
Authenticated Online Data Integration Services

Qian Chen, Haibo Hu, and Jianliang Xu
Dept. of Computer Science, Hong Kong Baptist University

Kowloon Tong, Hong Kong
{qchen, haibo, xujl}@comp.hkbu.edu.hk

ABSTRACT
Data integration involves combining data from multiple sources
and providing users with a unified query interface. Data in-
tegrity has been a key problem in online data integration.
Although a variety of techniques have been proposed to ad-
dress the data consistency and reliability issues, there is lit-
tle work on assuring the integrity of integrated data and
the correctness of query results. In this paper, we take the
first step to propose authenticated data integration services
to ensure data and query integrity even in the presence of
an untrusted integration server. We develop a novel au-
thentication code called homomorphic secret sharing seal
that can aggregate the inputs from individual sources faith-
fully by the untrusted server for future query authentication.
Based on this, we design two authenticated index structures
and authentication schemes for queries on multi-dimensional
data. We further study the freshness problem in multi-
source query authentication and propose several advanced
update strategies. Analytical models and empirical results
show that our seal design and authentication schemes are
efficient and robust under various system settings.

Categories and Subject Descriptors
H.2.0 [DATABASE MANAGEMENT]: General—Security,
integrity, and protection

General Terms
Algorithms; Experimentation; Security

Keywords
Query Authentication; Data Integration; Data Integrity

1. INTRODUCTION
Data integration, which combines data from different sources

and provides users with a unified query interface, has been
an essential service in database and web applications. With

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright © 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2747649.

Queries

Results
Data &

Data Sources/Owners Integration Server Users

Source 1

Source 2

Source 3

Updates

Figure 1: Multi-Source Data Integration and Query Processing

the recent advances in social computing and internet of things,
data integration is once again under the spotlight for “big-
data” applications such as listing aggregation, social media
analysis, and sensor fusion. Recent work focuses on online
data integration that integrates data from distributed and
heterogeneous sources into a single repository, where the
sources’ contents may change over time [16, 25, 26, 39]. Fig-
ure 1 illustrates the online data integration and query model,
where data sources or owners periodically synchronize their
data with the centralized data integrator.1

One key problem in online data integration is the data
integrity [2, 5]. However, all existing work assumes that the
data integrator can always be trusted and, hence, addresses
data inconsistency and unreliability issues arising from the
data source side. A variety of techniques on data cleaning
and conflict resolution have been developed [22,23,26,32,45,
50]. Unfortunately, this assumption no longer holds in many
real-life applications where the integrator might alter (leave
out or forge) the integrated data and query results either
intentionally or unintentionally, as shown in the following
examples:
• Metasearch Engines: Internet-based price comparison

websites, such as Qunar for airfares, Trivago for ho-
tels, and Pricegrabber for consumer electronics, claim
to crawl up-to-date price data from the actual service
providers (e.g., airlines, travel agencies, online elec-
tronic stores, etc.). However, the query results from
these search engines may not be correct or fresh be-
cause: (1) they may favor sponsors or partner service
providers and hide the results of other competitors;
and (2) they may fail to keep their integrated data up-
to-date as promised due to a system failure or glitch.
Both cases might be covered up by these engines with-
out users’ awareness.
• Meta-Analysis: Life science research, such as those on

virus spread and disease control, usually requires the
collection of disparate datasets for meta-analysis. Gov-

1We use “data source” and “data owner” interchangeably in
this paper.

ernment initiatives such as DataNet have been put for-
ward to provide a centralized repository to integrate
scientific data produced by the scientists worldwide.
However, in case the repository server is comprised by
cyber-attacks, the query results returned by the server
might be wrong.
• Collaborative Data Fusion: Online collaborative data

platforms, such as Wikipedia (for documents), Wikisens-
ing (for sensor data), and Wikidata (for structured
data), allow data owners to feed large-volume data to
their databases. They also allow other users to con-
nect to their databases and build external applications
based on these data. However, in many sectors such as
politics and finance, the platforms may have motives to
screen out or omit some critical data when exporting
them to external applications.

To address these issues, in this paper we propose authen-
ticated data integration services to ensure data integrity and
query result correctness even in the presence of an untrusted
data integrator. There is a substantial collection of litera-
ture on authenticated query processing, e.g., [9, 17, 21, 33,
34, 36, 42], and the core technique is the design of an au-
thenticated data structure (ADS) that enables the untrusted
server to prove to the users the correctness of query results.
Since almost all previous studies assume only a single data
source/owner, this ADS can always be constructed by the
owner itself who has access to the entire dataset. However,
as our problem concerns multiple sources and the integra-
tion server who has access to the entire dataset cannot be
trusted, this centralized approach is no longer feasible. It
calls for a distributed ADS scheme in which the ADS can be
constructed based on individually authenticated data from
each data owner.

The main challenge lies in the design of a mechanism that
can aggregate the inputs from all data sources faithfully by
the untrusted server for future query authentication. To
deal with this challenge, we first propose homomorphic se-
cret sharing seal (HS3) as the underlying authentication code
for integrity assurance of distributed data. Based on this, we
design two ADS schemes, namely the HS3-G-tree and HS3-
R-tree, for authenticating various types of queries on multi-
dimensional data. We further study the freshness problem
in multi-source query authentication and propose several ad-
vanced update strategies. To summarize, our contributions
made in this paper are as follows:
• To the best of our knowledge, this is the first work

that addresses the query integrity issue for large-scale,
dynamic, and multi-source data integration.
• We design HS3 authentication code that enables au-

thentication on distributed data, based on which ADS
and authentication schemes for various queries are pro-
posed.
• We consider data updates and study the update strate-

gies for the server to address the freshness issue in
multi-source query authentication.
• We provide analytical models and empirical results to

evaluate the performance and robustness of the pro-
posed authentication schemes.

The rest of this paper is organized as follows. Section 2
introduces the research background and related work. Sec-
tion 3 formally defines the problem and system model. Sec-
tion 4 introduces the homomorphic secret sharing seal, fol-
lowed by the query authentication schemes for multi-dimensional

data in Section 5. Section 6 presents the cost model, and
Section 7 studies the server update strategies. Section 8
shows the experiment results, followed by a conclusion.

2. BACKGROUND AND RELATED WORK
Inconsistency and Unreliability in Data Integra-

tion. In the data integration literature, a variety of conflict
resolution techniques have been proposed to address the in-
consistency and unreliability issues. Yin et al. [45] proposed
the TruthFinder algorithm that resolves conflicting binary
opinions during aggregation. The algorithm computes truth
scores for predicates through probabilistic aggregation of in-
dependent user opinions. Pal et al. [32] studied the conflict
resolution in the temporal domain and modeled the source
data as observations of a hidden semi-Markovian process.
Zhao et al. [50] took the confliction resolution problem from
another perspective by modeling the quality of data sources.
They use false positive and false negative errors as quality
indicators, and their inference algorithm is based on sam-
pling and a Bayesian probabilistic model. More recently, Li
et al. [22] studied conflict resolution in a heterogenous data
scenario and proposed a probabilistic source quality estima-
tion algorithm. Besides probabilistic models, data fusion has
been adopted for conflict resolution. Liu et al. [26] adopted
data fusion techniques for online data aggregation. The sys-
tem iteratively refines answers as more sources are probed
and fusioned until it can assure that the unprobed sources
cannot change the answer. Li et al. [23] also used data fu-
sion to study the data inconsistency problem in deep web
with low-accuracy sources. However, no study so far has
addressed the integrity issue caused by the data integrator,
which is the focus of this paper.

Query Authentication in Outsourced Databases.
Existing query authentication techniques can be categorized
into two groups according to the authentication data struc-
ture used: (i) chained digital signature and (ii) Merkle hash
tree (MHT). The former is a public-key message authentica-
tion scheme based on asymmetric cryptography. With the
signature and the public key, anyone can verify the authen-
ticity of a message signed with a private key. Based on this
scheme, early studies on query authentication impose a sig-
nature for every data value. The VB-tree [34] augments a
conventional B+-tree with a signature for each leaf entry.
By verifying the signatures of all returned values, the user
is convinced of the soundness of the results. To guarantee
the completeness of query results further, Pang et al. [33]
proposed signature chaining, which links the signatures of
adjacent data values to ensure no result can be left out.
Signature aggregation and chaining were adapted to multi-
dimensional R-tree indexes by Cheng and Tan in [10].

The MHT was originally introduced in [28] to authenti-
cate a large set of data values. It is a binary tree. Each leaf
entry is assigned a digest based on its data value, and each
internal node is assigned a digest derived from its two child
nodes. The data owner signs the root digest of the MHT.
For authentication purposes, besides the root signature, only
the digests of those boundary nodes and query results are
sent to the user. The notion of the MHT has been gen-
eralized to multi-way trees and widely adapted to various
index structures. Typical examples include the Merkle-B
tree and its variant the Embedded Merkle B-tree [21]. For
multi-dimensional datasets and queries, similar techniques
were proposed by Yang et al. to integrate an R-tree with

an MHT [42,43]. In addition to selection and range queries,
recent studies have investigated the authentication of more
complex queries, including aggregation queries [20], short-
est paths [46], kNN queries [18, 47], top-k spatial keyword
queries [41], location-based skyline queries [24], subgraph
queries [15, 38] and privacy-preserving queries [9, 17]. How-
ever, in all these previous studies, only a single data owner
is assumed and the database is outsourced as a whole.

Recent work has also investigated continuous query au-
thentication over online data streams. Nath and Venkate-
san [29] proposed a solution for grouped aggregation queries
on data streams from a single data owner. Their solution
does not require the users to be trusted and thus is publicly
verifiable. Papamanthou et al. [37] investigated the problem
of streaming verifiable computation, where a user (also the
data owner) can later delegate some computation over the
stream to the server. They designed a new authentication
tree for efficient query verification on a stream. Papadopou-
los et al. [35] considered linear algebraic queries, e.g., vector
sums and dot products, on data streams. Their schemes
are light-weight and offer strong security guarantees. How-
ever, all these solutions to online data streams only focus
on a single owner and specific query types. In contrast, this
paper considers the applications where the data are collec-
tively owned by multiple sources. This makes the authen-
tication problem more challenging since the authentication
data structures need to be generated by data sources in a
distributed manner.

