
a circle, the complement of a circle, and a ring. Similar to
range queries, there is a chance that the circle or ring is not
fully contained in the cell. To simplify such scenarios, we
enlarge the cell to fully contain the circle or ring, and the
resultant Ir-lp will then be intersected by the original cell to
yield the final p.srQ.

5.2.1 Ir-lp of a Circle
Let x denote one of the corners for an inscribed rectangle
of the circle centered at q with radius r, and θ denote the
angle between qx and the y-axis (see Figure 5.2). Here with-
out loss of generality, we suppose p is in the third quadrant
from the origin q. The perimeter is 4r(sinθ+cosθ). The first
derivative of θ shows that the perimeter has a maximum at
π/4 and the value monotonously increases (or decreases) be-
fore (or after) this point. However, as seen in the figure, θ is
only valid within the range between arcsin q.x−p.x

r
(denoted

as θx) and arccos q.y−p.y

r
(denoted as θy) in order for p to

be contained in p.srQ, where p.x (p.y) is the x-coordinate
(y-coordinate) of p. As such, we reach the following propo-
sition:
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Figure 5.2: Ir-lp of a Circle

Proposition 5.2. The Ir-lp of a circle centered at p with
radius r is the inscribed rectangle whose θ is set as follows:

θ =







π/4 if θx ≤ π/4 ≤ θy , or
θy if θy < π/4 , or
θx if θx > π/4.

5.2.2 Ir-lp of the Complement of a Circle
With point q being the origin, the cell has four quadrants;
each of the four corners of the cell corresponds to one quad-
rant. Let t denote the corner that corresponds to the quad-
rant where p resides (see Figure 5.3(a)). We have the fol-
lowing lemma regarding t and the Ir-lp of this complement:

Lemma 5.3. t is a corner of the Ir-lp.

Proof. Otherwise, the corner of the Ir-lp that is closest
to t could be extended to t without causing overlap with
the circle. The extended rectangle is thus with a longer
perimeter than the Ir-lp, which contradicts the definition of
Ir-lp.

By this lemma, we fix one corner of the Ir-lp at t and find
the position of its opposite corner (denoted as x in Fig-
ure 5.3(a)). Without loss of generality, let p, x, and t be in
the first quadrant. There are only three possible positions
for x: some point on the 1/4 circle, point ➀, and point ➁.
Let θ still denote the angle between qx and the y-axis. If
x is on the circle, θ must range between 0 and π/2, other-
wise the Ir-lp overlaps the circle, although the actual valid
θ range might be smaller (discussed in the next paragraph).
Point ➀ is possible only when the valid range covers θ = 0
and point ➁ is possible only when it covers θ = π/2.

Figure 5.3(b) is a closeup of the first quadrant depicted in
Figure 5.3(a). If x is on the 1/4 circle, in order for p to be
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contained in p.srQ, θ must range between θy (arccos p.y−q.y

r

or 0 if p.y − q.y > r) and θx (arcsin p.x−q.x

r
or π/2 if p.x −

q.x > r). The perimeter of the Ir-lp is: 2(a−r ·sinθ)+2(b−
r·cosθ), where a, b are the width and height of the cell within
this quadrant (see Figure 5.3). The first-order derivative of
θ shows that the perimeter has a maximum at π/4 and the
value monotonously increases (or decreases) before (or after)
this point. Meanwhile, if θy = 0 or θx = π/2, we still need
to check the rectangle whose x is at positions ➀ or ➁ to see
if its perimeter is longer. Therefore, we reach the following
proposition:

Proposition 5.4. The Ir-lp of the complement of a circle
centered at q with radius r is the inscribed rectangle with
one corner being the cell corner corresponding to p and the
opposite corner is x. x is either on the 1/4 circle whose θ
is:

θ =







π/4 if θy ≤ π/4 ≤ θx , or
θx if θx < π/4 , or
θy if θy > π/4,

or at position ➀ if θy = 0 and at position ➁ if θx = π/2,
whichever has the longest perimeter.

