
WhenQuery Authentication Meets Fine-Grained Access Control:
A Zero-Knowledge Approach

Cheng Xu

Hong Kong Baptist University

chengxu@comp.hkbu.edu.hk

Jianliang Xu

Hong Kong Baptist University

xujl@comp.hkbu.edu.hk

Haibo Hu

Hong Kong Polytechnic University

haibo.hu@polyu.edu.hk

Man Ho Au

Hong Kong Polytechnic University

csallen@comp.polyu.edu.hk

ABSTRACT
Query authentication has been extensively studied to ensure the

integrity of query results for outsourced databases, which are often

not fully trusted. However, access control, another important secu-

rity concern, is largely ignored by existing works. Notably, recent

breakthroughs in cryptography have enabled fine-grained access

control over outsourced data. In this paper, we take the first step

toward studying the problem of authenticating relational queries

with fine-grained access control. The key challenge is how to pro-

tect information confidentiality during query authentication, which

is essential to many critical applications. To address this challenge,

we propose a novel access-policy-preserving (APP) signature as

the primitive authenticated data structure. A useful property of the

APP signature is that it can be used to derive customized signatures

for unauthorized users to prove the inaccessibility while achieving

the zero-knowledge confidentiality. We also propose a grid-index-

based tree structure that can aggregate APP signatures for efficient

range and join query authentication. In addition to this, a number

of optimization techniques are proposed to further improve the

authentication performance. Security analysis and performance

evaluation show that the proposed solutions and techniques are

robust and efficient under various system settings.

KEYWORDS
Query processing, data integrity, fine-grained access control

ACM Reference Format:
Cheng Xu, Jianliang Xu, Haibo Hu, and Man Ho Au. 2018. When Query

Authentication Meets Fine-Grained Access Control: A Zero-Knowledge

Approach. In Proceedings of 2018 International Conference on Management
of Data (SIGMOD’18). ACM, New York, NY, USA, 16 pages. https://doi.org/

10.1145/3183713.3183741

1 INTRODUCTION
With the prosperity of data-as-a-service (DaaS) and cloud comput-

ing, more and more enterprises are outsourcing their databases to

off-the-shelf cloud data engines, such as Amazon SimpleDB, Mi-

crosoft Azure Cloud SQL, Salesforce Cloud Database, and Google

BigQuery.While these cloud engines address the needs of enterprise

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3183741

databases for high performance, high availability, and low operation

costs, enterprises are at the risk of losing control of query integrity.

Due to service outages, program glitches, security vulnerabilities,

and other reasons, enterprises cannot guarantee the correctness

of query results returned by an outsourced database. To address

this issue, authenticated query processing has been proposed and

studied by a large body of literature [14, 15, 24, 34, 36, 38]. It relies

on the data owner (i.e., the enterprise) to sign a well-designed au-

thenticated data structure (ADS), based on which the outsourced

database can construct a cryptographic proof for the results of each

online query.

However, existing works do not fully address another important

security concern that usually coexists with integrity, i.e., access

control. Access control ensures each user can access only the data

he/she is authorized to use. With the increasing popularity of mov-

ing enterprise databases into the cloud, the need for access control

in data sharing is becoming more indispensable than ever. For ex-

ample, to support cloud-based ERP and OLAP systems, a Salesforce

cloud database can be configured to support up to 10,000 access con-

trol polices [27]. To this end, attribute-based encryption (ABE) [2, 9]

has been a prevailing technique used by cloud databases to support

fine-grained access control [10, 29–31]. In essence, each data record

is specified with an access policy based on attributes (e.g., post title

and/or specialty), rather than identities, so that only the users who

possess authorized attributes can access the record. For example, a

patient may authorize the access of his/her medical record only to

senior researchers or doctors specializing in cancer.

Unfortunately, only very few studies have explored query authen-

tication for databases where access control is enforced [3, 12, 22]

and they suffer from three major limitations. First, they only sup-

port simple access control rules at a coarse-grained level. For exam-

ple, [22] simply does not allow disclosure of data that are outside the

query range; [3, 12] divide the database space into sub-spaces and

enforce access control for each sub-space, based on identities. Sec-

ond, unlike fine-grained access control, the access control in these

existing studies is not cryptographically enforced, which renders

the system susceptible to bypasses and SQL injection attacks [29].

Third, the existing authentication techniques distinguish between

inaccessible data and non-existent data and, hence, could leak sen-

sitive information beyond what can be deduced from accessible

data. For example, suppose a doctor is authorized to access medical

records associated with some specific disease only; by knowing the

existence of the inaccessible records, he/she may infer the distribu-

tion of other diseases in the database.

To overcome these limitations, in this paper, we take the first step

toward studying the problem of authenticating relational queries

with fine-grained access control. To answer a query, the outsourced

https://doi.org/10.1145/3183713.3183741
https://doi.org/10.1145/3183713.3183741
https://doi.org/10.1145/3183713.3183741

database returns those records that not only satisfy the query con-

dition but are also accessible to the user. As with existing query

authentication techniques, a cryptographic proof is returned, along

with the query results. The key challenge lies in how to protect

information confidentiality during query authentication. That is,

the proof must be zero-knowledge, so that it reveals nothing beyond
the accessible records. For example, if no record is returned for a

given search key, the user cannot deduce from the proof whether

there does not exist a matching record or the matching record is

inaccessible to him/her. This is essential in preventing enumeration

attacks that exhaustively and iteratively issue queries of overlap-

ping ranges to learn the distribution of search keys in the database.

It is also useful to prevent linkage attacks that use such auxiliary

information to compromise privacy in associated databases [7].

As a building block, we first propose a novel access-policy-

preserving (APP) signature based on a variant of the attribute-based

signature (ABS) scheme [19]. The main novelty of the APP signa-

ture is its dual roles: (i) for authorized users, it provides a proof of

integrity of the data record; (ii) for unauthorized users, it can be

tailored to derive customized signatures to prove the inaccessibil-

ity while achieving the zero-knowledge confidentiality. We then

design the authenticated data structure (ADS) that consists of APP

signatures of data records, based on which authenticated query pro-

cessing algorithms are developed. To address performance issues

for range queries and join queries, we further propose AP
2
G-tree,

a grid-index-based ADS that can aggregate APP signatures. Several

optimization techniques that are compatible with the original secu-

rity model or a relaxed one are also developed. To summarize, our

contributions made in this paper are as follows:

• To the best of our knowledge, this is the first work on query au-

thentication for databases with fine-grained access control. We

believe that this is a timely study, as enterprise cloud database

systems dictate integrity (query authentication) and authoriza-

tion (access control) at the same time.

• We propose a novel ABS-based APP signature as the primitive

for ADS, together with a grid-index-based tree structure that

can aggregate APP signatures for efficient range and join query

authentication.

• We develop several optimization techniques that are either

compatible with the original security model or a relaxed one.

• We conduct a security analysis and empirical study on the

authentication performance with respect to various factors

such as query range size and database cardinality.

The rest of the paper is organized as follows. Section 2 reviews

existing studies on access control and query authentication. Sec-

tion 3 introduces the formal problem definition, followed by cryp-

tographic primitives in Section 4. Section 5 presents our solution

for equality queries, which is then generalized to range queries and

join queries in Section 6 with the design of AP
2
G-tree. A security

analysis is presented in Section 7, and Sections 8 and 9 present op-

timization techniques for the zero-knowledge model and a relaxed

model, respectively. Section 10 presents the experimental results,

followed by a conclusion in Section 11.

2 RELATEDWORK
To the best of our knowledge, no existing solution supports zero-

knowledge query authentication with fine-grained access control.

In this section, we briefly review the relevant techniques.

Access Control. Enforcing access control in file systems or

−∞ o1 o2 o3 o4 +∞

siд(−∞|o
1
|o

2
)

siд(o
1
|o

2
|o

3
)

siд(o
2
|o

3
|o

4
)

siд(o
3
|o

4
| +∞)

(a) Signature Chaining

N0 = h(N1 |N2)

N1 = h(N3 |N4) N2 = h(N5 |N6)N2 = h(N5 |N6)

N3 = h(o1)N3 = h(o1) N4 = h(o2)

o1 o2

N5 = h(o3) N6 = h(o4)

o3 o4

siд(N0)

Q

(b) Merkle Hash Tree
Figure 1: Basic Authentication Techniques

database systems has been widely studied in the literature. Tra-

ditionally, this is done by employing an access control list (ACL),
in which a permission manifest is attached to each individual file

or data record. However, this method suffers from poor scalability

when dealing with massive data or complex access control require-

ments. To remedy such issues, role-based access control (RBAC)
is proposed by Sandhu et al. [28]. RBAC implements an access

control mechanism over role permissions, user-role, and role-role

relationships. This makes it a flexible technology in supporting

both discretionary access control (DAC) and mandatory access con-
trol (MAC). However, only static and pre-defined access policies

can be supported with RBAC. To overcome this limitation and sup-

port dynamic, context-aware, and fine-grained access control, fuzzy
identity-based encryption (Fuzzy IBE) [26] and, later, attribute-based
encryption (ABE) [9] are developed. These approaches define an

access policy with a complex boolean function over many differ-

ent attributes to support attribute-based access control (ABAC) [25].
There are two categories of ABEs. In key-policy ABE (KP-ABE) [9],

each data object is associated with a set of attributes, while users’

decryption keys define the access policies with a boolean function

over those attributes. In ciphertext-policy ABE (CP-ABE) [2], the ac-

cess policy is embedded in each data object’s ciphertext, while users

are given a set of attributes as private keys to present their roles.

ABE offers an effective way to enforce fine-grained access control

over encrypted data, but it cannot be used to authenticate one’s

identity. To address this, attribute-based signature (ABS) [16, 19] is
proposed as a signature scheme to prove one’s identity that satis-

fies certain fine-grained constraints. While ABAC was originally

designed for file systems, it has been recently adopted by various

cloud databases to support fine-grained access control [10, 29–31].

Authenticated Query Processing. A large body of research

on authenticated query processing has been carried out to verify the

integrity of query results against an untrusted service provider [14,

15, 17, 24, 33, 34, 36, 38]. There are two basic techniques that can be

used to achieve this: signature chaining (Figure 1a) and Merkle hash

tree (Figure 1b). The former technique uses a public-key cipher with

which the data owner can generate digital signatures for each data

value using a private key. Consequently, the user can verify the

authenticity of the data value using the public key. To establish the

completeness of the query results, chaining signatures are produced

to capture the correlation of each value and its adjacent values [24].

Merkle hash trees (MHTs), on the other hand, are built on index

trees [20]. Each entry in a leaf node is assigned a digest based

on its hashed data value, and each entry in an internal node is

assigned a digest derived from its child nodes. The data owner

signs the root digest of the MHT, which can be used to verify any

subset of data values. For example, in Figure 1b, a range query Q
will return {o2,N2,N3}, based on which the user can reconstruct

the root digest N0 = h(h(N3 |h(o2))|N2) for verification. MHT has

been widely adapted to various index structures. Typical examples

include the Merkle B-tree for relational data [15], the Merkle R-tree

for spatial data [36, 37], the authenticated inverted index for text

Database
q attr . content∗ access policy

o1 v1 RoleA ∧ RoleC
o2 v2 RoleA ∧ RoleB
o3 v3 RoleB ∨ RoleC
o4 v4 RoleC
o5 v5 RoleA

*Content is encrypted by CP-ABE

Service Provider (SP)

Q{(oi , vi , ϒi)}

ADS

Data Owner (DO)

RoleA, RoleB

u1

RoleC

u2

Q

{ ⟨o2, v2 ⟩, ⟨o3, v3 ⟩ }
VO

Q

{ ⟨o3, v3 ⟩, ⟨o4, v4 ⟩ }
VO

Users

Figure 2: Query Authentication with Access Control

data [23], the authenticated prefix tree for multi-source data [5],

and the MMB
cloud

-tree for cloud service selection [17]. It has also

been adopted to support authenticated join queries [35].

More recently, some studies have been conducted to unify query

authentication with a privacy-preserving requirement. That is, the

proof of the query integrity should not disclose any confidential

information from the dataset. Notably, privacy-preserving query

authentication for location-based range queries and top-k queries

has been studied in [4, 11], in which new techniques are proposed to

verify the comparison results in regard to private values. To protect

all information of the dataset other than the query itself, Ghosh et al.
propose a novel approach to achieving zero-knowledge authentica-

tion for range and closest point queries on one-dimensional data [8].