Authenticated In-Network Aggregation in Distri-
buted Systems. In distributed systems and sensor net-
works, a centralized server collects and aggregates data from
the sensors. Existing studies on assuring the aggregation
result accuracy can be broadly summarized into two cate-
gories: (i) verifiable sampling and (ii) commitment verifi-
cation [6]. The former relies on sampling techniques, and
thus offers only approximate results [3, 13, 14]. The latter
usually gives precise query results. The key issue is the con-
struction of the secure proof attached to the data. The user
verifies the aggregation result according to the secure proof
and/or tests the in-network aggregators/sensors with a series
of challenges. Chan et al. [7] proposed a secure information
aggregation (SIA) framework in which interactive proofs are
used for result verification. In [8, 44], the SIA framework
has been extended to support multiple hierarchical aggre-
gators with a topology-following hash tree. To reduce the
communication cost of testing, Nath et al. [30] and Zhang
et al. [49] adopted one-way chains and homomorphic MACs,
respectively, to make commitments. Papadopoulos et al. [36]
further optimized the communication and verification costs
via a secret sharing technique. However, these studies con-
sider only application-tailored in-network aggregations such
as sum and max/min, which cannot be extended to support
general queries considered in this paper.

Authenticated top-k queries were recently investigated in
[48] and [12]. Zhang et al. [48] investigated how to verify the
authenticity and completeness of top-k queries in sensor net-
works. Their basic approach is to let each sensor prepare a
MAC based on ordered data values. Choi et al. [12] devel-
oped several solutions for authenticated top-k aggregation
in distributed databases, based on the classic Three-Phase-
Uniform-Threshold algorithm. To guarantee the correctness
of query results, a Skewed MHT is applied to the ordered
data in each distributed database. Although both of these

Q

v1, seal(sk1, v1)

Dataset
id val seal
o1 v1 seal(v1)
o2 v2 seal(v2)
o3 v3 seal(v3)
o4 v4 seal(v4)
o5 v5 seal(v5)
o6 v6 seal(v6)

v3, seal(sk3, v3)

v6, seal(sk6, v6)
...

Q

o1

o3

o6

{v3, v4}&V O

...

Data Owners Integration Server Users

Certified Authority
{ski} pk

Figure 2: Query Authentication Example in Data Integration

two studies consider distributed query processing, they as-
sume that each processor is related to a single data source
and do not address the issues arising from multiple data
sources. Jain and Prabhakar [19] proposed a novel authen-
tication mechanism to further guarantee the transactional
integrity. Their solution allows multiple authorized users to
run transactions on the outsourced database. All the autho-
rized users can control the database on behalf of the (single)
data owner. However, it cannot be applied to our problem
where data are independently collected from multiple data
sources.

In summary, most previous studies consider query authen-
tication with a single data source/owner. For those studies
on authenticating in-network queries in distributed systems,
they can address only simple and specific aggregation types
such as sum and min/max. To the best of our knowledge,
there is no study on multi-source data authentication that
can simultaneously support a wide range of query types.

3. PROBLEM DEFINITION AND SYSTEM
MODEL

In this paper, we study the problem of authenticating
query results in data integration services as shown in Fig-
ure 2. During system setup, the certified authority (CA) dis-
tributes a secret key ski to each data owner (DO) (for gener-
ating authentication codes) and a public key pk to the users
(for verifying query results). The detailed constructions of
ski and pk will be given in Section 4. To guarantee the fresh-
ness of dynamic data, the DOs need to update their secret
keys, which may or may not involve the CA and will be fur-
ther discussed in Section 7.1. Without loss of generality, we
assume that each DO oi owns a single data value vi.

2 Upon
request, each DO sends its data value vi together with an
authentication code (proposed as seal(ski, vi) in Section 4)
to the integration server (IS), which answer queries from
the users based on the collected values. Figure 2 illustrates a
range query Q on a dataset of D = {v1, v2, · · · , v6} collected
independently from data owners o1, o2, · · · , o6. Assuming
the data values v1, v2, · · · , v6 are sorted in the ascending or-
der, apparently the query results are R = {v3, v4}.
Threat Model: While the CA and DOs are trusted, we

assume that the IS is not trusted and may fabricate the

2For cases in which each DO owns a set of data values, we
can introduce virtual DOs and associate each value with a
virtual DO.

query results. Therefore, the problem in this paper is to
design query authentication schemes on top of individual
authentication codes so that the IS can prove to the users
that the queries are executed faithfully and the results are
correct. As with previous studies [21, 33], the correctness
consists of two authenticity conditions: (i) soundness: the
returned values are all genuine query results and are not
tampered with; (ii) completeness: no genuine query results
are missing. To facilitate the authentication, the IS will
prepare a verification object (VO) to be returned to the
users along with the query results. In Figure 2, the VO is
used to verify the soundness and completeness of result set
R with respect to range query Q as follows:
• No values in R are tampered with.
• All values in R are inside the query range of Q.
• All values not in R are outside the query range of Q.

Specifically, the first two conditions guarantee the soundness
of query results, and the last one guarantees the complete-
ness of query results.

Throughout this paper, we assume that no DO or CA
colludes with the IS. Further, the computation and storage
capacities of the untrusted IS, as an adversary, are polyno-
mially bounded.

4. HOMOMORPHIC SECRET SHARING
SEAL (HS3)

Intuitively, the multi-source query authentication problem
involves two main issues: (i) the design of the authentica-
tion code for each data value, and (ii) the construction of the
VO for each query based on the collected data values and
authentication codes. A naive solution is to use a digital
signature sig(vi) as the authentication code for each value
vi. For any query, the IS simply returns the whole dataset,
{(v1, sig(v1)), (v2, sig(v2)), · · · }, to the user. To authenti-
cate the query results, the user first verifies the integrity of
the dataset through the signatures, and then computes the
query results using the genuine dataset. Obviously, this so-
lution has its computation and communication complexities
both as high as O(n), where n is the number of DOs.

To improve the performance, we propose homomorphic
secret sharing seal (HS3), a novel distributed authentication
code for integrity verification in the multi-source environ-
ment. The design principle of HS3 is two-fold: (1) individual
codes can be gathered collectively by an untrusted IS; (2)
to prove a set of values is not query results does not need
the authentication codes of all these values, especially those
whose values are faraway from the query range. Therefore,
we “divide” the authentication code of a value into pieces
and use only relevant ones for the authentication of a spe-
cific query. Further, by sharing common pieces of such codes,
multiple values can be authenticated as a whole, which sig-
nificantly improves the efficiency. In the rest of this section,
we first introduce some basic cryptographic functions, fol-
lowed by the detailed HS3 design and query authentication
process. Finally, we give some formal security analysis.

4.1 Preliminaries
In this subsection, we introduce some preliminaries used

to construct the HS3 code.
Cryptographic Hash Function: A cryptographic hash

function h(·) takes an arbitrary-length string and returns
a fixed-length bit string. It is collision-resistant, i.e., it is

difficult to find two different messages m1 and m2 such that
h(m1) = h(m2). Some examples include MD5 and SHA-1.

Pseudorandom Function: Let fk(·) : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ be an efficient, length-preserving, keyed function,
where k is a string chosen at random and can be regarded
as a secret key. We say fk(·) is a pseudorandom function if
for all probabilistic polynomial-time (PPT) distinguishers,
there exists only a negligible possibility to distinguish fk(·)
from a truly random string.

Secret Sharing Scheme: A secret sharing scheme [27] is
related to key establishment. The idea of secret sharing is to
distribute a secret s amongst n users such that only when all
n parties together can the original secret s be reconstructed.
The procedure is as follows. The key distributer first gen-
erates n − 1 random values ss1, ss2, · · · , ssn−1 (called se-
cret shares) using a pseudorandom function fk(·) and dis-
tributes them to the first n−1 users. The last one is given as
ssn = s−∑n−1

i=1 ssi. The secret is recovered by s =
∑n
i=1 ssi.

RSA-based Homomorphic Signature G(·, ·): An RSA
cryptosystem has a secret key sk = (z, d) and a public key
pk = (z, e), where z is the product of two random large
primes p, q. The keys d and e satisfy de = 1 mod φ(z),
where φ(z) = (p − 1)(q − 1). The RSA cryptosystem can
be used to generate RSA digital signatures. Let h(·) denote
a cryptographic hash function; the RSA digital signature
over a message m is computed as sig(m) = h(m)d mod z.
The signature can be verified by checking h(m) = sig(m)e

mod z. The RSA-based homomorphic signature G(·, ·) for a

message m is defined as G(r, h(m)) = (r · gh(m))d mod z,
where r is a random value and g is a group generator.3

Given r, g, and e, the signature can be verified by check-
ing r · gh(m) = G(r, h(m))e mod z. This signature func-
tion has a homomorphic property as follows: G(r1, h(m1)) ·
G(r2, h(m2)) = G(r1 · r2, h(m1) + h(m2)).4

4.2 HS3 Design and Query Authentication
Recall that the intuition behind the HS3 design is to uti-

lize some common properties of the data to support efficient
authentication of a specific query. Without loss of general-
ity, we assume that all data values are distinct integers. As
such, the IS can sort them and build a prefix tree out of their
binary forms. Figure 3(a) is a prefix tree for the dataset in
Figure 2.

Based on the prefix tree, the basic idea of HS3 is to merge
the authentication codes of non-result values with a common
prefix, thus allowing them to be verified as a whole. For ex-
ample in Figure 3(a), with prefix ‘00’, it can be inferred that
v1 and v2 (under v12) will not be in the range [2, +∞). Con-
sider a specific range query Q = [2, 3] in Figure 3(a) whose
result set is R = {v3(2), v4(3)}. To authenticate result val-
ues v3 and v4, the IS can return their individual authenti-
cation codes to the user, who can therefore verify that they
genuinely originate from DOs and have not been tampered
with. To authenticate all other values are non-result val-
ues, i.e., they are outside Q, the IS can simply return the
authentication codes of intermediate nodes v12 and v56, be-
cause the values that belong to these nodes share common

3In group theory, a generator of a group G is an element
g ∈ G such that all elements in G can be generated as powers
of g.
4Note that this is different from an additive homomor-
phic digital signature, which requires sig(m1) ⊗ sig(m2) =
sig(m1 +m2).