5.2.3 Ir-lp of a Ring
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Figure 5.4: Ir-lp of a Ring

The Ir-lp must have one side tangent to the inner circle (with
radius r) and two corners (denoted as x and x′) on the outer
circle (with radius R), as shown in Figure 5.4. For any p in
the ring, there are two possible layouts for the Ir-lp: tangent
to the inner circle horizontally as rectangle I or vertically as
rectangle II. Let θ still denote the angle between qx and
the y-axis. Here without loss of generality, we suppose p
in the fourth quadrant from the origin q. In order to con-
tain p in p.srQ, θ ∈ [θx, θy ], where θx = arcsin p.x−q.x

R
and

θy = arccos q.y−p.y

R
. The perimeter of the first-layout Ir-lp is

4Rsinθ+2(Rcosθ−r), and that of the second-layout Ir-lp is
4Rcosθ+2(Rsinθ−r). The first-order derivative shows that
for the first (second) layout, the perimeter has a maximum
at θ = arctg2 (θ = arcctg2) and the value monotonously in-
creases (or decreases) before (or after) this point. As such,
we reach the following preposition:

Proposition 5.5. The Ir-lp of a ring centered at q with
inner radius r and outer radius R is the one of the two Ir-
lp which has a longer perimeter. The perimeter of the first
horizontal Ir-lp is 4Rsinθ1 + 2(Rcosθ1 − r) where θ1 is:

θ1 =







arctg2 if θx ≤ arctg2 ≤ θy , or
θx if θx < arctg2 , or
θy if θy > arctg2;



and the perimeter of the second vertical Ir-lp is 4Rcosθ2 +
2(Rsinθ2 − r) where θ2 is:

θ2 =







arcctg2 if θx ≤ arcctg2 ≤ θy , or
θx if θx < arcctg2 , or
θy if θy > arcctg2.

5.3 Safe Region for a Batch of Range Queries
So far we compute the safe region p.srQ separately for each
individual query Q. The final p.sr is obtained by intersect-
ing the safe regions for all queries. In this subsection, we
devise an algorithm to compute the final safe region for all
range queries in a single procedure, with the hope to max-
imize the perimeter of p.sr. Since for a range query whose
quarantine area contains p, the best safe region is always
the quarantine area, this algorithm is only concerns with
range queries whose quarantine areas do not contain p. In
other words, this algorithm attempts to find the Ir-lp of the
complement of a set of query rectangles.
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Figure 5.5: Safe Region for Batch Range Queries

With point p being the origin, the algorithm partitions the
cell into four quadrants (see Figure 5.5(a)). By definition,
the Ir-lp of the complement of a set of query rectangles is
the rectangular union of four inscribed rectangles in each
quadrant which do not overlap any query rectangle and one
of whose corners is p. These inscribed rectangles are maxi-
mized in terms of their perimeters and are called component
rectangles. In Figure 5.5(a), the white rectangles defined by
p and t are component rectangles and the shaded rectangle
is their rectangular union, i.e., the Ir-lp.

The first step is to find in each quadrant the set of com-
ponent rectangles, or more specifically, the t set. Consider
the first quadrant without loss of generality; the following
proposition shows this problem is relevant to the dominating
point problem.

Proposition 5.6. Consider the set of corners of the query
rectangles that do not dominate 5the other corners, plus the
intersection point of the x-axis and the cell. Number these
points (s1, s2, · · · ) in increasing order of x-coordinate. The t
set ({t1, t2, · · · }), i.e., the opposite corners of the component
rectangles, correspond to the s set ({s1, s2, · · · }): each ti has
the same x-coordinate as si, but its y-coordinate is that of
si−1 or ti−1 if ti and ti−1 have the same x-coordinate; t1’s
y-coordinate is set to the top bound of the cell.