Unfortunately, it considers a case in which the user only submits a

single query; continuous queries from the adversary would largely

undermine its zero-knowledge privacy assurance. On the other

hand, there are only a few query authentication studies that sup-

port access control. For keyword searches, Sun et al. develop a

scheme to support verifiable searches with fine-grained access con-

trol [32]. However, this scheme only targets file-level searches. For

relational databases, Chen et al. propose a verifiable range query
algorithm with basic access control, which is built upon the concept

of accessible space [3]. Assuming a similar coarse-grained access

control model, Jain and Prabhakar further consider data privacy

in query authentication and access control [12]. To date, how to

effectively support query authentication with fine-grained access

control in relational databases remains an open research question.

3 PROBLEM DEFINITION
In this paper, we study the problem of authenticated query process-

ing on relational data with fine-grained access control. As shown in

Figure 2, there are three parties in the system: (i) data owner (DO);
(ii) service provider (SP); and (iii) users. The relational database D,

owned by the DO, is enforced with access control. Each record in

D is a tuple ⟨oi ,vi , ϒi ⟩, where oi is the query attribute, vi is the
content attribute, and ϒi is the access policy. We assume that oi is
discrete and distinct among all records.

1
We further assume that vi

is encrypted by CP-ABE [2] (details in Section 4) for access control.
2

All the records are signed by the DO using an authenticated data
structure (ADS) and are outsourced to the SP, who answers queries

from the users on the behalf of the DO.

System Setup. During the system setup, the DO generates a

public key pkuser (CP-ABE encryption key) and a secret key skDO
(ABS signing key), which can be used to encrypt the data and

generate the ADS, respectively. The DO also distributes a secret

1
The proposed approach is also applicable to continuous data which can be converted

into discrete data by discretization techniques [13]. How to handle duplicate records

will be discussed in Appendix E.

2
For simplicity, we assume that the query attribute is in plaintext. In cases where the

query attribute is also encrypted, privacy-preserving query techniques [30] can be

applied to retrieve query results, which is an orthogonal issue to query authentication.

key skuser (CP-ABE decryption key) and a public key pk
DO

(ABS

verification key) to the users, who can use them to decrypt and

verify the query results, respectively.

Access Policy. Access policies control the results of a query

with respect to the roles of the user.
3
For example, given the same

range query Q in Figure 2, the result set to user u1 with RoleA
and RoleB is {⟨o2,v2⟩, ⟨o3,v3⟩} and that to user u2 with RoleC is

{⟨o3,v3⟩, ⟨o4,v4⟩}. In general, an access policy can be viewed as

a boolean function in the form of ϒ : {0, 1}n → {0, 1}. It accepts
multiple boolean inputs, each corresponding to a role, and outputs

1 or 0. For example, if ϒ is defined as (RoleA ∧RoleC) ∨RoleB , then
ϒ(RoleA) = 0 and ϒ(RoleB ,RoleC) = 1. Here, for clarity, we omit

those inputs with zero values (e.g., a singleton RoleA implies that

RoleB and RoleC are missing). While, technically, an access policy

can take any boolean function, in the literature, most works focus

on a specific type, namely, monotone boolean functions [2, 9, 16, 19].

Formally, the monotonic property means that, for all ai and bi in
{0, 1}, if a1 ≤ b1, . . . , an ≤ bn , then ϒ(a1, . . . ,an) ≤ ϒ(b1, . . . ,bn)
holds. This property suggests that a user with more roles has a

higher clearance level and so can access more data. In this paper,

we assume that all access control policies are monotone boolean

functions that are normalized in a disjunctive normal form (DNF).

Threat Model. Two security threats are considered in this pa-

per: (i) the SP is not fully trusted and it might return tampered or

incomplete query results; and (ii) the users are curious and may

want to learn the information about the data to which access is

unauthorized.

To address the first threat, we advocate authenticated query pro-

cessing that enables the SP to prove the correctness of the query

results [15, 24, 36]. Specifically, during query processing, the SP

traverses the ADS and constructs a verification object (VO) that
includes the verification information of the results. The VO is re-

turned to the user along with the results. Using the VO, the user

should establish the soundness and completeness of a result set RS :
• Soundness. No records in RS are tampered with and are truly

the results with respect to the roles of the user.

• Completeness. All records not in RS are either non-results

or are inaccessible to the user.

Take the range query Q in Figure 2 as an example. RS = {⟨o2,v2⟩,

⟨o3,v3⟩} is the correct result set for useru1.RS1 = {⟨o2,v
′
2
⟩, ⟨o3,v3⟩}

and RS2 = {⟨o2,v2⟩, ⟨o3,v3⟩, ⟨o4,v4⟩} are not sound because they

either contain fake (v ′
2
in RS1) or inaccessible (o4 in RS2) records.

RS3 = {⟨o2,v2⟩} is not complete because o3 is missing.

To further address the second threat, we need to protect data

access against unauthorized users during query authentication. We

define three levels of confidentiality requirements:

• Data Content Confidentiality. The contents of inaccessible
records are protected. This is a basic requirement for any query

service that supports access control.

• Access Policy Confidentiality. In addition to data content

confidentiality, the access policies of inaccessible records are

protected. That is, the users must not know that their denied

access is due to the lack of some specific role(s).

• Zero-KnowledgeConfidentiality. Any information beyond

the accessible recordsD+ in the databaseD is protected. That

is, the users can gain nothing about D\D+ (e.g., not even its

size or the associated access policies).

The above security notions will be formalized when we perform

3
We use “roles” and “attributes” interchangeably in the context of ABE and ABS.

security analysis in Section 7.2. We assume that there is no collusion

between the SP and users.

In what follows, we propose a zero-knowledge query authenti-

cation solution that addresses both of the security threats under

fine-grained access control. We will develop new query authentica-

tion techniques for ADS generation, VO construction, and result

verification that achieve the zero-knowledge confidentiality. To

cater for performance-centric applications, we will also discuss

how to further improve the query authentication performance by

relaxing the confidentiality requirement.

4 PRELIMINARIES
This section gives some preliminaries on cryptographic constructs

and integrity assurance.

Cryptographic Hash Function. A cryptographic hash func-

tion hash(·) accepts an arbitrary-length string as its input and re-

turns a fixed-length bit string. It is collision resistant; it is difficult

to find two different messages,m1 andm2, such that hash(m1) =

hash(m2). Classic cryptographic hash functions include the SHA-1,

SHA-2, and SHA-3 family.

Bilinear Pairing. Bilinear pairing maps a pair of elements in

two groups to a single element in a third group, which serves as a

basic operation in attribute-based encryption (ABE) and attribute-
based signature (ABS), as shown later in this paper.

Let G, H, and GT be three cyclic multiplicative groups with the

same order p, where p is a prime. Let д, h be the generator of G and

H, respectively. We can find a bilinear mapping e : G × H→ GT ,
which has the following properties:

• Bilinearity: Ifu ∈ G,v ∈ H, and e(u,v) ∈ GT , then e(ua ,vb) =
e(u,v)ab for any u,v .
• Non-degeneracy: e(д,h) , 1.

Ciphertext-Policy Attribute-Based Encryption (CP-ABE).
CP-ABE is proposed to realize complex access control over en-

crypted data [2]. By embedding the access policy into the cipher-

text, it enables fine-grained access control represented by a boolean

function of attributes. It consists of a set of algorithms:

• CP-ABE.Setup(1λ) → (mk,pp): On input a security parameter

1
λ
, it generates a master private keymk and a public key pp.

• CP-ABE.KeyGen(mk,A) → skA : On input a master private

key mk and an attribute set A, it outputs a decryption key

skA .
• CP-ABE.Encrypt(pp,x , ϒ) → cϒ : On input a public key pp and

an access policy ϒ, it encrypts plaintext x into ciphertext cϒ .
• CP-ABE.Decrypt(skA , cϒ) → x : On input a decryption key

skA , ciphertext cϒ , it outputs plaintext x if ϒ(A) = 1; other-

wise ⊥ is returned.

Attribute-Based Signature (ABS). Introduced in [19], ABS is

a signature scheme that enables a party to sign a message with fine-

grained access control over the identifying information. Unlike a

traditional signature scheme, messages can be signed with a mono-

tone boolean function predicate that is satisfied by the attributes

obtained from the authority. It consists of the following algorithms:

• ABS.Setup(1λ) → (msk,mvk): On input a security parame-

ter 1
λ
, it generates a master signing key msk and a master

verification keymvk .
• ABS.KeyGen(msk,A) → skA : On input a master signing key

msk and an attribute set A, it outputs a signing key skA .
• ABS.Sign(skA ,m, ϒ) → σm,ϒ: On input a signing key skA ,
a messagem, and a monotone boolean function predicate ϒ,

where ϒ(A) = 1, it outputs a signature σm,ϒ .

• ABS.Verify(mvk,m, ϒ,σm,ϒ) → {0, 1}: On input a master ver-

ification key mvk , an unverified message m, an unverified

monotone boolean function predicate ϒ, and a signature σm,ϒ ,

it outputs 1 if the signature is valid.

More elaborate procedures, along with extended algorithms, will

be given in Section 5.2.

5 EQUALITY QUERY AUTHENTICATION
A naive solution to query authentication with fine-grained access

control is to use the Merkle hash tree [20] to construct a verification

object (VO) for authenticated query processing and to use CP-ABE

to encrypt data records for access control. More specifically, for

any query, all data records (including those inaccessible ones) that

lie in the query range, along with the VO, are returned to the user.

After verifying the records, the user can decrypt and access the

authorized records, using the attribute secret key obtained from the

DO. However, this solution has two problems. First, it will return

a large number of inaccessible records to the user, which incurs

high computation and communication overheads. Second, for the

inaccessible records, thanks to CP-ABE, although they cannot be

decrypted by the user, returning them still reveals some information

about their existence and their access policies. This violates our

zero-knowledge confidentiality requirement.

In the following, we propose new query authentication tech-

niques that support both fine-grained access control and zero-

knowledge confidentiality. We start with equality queries by devel-

oping a novel signature scheme in this section and then extend it

to range queries and join queries in Section 6.

In an equality query, the user specifies a query key oq as well as

his/her access role setA. Since the query attribute is distinct, there

could be three possible outcomes:

• There is one record matching oq and it is accessible to the

query user.

• There is one record matching oq but it is not accessible to the

query user.

• There is no record matching oq .
Recalling our zero-knowledge confidentiality does not allow the

user to distinguish between the last two outcomes. To prevent the

information leakage caused by non-existent records, we introduce

a global pseudo access role, Role ∅ , which is not possessed by any

user. We treat each non-existent record as a pseudo record that is

associated with the access policy Role ∅ . As such, for any equality

query, there is always one matching record with one of the two

possible outcomes: accessible or inaccessible.

5.1 ADS Generation and Query Processing
ADS Generation. Our construction for zero-knowledge query au-

thentication is built upon a novel signature scheme. During the

system setup, the DO generates a signature for each data record.

These signatures, serving as authenticated data structures (ADS),

are sent to the SP, who will then use them to support verifiable

queries. As mentioned earlier, the signature has two design require-

ments. First, given a record i , the signature should capture all of its

three components (query attribute oi , data content vi , and access

policy ϒi) so that it can be used as a proof of integrity. Second, in

case the record is inaccessible to some users, the signature can be

tailored to prove the inaccessibility with the zero-knowledge confi-

dentiality. To this end, we propose a new access-policy-preserving

(APP) signature based on a variant of the attribute-based signature

RoleA,RoleB

u1

RoleC

u2

APS signature

σ̂2,Au
2

APP signature

σ2

⟨o2,v2, ϒ2⟩

ϒ2 = RoleA ∧ RoleB

⟨hash(v2), σ̂2,Au
2

⟩

⟨v2,σ2, ϒ2⟩

ABS.Relax

ABS.Sign

Data Owner (DO) Service Provider (SP) Users

Figure 3: Equality Query Authentication

(ABS) (to be detailed in Section 5.2).