0 1

0 0

0 0

1 1

1 1 1 1

v1(0) v2(1) v3(2)v4(3) v5(5) v6(6)

Q

v12

v56

root

(a) Prefix Tree

id v seal
v1 000 S1 = G(gss1 , h(000) |h(00) |h(0))
v2 001 S2 = G(gss2 , h(001) |h(00) |h(0))
v3 010 S3 = G(gss3 , h(010) |h(01) |h(0))
v4 011 S4 = G(gss4 , h(011) |h(01) |h(0))
v5 101 S5 = G(gss5 , h(101) |h(10) |h(1))
v6 111 S6 = G(gss6 , h(111) |h(11) |h(1))
S12 = S1 ⊗ S2

= G(gss1+ss2 , h(000) + h(001) | 2h(00) | 2h(0))
S56 = S5 ⊗ S6 = G(gss5+ss6 , · · · | · · · | 2h(1))

(b) Table of Seals

Figure 3: Prefix Tree Index

prefixes ‘00’ and ‘1’, respectively, which are outside Q. And
since these two nodes already cover all non-result values,
it suffices for the user to verify the authenticity of v12 and
v56 only, thereby reducing the communication and computa-
tional overheads. In general, for a query Q, the IS finds the
set of nodes to return by recursively descending the prefix
tree until the values in every node are all non-result.

As HS3 enables a value to be authenticated by prefix,
traditional digital signatures cannot work as authentication
codes here. As such, we design seal as a new authentica-
tion code. In the following, we first present the seal data
structure and its generation process. Then, we discuss how
to build the authenticated prefix tree based on seals, fol-
lowed by the detailed authentication process for range and
aggregation queries.

4.2.1 Seal Data Structure
The seal of a value should satisfy the following require-

ments: (i) all prefixes of the value are embedded and ver-
ifiable individually; (ii) seals can be merged (as we call
“folded”) by their common prefixes; and (iii) the complete-
ness of the dataset can be verified through a single seal that
folds all individual seals. To satisfy the first two require-
ments, a seal includes not only the digest of the value as a
signature does, but also the digests of all its prefixes. Thus,
we define the digest set of a value as follows:

Definition 1. Digest Set. Let vi,(j) be the prefix of a
value vi with length j, h(·) be a cryptographic hash function,
and ‘|’ denote string concatenation. The digest set digi of a
value vi is defined as:

digi = h(vi,(l))| · · · |h(vi,(2))|h(vi,(1)).

The upper part of Figure 4 illustrates the detailed data
structure of digi. Note that for each digest, log2n bits are
reserved at the beginning to prevent additive overflow in seal
folding (detailed in Section 4.2.3), where n is the number of
DOs.

Based on the digest set, we define the seal data structure
as follows:

Definition 2. Seal Data Structure. Denote the homo-
morphic signature function introduced in Section 4.1 by G(·, ·)

h(vi,(1))00 · · ·
log2n

h(vi,(l))· · · 00 · · ·

ssi

log2n

digi

ssi

++

Figure 4: Content of Seal Si

and a group generator by g. Let ski be a secret key, includ-
ing the signing key of G(·, ·) and a powered secret share gssi ,
and digi be the digest set. The seal of a data value vi is
defined as:

Si = seal(ski, vi) = G(gssi , digi).

The secret shares are used to fulfill the last requirement
mentioned above: each DO binds its secret share to its own
seal and thus the secret s of the whole dataset can be recov-
ered correctly only if there is no missing seal from any DO.
Note that each secret share ssi is given in a powered form
of gssi so that the plaintext of ssi can be protected against
the adversary, due to the hardness of the discrete logarithm
problem [27]. To verify whether n secret shares agree with
the original secret s, one can check

∏n
i=1 g

ssi = gs mod z.
Figure 3(b) shows the seals S1, S2, · · · , S6 for the data values
v1, v2, · · · , v6; e.g., S1 = G(gss1 , h(000)|h(00)|h(0)).

4.2.2 Key Distribution and Seal Generation
After defining the seal data structure, we are ready to

describe the key distribution process. During system setup,
the CA distributes a secret key ski, including the signing
key of the homomorphic signature function G(·, ·) and the
(powered) secret share gssi , to each DO; it also distributes
a public key pk, including the verifying key of G(·, ·) and the
(powered) total secret gs to the users for result verification.
During data collection, each DO oi uses ski to generate its
seal(ski, vi) for data value vi. It is worth noting that the
CA is not involved in the data collection process and can be
offline after the key distribution for the static data case (the
dynamic data case will be further discussed in Section 7).

4.2.3 Seal Folding and Authenticated Prefix Tree
Once the IS collects individual data values and their seals

from the DOs, it can build the authenticated data structure
for the prefix tree by folding the common prefixes of seals
in a bottom-up manner. Note that the construction of the
authenticated prefix tree only involves the IS, thanks to the
homomorphic property of G(·, ·). For example, as v1 and v2

share common prefixes ‘0’ and ‘00’, S12 is computed as:

S12 = S1 ⊗ S2

= G(gss1 , h(000)|h(00)|h(0)) · G(gss2 , h(001)|h(00)|h(0))

= (gss1 · gh(000)|h(00)|h(0))d · (gss2 · gh(001)|h(00)|h(0))d mod z

= (gss1+ss2 · gh(000)|h(00)|h(0)+h(001)|h(00)|h(0))d mod z

= (gss1+ss2 · gh(000)+h(001)|2·h(00)|2·h(0))d mod z

= G(gss1+ss2 , h(000) + h(001)|2 · h(00)|2 · h(0)).

Similarly, S56 = S5 ⊗ S6 = G(gss5+ss6 , · · · | · · · |2 · h(1)).

4.2.4 Authenticating Range Queries
After the IS builds the authenticated prefix tree, it can

provide query services to the users. We use Figure 3 as an
example to illustrate the query authentication process. To
authenticate a range query Q, the verification object (VO)
returned to the user should include: (i) the seals of result
values v3 and v4, i.e., S3 and S4; (ii) the (folded) seals of all

non-result values, i.e., S12 and S56; and (iii) all the compo-
nents necessary to verify the seals, i.e., each seal’s (folded)
secret share, count of folded seals, corresponding prefix, and
other prefix digests. As for (ii), individual seals are folded
by their longest common prefixes that do not overlap with
Q, i.e., ‘00’ in node v12 and ‘1’ in node v56 (as shown in light
grey in Figure 3(b)).

The user verifies the correctness of query results in terms
of two aspects: (i) the completeness, by multiplying up the
(folded) secret shares from all returned seals (as shown in
dark grey in Figure 3(b)) and comparing it against the origi-
nal secret gs, which is known to the user; (ii) the soundness,
by verifying that each result value lies inside the query range
and that each non-result value lies outside the query range.
For (ii), the user first checks whether each received prefix
(e.g., ‘010’, ‘00’) is truly a prefix of the corresponding node
(e.g., v3, v12). Take v12 as an example; the VO received by
the user includes the following components: the folded secret
share (i.e., gss1+ss2), the count of folded seals (i.e., 2), the
corresponding prefix (i.e., ‘00’), and the other prefix digests
(i.e., h(000) + h(001), 2 · h(0)). For verification, the user
computes the digest of the prefix ‘00’ (i.e., h(00)) itself and

compares gss1+ss2 · gh(000)+h(001)|2·h(00)|2·h(0) with (S12)e in
the module domain. If they agree, the user is assured that
S12 has common prefix ‘00’ and therefore is outside Q. Sim-
ilarly, the user verifies that prefixes ‘010’ and ‘011’ are truly
prefixes of v3 and v4, respectively, and thus v3 and v4 are
inside Q; and prefix ‘1’ is truly a prefix of v56 and thus v5

and v6 are outside Q.

4.2.5 Authenticating Aggregation Queries
HS3 can also support a wide range of aggregation queries.

In what follows, we discuss the authentication schemes for
sum (count) and top-k queries, from which many other ag-
gregation queries can be derived. For example, an average
query can be decomposed into a sum query and a count
query, and a max query is equivalent to a top-1 query.
• Sum (count) query. A sum query aggregates all the

values in a query range. To support authenticating
such a query, each DO augments the digest set digi
with vi · digi as if the DO folds the original seal vi
times. As such, the authentication process is the same
as that for a range query, except that the user addi-
tionally sums up the values in relevant digests as the
sum result. A count query is a special case of a sum
query, in which the counts of result values are summed
up.
• Top-k query. A top-k query returns the largest k val-

ues among all DOs. Since the values are sorted in the
prefix tree at the IS, the top-k results are simply the
right-most k values. As such, a top-k query is equiva-
lent to a range query with the range [vn−k,+∞].

4.3 Security Analysis
In this subsection, we analyze the security of the proposed

authentication code HS3. We first prove that the seal in HS3

is secure against forgeries. Then, we show that the seal fold-
ing in HS3 is at least as secure as the batch verification [4].
At last, we prove that HS3 guarantees the correctness of
query results.

Lemma 1. The signature G(·, ·), i.e., seal(·, ·), is secure

against forgeries, if r · gh(·) can be modeled as a random
oracle and the RSA problem is hard.

Proof. See Appendix A for the proof.

Lemma 2. The batch verification (also called fast screen-

ing [4]) of the seals in HS3 is secure, if r·gh(·) can be modeled
as a random oracle and RSA(e,n) is a one-way function.

Proof. See Appendix B for the proof.

Lemma 3. The seal folding in HS3 is at least as secure as
the batch verification.

Proof. See Appendix C for the proof.

Theorem 3. The HS3 scheme guarantees the correctness
of query results in presence of a PPT adversary.

Proof. The theorem is proved from the two aspects:
• Soundness. According to Lemmas 1 and 3, the (folded)

seal in HS3 is secure against forgeries.
• Completeness. The completeness of HS3 derives from

the secret sharing scheme. Since each secret share is
generated by a pseudorandom function, it is indistin-
guishable from random and unpredictable by the ad-
versary. Suppose some DOs’ data values are dropped,
the secret shares of those DOs will also be missing,
which would result in the impossibility of final secret
recovery.

5. AUTHENTICATING MULTI-DIMENSIONAL
DATA

This section extends the HS3 authentication code to multi-
dimensional data. Typical examples of multi-dimensional
data include object locations and multi-attribute review scores.
We propose two authenticated data structures (ADS), also
known as authenticated indexes or simply indexes, based on
HS3. For ease of presentation, we assume the dimensional-
ity is two and thus use“points”and“values” interchangeably,
while the extension to higher dimensions follows unless oth-
erwise stated. Also following the previous section, all coor-
dinates are integers, and a data point can be represented by
a string that concatenates its binary representation in both
dimensions.