Proof. First, any ti computed by this proposition is the
opposite corner for a component rectangle. It does not over-
5Point a dominates point b iff a.x > b.x and a.y > b.y.

lap any query rectangle because ti is not dominating any
other corners. It is maximized because ti will dominate si

if extended along the x-axis and it will dominate si−1 if
extended along y-axis. Second, any opposite corner for a
component rectangle is a ti. Otherwise, this corner could
be extended along the x- or y-axis without dominating any
si; thus, the component rectangle is not maximized, which
contradicts its definition.

Figure 5.5(b) illustrates an example with two range queries.
While the hollow dots dominate some other corners, s1, s2, s3

are not dominating. So together with s4, they form the s
set. The t set is obtained by setting ti.y to si−1.y. For t1,
its y-coordinate is set to the top bound of the cell. For t2,
since t1.x = t2.x, t2 coincides with t1 and hence can be omit-
ted. Finally, {t1, t3, t4} is the set of opposite corners for the
component rectangles. The rest quadrants can be handled
by transforming the points to the first quadrant and then
applying this proposition.

The next step is to find the best rectangular union of the
component rectangles from the four quadrants. The optimal
solution requires to enumerate every possible combination,
which takes quartic time. As such, the algorithm applies
a greedy heuristic. It sets the initial union as the cell and
begins with the quadrant which has a component rectangle
with the longest perimeter. The ti of this rectangle trims the
union by the horizontal and vertical lines crossing ti. The
algorithm then chooses the next quadrant in a clockwise or-
der. In this quadrant, it greedily chooses the component
rectangle which leads to a remaining union with the longest
perimeter after being trimmed by its ti. The algorithm con-
tinues until all the four quadrants are processed and the final
remaining union is the resultant Ir-lp. Although it greedily
chooses the component rectangle to maximize the remaining
union, it makes only four greedy decisions, as opposed to the
number of range queries if p.srQ is computed individually.
Therefore, the batch computing expectedly renders a safe
region with a longer perimeter.

6. ENHANCEMENTS
In the previous section, the computation of safe region is
not based any mobility assumption. However, in practice
the object always moves steadily towards its destination, in
other words, it follows a rough direction for a significantly
long period of time. This is called the steady movement as-
sumption. Another practical assumption is that each object
is limited by a maximum moving speed. In this section, we
exploit these two assumptions to compute safe regions that
could further reduce the number of location updates.

6.1 Maximum Speed for Query Evaluation
In general, a larger safe region with a longer perimeter re-
duces the number of source-initiated updates, but it might
incur more probes during query evaluation/reevaluation. To
compensate this side effect, we propose to bound the ob-
ject location with an additional reachability circle (see Fig-
ure 6.1(a)). The circle is centered at the object’s last re-
ported location plst and is ever expanding by the rate of V ,
the maximum speed. The reachability circle shows how far
the object can reach at any moment after the last location
update. During query evaluation/reevaluation, the circle is
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the constructed before a location probe is issued, with the
hope to resolve the ambiguity without probing.

To compute the reachability circle, the object index stores
both the last updated position plst and the timestamp of
the update T . These data are pointed by leaf entries (see
Figure 6.1(b)). At any moment t, the reachability circle is
centered at plst and with radius V (t − T ).

6.2 Steady Movement for Safe Region Com-
putation

The average elapsed time before the next location update

can be generally formulated as
∫ 2π

0

k(θ)p(θ)dθ

φ
, where p(θ) is

the probability density function of θ, the moving direction
after the location update,