Definition 5.1 (APP Signature). Consider a record ⟨oi , vi , ϒi ⟩. Let
skDO be the signing key of the DO, hash(·) a cryptographic hash
function, and ‘|’ denote string concatenation. The access-policy-

preserving (APP) signature for this record is generated as:

σi = ABS.Sign(skDO,hash(oi)|hash(vi), ϒi)
In the case of pseudo (non-existent) records, vi will be assigned a

random value and ϒi will be Role ∅ .

Authenticated Query Processing. After the SP receives the

APP signatures for all records from the DO, it is able to support

authenticated query processing by constructing a VO for the query

result. Figure 3 shows an example of two different users issuing an

equality querywith keyo2. Useru1 is allowed to access the recordo2,

so it is straightforward to return the APP signature generated by the

DO as the VO. That is, the SP will return ⟨v2, σ2 = ABS.Sign(skDO,
hash(o2)|hash(v2), ϒ2), ϒ2⟩. On the user side, hash(o2)|hash(v2)will

be computed based on the query attribute o2 and the result v2

returned by the SP. If it can be verified by the signature σ2 under

the policy ϒ2, ⟨o2,v2⟩ is a genuine result.

Next, we consider the case in which the data record is inacces-

sible to the user (e.g., u2 in Figure 3). Since the query attribute is

distinct, we only need to prove the inaccessibility of this data record.

Simply returning the APP signature does not work, because this

would disclose the access policy and hence the specific reason why

the user cannot access the record. To achieve the zero-knowledge

confidentiality, the SP can only leverage the information which is

already known to the user to prove the inaccessibility. Specifically,

the global access role set A and the user’s own role set A are such

information the SP can use.

In a monotone boolean function, given an access role set as input,

the reason for it to output 0 is only because it lacks one or more

roles in A\A (i.e., those roles that the user does not own). Thus,

our idea is to make use of a super access policy, denoted by ϒ̂A ,
that does not honor the role setA. More specifically, it is a boolean

function that fuses each role in A\A using the OR operator. For

example, in Figure 3, if the access role universe A is {Role ∅ , RoleA,
RoleB , RoleC }, then ϒ̂{RoleC } = Role ∅ ∨ RoleA ∨ RoleB for user u2.

In essence, it is the weakest access policy under which the user

still cannot access the record. Based on this concept, we define the

following access-policy-stripped (APS) signature that embeds the

super access policy.

Definition 5.2 (APS Signature). Consider a record ⟨oi , vi , ϒi ⟩.
Denoted by A andA the global access role set and the query user’s

role set, respectively. Let skDO be the signing key of the DO, hash(·)
a cryptographic hash function, and ‘|’ denote string concatenation.

The access-policy-stripped (APS) signature for this record and the

user with access role set A is defined as:

σ̂i,A = ABS.Sign(skDO,hash(oi)|hash(vi), ϒ̂A),

where ϒ̂A = a1 ∨ a2 ∨ · · · ∨ an , ai ∈ A\A.

Algorithm 1: Authentication of Equality Queries

ADS Generation (by the DO)
for each data record ⟨oi , vi , ϒi ⟩ do

σi ← ABS.Sign(skDO, hash(oi) |hash(vi), ϒi);
Outsource all records ⟨oi , vi , ϒi , σi ⟩ to the SP;

VO Construction (by the SP)
Input: Query attribute oq , access role set A
if ϒoq (A) = 1 then VO ← ⟨voq , σoq , ϒoq ⟩;
else

σ̂oq ,A ← ABS.Relax(σoq , A\A) ; // Section 5.2

VO ← ⟨hash(voq), σ̂oq ,A ⟩;
send CP-ABE.Encrypt(pp, VO, ∧a∈Aa) to the user;

Result Verification (by the user)
run CP-ABE.Decrypt to decrypt the VO;

if ϒoq (A) = 1 then
run ABS.Verify(mvk, hash(oq) |hash(voq), ϒoq , σoq);

else
ϒ̂A ← ∨a∈A\Aa;
run ABS.Verify(mvk, hash(oq) |hash(voq), ϒ̂A, σ̂oq ,A);

The APS signature, which can be derived from the APP sig-

nature (see Section 5.2 for details), serves as the VO for an inac-

cessible record. By the embedded super access policy, the user is

able to verify the inaccessibility, but cannot infer the specific roles

he/she lacks. In the running example of Figure 3, for user u2, the SP

will return ⟨hash(v2), σ̂2,Au
2

= ABS.Sign(skDO, hash(o2)|hash(v2),

ϒ̂{RoleC })⟩. During result verification, hash(o2)|hash(v2) will be

computed by the user based on the query attribute o2 and the value

hash(v2) returned by the SP, and ϒ̂{RoleC } will be computed from

the user’s access role set. With these components, the user can

verify the super policy ϒ̂{RoleC } via the APS signature σ̂2,Au
2

to

prove that the record is indeed inaccessible to the user.

Finally, to prevent impersonation attacks, the SP will encrypt the

query result as well as the VO using a traditional one-key cipher,

such as AES, with the one-key cipher key encrypted using CP-ABE

under the access policy a1 ∧ a2 ∧ · · · ∧ an , ai ∈ A. Therefore, only

the query user who indeed has the access role setA as claimed can

decrypt the query result.

Algorithm 1 summarizes the procedures discussed above for

authenticating equality queries with the zero-knowledge confiden-

tiality.

5.2 ABS with Predicate Relaxation
In this section, we develop a variant of the ABS scheme, which

supports predicate relaxation on super access policies and hence

can be used to generate the APP signature.

5.2.1 Monotone Span Program. To build the ABS scheme, we

first introduce the monotone span program, which is a special

form of matrix that can be used to present its equivalent monotone

boolean function. It is defined as follows.

Definition 5.3 (Monotone Span Program). Let ϒ : {0, 1}n → {0, 1}
be a monotone boolean function. A monotone span program for ϒ
over a field F is an ℓ × t matrix M with entries F, with a labeling

function a : [ℓ] → [n], which associates each row of M with an

input variable of ϒ. For every (x1, · · · ,xn) ∈ {0, 1}
n
, it satisfies the

following:

ϒ(x1, · · · ,xn) = 1⇐⇒ ∃v ∈ F1×ℓ
: vM = [1, 0, 0, · · · , 0]

and (∀i : xa(i) = 0⇒ vi = 0)

In other words, ϒ(x1, · · · ,xn) = 1 if and only if the rows of M
indexed by {i | xa(i) = 1} span the vector [1, 0, 0, · · · , 0].

There are many different approaches to constructing a monotone

span program from a monotone boolean function [18, 21]. In this

paper, we choose a recursive algorithm as shown in Algorithm 5 in

Appendix A.1, which accepts a boolean function expressed in AND

and OR operators as inputs [21].

5.2.2 ABS Construction. Derived from the Practical Instanti-

ation 4 in [19], our ABS construction consists of the following

algorithms.

ABS.Setup(1λ) → (msk,mvk): Let (G, H, GT , e) be a bilinear

pairing. Choose random generators:

д,C ← G; h0,h ← H.

Choose random values a0,a,b ← Zp and compute:

A0 = h
a0

0
; A = ha and B = hb .

The master signing key ismsk = (a0,a,b), and the master veri-

fying key ismvk = (д,h0,h,A0,A,B,C).
ABS.KeyGen(msk,A) → skA : Choose random value K

base
←

G. The signing key is computed as:

skA = (Kbase
,K0 = K

1/a0

base
, {Ku = K

1/(a+bu)
base

|u ∈ A}).

ABS.Sign(skA ,m, ϒ) → σm,ϒ: Convert ϒ to its corresponding

monotone span program M ∈ Zℓ×tp , with row labeling u : [ℓ] →

A, where A denotes the universe of attributes. Also compute the

vector v = [v0, . . . ,vℓ] that corresponds to the satisfying attributes
A. Pick random values τ , r0, r1, . . . , rℓ ← Zp . The signature is

composed as:

σm,ϒ = (τ ,Y ,W , S1, . . . , Sℓ , P1, . . . , Pt);

Y = Kr0

base
; Si = Kvi ·r0

u(i) · (Cд
hash)

ri
(∀i ∈ [ℓ]);

W= Kr0

0
; Pj=

∏ℓ
i=1
(ABu(i))

Mi j ·ri
(∀j ∈ [t]).

Here hash = hash(τ ,m) for some collision-resistant hash function

hash(·). Note that the signer may not have Ku(i) for every attribute

mentioned in the claim-predicate. However, in such cases, vi = 0.

ABS.Verify(mvk,m, ϒ,σm,ϒ) → {0, 1}: To verify the signature,

the verifier converts ϒ to its corresponding monotone span program

M ∈ Zℓ×tp , with row labeling u : [ℓ] → A. The signature is valid if

and only if all of the following constraints hold:

Y
?

, 1; e(W ,A0)
?

= e(Y ,h0);

ℓ∏
i=1

e
(
Si , (AB

u(i))
Mi j

)
?

=

{
e(Y ,h)e(Cдhash, P1) if j = 1,

e(Cдhash, Pj) if j > 1.

5.2.3 Predicate Relaxation. Our ABS scheme supports predicate

relaxation. This enables the SP to derive new signatures on super

access policies. It works as follows.

ABS.Relax(σm,ϒ,A
′) → σm,ϒ′ : Given a signature σm,ϒ signed

under predicate ϒ and an attribute set A ′, this operation outputs a

new signature σm,ϒ′ signed under the new predicate ϒ′ = ∨a∈A′a.
It can succeed if and only if ϒ′(A) = 1, ∀A ∈ {A | ϒ(A) = 1,A ⊆ A}.
In other words, A ′ should satisfy the condition ϒ(A\A ′) = 0.

For example, in Figure 2, the APP signature of o2 has the pred-

icate ϒ2 = RoleA ∧ RoleB . By invoking ABS.Relax, it can be re-

laxed to a new signature, the predicate of which is ϒ′
2
= Role ∅ ∨

RoleA ∨ RoleB , for user u2 (i.e., u2’s super access policy), because

ϒ2(A\{Role ∅,RoleA,RoleB }) = ϒ2({RoleC }) = 0. However, relax-

ing it to a signature, say with predicate ϒ′′
2
= Role ∅ ∨ RoleC , will

Algorithm 2: ABS.Relax
Function ABS.Relax(σm,ϒ, A

′)
Input: ABS signature σm,ϒ , attribute set A

′

Output: ABS signature σm,ϒ′ , where ϒ
′ = ∨a∈A′a

⟨τ , Y ,W , {Si }, {Pj }⟩ ← σm,ϒ ;

// step 1: purging unwanted attributes
⟨rows, cols, L, kept_rows, kept_cols, f laд ⟩ ←Purge(ϒ, A′);

if f laд is false then abort;
P̃1 ←

∏
j∈kept_cols Pj ;

for i = 1 to len(A′) do
u ← A′[i];
if u ∈ {L[l] |l ∈ kept_rows } then

// step 2: merging duplicate attributes

S̃i ←
∏
k∈{l |L[l]=u} Sk ;

else
// step 3: appending missing attributes

r ← random value, S̃i ← (Cдhash)
r
, P̃1 ← P̃1 · (ABu)r ;

// step 4: re-randomizing signature

r ← random value, σm,ϒ′ ← ⟨τ , Y r ,W r , {S̃ri }, P̃
r
1
⟩;

return σm,ϒ′ ;

fail, as ϒ2(A\{Role ∅,RoleC }) = ϒ2({RoleA,RoleB }) = 1.

The overall procedure is summarized in Algorithm 2. It consists

of the following steps:

(1) Purging the attributes existing in ϒ but not existing in A ′.

The algorithm is illustrated in Algorithm 6 in Appendix A.2, which

is essentially a modified version of Algorithm 5. The idea is to

perform a bottom-up search on the monotone boolean function tree

of ϒ. However, instead of building the monotone span program, we

compute which rows (Si) and columns (Pj) in the original monotone

span program (signature σm,ϒ) should be kept. When traversing

the tree, both AND and OR operators will be scanned. When the

tree node is an AND operator, we choose one of the qualified child

nodes to keep. In contrast, when it is an OR operator, we will have

to keep all the child nodes and require them to be qualified. Here,

we say a node is qualified if and only if the sub-predicate from that

node yields 1 when given A ′ as input. The result can then be used

to construct a new signature whose predicate is ∨i ∈kept_rowsu(i),
as shown below, where u is the labeling function.