5.1 HS3-G-tree
The first ADS integrates HS3 with a multi-layer grid sys-

tem and is therefore called an HS3-G-tree. A multi-layer
grid system partitions the space into multiple levels of grid
cells in a recursive manner. Figure 5 shows an example for
dataset {p1, · · · , p8}. In this paper, we assume every cell is
partitioned into four sub-cells in the next level of the grid.
For example, the grey cell encoded by ‘00’ in Figure 5(a)
is further partitioned into cells of ‘0000’, ‘0001’, ‘0010’, and
‘0011’. Therefore, an HS3-G-tree is a 4-ary tree. Without
loss of generality, we do not presume any specific partition-
ing algorithm for this multi-layer grid. Nonetheless, we as-
sume that this partitioning is known to all the DOs, the IS,
as well as the querying user.

The detailed data structure of an HS3-G-tree is illustrated
in Figure 5(b). Each tree node corresponds to a grid cell,
and is associated with a value v (e.g., ‘00’) and a seal (e.g.,
S00). Here v denotes the space encoding of the cell, and the
seal, according to HS3, only applies to the cells that contain
data points. For example, the cell encoded by ‘0000’ in
Figure 5(a) does not have a corresponding seal and, hence,
is suppressed in Figure 5(b).

The structure of a seal is defined similar to HS3 as in
Figure 4. Specifically, the seal of a leaf entry pi (i.e., a

p1
p2

p5
p6

p3

p4

p7

p8

0000
00110010

0001

01
10 11

Q

00
10level 0

level 1

level 1

(a) Structure

p1 S1 p3 S3
p5 S5

p7 S7p2 S2 p8 S8p4 S4
p6 S6

0001 S0001

00 S00 01 S01 10 S10 11 S11

0110 S0110 0101 S0101 1000 S1000 S11101110 1101 S1101

(b) Index

Figure 5: HS3-G-tree

data point) is defined as G(gssi , digi), where digi concate-
nates the digests of its space encoding in decreasing preci-
sions, together with h(pi). For example, the seal of p1 is
S1 = G(gss1 , h(p1)|h(0001)|h(00)). And the seal of a non-
leaf entry can be computed by the IS by folding the common
prefix of its child entries. For example, p1 and p2 share a
common prefix of ‘0001’; so the seal of node ‘0001’ is S0001 =
S1⊗S2 = G(gss1+ss2 , h(p1) +h(p2)|2 ·h(0001)|2 ·h(00)). As
such, the IS can build the HS3-G-tree in a bottom-up man-
ner after the DOs send the value and seal of each data point.

5.1.1 Authenticating Range Queries

Algorithm 1 ServerQuery(range query Q, node t)

1: if t partially intersects with Q then
2: for each child c of t do
3: ServerQuery(Q, c)
4: else
5: if t is an internal node then
6: append vt and seal St to the VO
7: if t is fully contained in Q then
8: append all points {pi} under t to the VO
9: else

10: append pt and seal St to the VO
11: append gsst , cntt, and other digests to the VO

Upon receiving a range query, the IS prepares a veri-
fication object (VO) by a depth-first traversal (see Algo-
rithm 1). The VO consists of two types of entries: (i)
node t that does not partially intersect with Q (Line 6);
and (ii) leaf entry t that is visited (Line 10). For the for-
mer type of entries, if t is fully contained in Q, all data
points under it are results and thus appended to the VO
(Lines 7-8). For the query Q in Figure 5, the algorithm tra-
verses the nodes and entries in order of ‘00’, ‘01’, ‘0110’, p3,
‘0101’, ‘10’, ‘11’, ‘1110’, p7, ‘1101’; hence, the VO consists of
(‘00’,S00), (p3, S3), (‘0101’, S0101), (‘10’, S10), (p7, S7), (‘1101’,
S1101, {p8}) (highlighted in grey color in Figure 5(b)). Here
we do not list the secret shares, seal counts, and other digests
in the interest of space.

After the user receives the VO, it verifies the correctness of
query results by Algorithm 2. It first verifies the complete-
ness (i.e., all data values have been included) by checking
whether the powered secret gs returned by this algorithm
is the same as the public, genuine one. Then, the user ver-

Algorithm 2 UserVerify(verification object VO)

1: gs := 1
2: while VO has next entry do
3: get next entry
4: parse vt, St, gsst , cntt, and other prefix digests from this

entry (t is the current tree node)
5: update gs := gs · gsst mod z
6: if gsst · g...|cntt·h(vt)|... 6= (St)e mod z or vt partially in-

tersects with Q then
7: return −1
8: if t is fully contained in Q then
9: extract h({pi}) from this entry and set ht := 0

10: for each pi under t do
11: update ht := ht + h(pi)
12: if ht 6= h({pi}) then return −1
13: return gs

ifies the returned seals for soundness, i.e., they are indeed
inside or outside the query range (Lines 6–7). Followed by a
checking of the result points (Lines 8–12), the returned re-
sults are verified not to be tampered with. In Figure 5, the
verification procedure is explained as follows. The user first

extracts g
∑2
i=1 ssi , g

∑6
i=5 ssi from the VO components asso-

ciated with S00, S10, and gss3 , gss4 , gss7 , gss8 from the VO
components associated with S3, S0101, S7, S1101; and then re-

covers gs = g
∑8
i=1 ssi . The user further checks that all VO

entries are genuinely from the DOs by the seals S00, S10 and
S3, S0101, S7, S1101. It also checks that p8 matches the digest
in the folded seal S1101. Finally, the user verifies that ‘0101’,
‘00’, and ‘10’ are completely outside Q while p3, p7, p8, and
‘1101’ are inside Q.

The security analysis of HS3-G-tree is given in Appendix D.

5.2 HS3-R-tree
One possible disadvantage of HS3-G-tree is that the data

points may share few common prefixes due to the dimen-
sionality curse. In the worse case, all points may reside in
one leaf node, which makes the grid topology useless. To
address the skewness of the point distribution, we propose
to adopt a clustering-based multi-dimensional index, and a
typical example is an R∗-tree. The main difference is that,
instead of sharing common prefixes, data points share com-
mon Minimum Bounded Boxes (MBBs) and have their seals
folded by common MBBs. Figure 6 shows the R∗-tree for
the same dataset as in Figure 5. In this example, data points
p1 and p2 share common MBBs N1 and N5. Based on this,
we propose HS3-R-tree that integrates R∗-tree with the HS3

scheme.
The detailed data structure of an HS3-R-tree is illustrated

in Figure 6. Similar to the HS3-G-tree, each tree node is
associated with an MBB (e.g., N1) and a seal (e.g., SN1).
The seal of a leaf entry pi (i.e., a data point) is defined
as G(gssi , digi). Specifically, given a data point pi, digi is
given as h(pi)|h(Ni,(l))| · · · |h(Ni,(1)), where Ni,(j) denotes
the MBB of the j-th level node in the R∗-tree. For example,
the seal of p1 is S1 = G(gss1 , h(p1)|h(N1)|h(N5)). And the
seal of an internal node can be computed by the IS by folding
the common prefixes of its child entries. For instance in Fig-
ure 6, p1, p2 share common MBBs N1, N5; so the seal of N1 is
SN1 = S1⊗S2 = G(gss1+ss2 , h(p1)+h(p2)|2·h(N1)|2·h(N5)).
As such, the IS can build the HS3-R-tree in a bottom-up
manner after the DOs send in the value and seal of each
data point. The difference from an HS3-G-tree, however, is

Q

p1

p2 p3

p4

p5

p6
p7

p8

N1
N2

N3
N4

N5

N6

(a) Structure

p1 S1

p3 S3
p5 S5

p7 S7
p2 S2 p8 S8

p4 S4 p6 S6

N1 SN1 N2 SN2
N3 SN3 N4 SN4

N5 SN5 N6 SN6

(b) Index

Figure 6: HS3-R-tree

Q

p1p2
p3

p4

p5

p6

p7

p8Rk

Q′

(a) kNN Query

p1p2
p3

p4

p6

p7

p8p5

(b) Skyline Query

Figure 7: Complex Queries

that since the R∗-tree can only be built after gathering all
data points, the construction of an HS3-R-tree must be per-
formed in two phases. In the first phase, each DO sends its
data point to the IS, who builds the R∗-tree and returns the
common MBBs. In the second phase, each DO sends the
seal computed upon the common MBBs to the IS, who then
computes the folded seals for all R∗-tree nodes. Since a DO
has to retrieve the common MBBs before a seal can be gen-
erated, this would incur more communication overhead and
defer the computation of folded seals at the IS. It is worth
noting that, no matter how the IS builds the R∗-tree, it will
not affect the correctness of the verification result but only
the verification efficiency.

5.2.1 Authenticating Range Queries
Upon receiving a range query Q, similar to the HS3-G-

tree, the IS prepares a verification object (VO) with a depth-
first traversal on the HS3-R-tree as in Algorithm 1, except
that vt is replaced with Nt. In Figure 6(a), the IS will visit
N5, N1, N2, p3, p4, N6, N3, N4 in order; so the VO includes
(N1, SN1), (p3, S3), (p4, S4), (N3, SN3), (N4, SN4 , {p7, p8}),
as shown by the shaded entries in Figure 6(b).

After the user receives the VO, it verifies the correctness
of query results similarly to Algorithm 2, except that vt is re-

placed with Nt. In Figure 6, the user first extracts g
∑2
i=1 ssi ,

gss3 , gss4 , g
∑6
i=5 ssi , and g

∑8
i=7 ssi from the VO components

associated with SN1 , S3, S4, SN3 , and SN4 , from which it re-

covers gs = g
∑8
i=1 ssi . The user then checks that all VO

entries are genuine by the seals SN1 , SN3 , SN4 and S3, S4.
Finally, the user verifies p4, N1, and N3 are completely out-
side Q while p3, N4 are inside Q.

The security analysis follows that of the HS3-G-tree.

5.3 Other Types of Queries
By converting to range queries, we can also authenticate

other types of queries on the HS3-G-tree or HS3-R-tree, in-
cluding k-nearest-neighbors (kNN) and skylines queries.
• kNN query. Given a query point Q, a kNN query re-

turns the k nearest points to Q. To process this query,
the IS first performs a kNN search and then reduces it
to a range query Q′ with range Rk, which is the cir-
cumscribed square of the circle that centers at Q and
touches the kth-NN. Figure 7(a) shows a 3NN exam-

ple, where the query is reduced to a range query Q′

with range Rk. Once the user verifies that only p3, p7,
and p8 are in the range of Rk, it can confirm that they
are the 3NN results.
• Skyline query. A skyline query returns all points that

are not dominated by the others in the dataset. A
point pi dominates another point pj if and only if in
all dimensions, the value of pi is no larger than that
of pj . The skyline in Figure 7(b) includes p2, p5, and
p6. These skyline results can be verified by four range
queries in the shaded area of Figure 7(b). Once the
user verifies that no other points except p2, p5, and p6

are in this area, it can confirm that these three points
constitute the skyline results.