∫ 2π

0
p(θ) = 1, and the other no-

tations follow the same meanings as in Theorem 5.1. In
that theorem, by assuming a random moving direction after
the update, p(θ) is uniformly distributed, i.e., p(θ) = 1/2π.
However, the steady movement assumption reveals that the
object tends to follow a similar θ to the one it followed when
moving from plst, the last updated location, to p. In other
words, p(θ) is practically not uniformly distributed. Thus,
we propose a simple density function as follows:

p(θ) =

{

1+D
2π

if θ ∈ [−π
2
, π

2
] , or

1−D
2π

otherwise,

where θ is the angle between the moving direction and plstp
(see Figure 6.2(a)) and 0 ≤ D ≤ 1 is a parameter of steadi-
ness. Under this density function, the integration is pro-
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portional to the weighted sum of the two partial perimeters
segmented by the normal (the dotted line in Figure 6.2(a))
of plstp, where the weights of parts I and II are 1 + D and
1−D. We use this weighted perimeter instead of the ordinary
perimeter for the Ir-lp derivation in Section 5. The following
is a fast approximation algorithm that does this ordinary-
to-weighted transition. Suppose λ is the ordinary perimeter,

o is the center of the rectangle, d is the length of po, and β
is the angle between po and plstp (see Figure 6.2(b)). We
draw a circle C with the same perimeter (i.e., with radius
r = λ/2π). C is used to approximate the weighted perime-
ter because when p = o its perimeter equals to the weighted
perimeter for any p(θ) distribution. Let a, b be the intersec-
tion points of the normal and C. Angle aob = 2arccos dcosβ

r
.

Therefore, the weighted perimeter λw is

λw = (1 + D)λ −
2Dλ

π
arccos

2πdcosβ

λ
.

The above formula cannot be directly applied to derive all
Ir-lp in Section 5 because the optimal θ may not have a
closed form under the weighted perimeter definition. For
such cases, we propose a binary search strategy to find a
suboptimal θ as follows. At each step, it keeps the current
search range for θ as [θb, θe]. Let θc = (θb + θe)/2. Then it
drops one of these three values of θ which yields the shortest
λw. The remaining two values form the search range for the
next step. The search terminates if the maximum number
of steps are reached or the next search range is the same as
the current one. And θc in the last step is the suboptimal
θ.

7. PERFORMANCE EVALUATION
We have developed a discrete event-driven simulator to eval-
uate the performance of the proposed safe-region-based query
monitoring (denoted as SRB) framework. We compare it
with two other schemes, i.e., the optimal monitoring (OPT)
and the periodic monitoring (PRD). In optimal monitoring,
every mobile client has the perfect knowledge of the regis-
tered queries and the movements of other objects. There-
fore, the client knows precisely when its movement changes
the results of some queries, and only then does it send a
source-initiated location update to the server. Although not
feasible in practice, this scheme serves as a lower bound
for the number of location updates and as the yardstick
from which we measure the monitoring accuracy of other
schemes. In periodic monitoring, all clients periodically send
out source-initiated updates simultaneously and the server
reevaluates all registered queries based on these updates.
Obviously, its performance depends on the updating inter-
val tprd. We test PRD with tprd = 0.1 and tprd = 1, denoted
as PRD(0.1) and PRD(1) hereafter. In the following, we first
describe the simulation setup and then present the detailed
simulation results.

7.1 Simulation Setup
We simulate a mobile environment where N objects move
within a unit-square space [0..1, 0..1]. Each object moves ac-
cording to the random waypoint mobility model: the client
chooses a random point in the space as its destination and
moves to it at a speed randomly selected from the range
[0, 2v]; upon arrival or expiration of a constant movement
period (randomly picked from the range [0, 2tv]), it chooses
a new destination and repeats the same process. This is a
well accepted and studied model in the mobile computing
literature [4].

The query workload consists of W queries, of which half
are range queries and half are order-sensitive kNN queries.
For range queries, the query rectangle is a square and its
side length is uniformly distributed in a range of [0.5qlen,



Parameter Default Value Parameter Default Value

N 100,000 objects W 1,000 queries
v 0.01 per time unit tv 0.005 time unit
qlen 0.005 kmax 10
tprd 1, 0.1 time unit M 50

Table 7.1: Simulation Parameter Settings

1.5qlen ]. For kNN queries, the query points are randomly
distributed within the space and k ranges from 1 to kmax.