σ̃ = (τ , Ỹ ,W̃ , {S̃i }, P̃1);

Ỹ = Y ; S̃i = Si (∀i ∈ kept_rows);
W̃=W ; P̃1=

∏
k ∈kept_cols Pk .

It is worth noting that if the relationship between ϒ and A ′

cannot be satisfied, at the end of tree traversal, we will find none

of tree nodes is qualified. This is because we cannot purge the

attributes from an OR operator, which is required if ϒ(A\A ′) , 0.

(2) Merging the duplicate attributes. In σ̃ obtained from the last

step, there may be duplicate attributes in u(i), i ∈ kept_rows . If so,

we can merge them by computing a new
˜S ′i as the product of all

the S̃k ’s that share the same label u(i). The rest of Ỹ ,W̃ , P̃1 in the

signature will remain unchanged.

˜σ ′ = (τ , ˜Y ′, ˜W ′, { ˜S ′i }, ˜P ′1);

˜Y ′ = Ỹ ;
˜S ′i =

∏
k ∈{l |u(l)=u(i)} S̃k ;

˜W ′= W̃ ;
˜P ′1= P̃1.

(3) Appending the missing attributes. There might be attributes

existing inA ′ but not in the signature σ̃ ′ obtained from the last step.

We add them back in the following manner, where ri is a random

level 1

N1

N3

N2

N4

level 2

N5

N9

N13

N17

N6

N10

N14

N18

N7

N11

N15

N19

N8

N12

N16

N20

level 2

o1 o2 o3 o4

o5 o6 o7 o8

o9 o10o10 o11o11 o12o12

o13 o14o14 o15o15 o16o16

α

β

(a) Data and Grid Partition
N0

N1 N2 N3 N4N4

N5 N6 N9 N10

o1 o2 o5 o6

N7 N8 N11 N12

o3 o4 o7 o8

N13 N14N14 N17 N18N18

o9 o10 o13 o14

N15 N16 N19 N20

o11 o12 o15 o16

дb0 ϒ0
siд0APP signature

APS signature

(b) Index
Figure 4: Access-Policy-Preserving Grid-Tree (AP2G-Tree)

number. The result σ̂ will be the new signature, the predicate of

which is ∨a∈A′a.

σ̂ = (τ , Ŷ ,Ŵ , {Ŝ}, P̂1);

Ŷ = ˜Y ′; Ŝi =

{
˜S ′i if i ∈ kept_rows,

(Cдhash)
ri

otherwise;

Ŵ= ˜W ′; P̂1= ˜P ′1 ·
∏

i ∈{l |l<kept_rows,u(l)∈A′ } (AB
u(i))

ri
.

(4) Re-randomizing the signature. To further enhance security,

in the last step, we re-randomize the signature, as below, to obtain

the final signature, where r is a random number:

σm,ϒ′ = (τ , Ŷ
r ,Ŵ r , {Ŝri }, P̂

r
1
)

The security of this ABS construction will be proven in Sec-

tion 7.1.

6 RANGE & JOIN QUERY AUTHENTICATION
6.1 Range Query Authentication
In the range query scenario, the user submits a query range [α , β]4

as well as his/her access role set A. In turn, the SP returns all

records in the range [α , β] that are accessible to the query user. A

naive solution would be to execute the equality query algorithm

developed in Section 5 repeatedly for every discrete value in the

range [α , β]. However, this is intrinsically costly. To boost the per-

formance, we propose access-policy-preserving grid-tree (AP2
G-tree),

an authenticated index structure for the DO to construct and sign.

It is worth noting that we choose a grid tree to prevent the user

from learning any knowledge regarding the data record distribution

through the structure of the index tree.

Consider a 2D data space for illustration. Figure 4a shows a

multi-layer grid system, which partitions the query attribute space

recursively into multiple levels of grid cells until each cell contains

only one record. The bounding box of each cell is called a grid box.

Figure 4b shows the corresponding AP
2
G-tree for the records in

Figure 4a. Each grid cell has a corresponding tree node Ni in the

AP
2
G-tree, which consists of three components: grid box

5
(denoted

by дbi), access policy (pi), and APP signature (denoted by siдi).
The latter two components are computed from its C child entries,

c1, . . . , cC , in the following fashion.

4α and β are two points that represent the lower and upper bounds of the query range.

5
A grid box is represented by the coordinates of its lower-left and upper-right points.

Definition 6.1 (AP2G-tree Non-Leaf Node). Let skDO be the sign-

ing key of the DO and hash(·) a cryptographic hash function. The

access policy and APP signature of a non-leaf node are defined as:

pi = pc1
∨ pc2

∨ · · · ∨ pcC
siдi = ABS.Sign(skDO,дbi ,pi)

For example, in Figure 4b, the access policy for N1 is computed

as pN1
= pN5

∨ pN6
∨ pN9

∨ pN10
, and its APP signature is siдN1

=

ABS.Sign(skDO, дbN1
, pN1
).

Definition 6.2 (AP2G-tree Leaf Node). The access policy and APP

signature of a leaf node are identical to those of the single record

lying in the corresponding cell.

For example, for leaf node N5, its policy and signature are ϒo1

and σo1
, respectively.

The AP
2
G-tree is built by the DO in a bottom-up fashion and is

then outsourced to the SP. It is worth noting that the AP
2
G-tree

is always a full tree, since we treat data records not existing in

the original database as pseudo records inaccessible to any user,

as explained in Section 5. This construction yields a space cost

of O((n + log(n))m), where n is the size of the index space andm
is the size of the monotone span program of the access policies.

With the definitions above, the access policy of a non-leaf node

essentially represents whether or not a user can access any record

inside the grid box of this node. This property will allow us to

perform effective pruning in the construction of VO during query

processing.

On the SP side, the processing of a range query [α , β] can be

executed as a breadth-first search. Starting from the root node,

if a non-leaf node partially intersects the query range, it will be

branched, i.e., its subtree is further explored. On the other hand,

if a non-leaf node is fully covered by the query range, the SP will

check whether or not the query user is allowed to access this node.

If access is prohibited, the SP will run ABS.Relax to compute the

APS signature for this node and add this signature to the VO. In

contrast, if the access is permitted, the SP will further explore the

subtree until a leaf node is reached. The process of handling a leaf

node is the same as that for an equality query. Finally, similar to an

equality query, all the results, as well as the VO, will be encrypted

using AES and CP-ABE before they are transmitted to the user.

To establish the soundness and completeness of the query results,

the user checks the VO in two aspects:

• Soundness check. All of the signatures in the VO are valid;

for an inaccessible node, the predicate of the corresponding

signature is indeed ∨a∈A\Aa; for an accessible record, it is

indeed inside the query range [α , β].
• Completeness check. The union of the indexing spaces for

each entry of the VO covers the whole query range [α , β]. Note
that this check is sufficient because one and only one entry is

expected for each indexing space.

We summarize the algorithm for authenticating range queries

with the zero-knowledge confidentiality in Algorithm 3. Figure 4

illustrates an example in which the user can only access o6,o7,o8

(highlightedwith a gray color) in the range query [α , β] (highlighted
as the red rectangle in Figure 4a). As a result, the SP will return

the records o6, o7 and o8, as well as their APP signatures, to the

user. Moreover, the SP will run the ABS.Relax algorithm with the

APP signatures of N4, N14 and N18 as inputs. The derived APS

signatures will be sent to the user as part of the VO, to prove

their inaccessibility. During result verification, the user will check

Algorithm 3: Authentication of Range Queries

ADS Generation (by the DO)
for each data record ⟨oi , vi , ϒi ⟩ do

σi ← ABS.Sign(skDO, hash(oi) |hash(vi), ϒi);
for дbi in each AP

2
G-tree non-leaf node do

pi ← ∨Ck=1
pck ;

siдi ← ABS.Sign(skDO, hash(дbi), pi);
Outsource all ⟨oi , vi , ϒi , σi ⟩ and ⟨дbi , pi , siдi ⟩ to SP;

VO Construction (by the SP)
Input: Query range [α, β], access role set A
create an empty queue q;
q.enqueue(AP2

G-tree root);

while q is not empty do
n← q.dequeue();
if n partially intersects [α, β] then q.enqueue(n.children);
else if n lies inside [α, β] then

if n is accessible to the user then
if n is a leaf node then add⟨on, vn, σn, ϒn ⟩to VO;

else q.enqueue(n.children);
else

if n is a leaf node then
σ̂n,A ← ABS.Relax(σn, A\A);
add ⟨hash(vn), σ̂n,A ⟩ to VO;

else
ˆsiдn,A ← ABS.Relax(siдn, A\A);

add ⟨дbn, ˆsiдn,A ⟩ to VO;

send CP-ABE.Encrypt(pp, VO, ∧a∈Aa) to the user;

Result Verification (by the user)
run CP-ABE.Decrypt to decrypt the VO;

check if the union of the region for each entry in the VO covers

[α, β];
ϒ̂A ← ∨a∈A\Aa;
for each entry e in VO do

if e is accessible to the user then
check oe ∈ [α, β] and ϒe (A) = 1;

run ABS.Verify(mvk, hash(oe) |hash(ve), ϒe , σe);
else if e is a data record then

run ABS.Verify(mvk, hash(oe) |hash(ve), ϒ̂A, σ̂e,A);
else run ABS.Verify(mvk, дbe , ϒ̂A, ˆsiдe,A);

whether or not all of the signatures in the VO are valid (to verify

the soundness) and whether or not the query range [α , β] is indeed
covered by the union of the indexing spaces for N4, N14, N18, o6,

o7, and o8 (to verify the completeness).

6.2 Join Query Authentication
Next, we discuss how to extend the range query authentication

algorithm to support join queries. Consider an equi-join query over

two tables R and S , R ZR .o=S .o S ∧ R.o ∈ [α , β], with user’s access

role setA. The SP should return all record pairs in the query range

that are accessible to the query user and satisfy the join condition.

For example, in Figure 5, the user can access r1, r2 from R and s1,

s3 from S (highlighted with a gray color); the join result will be the

pair of records ⟨r1, s1⟩.

To process the join query, the SP starts by executing a breadth-

first search from the root node of the AP
2
G-tree for the table R.

The tree search algorithm is almost identical to the one in the

range query processing, except for two aspects. First, if a node for

R, denoted as NR , is accessible to the user, the SP will first check

whether or not there exists an inaccessible node in the AP
2
G-tree for

R0

R1 R2R2

R3 R4

r1 r2

R5 R6

r3 r4

S0

S1 S2

S5 S6

s4s3

S3 S4S4

s2s1

Table R

Table S

α β

APP signature

APS signature

Non-result

accessible record

Figure 5: Join Query Authentication

Algorithm 4: Authentication of Joins (VO Construction)

Input: AP2
G-tree TR, TS , Query range [α, β], access role set A

create an empty queue q;
q.enqueue(⟨TR root, TS root⟩);

while q is not empty do
⟨nR, nS ⟩ ← q.dequeue();
if nR partially intersects [α, β] then

for n in nR .children do q.enqueue(⟨n, nS ⟩);
else if nR lies inside [α, β] then

if nR is accessible to the user then
nS ← the smallest node under nS , which also covers the

region of nR ;
if nS is accessible to the user then

if nR is a leaf node then
// In this case, nS is also a leaf node.

add APP signatures of nR and nS to VO;

else
for n in nR .children do q.enqueue(⟨n, nS ⟩);

else compute and add APS signature of nS to VO;

else compute and add APS signature of nR to VO;

send CP-ABE.Encrypt(pp, VO, ∧a∈Aa) to the user;

the table S that covers NR . If such a node, denoted as NS , is found,
NR cannot be part of the join result. Hence, the corresponding APS

signature for NS is computed and appended to the VO. Otherwise,

the subtree of NR is further explored. Second, an accessible record

in R is part of the result only if the matching record in S is also

accessible. In this case, the APP signatures for this pair of records

will be appended to the VO. The rest of the algorithm is the same

as the one in the range query processing.