6. ANALYTICAL MODELS
In this section, we develop cost models for the proposed

seal and indexes. It gives us valuable insights to the expected
performance and proper choice of certain system settings.

6.1 Cost Model for Seal
Recall that the seal of a value vi is defined as seal(ski, vi) =
G(gssi , digi) consisting of two parts: the secret share part
gssi and the digest set digi. Let Mdigest denote the length
of a digest, respectively. Let Cpf , Cpow, Chash, Cenc, Cdec de-
note the CPU costs of a pseudorandom function operation,
a power operation, a hash operation, encryption and decryp-
tion operations, respectively. Let n be the upper bound of
the DO population in the system and l be the number of
digests in the digest set of a seal.

Although the seal length is determined by the function
G(·, ·), it is essentially at least larger than the plaintext of
the seal content. Thus, the space cost for a seal can be
derived as:

Mseal = l · (logn2 +Mdigest).

The CPU cost of generating a seal consumes at preparing
and encrypting the seal content, which can be modeled as:

Cgen = Cpf + l · Chash + Cdec + Cpow.

To verify a folded seal, the user first decrypts it and then
checks the correctness of the content. Note that the seal
verification procedure differs according to whether the seal
contains a result or not. Suppose the seal is folded based on
m results, the total CPU cost is:5

Cverify = Cenc +m · Chash + Chash + Cpow.

6.2 Cost Model for HS3-G-tree
We focus on the indexing cost at the server and the VO

cost incurred for a range query. For ease of presentation, the
whole data space is normalized into a d-dimensional unit
space [0, 1]d. For simplicity, we further assume the values
from the DOs are drawn from a uniform distribution, and
estimate the height of the HS3-G-tree, which partitions each
dimension equally, as w = dlog2d(n)e.

The space cost at the server includes the individual seals
and the seals of all non-leaf entries, which is modeled as:

MG = (n+
∑w−1

i=0
αi · 2i·d) ·Mseal, (1)

where αi represents the ratio of tree nodes occupied by data

points at level i and can be estimated as min(n,2i·d)

2i·d
.

5If the seal contains no results, only the common prefix is
needed and, thus, m · Chash is not necessary.

The CPU cost for the server to construct the HS3-G-tree
consumes only at seal folding, which is modeled as:

CGcon = (
∑w−1

i=0
βi · 2i·d) · C⊗,

where βi is the average entry number of a tree node at level
i and C⊗ is the folding cost. For a leaf node, the average
entry number is max(0, d n

2w·d
e−1). For an internal node at

level i, it has max(0, dαi+1

αi
· 2de − 1) entries on average.

Next, we try to analyze the number of visited entries for a
range query Q. According to [31], the probability that two
random rectangles R1, R2 overlap is:

Proverlap(R1, R2) =
∏d

j=1
(R1.Lj +R2.Lj), (2)

where R.Lj means the length of R in dimension j. Since the
HS3-G-tree partitions the space equally, the space length of
an entry at level i is 2−i. Given a uniform distribution of the
DOs, the space length of a leaf entry is estimated as d

√
1/n.

Thus, the number of entries visited can be modeled as:

NG
vis =

w−1∑
i=0

2i·d
d∏
j=1

(2−i +Q.Lj) +n ·
d∏
j=1

(
d

√
1

n
+Q.Lj). (3)

The costs of transmitting, preparing, and verifying the VO
are all proportional to the number of visited nodes. Specif-
ically, they can be derived as MV O = NG

vis ·Mseal, CpreV O
= NG

vis ·Caccess, CvrfV O = NG
vis ·Cverify, respectively, where

Caccess is the CPU cost to access a tree node.

6.3 Cost Model for HS3-R-tree
Let ul denote the average fanout of a leaf node and ui the

average fanout of an internal node at level i. Denote by ūi
the average of ui’s across different levels. Then, the height
of the HS3-R-tree is w = 1 + dlogūi(n/ul)e.

The space cost at the server includes the seals of all leaf
and non-leaf entries, which is modeled as:

MR = (n+
∑w−2

i=0
Ui + n/ul) ·Mseal, (4)

where Ui is the total number of entries at level i and is
estimated as Ui =

∏i
j=0 uj .

The CPU cost for the server to construct the HS3-R-tree
consumes only at seal folding, which is modeled as:

CRcon = (
∑w−1

i=1
(Ui−1 · (ui − 1)) + Uw−1 · (ul − 1)) · C⊗.

Similar to the model of HS3-G-tree, we next estimate the en-
tries visited in the HS3-R-tree for a range query Q. Follow-
ing [40], we assume all the nodes at the same level partition
the whole space equally; thus the length of a non-leaf entry
is d

√
1/Uk. The length of a leaf entry is the same as that of

the HS3-G-tree. We model the number of entries visited as:

NR
vis =

w−1∑
i=0

Ui

d∏
j=1

(d
√

1

Ui
+Q.Lj)+n ·

d∏
j=1

(
d

√
1

n
+Q.Lj). (5)

The VO size, the VO preparing time, and the verification
time are linear to the number of visited nodes in the tree.
Based on Eqs. (1) and (4), when the HS3-G-tree has a smaller
fanout than the HS3-R-tree, it results in more internal nodes
and thus higher storage overhead. Since the HS3-R-tree is
generally more compact and thus fewer nodes to be visited,
it is expected to have a lower authentication cost.

7. HANDLING DATA UPDATES
In this section, we study the update strategies for both

of the proposed HS3-G-tree and HS3-R-tree. We start by

p1
p2

p5
p6

p3

p4

p7

p8

01
10 11

Q

00
10level 0

level 1

level 1

p′6

p′8p′′8
1101

1111
1000 1001

(a) Update on HS3-G-tree

S10 = S5 ⊗ S6,L10 = {S5, S6},U10 = {}

S11 = S7 ⊗ S8,L11 = {S7, S8},U11 = {}

U11 = {S′′
8 }

U11 = {S′
8}

S10 = S10 ⊗ S−1
6 ⊗ S′

6,L10 = {S5, S
′
6},U10 = {}

U11 = {},U1111 = {S′′
8 },U1101 = {S′′

8 }

p8 → p′8 p′8 → p′′8

S1111 = S′′
8 ,L1111 = {S′′

8 },U1111 = {}

U10 = {S′
6}

p6 → p′6

1

2

3

4

4

1 2 3 4 Q is issued

Case for p6

Case for p8

(b) Update Sequence

Figure 8: Lazy Update

considering a single-value update and propose a basic update
scheme. We then present the optimized schemes of HS3-G-
tree and HS3-R-tree for batch updates.

7.1 Basic Update Scheme
To support updates, we augment the definition of secret

share with the latest update time. Formally, when a DO oi
updates its data at time τ , the secret share gssi of this DO
becomes gssi(τ) = gfk(i|τ), where fk(·) is a pseudorandom
function, and accordingly the latest total secret gs becomes
gs(τ) =

∏i−1
j=1 g

ssj · gssi(τ) ·∏n
j=i+1 g

ssj . During result ver-

ification, the latest total secret gs(τ) is used to verify the
correctness and freshness of query results.

There are two possible secret update models that can be
adopted based on the data update frequency. For highly dy-
namic data such as airfares, the IS can schedule in advance
an update agenda for all the DOs. For instance, if there are
3 DOs where o1 updates twice as frequently as o2 and o3,
a possible data update agenda can be {U1, U2, U1, U2, · · · }
for time points τ1, τ2, τ3, τ4, · · · , where U1 = {o1, o2} and
U2 = {o1, o3}. Then, instead of sending the secret share

gssi(τj) to each updated DO at every time point, the CA
sends each DO the group generator g and a seed ki dur-
ing system setup so that the DOs can generate the secret
shares locally as scheduled. Specifically, at time τj , a DO

computes a new secret share gssi(τj) = gfki (i|τj) if and only
if there is a scheduled update. Since the total secret at any
time can be precomputed from the secret share of each DO
at that time, the CA can publish it to the users in advance
and is therefore no longer involved after system setup. For
infrequently-updated data, however, the CA needs to be in-
volved in the update process. Once a DO needs to update
its value and seal, it requests a new secret share from the
CA, who then updates the total secret share to the users
and revokes the previous one. Nevertheless, as updates are
infrequent, the overhead of the CA is expected to be low.

We now describe the basic update algorithm for the HS3-
G-tree. When a DO oi updates its value from pi to p′i, it
first obtains a new secret share and then generates a seal
S′i for p′i. On the IS side, upon receiving an update from
the DO, it first finds the leaf node N where pi is located
and removes the entry pi from it. Then, the IS locates the
leaf node N ′ for p′i and inserts p′i into that node as a new
entry. Afterwards, the update is propagated to the parents
parent(N) and parent(N ′). The IS removes the Si compo-
nent from the folded seal of parent(N) by applying ⊗S−1

i ,
the inverse of Si with respect to operator ⊗, and adds the
S′i component to the folded seal of parent(N ′) by applying
⊗S′i. This propagation continues until the seals of all af-
fected nodes are updated. In Figure 8(a), where o6 moves
from p6 to p′6, the affected nodes are ‘10’, ‘1000’, and ‘1001’.
Consequently, the IS removes the entry p6 from ‘1000’, in-
serts a new entry p′6 into ‘1001’, and updates the following
folded seals: S10 = S10 ⊗ S−1

6 ⊗ S′6, S1000 = S1000 ⊗ S−1
6 ,

S1001 = S1001 ⊗ S′6.
This update algorithm also applies to the HS3-R-tree, ex-

cept that an update may cause the R∗-tree to reconstruct.
The DOs whose values fall in any of the reconstructed nodes
need to send the new seals to the IS after the reconstruction.