All the behaviors of the N clients are simulated by one
process on a Pentium 4 1.8GHz 512MB desktop PC. The
database server is implemented on a Pentium 4 2.4GHz
PC running WinXP and IIS 5.0. The client process and
the server communicate through the standard SOAP/HTTP
protocol. The database server maintains an in-memory grid-
based (M × M) query index and an R*-tree index [2] on
the safe regions (for SRB) or on the object positions (for
PRD). To facilitate frequent location updates, we adopt the
bottom-up update technique [15] for the R*-tree index. Ta-
ble 7.1 summarizes the default parameter settings in our
simulation.

To remove the effect of hardware configuration, we use logic
time units instead of clock time. Each simulation run lasts
for 5,000 time units or until the measured value stabilizes
(for those simulations take longer than 12 hours). The per-
formance metrics for comparison include:

• Monitoring accuracy: This is defined as the amor-
tized accuracy of monitored results against its real re-
sults over time. More specifically, given a query Q,
let R(Q, t) denote the monitored result set at time t
and R(Q, t) denote the real result set monitored by the
OPT scheme. The monitoring accuracy is thus defined
as 1

te−tb

∫ te

tb
ma(Q, t)dt, where [tb, te] is the monitoring

time period of Q, ma(Q, t) = 1 if R(Q, t) = R(Q, t),
and ma(Q, t) = 0 otherwise.

• Wireless communication cost: It is the amortized
communication cost for a mobile client to send updates
and receive probes in one time unit. We set the uplink
channel twice as costly as the downlink channel. Thus,
the cost for a source-initiated update Cl = 1 and the
cost for a server-initiated probe plus update Cp = 1.5.

• Scalability: This is measured by the amount of CPU
time used by the server to monitor the queries per time
unit, which includes query evaluation and safe region
computation.

7.2 Impact of Communication Delay
The first set of experiments evaluates the impact of com-
munication delay between the client and the server. We
have the server receive the location update τ time units af-
ter the client sends it. We vary τ from 0 to 1 time unit
and plot the monitoring accuracy of the three schemes in
Figure 7.1(a). The τ = 0 case reflects the ideal network-
ing environment with zero delay, based on which our SRB
framework achieves a 100% accuracy. Even in this case,
however, the PRD scheme family only gets a 80%∼90% ac-
curacy. As τ increases, all three schemes degrade. PRD(1)
seems to be stable under different τ settings simply because
it already delays result changes by 0.5 time unit on average
due to periodic location updating; the accuracy of PRD(0.1)
degrades quickly and close to PRD(1) for a large τ . On the
other hand, SRB is stable at 95% even when τ = 0.5, as

(a) Monitoring Accuracy (b) Communication Cost

Figure 7.1: The Impact of Communication Delay

many result changes are detected immediately by using the
safe regions.However, as τ keeps increasing, SRB starts to
degrade. This is because when the client receives an updated
safe region it might have already left the region due to a sig-
nificant communication delay; the monitoring result is not
correct until it updates the location again, which takes an-
other τ time unit. Figure 7.1(b) shows the communication
cost of the four schemes under various τ settings. We find
that all these schemes show a constant or almost constant
cost regardless of the setting of τ .6 SRB is the closest to
the optimal scheme (about 30% higher) whereas the cost of
PRD(1) is more than twice higher. The cost of PRD(0.1)
is 10, which is even higher. From Figures 7.1(a) and 7.1(b),
we conclude that SRB achieves a much higher monitoring
accuracy yet with a much lower wireless communication cost
than PRD.