We summarize the VO construction procedure in Algorithm 4,

while the ADS generation and result verification procedures are

the same as the ones in Algorithm 3. In the example of Figure 5, the

SP will return the records r1 and s1, as well as their APP signatures,

to the user. Moreover, for the inaccessible nodes R2 and S4, their

derived APS signatures will be returned as part of the VO. On the

user side, to verify the soundness, the user will authenticate all the

signatures in the VO and check whether or not r1 and s1 share the

same value on the join attribute; to verify the completeness, the

user will check whether or not the union of the indexing spaces for

R2, S4, and r1/r2 covers the whole query range [α , β].
This solution can be easily extended to support more general

join queries, such as multi-way join and inequality join. The gen-

eral idea is similar, i.e., using the APS signature of an inaccessible

record/node to prove that a certain space does not contribute to the

join result. The user verifies the soundness by the given results and

their associated APP signatures, and verifies the completeness by

checking whether or not the result set and the space represented

by the APS signatures together cover the whole query range.

7 SECURITY ANALYSIS
In this section, we perform a security analysis on our proposed

ABS scheme and query authentication algorithms.

7.1 Security Analysis on ABS
In order to facilitate our security analysis, we first present the

formal definitions of our security notions.

Definition 7.1 (Perfect Privacy). We say an ABS scheme achieves

perfect privacy if for all (msk ,mvk) ← ABS.Setup(1λ), all messages

m, such that:

• For all attribute sets A1, A2, all signing keys skA1
←

ABS.KeyGen(msk,A1), skA2
← ABS.KeyGen(msk,A2), all

claim-predicates ϒ such that ϒ(A1) = ϒ(A2) = 1, the distribu-

tions of ABS.Sign(skA1
,m, ϒ) and ABS.Sign(skA2

,m, ϒ) are
identical.

• For all attribute sets A,A ′, all signing keys skA ←

ABS.KeyGen(msk , A), skA′ ← ABS.KeyGen(msk , A ′), all
claim-predicates ϒ such that ϒ(A\A ′) = 0 and all signatures

σm,ϒ ← ABS.Sign(skA ,m, ϒ), the distributions of ABS.Sign(skA′ ,
m, ∨a∈A′a) and ABS.Relax(σm,ϒ , A

′) are identical.

This property ensures that anABS signature generated byABS.Sign
or ABS.Relax will not leak the information about which set of at-

tributes or signing key was used in signing. This is a necessary

condition to support zero-knowledge.

Definition 7.2 (Unforgeability). We say an ABS scheme is unforge-

able if the success probability of any polynomial-time adversary is

negligible in the following experiment:

• Run (msk,mvk) ← ABS.Setup(1λ) and givemvk to the adver-

sary.

• The adversary is given access to oracle ABS.Sign(·), which,
on input (m, ϒ), outputs the corresponding signature σ . Let

{m(ι), ϒ(ι),σ (ι)}
q
ι=1

be the message-policy-signature tuples ob-

tained by the adversary with its q queries.

• At the end the adversary outputs (m∗, ϒ∗,σ ∗).
We say the adversary succeeds if ABS.Verify(mvk ,m∗, ϒ∗, σ ∗) out-
puts 1 and one of the following results is true:

• m∗ ,m(ι) for ι = 1 to q.

• For each ι such thatm∗ =m(ι), ϒ∗ is a more restricted policy

compared with ϒ(ι). Furthermore, ϒ∗ is of the form (∨a∈A′a)
for some A ′ ⊂ A, where A represents the attribute universe.

This property ensures that a malicious SP could convince the

user of an incorrect answer with at most a negligible probability.

It is worth noting that this security model of ABS is defined with

respect to the threat model of our problem. And it is weaker than

the typical security model for ABS in two ways. First, the attacker

will not have access to signing keys for different attributes, since the

DO is the only party who processes them. Second, a valid forgery

must be either a signature on a new message or on a message that

has been signed on a more restricted policy. By contrast, in a typical

security model of ABS, any new message-policy pair is considered

a valid forgery.

Now we reach the theorem on the security of our ABS scheme.

Theorem 7.3. The construction of Section 5.2 satisfies the secu-
rity properties of Perfect Privacy (Definition 7.1) and Unforgeability
(Definition 7.2) in the generic group model.

Proof. Please see Appendix B for detailed proofs. □

7.2 Security Analysis on Query Authentication
The formal definition for desired security on our query authentica-

tion algorithms consists of two properties, namely unforgeability

and zero-knowledge.

Definition 7.4 (Unforgeability). We say our proposed query au-

thentication algorithms are unforgeable if the success probability

of any polynomial-time adversary is negligible in the following

experiment:

• Run the ADS generation and give all ⟨oi , vi , ϒi , σi ⟩ and ⟨дbi ,
pi , siдi ⟩ to the adversary.

• The adversary outputs a query q (either a range or join query),

an access role set A, a result set RS , and a VO.

We say the adversary succeeds if the VO passes the result verifica-

tion and one of the following results is true:

• The result set RS contains a record ⟨o∗,v∗, ϒ∗⟩, such that

⟨o∗,v∗, ϒ∗⟩ , ⟨oi ,vi , ϒi ⟩, ∀i .
• The result set RS contains a record ⟨o∗,v∗, ϒ∗⟩, such that o∗

does not satisfy the query q or ϒ∗(A) = 0.

• There exists a record ⟨oj ,vj , ϒj ⟩ not in RS , such that j ∈ {i},
oj satisfies the query q, and ϒj (A) = 1.

This property ensures that a malicious SP could convince the

user of an incorrect or incomplete answer with at most a negligible

probability.

Definition 7.5 (Zero-Knowledge). We say our proposed query au-

thentication algorithms are zero-knowledge if the success probabil-

ity of any polynomial-time adversary is negligible in the following

experiment:

• Game Real:
Setup: the adversary picks a database D and an access role

set A, the real challenger runs ADS generation over this

database.

Query: the adversary runs the interactive query protocol with

the challenger under the access role set A.

• Game Ideal:
Setup: the adversary picks a database D = {⟨oi ,vi , ϒi ⟩} and
an access role set A, the simulator runs ADS generation

over a database D ′ = {⟨o′i ,v
′
i , ϒ
′
i ⟩}, such that:

⟨o′i ,v
′
i , ϒ
′
i ⟩ =

{
⟨oi ,vi , ϒi ⟩ if ϒi (A) = 1,
⟨oi , random,Role ∅⟩ otherwise.

Query: the adversary runs the interactive query protocol with

the simulator under the access role set A.

We say the adversary succeeds if he/she can distinguish the above

two games.

This property ensures that a malicious user could extract any

information regarding the database beyond accessible records with

at most a negligible probability. It is worth noting that, by achieving

the zero-knowledge confidentiality, the data content confidentiality

and access policy confidentiality are automatically guaranteed.

With the above security definitions, we can show that our pro-

posed query authentication algorithms indeed satisfy the desired

security requirements.

Theorem 7.6. Our proposed query authentication algorithms sat-
isfy the security properties of Unforgeability (Definition 7.4) and
Zero-Knowledge (Definition 7.5).

Proof. Please see Appendix C for detailed proofs. □

8 OPTIMIZATIONS
This section presents two optimization techniques. They are or-

thogonal to each other, and therefore can be combined to maximize

the performance.

8.1 Hierarchical Role Assignment
Since the performance of ABS depends on the number of input

roles, one way to optimize the performance is to reduce the size of

inaccessible predicates for query users. Thus, we propose hierarchi-

cal role assignment. In a hierarchical structure, not possessing one

access role implies the lack of some other access roles. For exam-

ple, if the access role universe is {RoleA, RoleA,S , RoleA,P , RoleB ,
RoleB,S , RoleB,P }, which corresponds to a member of university A
or B, a student of university A or B, and a professor of university A
or B, respectively. It is easy to see that a user who is not a member

of university A (access role RoleA) cannot have any access role

associated with universityA, i.e., RoleA,S and RoleA,P . As such, the
inaccessible predicate for a user with access role RoleB,S can be

simplified to RoleA ∨ RoleB,P .
Regarding the performance, with hierarchical role assignment,

the overhead of the DO setup time is expected to increase slightly,

owing to a larger access policy in each record. For example, a record

which can only be accessed by the professors of university A will

have the access policy RoleA ∧ RoleA,P , instead of just RoleA,P .
However, with a much smaller inaccessible predicate, the costs

of the SP query time and user verification time can be reduced

dramatically.

8.2 Acceleration by Parallelism
In our solution to range and join query authentication, the majority

of computational overheads comes from the ABS.Relax operations.
Fortunately, since these operations are independent to each other,

they are highly parallelizable. In light of this, we can accelerate

the authentication performance by embracing parallel computing

architectures, such as multi-threading, GPU computing, andMapRe-

duce. For example, when the SP processes a query, we can map

all ABS.Relax jobs for the inaccessible nodes to the available com-

puting units, whether they are CPU cores or worker nodes in the

MapReduce model.

9 RELAXING ZERO-KNOWLEDGE
CONFIDENTIALITY REQUIREMENT

Zero-knowledge confidentiality is a strong requirement that may

not be demanded in some less critical applications. In this section,

we discuss how to boost the performance for range queries and join

queries (Section 9.1) and support more general continuous query

attributes (Section 9.2), when such a requirement is relaxed to the

less restrictive access policy confidentiality.

9.1 Using k-d Tree Index Structure
Recall in Section 6 that the grid tree is chosen to prevent information

leakage through the tree structure. However, it is well known that

the grid tree is not the most efficient index structure, especially for

sparse multi-dimensional databases. Here, in the system that only

requires the access policy confidentiality, we propose access-policy-
preserving k-d-tree (AP2kd-tree) as an alternative ADS that uses

k-d tree [1] to optimize the performance.

Figure 6a shows a k-d tree structure, which splits the query

attribute space into two half-spaces at each level. To achieve the

level 1

N1

N2

level 2

N3 N4

N5 N6

level 3

N7 N8

N9 N10

N11 N12

N13 N14

level 3

o1 o2 o3 o4

o5 o6 o7 o8

o9 o10o10 o11o11 o12o12

o13 o14o14 o15o15 o16o16

α

β

(a) Data and Space Partition
N0

N1 N2

N3 N4

N7 N9

N15 N16

o1 o2

N19 N20

o5 o6

N8 N10

N17 N18

o3 o4

N21 N22

o7 o8

N5 N6N6

N11 N13

N23

o9

N27

o13

N12 N14

N24 N25 N26

o10 o11 o12

N28 N29 N30

o14 o15 o16

дb0 ϒ0
siд0APP signature

APS signature

(b) Index
Figure 6: Access-Policy-Preserving k-d-Tree (AP2kd-Tree)

maximum efficiency, we aim to increase the chance of pruning

inaccessible nodes during query processing. For each split operation,

we should find the hyperplane such that given a user’s role set,

the chance that he/she can access both half-spaces is minimum.

Recall that we express the access policies in a disjunctive normal
form (DNF). Thus, we strive to find the hyperplane such that the

intersection of the corresponding OR operator sets of the DNF

access policies in the two half-spaces is minimum.

Let ϒl and ϒr be the access policies of two half-spaces. Our goal

is to minimize the following objective function:

f (ϒl , ϒr) = |Xl ∩ Xr |,

where ϒl = ∨Aj ∈Xl ∧ai j ∈Aj ai j and ϒr = ∨Aj ∈Xr ∧ai j ∈Aj ai j .
For example, if ϒl = RoleA ∨ (RoleB ∧ RoleC) and ϒr = RoleA ∨

RoleD , then Xl = {RoleA,RoleB ∧ RoleC }, Xr = {RoleA,RoleD },
and f (ϒl , ϒr) = 1. To find the hyperplane, instead of enumerating

all the possible choices, we develop a dynamic programming algo-

rithm (see Algorithm 7 in Appendix D). It has a time complexity

of O(n), where n is the interval length of the query attribute in

the splitting dimension. Further, to prevent the tree imbalance, we

propose to switch back to the AP
2
G-tree split strategy when the

tree depth goes beyond log(S), where S is the area of the index

space. Figure 6b shows the corresponding AP
2kd-tree for the data

records in Figure 6a. The signature definitions for the tree nodes

are identical to those in the AP
2
G-tree.

The rest of the algorithm for authenticating range queries and

join queries with the access policy confidentiality is the same as

that in Section 6. Similar to the example shown in Figure 4, if the

records o10, o11, o12, o14, o15 and o16 share the same access policy,

the AP
2kd-tree will be like what is presented in Figure 6. Under the

same query range [α , β], the SP will return the records o6, o7, and

o8, as well as their APP signatures. Moreover, the SP will return the

APS signature for N6 as part of the VO. During result verification,

the user will check whether or not all of the signatures in the VO

are valid and whether or not the union of the indexing spaces for

N6, o6, o7, and o8 covers the whole query range [α , β].