We analyze the security of the update scheme as follows.
While the soundness and completeness of query results can
be easily derived from the static data case, we focus on the
freshness guarantee of dynamic data. If an adversary can
compromise the freshness at time τ , it must find a subset of
seals received prior to τ whose secret shares sum up to the
total secret at τ . Since each secret share is indistinguishable
from a random value, the adversary can do no better than a
random selection. As the probability of choosing two subsets
whose sums are equal is approximately 1

2|ss|
, where |ss| is

the length of a secret share and is set to at least 2048 bits
in practice, this probability is negligible.

Note that in the basic update algorithm above, the IS
responds to an update immediately, which may incur a lot
of handling overhead even if many DO updates do not affect
any query results. In the following, we propose lazy update
strategies for both the HS3-G-tree and HS3-R-tree. The
main idea is to defer actual seal updates as late as possible.

7.2 Lazy Update in HS3-G-tree
We add two hash tables L,U at each node: L keeps track

of all seals with their latest values (for the inverse operator
⊗−1); U keeps track of the seals that are yet to be updated.
With the hash tables, the update of o6 from p6 to p′6 in
Figure 8(b) can be buffered in U of node ‘10’, until a query
Q arrives. At that time, since node ‘10’ is sufficient to prove
p8 is outside Q, only the seal S10 needs to be updated as
S10 · S−1

6 · S′6. This update evicts S′6 from U10 (and thus it
is empty) and inserts S′6 to L10.

As another example, o8 updates from p8 to p′8 then to p′′8
in Figure 8. During this process, only the hash table of U11

needs to be updated twice. Then, when a query Q arrives,
only the seal S1111 is updated when Q descends to the leaf
level; the seals S11 and S1101 do not need to be updated at
all as they are not required for the authentication of Q.

7.3 Loosely-Bounded HS3-R-tree
The challenge of applying the above lazy update to the

R∗-tree is that buffering a large set of updates in a node may
cause to reconstruct when a query arrives, which requires all

affected DOs to update their seals. This will incur a lot of
time overhead in query response. To address this issue, we
propose to build the R∗-tree in such a way that a data value
is allowed to update within a certain range without leaving
the leaf node. The result is a loosely-bounded R∗-tree.

The loosely-bounded R∗-tree stores a bounding region of
each data value, so that any update within this region does
not cause any reconstruction. The main challenge, however,
is a proper setting of the region size — a larger region in-
creases the probability of keeping future updates within this
region, but at the cost of a higher chance of being unfolded
(and thus needs to be verified) when a query comes.

To derive the optimal bounding-region size, we develop
an analytical model for the overall CPU cost C attributed
to a DO update. To estimate the new value of the DO, we
assume it follows a Gaussian distribution centered at the
current value with a variance of σ2. We further simplify the
region as a square and thus only consider a single dimension.
For simplicity, we do not consider any node reconstruction
caused by DO updates. As such, the CPU cost attributed to
a DO update include new seal generations, index updates,
and query verifications, denoted by Cgen, C⊗, and Cverify,
respectively, as in Section 6.1:

C = Cgen · numu + w · C⊗ · num∗u + Cverify · num∗q , (6)

where numu is the total number of DO updates, num∗u is
the number of updates on the index, num∗q is the number
of query verifications, and w is the height of the index tree.
Let numq be the total number of queries within this period.
We can approximate num∗u as:

num∗u ≈ numu · 2
∫ +∞

L

1

σ
√

2π
e
− x2

2σ2 dx

= numu(̇1− erf(
L√
2σ2

), (7)

where L is the half-side length of the bounding square. We
further estimate num∗q according to Eq. (2) as:

num∗q ≈ numq · (2L+Q.L), (8)

where Q.L is the average query length. Putting Eqs. (7)
and (8) back to Eq. (6), taking the derivative of L on the
left side, and making it zero, we can obtain that C reaches
the minimum when L satisfies the following condition:

w · C⊗ · numu

√
2√
πσ2

e
−L2

2σ2 = 2Cverify · numq.

Solving this equation, we have

L =

√
−2σ2 ln

√
2πσ2 · Cverify · numq

w · C⊗ · numu
. (9)

8. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the pro-

posed HS3-G-tree and HS3-R-tree on two real-life datasets,
Gowalla [11] and Weather [1]. The Gowalla dataset from
the Standford Large Network Dataset Collection contains
6, 442, 890 user check-ins at 1, 280, 969 unique locations [11].
These locations are simulated as the spatial objects in the
experiments. Besides the location, each object is associ-
ated with a non-spatial value, which is randomly gener-
ated according to a normal distribution with a mean of
100 and a standard deviation of 30. The objects in this
dataset are in the form of <latitude, longitude, value>.
The Weather dataset is from the National Weather Service

Parameter Symbol Value/Range
DOs n 1, 280, 969
Hashtable size |U| [50, 250]
queries |Q| [10, 250]

Range query cube size q [0.5× 10−3, 512× 10−3]
R∗-tree node capacity u 10
Update rate γ [1000, 5000]

Table 1: Parameter Settings for Experiments

10^0

10^1

10^2

10^3

10^4

10K 30K 100K 300K 1M 3M 10M

In
d

e
x
 S

iz
e

 (
M

B
)

DO Population

G-tree
R-tree

(a) Index Size

10^0

10^1

10^2

10^3

10^4

10K 30K 100K 300K 1M 3M 10M
S

e
rv

e
r

C
P

U
 T

im
e

 (
s
)

DO Population

G-tree
R-tree

(b) Index Construction Time

Figure 9: Server Construction Cost vs. DO Population

(NWS) Cooperative Observer Program (COOP) [1], where
more than 10,000 volunteers report daily weather observa-
tions, in the form of <latitude, longitude, temperature,
precipitation, snowfall, snowdepth>, in urban and sub-
urban areas. While we use Gowalla as the default dataset,
Weather is used to evaluate the performance when the data
dimensionality is varied. For convenience, all attribute val-
ues are converted to integers.

Both the DOs and user side are set up on a laptop com-
puter, with an entry-level Intel Core i3 CPU and 4GB RAM,
running Windows XP x64 SP3, while the IS is set up on
an HP Proliant DL360 server with a Dual 6-core Intel Xeon
X5650 2.66GHz CPU and 32GB RAM, running GNU/Linux.
The system is written in Java and runs on 64-bit OpenJDK
1.6. The hash function h(·) used is 160-bit SHA-1, and the
pseudorandom function fk(·) adopts AES-256. As for G(·, ·),
RSA-2048 is used as the underlying cryotosystem.

For the homomorphic secret sharing seal, we set the num-
ber of prefixes in a seal to 6. Furthermore, we set the node
capacity of the R∗-tree to 10 so that the depths of both
HS3-G-tree and HS3-R-tree are 6. In the experiments, we
evaluate range queries, k-nearest-neighbor (kNN) queries,
and skyline queries. For range queries, since Gowalla is a 3-
dimensional dataset, we vary the cube size of the query range
from 0.5×10−3 to 512×10−3 of the whole space. The query
workload is controlled by |Q|, the number of queries issued
during each epoch; while the update workload is controlled
by γ, the number of DOs updating their new values to the
server during each epoch. The new value is randomly gener-
ated within ±10% of the current value. We adopt γ = 3, 000
as the default setting. Table 1 summaries the settings for
the default Gowalla dataset used in the experiments.

For performance evaluation, we measure two authentica-
tion costs: (i) the computational cost in terms of the server
and user CPU time, and (ii) the communication cost in
terms of the size of data transmitted between the DO and
IS & between the IS and user. For brevity of presentation,
we denote the two HS3 schemes as G-tree and R-tree, and
the lazy-update G-tree and loosely-bounded R-tree as Lazy-
G-tree and Loose-R-tree, respectively.

8.1 Authenticated Data Structure Construction
We measure (i) the seal generation cost (on the DO side),

(ii) the seal size (i.e., the communication cost between the
DO and IS), (iii) the HS3 index size, and (iv) the HS3 index
construction time. For (i), the CPU time is 120.1ms and
124.3ms for G-tree and R-tree, respectively; for (ii), the seal
size is 256 bytes for both schemes. As for the latter two

 0

 80

 160

 240

 320

 400

Range 1NN 16NN 256NN Skyline

C
P

U
 f

o
r

Q
u

e
ry

 P
ro

c
e

s
s
in

g
 (

m
s
)

Query Types

G-tree
R-tree

(a) Server CPU Time

 0

 400

 800

 1200

 1600

 2000

 2400

Range 1NN 16NN 256NNSkyline

V
O

 S
iz

e
 (

K
B

)

Query Types

G-tree
R-tree

(b) VO Size

Figure 10: Basic Query Authentication Performance

10^1

10^2

10^3

10^4

10^5

.5 2 8 32 128 512

S
e

rv
e

r
C

P
U

 T
im

e
 (

m
s
)

Query Range (x 10^-3)

G-tree
R-tree

(a) Server CPU Time

10^2

10^3

10^4

10^5

10^6

.5 2 8 32 128 512
10^2

10^3

10^4

10^5

10^6

V
O

 S
iz

e
 (

K
B

)

R
e

s
u

lt
 C

a
rd

in
a

lit
y

Query Range (x 10^-3)

G-tree
R-tree
Result Card.

(b) VO Size

Figure 11: Performance of Varying Query Ranges

metrics, since they depend on the DO population n, we vary
n from 10, 000 to 10, 000, 000 by randomly drawing n objects
(possibly with updated objects) from the Gowalla dataset.
Figure 9 plots the results under different n settings. Both
metrics increase proportionally to n and are less than 6.9GB
and 36 mins in the worst case. As our HS3 schemes are
highly parallelizable, we expect the server CPU cost can be
further reduced with cloud or GPU acceleration.

8.2 Query Authentication Performance
In this experiment, we evaluate the query authentica-

tion performance of the two HS3 schemes. We test various
queries including range query (q = 2× 10−3), kNN (k is set
to 1, 16, 256), and skyline query under the default Gowalla
dataset. The results of server CPU time and VO size are
plotted in Figure 10. The user CPU performance is omitted
since it is related to the VO size and is below 430ms for
all queries tested. We also evaluate the naive scheme men-
tioned in Section 4 that sends the whole dataset to the user
for result verfication. However, its VO size and user CPU
time are as large as 450MB and 10 hours (not shown in the
figure for presentation clarity), which are more than three
orders of magnitude worse than our proposed schemes. It is
observed from Figure 10 that R-tree outperforms G-tree in
all cases tested. This is consistent with our cost analysis in
Section 6 that R-tree is more compact than G-tree.