7.3 Scalability
This subsection evaluates the scalability of monitoring schemes
in terms of server’s CPU time and communication cost. Fig-
ure 7.2 shows the performance trend when the number of
registered queries (W ) increases from 10 to 1,000. The CPU
time of SRB is sublinear to the increase of W because the
grid-based query index filters out a large number of unaf-
fected and irrelevant queries when processing location up-
dates, whereas those of PRD(1) and PRD(0.1) are both lin-
ear, as they need to reevaluate every query on each batch of
location updates. As an example, the server needs 1.6 CPU
seconds to monitor 1,000 queries on 100,000 moving objects
for one time unit using SRB, 53 seconds using PRD(1), and
217 seconds using PRD(0.1). The CPU time limits the max-
imum update frequency of PRD schemes. As in this exam-
ple, the server cannot afford the PRD(0.1) scheme if one
time unit is less than 217 seconds (i.e., update at most once
every 21.7 seconds). Nonetheless, SRB has no such limita-
tions. In terms of communication cost, SRB also increases
with W as the safe regions shrinks. Nonetheless, the cost
increment is sublinear since only a small and sublinear pro-
portion of the queries contributes to the safe region of a
specific object. The same reason also explains why SRB is
always close to OPT. We also measured the size of the grid-
based query index; it increases with W but never exceeds
300KB even when W = 1, 000.

Similarly, we conduct simulations by varying the number of
objects (N) from 100 to 100,000. Figure 7.3(a) shows that
the CPU cost increases sublinearly with N , since the queries
are evaluated on the R*-tree index which is incrementally
maintained. By contrast, PRD(1) and PRD(0.1) both in-

6
In fact, the monitoring accuracy is the only metric affected by τ .

Therefore, in the sequel we consistently use τ = 0 to measure other
metrics.
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Figure 7.2: Performance vs. Query Numbers (W )

crease linearly or even hyperlinearly, as they need to build a
new R*-tree for query reevaluation at each location updat-
ing instance. Figure 7.3(b) shows that the communication
cost of SRB increases with N as a denser object distribution
makes the safe regions shrink. Nonetheless, the increase is
sublinear to N , because only a sublinear portion of the ob-
jects affects the quarantine area of a kNN query and thus the
safe region of a specific object. In summary, SRB is more
scalable than PRD in terms of CPU cost while achieving a
close to optimal communication cost.

(a) CPU Time (b) Communication Cost

Figure 7.3: Performance vs. Object Numbers (N)

7.4 Sensitivity of SRB
In this subsection, we study the sensitivity of SRB to vari-
ous affecting factors. The first two factors are the average
moving speed (v) and the average constant movement pe-
riod (tv) for the moving objects. Figure 7.4(a) shows the
communication cost when v varies from 0.001 to 1 per time
unit. It increases linearly as v increases, mainly because the
elapsed time of an object leaving its safe region is inversely
proportional to v. To eliminate this effect, we also dplot
the communication cost per distance unit on the secondary
y-axis in the same figure. We observe that this cost is in-
dependent of v. In other words, the number of updates and
probes when a client moving along a trajectory is not de-
pendent on the speed, but dependent on the length of this
trajectory. The CPU time shows a similar trend and hence
is not plotted. We also vary tv from 0.001 to 1 time unit
and find it has hardly any effect on the performance of SRB
(Figure 7.4(b)). As such, it is safe to conclude that SRB is
robust to various moving speeds and steadiness degrees of
of movement.

The next affecting factor is the M × M grid partitioning
of the query index. We vary M from 5 to 100 and plot
both the communication cost and CPU time in Figure 7.5.
The larger is the value of M , the smaller is the grid cell
size. The communication cost increases monotonously with
M because the grid cell sets the largest possible safe region
of an object. Nonetheless, the cost difference for between
M = 5 and M = 50 is not significant as the actual safe
regions are determined more by the relevant queries than
by the grid cell. However, the cost increases sharply when

(a) v (b) tv

Figure 7.4: Communication Cost vs. Avg. Moving
Speed v and Avg. Constant Movement Period tv

M is changed from 50 to 100, when the safe regions be-
come more restrained by the cell. Meanwhile, the CPU
time decreases monotonously because the number of rele-
vant queries in the cell decreases and hence the safe region
computation is faster. In this figure, M = 50 yields a fairly
low communication cost as well as a fairly short CPU time.
From this experiment, it is inspiring to adapt the cell size
to the server’s workload: we first use a large M to partition
the grid, and later if the workload turns out to be low, the
actual cell for the safe region computation can be the cell
where the update occurs plus its neighboring cells within a
certain distance. In this way, we can take full advantage of
the CPU resource and enlarge the safe region as much as
possible.