9.2 Supporting Continuous Query Attributes
When dealing with discrete query attribute values, we treat non-

existent records as pseudo records with access policy Role ∅ . For
continuous query attribute values, this method is also applicable

since they can be converted into discrete values by discretization

techniques [13]. Nevertheless, when the zero-knowledge confiden-

tiality is not required, it is acceptable to disclose to the user about

the distribution of data records. As such, the DO can view non-

existent records as pseudo regions with access policy Role ∅ . For
example in Figure 2, if the query attribute is continuous, the DO

will generate the APP signatures for the regions (−∞,o1), (o1,o2),

(o2,o3), (o3,o4), (o4,o5), and (o5,+∞) with policy Role ∅ , which will

then be outsourced to the SP. When processing an equality query,

if the query attribute is located in one of the pseudo regions, the

SP will apply the ABS.Relax algorithm to compute the APS signa-

ture for the corresponding region and use it as the VO. Otherwise,

the procedure is the same as the original algorithm introduced in

Section 5. Similarly, for a range or join query, the APS signatures

for these pseudo regions that intersect the query range will be con-

structed as part of the VO. The rest of the algorithm is the same as

those described in Section 6.

10 PERFORMANCE EVALUATION
In this section, we report our empirical study. Since no prior meth-

ods can support zero-knowledge query authentication under fine-

grained access control, we mainly evaluate the impact of various

system settings on our proposed solutions. We use TPC Benchmark
H (TPC-H) [6] to generate the databases for testing. Specifically, we

choose the Lineitem table as the data source andQ6 from TPC-H
6

as a basic query. The records in the database contain 12 attributes,

among them the first three are set as query attributes. They are

in the form of ⟨shipdate , discount , quantity⟩. Our experiments test

four different scales: 0.1 (600,000 records), 0.3 (1,800,000 records), 1

(6,000,000 records), and 3 (18,000,000 records). The default scale is

0.3. For access policies, we randomly generate them as DNF boolean

functions with three parameters: (i) total number of distinct policies,

(ii) total number of distinct roles, and (iii) maximum policy length.

By default, the total number of roles is set at 10. We generate 10

distinct policies whose root gate is an OR gate with at most three

inputs, while each input is an AND gate with at most two roles.

This yields a maximum policy length of 6. We assign these policies

such that the records under the same query key share the same

access policy and are accessed together.

In the experiments, both the DO and SP are set up on an x64

blade server with dual Intel Xeon 2.67GHz X5650 CPU and 32GB

RAM running on CentOS 6. The user, on the other hand, is set up

on a commodity laptop computer with Intel Core i5 CPU and 4GB

RAM, running on macOS Sierra. This enables both the DO and SP

to run experiments with 24 hyper-threads and the user to run with

4 hyper-threads. The experiments are written in C++ and use the

following libraries: Pairing-based cryptographic for bilinear pairing

computation, Crypto++ for secure hash operations, and OpenMP

for parallel computation.

Table 1 shows the DO setup overhead for generating the AP
2
G-

tree under the different database scales. For the DO CPU time, we

break down the cost into two parts: (i) the time to sign all the APP

signatures, and (ii) the time to build the index structure. It can be

observed that both the DO CPU time and space cost increase only

sublinearly with respect to the growth of database scale.

To evaluate the query performance, we measure two kinds of

costs: (i) the computational cost in terms of the SP CPU time and

user CPU time, and (ii) the communication cost in terms of the VO

size. The results are reported based on an average of 10 randomly

6SELECT * FROM lineitem WHERE shipdate between ‘?’ AND ‘?’ AND discount
between ‘?’ AND ‘?’ AND quantity between ‘?’ AND ‘?’.

Table 1: DO Setup Overhead
Database

Scale

DO CPU Time Index Size (Tree Structure + Signatures)

(GB)

Sign APPs (h) Build Index (h)

0.1 0.63 0.74 2.47 (0.49 + 1.98)

0.3 0.77 0.95 2.93 (0.56 + 2.37)

1 0.86 1.00 3.14 (0.58 + 2.56)

3 0.87 1.01 3.16 (0.59 + 2.57)

Table 2: Equality Query Performance
Max

Policy

Length

Accessible Record Inaccessible

Predicate

Length

Inaccessible Record

User CPU

Time (ms)

VO Size

(KB)

SP CPU

Time (ms)

User CPU

Time (ms)

VO Size

(KB)

6 33.6 0.9 10 95.8 46.5 1.8

24 143 1.8 20 163 72.7 3.1

96 664 6.6 40 301 128 5.6

384 2,384 23.5 80 575 238 10.8

generated queries. Note that when measuring the computational

cost, we ignore the cost of CP-ABE/AES encryption and decryption,

since it is not a critical part of our proposed algorithms and has the

performance largely subject to the size of a record.

10.1 Equality Query Performance
In the first set of experiments, we test equality queries, whose

performance is essentially the same as the underlying single ABS

operation. We vary the max policy length (which affects the costs

when the record is accessible) and the inaccessible predicate length

(which affects the costs when the record is inaccessible). The results

are summarized in Table 2. Note that we omit the SP CPU time for

accessible records since in this case the SP simply returns the APP

signature signed by the DO and has little computational cost. For

all other reported measures, as expected, the costs in CPU time and

VO size are proportional to the policy/predicate length.

10.2 Range and Join Query Performance
To evaluate the range query authentication performance, we com-

pare two methods: (i) the basic approach in which equality query

authentication is executed repeatedly for every discrete value lying

in the query range, and (ii) the AP
2
G-tree approach developed in

Section 6. In each query, the user is assigned with the roles that can

access 20% of the data records.

We first vary the query range from 0.03% to 1% of the data space

under the default settings. As shown in Figure 7, the AP
2
G-tree

outperforms the basic approach in all metrics. This indicates that

the APS signatures generated for AP
2
G-tree nodes can effectively

summarize the inaccessible records in their subtrees. This leads to

the reduction in both computation and communication overheads.

To investigate the impact of the database scale and access poli-

cies, we fix the query range at 0.1%. Figure 8 shows the results

when the database scale is varied from 0.1 to 3. All metrics increase

monotonically under AP
2
G-tree, but those of the basic approach

fluctuate a bit. This can be explained as follows. With more records,

the access policies become more complex. This affects the costs in

two ways: (i) it takes the SP more time to process the ABS.Relax
operations, and (ii) it takes the user more time to verify the APP

signatures. On the other hand, with the increase of database scale,

more records can be accessed by the user and, hence, the inaccessi-

ble records become fewer. This decreases the costs on both the SP

and the user. For AP
2
G-tree, owing to its high pruning power, the

decreased number of inaccessible records has less impact on the

costs. Therefore, its costs increase steadily.

Figures 9 and 10 show the performance trends with the respect

0.03% 0.1% 0.3% 1%
Query Range

0

20

40

60

S
P

 C
P

U
 T

im
e

(s
)

Basic
AP2G-Tree

0.03% 0.1% 0.3% 1%
Query Range

0

20

40

60

U
se

r C
P

U
 T

im
e

(s
) Basic

AP2G-Tree

0.03% 0.1% 0.3% 1%
Query Range

0

5

10

15

20

V
O

 S
iz

e
(M

B
)

Basic
AP2G-Tree

Figure 7: Range Query Performance vs. Range

0.1 0.3 1.0 3.0
Database Scale

0

2

4

6

8

S
P

 C
P

U
 T

im
e

(s
)

Basic
AP2G-Tree

0.1 0.3 1.0 3.0
Database Scale

0

2

4

6

8

U
se

r C
P

U
 T

im
e

(s
) Basic

AP2G-Tree

0.1 0.3 1.0 3.0
Database Scale

0.0

0.5

1.0

1.5

2.0

2.5

V
O

 S
iz

e
(M

B
)

Basic
AP2G-Tree

Figure 8: Range Query Performance vs. Database Scale

10 30 100 300
Number of Policies

0

2

4

6

8

S
P

 C
P

U
 T

im
e

(s
)

Basic
AP2G-Tree

10 30 100 300
Number of Policies

0

2

4

6

8

U
se

r C
P

U
 T

im
e

(s
) Basic

AP2G-Tree

10 30 100 300
Number of Policies

0.0

0.5

1.0

1.5

2.0

2.5

V
O

 S
iz

e
(M

B
)

Basic
AP2G-Tree

Figure 9: Range Query Performance vs. Policy Diversity

10 / 6 20 / 24 40 / 96 80 / 384
Total Roles / Max Policy Length

0

20

40

S
P

 C
P

U
 T

im
e

(s
)

Basic
AP2G-Tree

10 / 6 20 / 24 40 / 96 80 / 384
Total Roles / Max Policy Length

0

20

40

60

80

U
se

r C
P

U
 T

im
e

(s
) Basic

AP2G-Tree

10 / 6 20 / 24 40 / 96 80 / 384
Total Roles / Max Policy Length

0

5

10

V
O

 S
iz

e
(M

B
)

Basic
AP2G-Tree

Figure 10: Range Query Performance vs. Total Roles

to the number of distinct policies and the total number of roles/max

policy length, respectively. It can be seen that the performance

remains almost the same under different policy diversities. How-

ever, the larger the role space and the longer access policy length,

the higher the overhead incurred for both the computation and

communication costs.

Finally, to study the join query performance, we evaluate the

join operator of Q12 in TPC-H,
7
which joins the tables Lineitem

and Orders on the attribute orderkey. Figure 11 reports the results
while varying the query range. It is shown that the costs in all

metrics under AP
2
G-tree are substantially lower than those in the

basic approach.

10.3 Impact of the Optimizations
We now investigate the impact of different optimization techniques

proposed in Section 8. The results of using hierarchical role assign-

ment are shown in Figure 12. In our experiment, we simulate a

two-level role hierarchy. Two global hierarchical roles are created

and attached randomly to each AND gate in all the access poli-

cies. As a result, the average size of a user’s inaccessible predicate

is decreased from 9 to 6. It can be observed that the hierarchical

role assignment reduces the cost in all metrics, due to much less

overhead in processing inaccessible records.

To study the acceleration acquired by parallelism, we vary the

number of threads for both the SP processing and user verification

running on the blade server. As shown in Figure 13, more accel-

eration can be observed with the first 16 threads, but it becomes

7SELECT * FROM orders, lineitem WHERE o.orderkey = l.orderkey AND
l.orderkey between ‘?’ AND ‘?’.

0.03% 0.1% 0.3% 1%
Query Range

0

20

40

60

80

S
P

 C
P

U
 T

im
e

(s
)

Basic
AP2G-Tree

0.03% 0.1% 0.3% 1%
Query Range

0

25

50

75

100

U
se

r C
P

U
 T

im
e

(s
) Basic

AP2G-Tree

0.03% 0.1% 0.3% 1%
Query Range

0

10

20

V
O

 S
iz

e
(M

B
)

Basic
AP2G-Tree

Figure 11: Join Query Performance vs. Range

0.03% 0.1% 0.3% 1%
Query Range

0

20

40

S
P

 C
P

U
 T

im
e

(s
)

w/o Hierarchical Assignment
w/ Hierarchical Assignment

0.03% 0.1% 0.3% 1%
Query Range

0

20

40

60

U
se

r C
P

U
 T

im
e

(s
) w/o Hierarchical Assignment

w/ Hierarchical Assignment

0.03% 0.1% 0.3% 1%
Query Range

0

5

10

15

V
O

 S
iz

e
(M

B
)

w/o Hierarchical Assignment
w/ Hierarchical Assignment

Figure 12: Hierarchical Role Assignment Acceleration

4 8 12 16 20 24
Threads

0

5

10

15

Ti
m

e
(s

)

SP CPU Time
User CPU Time

Figure 13: Multi-Threaded Acceleration

0.03% 0.1% 0.3% 1%
Query Range

0

10

20

30

40
S

P
 C

P
U

 T
im

e
(s

)
AP2G-Tree
AP2kd-Tree

0.03% 0.1% 0.3% 1%
Query Range

0

20

40

U
se

r C
P

U
 T

im
e

(s
) AP2G-Tree

AP2kd-Tree

0.03% 0.1% 0.3% 1%
Query Range

0

5

10

15

V
O

 S
iz

e
(M

B
)

AP2G-Tree
AP2kd-Tree

Figure 14: Range Query Performance vs. Index

less effective with more threads. The reason is that the non-parallel

part of the algorithm and I/O operations becomes more pronounced

after sufficient multi-thread acceleration.