Next, we focus on the range query and increase the query
range from 0.5× 10−3 to 512× 10−3 of the whole space. We
show the server CPU time, the VO size, and the cardinality
of query results in Figure 11. As can be seen, even when the
query range is as large as 512×10−3, the server CPU time is
still below 5.6 sec and the VO size is still below 29.7MB. This
is a significant reduction from sending the whole dataset.
While the cardinality of query results increases linearly with
the query range, it is interesting to observe that the VO
size in both G-tree and R-tree enlarges at a slower rate.
This validates that the overhead of authenticating non-result
values is not much affected by the query range.

We then increase the DO population n from 10, 000 to
10, 000, 000 while keeping the same result size as above when
q = 2× 10−3. As shown in Figure 12, both the server CPU
time and VO size are only slightly increased with DO popu-
lation and are less than 180ms and 960KB in the worst case.
This demonstrates the scalability of our proposed schemes.

We further investigate the impact of dimensionality on the
authentication performance using the Weather dataset. Fig-

 80

 100

 120

 140

 160

 180

10K 30K 100K 300K 1M 3M 10M

S
e

rv
e

r
C

P
U

 T
im

e
 (

m
s
)

DO Population

G-tree
R-tree

(a) Server CPU Time

 560

 640

 720

 800

 880

 960

10K 30K 100K 300K 1M 3M 10M

V
O

 S
iz

e
 (

K
B

)

DO Population

G-tree
R-tree

(b) VO Size

Figure 12: Performance vs. Data Population

 0

 20

 40

 60

 80

 100

2 3 4 5 6

C
P

U
 f

o
r

Q
u

e
ry

 P
ro

c
e

s
s
in

g
 (

m
s
)

Dimensionality

G-tree
R-tree

(a) Server CPU Time

 0

 30

 60

 90

 120

 150

2 3 4 5 6

V
O

 S
iz

e
 (

K
B

)

Dimensionality

G-tree
R-tree

(b) VO Size

Figure 13: Performance vs. Data Dimensionality

ure 13 shows the costs incurred for range queries when the
dimensionality is varied from 2 to 6. Both schemes become
worse with increasing dimensionality, while G-tree deterio-
rates faster than R-tree. This indicates that the clustering
property of R-tree is particularly important when the di-
mensionality is high.

8.3 Data Update Performance
In the following, we first evaluate the basic update scheme

for the two HS3 indexes and then show the performance after
applying the optimizations introduced in Section 7.

In the basic scheme, since G-tree is a space-partitioned
index, its updating is expected to be more efficient than
R-tree, a data-partitioned index. Figure 14(a) verifies our
expectation, where the former consistently outperforms the
latter for any update rate γ. We also plot the actual number
of seal updates on the R-tree per DO update in Figure 14(b).
It decreases as the update rate increases, because the seal
updates incurred by node reconstructions can be amortized
by more frequent DO updates. Next, we analyze the per-
formance of the proposed optimizations, i.e., lazy-update G-
tree and loosely-bounded R-tree. Figure 14(a) shows that
on average lazy-G-tree is 20% more efficient than G-tree and
loose-R-tree is 30% more efficient than R-tree.

We further evaluate the two optimizations under various
parameter settings. First, we study how the query workload
|Q| will affect the server’s CPU time used by lazy-G-tree for
index updating and query processing. We fix the hash table
size |U| at 150 and vary |Q| from 10 to 250. Figure 15 shows
that as |Q| increases, the CPU time decreases because the
update cost is amortized over more queries.

We also study the impact of L, the half-side length of the
bounding square, on the performance of loose-R-tree. We set
the query workload |Q| at 50 and the update rate γ at 3, 000,
and obtain the theoretical optimal L∗ from Eq. (9). Then
we vary L from 0.25L∗ to 4L∗ and plot in Figure 16 the total
CPU time attributed to each DO for new seal generation,
index updating, and query authentication. We observe that
this real optimal value L′ is close to the theoretical L∗. We
also plot the number of seal updates of loose-R-tree with L∗

in Figure 14(b), where the cost is significantly reduced by
up to 35% from the original R-tree.

Finally, we compare the performance of G-tree and R-
tree on mixed workloads. We mix p% of range queries with

 0

 0.4

 0.8

 1.2

 1.6

 2

1,000 2,000 3,000 4,000 5,000

In
d

e
x
 U

p
d

a
te

 T
im

e
 (

s
)

Update Rate

G-tree
R-tree

Lazy-G-tree
Loose-R-tree

(a) Index Update Time

 0

 1

 2

 3

 4

 5

1,000 2,000 3,000 4,000 5,000

U
p

d
a

te
 N

u
m

b
e

rs

Update Rate

R-tree
Loose-R-tree

(b) # HS3-R-tree Updates

Figure 14: Index Update Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 25 50 125 250

C
P

U
 f

o
r

In
d

e
x
 U

p
d

a
te

 (
s
)

Query Workload (Hashtable Size = 150)

γ = 1,000
γ = 3,000
γ = 5,000

(a) CPU for Index Updating

 0

 200

 400

 600

 800

 1000

 1200

10 25 50 125 250

C
P

U
 f

o
r

Q
u

e
ry

 P
ro

c
e

s
s
in

g
 (

m
s
)

Query Workload (Hashtable Size = 150)

γ = 1,000
γ = 3,000
γ = 5,000

(b) CPU for Query Processing

Figure 15: Impact of Query Workload on Server

(100 − p)% of data updates as the transactional workload
and turn on all the optimizations of both trees. The server
CPU time is plotted in Figure 17. We observe that when the
updates dominate (i.e., p < 40), G-tree is the winner since
it is a space-partitioned index and is therefore more efficient
in updating. In contrast, when the queries dominate (i.e.,
p > 60), R-tree is the winner since it is more compact than
G-tree and hence performs better in query processing.

 30

 40

 50

 60

 70

 80

 90

0.25L* 0.5L* L* L’ 2L* 4L*

T
o

ta
l
C

P
U

 T
im

e
 (

m
s
)

Square Length

Loose-R-tree

Figure 16: Impact of
Bounding-Square Size

 60

 80

 100

 120

 140

 160

10 30 50 70 90

S
e

rv
e

r
C

P
U

 T
im

e
 (

m
s
)

Mix Ratio (%)

G-tree R-tree

Figure 17: Performance
under Mixed Workload

9. CONCLUSION
In this paper, we have studied the problem of integrity

assurance and query result authentication for online data
integration services. We developed a novel distributed au-
thentication code named HS3 that can aggregate the in-
put from individual sources faithfully even by an untrusted
server. Based on this, we designed two authenticated data
structures, namely HS3-G-tree and HS3-R-tree, and pro-
posed authentication schemes for various queries on multi-
dimensional data. We also developed several advanced up-
date strategies to address the freshness problem in multi-
source query authentication. Analytical models and empiri-
cal results show our HS3 code and schemes are efficient and
robust under various system settings.

As for future work, we plan to extend the proposed au-
thentication schemes to more complex query types, espe-
cially those involve distance computation such as distance-
based joins. As there are many applications that adopt dis-
tance metrics other than the Euclidean distance, a more
general version of secret sharing seal in the metric space is
yet to be designed.

Acknowledgments
We would like to thank all reviewers for their valuable sug-
gestions. This work was supported by RGC/GRF Grants
12202414, 12200114, 12200914, 210612 and FRG2/13-14/064.

10. REFERENCES
[1] Cooperative observer network (coop).

http://www.ncdc.noaa.gov/data-access/

land-based-station-data/land-based-datasets/

cooperative-observer-network-coop.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki.
Consistent query answers in inconsistent databases. In
Proc. PODS, 1999.

[3] B. Babcock, S. Chaudhuri, and G. Das. Dynamic
sample selection for approximate query processing. In
Proc. SIGMOD, pages 539–550, 2003.

[4] M. Bellare, J. A. Garay, and T. Rabin. Fast batch
verification for modular exponentiation and digital
signatures. In EUROCRYPT, pages 236–250, 1998.

[5] A. CalÃň, D. Calvanese, G. D. Giacomo, and
M. Lenzerini. Data integration under integrity
constraints. Inf. Syst., 29(2):147–163, 2004.

[6] H. Chan, H.-C. Hsiao, A. Perrig, and D. Song. Secure
distributed data aggregation. Found. Trends
databases, 3(3):149–201, 2011.

[7] H. Chan, A. Perrig, B. Przydatek, and D. Song. SIA:
Secure information aggregation in sensor networks. J.
Comput. Secur., 15(1):69–102, 2007.

[8] H. Chan, A. Perrig, and D. Song. Secure hierarchical
in-network aggregation in sensor networks. In Proc.
CCS, pages 278–287, 2006.

[9] Q. Chen, H. Hu, and J. Xu. Authenticating top-k
queries in location-based services with confidentiality.
In Proc. VLDB, pages 49–60, 2014.

[10] W. Cheng and K. Tan. Query assurance verification
for outsourced multi-dimensional databases. Journal
of Computer Security, 17(1), 2009.

[11] E. Cho, S. A. Myers, and J. Leskovec. Friendship and
mobility: User movement in location-based social
networks. In Proc. SIGKDD, pages 1082–1090, 2011.

[12] S. Choi, H.-S. Lim, and E. Bertino. Authenticated
top-k aggregation in distributed and outsourced
databases. In Proc. SOCIALCOM-PASSAT, pages
779–788, 2012.

[13] J. Considine, F. Li, G. Kollios, and J. Byers.
Approximate aggregation techniques for sensor
databases. In Proc. ICDE, pages 449 –460, 2004.

[14] G. Cormode and M. Hadjieleftheriou. Finding
frequent items in data streams. In Proc. VLDB, pages
1530–1541, 2008.

[15] Z. Fan, Y. Peng, B. Choi, J. Xu, and S. Bhowmick.
Towards efficient authenticated subgraph query service
in outsourced graph databases. TSC, 7(4):696–713,
Oct 2014.

[16] O. Hassanzadeh, K. Q. Pu, S. H. Yeganeh, R. J.
Miller, L. Popa, M. A. Hernández, and H. Ho.
Discovering linkage points over web data. In Proc.
VLDB, 2013.

[17] H. Hu, J. Xu, Q. Chen, and Z. Yang. Authenticating
location-based services without compromising location
privacy. In Proc. SIGMOD, pages 301–312, 2012.

[18] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi. Spatial
query integrity with voronoi neighbors. IEEE TKDE,
25(4):863–876, 2013.