Figure 7.5: Performance vs. Grid Partitioning

7.5 Performance of the Enhancements
We have proposed the use of reachability circle and weighted
perimeter to enhance SRB under the maximum speed and
steady movement assumptions in Section 6. We now eval-
uate their performance. In the first set of experiments, we
vary the number of queries (W ), which has an effect on the
size of the safe region (i.e., the less the W , the larger the
safe region size). As shown in Figure 7.6(a), the reacha-
bility circle enhances SRB by 20%∼40% (on the secondary
y-axis) in terms of communication cost, thanks to a sig-
nificant reduction of location probes during query evalua-
tion/reevaluation. Nonetheless, the improvement decreases
as W increases and the safe region shrinks, because at larger
W (smaller safe regions), this ever-expanding circle covers
the entire safe region (and becomes useless) more quickly.
On the other hand, the enhancement is found to be indepen-
dent of v, due to the same reason for why the communication
cost per distance unit is independent of v.

In the second set of experiments, we vary the average con-
stant movement period (tv) and plot the performance en-
hancement of weighted perimeter (with the steadiness pa-
rameter D set at 0.5) in Figure 7.6(b). Although the SRB
with weighted perimeter is worse than the original SRB at
tv = 0.001 when the movement speed and direction change
rapidly, it outperforms the original SRB by 5%∼15% in all
the other settings. As expected, the effectiveness of weighted
perimeter is more distinct for larger tv where the object
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Figure 7.6: Performance Enhancements of Reacha-
bility Circle and Weighted Perimeter

moves in a more steady and predictable pattern. Therefore,
it is inspiring to adapt D to tv, in other words, the server
could adopt different D for different objects according to
how frequently the objects change their moving directions.

8. CONCLUSIONS
This paper proposes a generic framework for monitoring
continuous spatial queries over moving objects. The frame-
work distinguishes itself from existing work by being the
first to address the location update issue and to provide
a common interface for monitoring mixed types of queries.
Based on the notion of safe region, the location updates are
query aware and thus the wireless communication and query
reevaluation costs are significantly reduced. We provide de-
tailed algorithms for query evaluation/reevaluation and safe
region computation in this framework. Enhancements are
also proposed to take advantage of two practical mobility
assumptions: maximum speed and steady movement. To
evaluate the performance, we thoroughly conduct a series
of experiments and compare the proposed framework with
the optimal monitoring and the traditional periodic moni-
toring schemes. The results show that i) our framework sub-
stantially outperforms the periodic monitoring in terms of
monitoring accuracy and CPU time while achieves a close to
optimal communication cost; ii) the framework scales well
to the number of monitoring queries and moving objects;
iii) the framework is robust to various affecting factors in-
cluding moving speed, constant movement period, and grid
partitioning; iv) if the mobility assumptions hold, the en-
hancements can reduce the wireless communication cost by
up to 40%.

This paper demonstrates the feasibility and performance ad-
vantages of the framework. As for future work, we plan to
incorporate other types of queries into the framework, such
as spatial joins and aggregate queries. We also plan to opti-
mize the performance of the framework. For example, so far
the safe regions for kNN queries are computed separately;
so the final safe region of the object p.sr may not be op-
timal. To achieve a larger p.sr, we are going to develop
algorithms which incrementally update the so-far computed
p.sr for each relevant query.
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