Finally, we study the performance gain if we relax the zero-

knowledge confidentiality requirement. As shown in Figure 14, ow-

ing to a careful splitting strategy introduced in Section 9.1, AP
2kd-

tree substantially outperforms AP
2
G-tree in all evaluation metrics.

11 CONCLUSION
In this paper, we have studied the problem of authenticating rela-

tional queries with fine-grained access control. We developed a new

variant of the attribute-based signature scheme, which supports

predicate relaxation on super access policies. Based on that, we

proposed a novel access-policy-preserving (APP) signature as the

primitive authenticated data signature to authenticate various types

of queries under fine-grained access control. Our approach is zero-

knowledge and reveals nothing beyond the accessible records. We

also designed a grid-index-based AP
2
G-tree to improve the perfor-

mance of processing range queries and join queries. Optimization

techniques for both the zero-knowledge model and the access pol-

icy confidentiality model were developed. Analytical models and

empirical results substantiated the robustness and efficiency of our

proposed solutions.

As for future work, we plan to extend the proposed techniques

to support more complex queries, such as aggregation. We also

plan to study more challenging fine-grained query authentication

problems for multi-source data in a distributed environment.

Acknowledgments. This work was supported by Research Grants
Council of Hong Kong under GRF Projects 12244916, 15238116,

12202414, 12200914, CRF Project C1008-16G, and National Natural

Science Foundation of China under 61572413 and U1636205.

REFERENCES
[1] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative

searching. Commun. ACM (1975).

[2] John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-Policy

Attribute-Based Encryption. In Proc. of IEEE Symposium on Security and Pri-
vacy.

[3] Hong Chen, Xiaonan Ma, Windsor W. Hsu, Ninghui Li, and Qihua Wang. 2008.

Access Control Friendly Query Verification for Outsourced Data Publishing. In

ESORICS.
[4] Qian Chen, Haibo Hu, and Jianliang Xu. 2014. Authenticating Top-k Queries in

Location-based Services with Confidentiality. In Proc. VLDB.
[5] Qian Chen, Haibo Hu, and Jianliang Xu. 2015. Authenticated Online Data Inte-

gration Services. In Proc. SIGMOD.
[6] Transaction Processing Performance Council. 2017. TPC Benchmark H. http:

//www.tpc.org/tpch/. (2017).

[7] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. 2010. Privacy-

Preserving Data Publishing: A Survey of Recent Developments. Comput. Surveys
(2010).

[8] Esha Ghosh, Olga Ohrimenko, and Roberto Tamassia. 2016. Efficient Verifiable

Range and Closest Point Queries in Zero-Knowledge. PETS (2016).
[9] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. 2006. Attribute-

based encryption for fine-grained access control of encrypted data.. In CCS.
[10] C. Guo, R. Zhuang, Y. Jie, R. Ren, T. Wu, and K. R. Choo. 2016. Fine-grained

Database Field Search Using Attribute-Based Encryption for E-Healthcare Clouds.

J Med Syst. (2016).
[11] Haibo Hu, Jianliang Xu, Qian Chen, and Ziwei Yang. 2012. Authenticating

location-based services without compromising location privacy. In Proc. SIGMOD.
[12] Rohit Jain and Sunil Prabhakar. 2013. Access Control and Query Verification for

Untrusted Databases. In Proc. DBSec.
[13] S. Kotsiantis and D. Kanellopoulos. 2006. Discretization Techniques: A recent

survey. GESTS International Transactions on Computer Science and Engineering
(2006).

[14] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. 2010. Authenticated Index

Structures for Aggregation Queries. ACM TISSEC (2010).

[15] F. Li, G. Kollios, and L. Reyzin. 2006. Dynamic Authenticated Index Structures

for Outsourced Databases. In Proc. SIGMOD.
[16] Jin Li, ManHoAu,Willy Susilo, Dongqing Xie, and Kui Ren. 2010. Attribute-based

signature and its applications. In ASIACCS.
[17] Jingwei Li, Anna Cinzia Squicciarini, Dan Lin, Smitha Sundareswaran, and

Chunfu Jia. 2017. MMB
cloud

-Tree: Authenticated Index for Verifiable Cloud

Service Selection. TDSC (2017).

[18] Zhen Liu, Zhenfu Cao, and Duncan S Wong. 2010. Efficient generation of linear
secret sharing scheme matrices from threshold access trees. Technical Report. IACR
Cryptology ePrint Archive.

[19] Hemanta K Maji, Manoj Prabhakaran, and Mike Rosulek. 2011. Attribute-Based

Signatures. In Topics in Cryptology.
[20] Ralph C Merkle. 1989. A Certified Digital Signature. In CRYPTO.
[21] V Nikov and S Nikova. 2004. New Monotone Span Programs from Old. Technical

Report.

[22] H. Pang, A. Jain, K. Ramamritham, and K. L. Tan. 2005. Verifying Completeness

of Relational Query Results in Data Publishing. In Proc. SIGMOD.
[23] H. Pang and K. Mouratidis. 2008. Authenticating the query results of text search

engines. In Proc. VLDB.
[24] H. Pang and K.-L. Tan. 2004. Authenticating query results in edge computing. In

Proc. ICDE.
[25] Sushmita Ruj, Milos Stojmenovic, and Amiya Nayak. 2012. Privacy Preserving

Access Control with Authentication for Securing Data in Clouds.. In CCGRID.
[26] Amit Sahai and Brent Waters. 2004. Fuzzy Identity-Based Encryption. In EURO-

CRYPT.
[27] Salesforce. 2017. Increasing the Maximum number of Roles or Territories. https:

//goo.gl/KDtMx5. (2017).

[28] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. 1996.

Role-Based Access Control Models. IEEE Computer (1996).
[29] Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, and Elisa Bertino. 2015.

DBMask: Fine-Grained Access Control on Encrypted Relational Databases. In

Proc. CODASPY.
[30] Muhammad I Sarfraz, Mohamed Nabeel, Jianneng Cao, and Elisa Bertino. 2016.

DBMask: Fine-Grained Access Control on Encrypted Relational Databases. TDP
(2016).

[31] Michael G. Solomon, Vaidy Sunderam, and Li Xiong. 2014. Towards Secure Cloud

Database with Fine-Grained Access Control. In Proc. DBSec.
[32] Wenhai Sun, Shucheng Yu, Wenjing Lou, Y Thomas Hou, and Hui Li. 2016.

Protecting Your Right: Verifiable Attribute-Based Keyword Search with Fine-

Grained Owner-Enforced Search Authorization in the Cloud. TPDS (2016).

[33] Cheng Xu, Qian Chen, Haibo Hu, Jianliang Xu, and Xiaojun Hei. 2017. Authen-

ticating Aggregate Queries over Set-Valued Data with Confidentiality. TKDE
(2017).

[34] G. Yang, Y. Cai, and Z. Hu. 2016. Authentication of Function Queries. In Proc.
ICDE.

[35] Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and Panos Kalnis. 2009.

Authenticated join processing in outsourced databases. In Proc. SIGMOD.
[36] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios. 2009. Authenticated

indexing for outsourced spatial databases. VLDBJ (2009).
[37] M. L. Yiu, E. Lo, and D. Yung. 2011. Authentication of Moving kNN Queries. In

Proc. ICDE.
[38] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2015. IntegriDB:

Verifiable SQL for Outsourced Databases. In CCS.

A ADDITIONAL ALGORITHMS FOR ABS
A.1 Monotone Span Program

Algorithm 5: Build Monotone Span Program

Function BuildMSP(expr)
Input: Boolean Function expr
Output: Span ProgramM, Row Labels L
if expr is label then

M← (1), L ← [expr];
else

n ← len(expr .children);
switch expr type do

case AND operator do

M←
©«
1 −1 · · · −1

0 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 1

ª®®®®¬
n×n

;

case OR operator do
M← (1, . . . , 1)T

n×1

;

i ← 1, L ← [];
for e in expr .children do

Me , Le ← BuildMSP(e);

M← ©«
M[1 : i − 1, :] 0

Me [:, 1] ·M[i, :] Me [:, 2 :]

M[i + 1 :, :] 0

ª®¬;
L ← L + Le , i ← i + # of rows(Me);

return ⟨M, L⟩;

A.2 ABS Predicate Relaxation Purge Step
The detailed algorithm for the purge step in ABS predicate relax-

ation is given in Algorithm 6. The intuition behind this step is to

solve a system of linear equations Ax = b. Here, we treat the origi-
nal monotone span program for the input signature predicate ϒ as

A and the new monotone span program for ∨i ∈kept_rowsu(i) as b.
The solution of this system x will yield P̃1 from a linear composi-

tion of the original Pj , i.e., P̃1 =
∏t

j=1
P
x j
j . However, thanks to the

monotone span program in Algorithm 5, we do not need to solve

this linear system directly. Instead, the solution x can be obtained

from the tree traversal in Algorithm 6 as follows:

x = [x j],x j =
{

1 if j ∈ kept_cols,
0 otherwise.

B PROOF OF THEOREM 7.3
Theorem 7.3. The construction of Section 5.2 satisfies the secu-

rity properties of Perfect Privacy (Definition 7.1) and Unforgeability
(Definition 7.2) in the generic group model.

http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
https://goo.gl/KDtMx5
https://goo.gl/KDtMx5

Algorithm 6: ABS.Relax Purging Step
Function Purge(expr , A)

Input: Boolean Function expr , kept attribute set A
Output: Monotone Span Program size ⟨rows, cols ⟩, Row

Labels L, Rows and Columns in MSP to be kept

⟨kept_rows , kept_cols ⟩, Whether to keep this node

f laд
if expr is label then

rows ← 1,cols ← 1,kept_rows ← [1],kept_cols ← [1];
L ← [expr];
if expr in A then f laд ← true else f laд ← f alse ;

else
n ← len(expr .children);
switch expr type do

case AND operator do
rows ← n, cols ← n, f laд ← f alse ;

case OR operator do
cols ← n, cols ← 1, f laд ← true ;

i ← 1, L ← [];
for k = 1 to n do

e ← expr .children[k];
⟨rowse , colse , Le , kept_rowse , kept_colse , f laдe ⟩←
Purge(e, A);

L ← L + Le ;
for r in kept_rowse do r ← r + i ;
for c in kept_colse do

if c , 1 then c ← c + cols − 1;

switch expr type do
case AND operator do

if f laдe is true then
kept_rows ← kept_rowse ;
kept_cols ← kept_colse ;
if k , 1 then kept_cols←kept_cols + [k];

f laд ← f laд ∨ f laдe
case OR operator do

kept_rows ← kept_rows + kept_rowse ;
kept_cols ← kept_cols + (kept_colse − [1]);
f laд ← f laд ∧ f laдe

rows ← rows + rowse − 1, cols ← cols + colse − 1;

i ← i + rowse ;
return ⟨rows, cols, L, kept_rows, kept_cols, f laд ⟩;

The theorem is proved by showing our ABS scheme satisfies

each security property.

B.1 Proof of Perfect Privacy
Lemma B.1. Our scheme has perfect privacy according to Defini-

tion 7.1.

Proof. The first requirement of Definition 7.1 is trivial consider-

ing the scheme is derived from [19]. It is also easy to verify that the

distributions of the output signatures from ABS.Sign and ABS.Relax
are identical owing to the re-randomization step in ABS.Relax,
which proves the second requirement. □

B.2 Proof of Unforgeability
Lemma B.2. Our scheme is unforgeable according to Definition 7.2

in the generic group model.

Proof. The generic group model is designed to model the be-

havior of any algorithm that does not exploit the algebraic structure

of the underlying groups. In other words, the lemma guarantees

that our proposed scheme is unforgeable against any generic at-

tacker, i.e., the attacker that does not exploit the underlying group

structures. We remark that the scheme in [19] is also analyzed in

this setting.