[19] R. Jain and S. Prabhakar. Trustworthy data from
untrusted databases. In Proc. ICDE, 2013.

[20] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Authenticated index structures for aggregation
queries. ACM TISSEC, 13(32):1–35, 2010.

[21] F. Li, G. Kollios, and L. Reyzin. Dynamic
authenticated index structures for outsourced
databases. In Proc. SIGMOD, pages 121–132, 2006.

[22] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han.
Resolving conflicts in heterogeneous data by truth
discovery and source reliability estimation. In Proc.
SIGMOD, 2014.

[23] X. Li, X. L. Dong, K. Lyons, W. Meng, and
D. Srivastava. Truth finding on the deep web: is the
problem solved? In Proc. VLDB, pages 97–108, 2013.

[24] X. Lin, J. Xu, H. Hu, and W.-C. Lee. Authenticating
location-based skyline queries in arbitrary subspaces.
TKDE, 26(6):1479–1493, June 2014.

[25] S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan.
Hydra: large-scale social identity linkage via
heterogeneous behavior modeling. In Proc. SIGMOD,
2014.

[26] X. Liu, X. L. Dong, B. C. Ooi, and D. Srivastava.
Online data fusion. In Proc. VLDB, pages 932–943,
2011.

[27] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot.
Handbook of Applied Cryptography. 1996.

[28] R. C. Merkle. A certified digital signature. In Proc.
Crypto, pages 218–238, 1989.

[29] S. Nath and R. Venkatesan. Publicly verifiable
grouped aggregation queries on outsourced data
streams. In Proc. ICDE, pages 517–528, April 2013.

[30] S. Nath, H. Yu, and H. Chan. Secure outsourced
aggregation via one-way chains. In Proc. SIGMOD,
pages 31–44, 2009.

[31] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer.
Towards an analysis of range query performance in
spatial data structures. In Proc. PODS, pages
214–221, 1993.

[32] A. Pal, V. Rastogi, A. Machanavajjhala, and
P. Bohannon. Information integration over time in
unreliable and uncertain environments. In Proc.
WWW, 2012.

[33] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan.
Verifying completeness of relational query results in
data publishing. In SIGMOD, pages 407–418, 2005.

[34] H. Pang and K.-L. Tan. Authenticating query results
in edge computing. In Proc. ICDE, 2004.

[35] S. Papadopoulos, G. Cormode, A. Deligiannakis, and
M. Garofalakis. Lightweight authentication of linear
algebraic queries on data streams. In Proc. SIGMOD,
pages 881–892. ACM, 2013.

[36] S. Papadopoulos, A. Kiayias, and D. Papadias. Exact
in-network aggregation with integrity and
confidentiality. IEEE TKDE, 24(10):1760–1773, 2012.

[37] C. Papamanthou, E. Shi, R. Tamassia, and K. Yi.
Streaming authenticated data structures. In Proc.
EUROCRYPT, volume 7881, pages 353–370. 2013.

[38] Y. Peng, Z. Fan, B. Choi, J. Xu, and S. Bhowmick.
Authenticated subgraph similarity search in
outsourced graph databases. TKDE, accepted to
appear.

[39] T. Rekatsinas, X. L. Dong, and D. Srivastava.
Characterizing and selecting fresh data sources. In
Proc. SIGMOD, 2014.

[40] Y. Theodoridis and T. Sellis. A model for the
prediction of r-tree performance. In Proc. PODS,
pages 161–171, 1996.

[41] D. Wu, B. Choi, J. Xu, and C. Jensen. Authentication
of moving top-k spatial keyword queries. TKDE,
27(4):922–935, April 2015.

[42] Y. Yang, S. Papadopoulos, D. Papadias, and
G. Kollios. Spatial outsoucing for location-based
services. In Proc. ICDE, pages 1082–1091, 2008.

[43] Y. Yang, S. Papadopoulos, D. Papadias, and
G. Kollios. Authenticated indexing for outsourced
spatial databases. VLDBJ, 18(3):631–648, 2009.

[44] Y. Yang, X. Wang, S. Zhu, and G. Cao. SDAP: A
secure hop-by-hop data aggregation protocol for sensor
networks. In Proc. MobiHoc, pages 356–367, 2006.

[45] X. Yin, J. Han, and P. S. Yu. Truth discovery with
multiple conflicting information providers on the web.
In Proc. SIGKDD, 2007.

[46] M. L. Yiu, Y. Lin, and K. Mouratidis. Effcient
verification of shortest path search via authenticated
hints. In Proc. ICDE, pages 237–248, 2010.

[47] M. L. Yiu, E. Lo, and D. Yung. Authentication of
moving knn queries. In ICDE, pages 565–576, 2011.

[48] R. Zhang, J. Shi, Y. Liu, and Y. Zhang. Verifiable
fine-grained top-k queries in tiered sensor networks. In
Proc. INFOCOM, pages 1199–1207, 2010.

[49] R. Zhang, J. Shi, Y. Zhang, and C. Zhang. Verifiable
privacy-preserving aggregation in people-centric urban
sensing systems. IEEE JSAC, 31(9):268–278, 2013.

[50] B. Zhao, B. I. P. Rubinstein, J. Gemmell, and J. Han.
A bayesian approach to discovering truth from
conflicting sources for data integration. In Proc.
VLDB, pages 550–561, 2012.

APPENDIX

A. PROOF OF LEMMA 1
We prove Lemma 1 by contradiction. If there were a PPT

adversary A who can forge the seal seal(sk, v) for a value v,
we can design an algorithm A′ for the RSA problem. Con-
sider an instance of the RSA problem that, given a public key
(e, n) and an element y ∈ Z∗n, attempts to find x such that
xe = y mod z. In A′, we design a random oracle as follows.
When A issues p random oracle queries with v1, . . . , vp, A′
responds with r1 · gh(v1), · · · , ri−1 · gh(vi−1), y, ri+1 · gh(vi+1),
· · · , rp ·gh(vp), i.e., for the query vi it responds with y in the
given instance of the RSA problem, while for other queries
it responds with r · gh(·), where p is polynomially upper-
bounded. If A′ is requested by A to return the seal of some
value in {v1, . . . , vp} − {vi}, it responds accordingly. When
A forges and outputs the seal seal(sk, v) of some randomly
chosen v in {v1, . . . , vp}, A′ can use seal(sk, v) to solve the
given instance of the RSA problem with a probability of 1/p,
which is the probability that v is chosen as vi. In that case,
seal(ski, vi)

e = y mod z; thus A′ finds x = seal(ski, vi). It
contradicts the assumption that there is no PPT algorithm
for the RSA problem.

B. PROOF OF LEMMA 2
With the seal in Lemma 1, the batch verification function

can be defined: batch verify({v1, · · · , vt}, {S1, r1, · · · , St, rt}).
It returns 1 if G−1(⊗ti=1Si) =

∏t
i=1 ri · gh(vi), otherwise 0.

Similar to Theorem 4.1 in [4], the batch verification is secure
when RSA(e,n) is a one-way function.

More specifically, since Lemma 1 guarantees the unforgery
of the seal of a new value, the only practical attack is to forge
a seal based on the existing seals. Suppose an adversary suc-
ceeds to make a forgery of (v′t, r

′
t, S
′
t) based on two existing

seals for vi, vj by S′t = Si ⊗ Sj . However, it requires to sat-

isfy the equation rt′ · gh(v′t) = ri · gh(vi) · rj · gh(vj), which is
impossible if r · gh(·) can be modeled as a random oracle.

C. PROOF OF LEMMA 3
Different from the batch verification, the principle of seal

folding is to aggregate the seals before sending them to the
verifier, i.e., the seals in {S1, · · · , St} will be folded as S =
⊗ti=1Si. When the verifier receives {v1, · · · , vt}, the folded
seal S, and the product of the random values

∏n
i=1 ri, it

verifies the seal by checking G−1(S) =
∏t
i=1(ri · gh(vi)).

We prove Lemma 3 by contradiction. Suppose there exists
a PPT eavesdropper adversary that observes a set of mes-
sages {v1, · · · , vt} and a folded seal S, it successfully makes a

forgery (v′t, r
′
t, S
′) such that G−1(S′) = (

∏t−1
i=1 ri ·gh(vi)) ·(r′t ·

gh(v′t)). Now let us consider the batch verification, where the
adversary is required to return individual seals. The seals
for the first t−1 values are the genuine ones, and the forged
one can be computed as S′t = S′ ⊗ (⊗t−1

i=1Si)
−1, which can

pass the batch verification and make a forgery of (v′t, r
′
t, S
′
t).

It breaks the security of the batch verification, which causes
a contradiction to Lemma 2.

D. SECURITY ANALYSIS OF HS3-G-TREE
We analyze the security of HS3-G-tree from two aspects:
• Soundness. The basic security guarantee follows that

of HS3. The only difference here is that if an internal
node is fully covered by the query, we do not need to
return the individual seals of the points under this node
(e.g., S8 in Figure 5). Nevertheless, the authenticity of
these result points can be guaranteed by the folded seal
in the internal node since it is secure against forgeries
according to Lemmas 1 and 3.
• Completeness. The completeness guarantee follows the

secret sharing scheme.

E. ADDITIONAL EXPERIMENT ON THE
IMPACT OF HASHTABLE SIZE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

50 100 150 200 250

C
P

U
 f

o
r

In
d

e
x
 U

p
d

a
te

 (
s
)

Hashtable Size (Query Workload = 50)

γ = 1,000
γ = 3,000
γ = 5,000

(a) CPU for Index Updating

 0

 100

 200

 300

 400

 500

 600

 700

50 100 150 200 250

C
P

U
 f

o
r

Q
u

e
ry

 P
ro

c
e

s
s
in

g
 (

m
s
)

Hashtable Size (Query Workload = 50)

γ = 1,000
γ = 3,000
γ = 5,000

(b) CPU for Query Processing

Figure 18: Impact of Hashtable Size on Server

This experiment analyzes how the size of hashtable U
will affect the server’s CPU time used by lazy-G-tree for
index updating and query processing. We fix |Q| at 150 and
vary |U| from 50 to 250. Figure 18(a) shows that a larger
hashtable size reduces the index updating time, because it

is more likely that a new DO update only replaces a buffered
item in the hashtable. On the other hand, Figure 18(b)
shows that a larger hashtable size increases the server’s query
processing time, because the server needs to take more CPU
time in examining the hashtables of accessed nodes.