The idea of the generic group model is briefly reviewed here. Let

p be a prime which represents the group order. A generic group Gi
can be represented as the set {ξi (x)|x ∈ Zp }. The group operations

are modeled by two oracles, namely, O1,O2. Specifically, on input

two group elements ξi (a), ξi (b), oracle Oi returns ξi (a + b) and
ξi (a − b) respectively for multiplication and division. To model the

bilinear pairing, another oracle OE is defined. On input elements

ξ1(a), ξ1(b),OE returns ξ2(ab). Given ξi (x) and scalar s , it is possible
to obtain ξi (sx) (via O(log s) calls to oracle Oi).

Since it only benefits the attacker, we assume the groups G and

H are the same. The groups G, GT of the scheme are modeled as

generic groups G1 and G2, respectively. The attacker works with

the group elements and can only compute group operations by

interacting with oracles Oi and OE . As the encoding functions ξi
are modeled as random functions, nothing about the element except

equality can be inferred. The security proof is completed by showing

that given the encodings of the public key and the signatures from

the signing oracle, it is infeasible to output the encodings needed

to satisfy the verification equation for the forgery with a bounded

number of queries to oracles Oi and OE .
We first define how signature queries are answered. For span

program M ∈ Zℓ×tp with row labeling function u, pick random

τ ,y, s1, · · · , sℓ , compute pj for j = 1 to t , as follows:

pj =
1

c + hash
(ℓ∑
i=1

si (a + u(i)b)Mi j − yzj
)
,

where (z1, · · · , zℓ) = (1, 0, · · · , 0) and hash = hash(τ ,m).
The signature is parsed as σ = (τ ,дy , дy/a0

, дs1
, · · · , дsℓ ,hp1

, · · · ,

hpt). It is easy to show that the signature generated is of the same

distribution as that of a signature created using the sign algorithm.

The adversary is given ξ1(1), ξ1(∆0), ξ (a0), ξ1(∆), ξ1(a∆), ξ1(b∆),
ξ1(c) as the public parameters. They represent group elements (д,
h0, A0, h, A, B, C), i.e.,mvk , of the scheme.

LetQ be the number of signature queries made by the adversary,

and ℓq , tq be the length and width of the associated span program

for the q-th query. In the q-th query, the adversary is given τ (q) and

the encodings of the following values: {s
(q)
i }

ℓq

i=1
, {p
(q)
j }

tq

j=1

, w(q),

y(q), satisfying the conditions that y(q) , 1,w(q) = y(q)/a0 and for

j = 1 to tq :

y(q)zj∆ + (c + hash(q))p
(q)
j =

ℓq∑
i=1

s
(q)
i M(q)i j (a + u

(q)(i)b)∆,

where hash(q) = hash(τ (q),m(q)) and (z1, · · · , ztq) = (1, 0, · · · , 0).

Finally, the adversary outputs a forgery σ ∗ := (τ ∗, ξ1(y
∗), ξ1(w

∗),

{ξ1(s
∗
i)}

ℓ∗

i=1
, {ξ1(p

∗
j)}

t ∗

j=1

) on messagem∗ with span program M ∈

Zℓ
∗×t ∗

p and labeling function u∗.

Denote by hash∗ the value hash(ξ1(y
∗), ξ1(w

∗), τ ∗,m∗). To be a

valid forgery, y∗ , 0,w∗ = y∗/a0 and for j = 1 to t∗, the following
equation holds:

y∗zj∆ + (c + hash∗)p∗j =
ℓ∗∑
i=1

s∗i M
∗
i j (a + u

∗(i)b)∆.

For notational convenience, let Lin(S) denote the sets of functions

that are linear in the terms in set S . Let Hom(S) be the subset of
Lin(S) of homogeneous functions whose constant coefficient is

zero. In the generic group model, a valid encoding can only be

received from the oracles. Specifically, all encodings presented by

the adversary in the generic group G1 must be linear combinations

of the previously obtained element inG1. That is, σ
∗\{τ ∗} ⊂ Lin(Γ),

where Γ is:

{1,a0,∆0,∆,a∆,b∆} ∪ {{s
(q)
i }

ℓq

i=1
, {p
(q)
j }

tq

j=1

,w(q),y(q)}}
Q

q=1

.

The remaining part of the proof is to show that σ ∗ \ {τ ∗} is
not a subset of Lin(Γ) when we view the terms as functions in the

random variables used in the security game. To complete the proof,

we consider two cases.

Case 1: (τ ∗,m∗) , (τ (q),m(q)) for all q. Firstly, y∗ = w∗a0. Thus,

y∗ ∈ Hom({∆0a0,y
(1), · · · ,y(Q)}).

Next, it can be seen that ∆ | p∗j . Thus,

p∗j ∈ Hom({∆,∆a,∆b} ∪ {{p
(q)
1
, · · · ,p

(q)
tq }

Q

q=1

}).

Since ∃j s.t. zj , 0, and given the form of p∗j , it can be seen that

y∗ cannot contain a term from ∆0a0. Thus,

y∗ ∈ Hom({y(1), · · · ,y(Q)}).
Next, we argue that p∗j cannot contain a single term ∆. For if it

is the case, the left-hand side contributes monomials hash∗∆ (since

y∗ is homogeneous and has no constant term). On the other hand,

the right-hand side cannot contribute monomials in ∆ (everything

in the right-hand side has either a or b). Thus,

p∗j ∈ Hom({∆a,∆b} ∪ {{p
(q)
1
, · · · ,p

(q)
tq }

Q

q=1

}).

Now, p∗j cannot contain a p
(q)
n term for any n,q. Otherwise, it

will produce a term with
c+hash∗

c+hash(q)
on the left and no setting of y∗,

s∗i can come up with this rational term. In other words,

p∗j ∈ Hom({∆a,∆b}).

Finally, we arrive at a contradiction since no combination of

(c + hash∗)p∗j and
∑ℓ∗

i=1
s∗i M

∗
i j (a + u

∗(i)b)∆ could contribute to a

term of the form ∆y∗ for some y ∈ Hom({y(1), · · · ,y(Q)}).
Case 2: (τ ∗,m∗) = (τ (k),m(k)) for some k . Following the analysis

above, the following constraints can be reached:

y∗ ∈ Hom({y(1), · · · ,y(Q)}),

p∗j ∈ Hom({∆a,∆b} ∪ {{p
(q)
1
, · · · ,p

(q)
tq }

Q

q=1

}).

Since τ (q) is randomly chosen for each signature query, τ (k) ,

τ (q) when k , q. Since hash is collision-resistant, it means hash∗ ,

hash(q) for all q , k . Thus, p∗j cannot contain a term from p
(q)
n

when q , k . Otherwise, there will be a term c+hash∗

c+hash(q)
on the left

and no setting of y∗, s∗i can come up with this rational term. Thus,

p∗j ∈ Hom({∆a,∆b,p
(k)
1
, · · · ,p

(k)
tk }).

Next,y∗ cannot contain a term fromy(q) for q , k since all terms

on the right-hand side contain either a or b and that (c + hash∗)p∗j
can only provide a term to cancel y(k). Thus,

y∗ ∈ Hom(y(k)).

In this case,m∗ =m(k) and thus the adversary wins if and only if

ϒ∗ represents a more restricted policy compared with ϒ(k). Assume

the DNF representation of policy ϒ(k) is P := ∨nx=1
(Px), where

each Px is of the form (∧
nx
y=1
(axy)). In general, a more restricted

policy can be formed by removing one clause from P or adding

more attributes in one of Px .
In our threat model, the forgery must be of the form (∨a∈A′a)

for someA ′ ⊂ A, where A represents the attribute universe. A suc-

cessful forgery means that at least one clause, Px , is removed and

that all attributes in Px does not appear in A ′. The corresponding

span program is M ∈ Z |A
′ |×1

p and the labeling function maps each

row to one attribute in A ′.

It means that the forgery in this case satisfies t∗ = 1, and that

y∗z∆ + (c + hash∗)p∗ =
ℓ∗∑
i=1

s∗i (a + u
∗(i)b)∆.

Assume Px is the clause that has been removed. We use Ā to

denote the attributes of Px . Thus, u
∗(i) < Ā. However, each p

(k)
j

has at least one term with a + u(k)(i)b with u(k)(i) ∈ Ā. WLOG,

assume Ā := {1, 2, · · · ,x} and Px is the first clause. Since Px is

a conjunctive clause, p
(k)
1

contains the term (a + b), p
(k)
2

contains

(a + b) and (a + 2b), p
(k)
3

contains (a + b) and (a + 3b), etc. If p∗

contains any of these p
(k)
j , there will be a term (a + ub), u ∈ Ā,

which appears on the left-hand side but not the right-hand side

(note that y∗ = y(k) and thus y∗z∆ cannot be used to cancel this

(a +ub) term. Further, note that linear combinations of p
(k)
j cannot

cancel all terms in the form of (a + bu) for some u ∈ Ā). Thus,

p∗ ∈ Hom({∆a,∆b}).
Again, we arrive at a contradiction since no combination of (c +

hash∗)p∗ and
∑ℓ∗

i=1
s∗i (a+u

∗(i)b)∆ could contribute to a term of the

form ∆y∗ for some y ∈ Hom({y(k)}). □

C PROOF OF THEOREM 7.6
Theorem 7.6. Our proposed query authentication algorithms sat-

isfy the security properties of Unforgeability (Definition 7.4) and
Zero-Knowledge (Definition 7.5).

This theorem is proved by showing that our proposed query

authentication algorithms satisfy each security property.

C.1 Proof of Unforgeability
Lemma C.1. Our proposed query authentication algorithms are

unforgeable according to Definition 7.4.

Proof. We prove this lemma by contradiction.

Case 1: The result set RS contains a data record ⟨o∗,v∗, ϒ∗⟩, such
that ⟨o∗,v∗, ϒ∗⟩ , ⟨oi ,vi , ϒi ⟩, ∀i .

Recall that in the result verification procedure, the verifier will

run ABS.Verify(mvk , hash(o∗))|hash(v∗), ϒ∗, σ ∗). Since it passes the
verification and σ ∗ can only be generated by the adversary, this

means that the adversary is able to forge an ABS signature σ ∗,
which contradicts to Theorem 7.3.

Case 2: The result set RS contains a data record ⟨o∗,v∗, ϒ∗⟩, such
that o∗ does not satisfy the query q or ϒ∗(A) = 0.

It is trivial to see that such a case is impossible, as the verifier

will check whether or not o∗ satisfies the query q and ϒ∗(A) = 1

during the result verification procedure.

Case 3: There exists a data record ⟨oj ,vj , ϒj ⟩ not in RS , such that

j ∈ {i}, oj satisfies the query q, and ϒj (A) = 1.

There are two possible subcases. The first subcase is that the

index key of the missing record j is not returned as part of the

VO. This is impossible as the verifier will check whether or not

the union of the indexing space for each entry in the VO covers

the query range of q. The second subcase is that the index key of

the missing record j is returned as part of the VO. In this case, the

record j must fall in the space of an APS signature in the VO. Note

that this APS signature can only be generated by the adversary,

given its corresponding APP signature whose predicate is a more

restricted policy compared with ∨a∈A\Aa. This means that the

adversary is able to forge an ABS signature, which contradicts to

Theorem 7.3. □

C.2 Proof of Zero-Knowledge
Lemma C.2. Our proposed query authentication algorithms are

zero-knowledge according to Definition 7.5.

Proof. It is easy to see that the messages output to the adversary

from the ideal game will have the same distribution as those from

the real game due to the following reasons: (i) all the messages

generated by the simulator are generated using the same algorithms

as those by the real challenger; (ii) all ABS signatures achieve the

prefect privacy (according to Theorem 7.3); and (iii) the AP
2
G-tree

structure generated by the simulator is identical to the one by the

real challenger. □

D AP2kD-TREE SPLIT ALGORITHM

Algorithm 7: AP2kd-Tree Split

Function Split({ϒ1, . . . , ϒn })
Input: Access Policies {ϒ1, . . . ϒn }
Output: Hyperplane x = arg min

x
f (ϒ1∨· · ·∨ϒx , ϒx+1∨· · ·∨ϒn)

for i = 1 to n do
convert ϒi to DNF, i.e., ϒi = ∨Aj ∈Xi ∧ai j ∈Aj ai j ;

if n = 2 then x ← 1;

else if n = 3 then
if |X1 ∩ X2 | < |X2 ∩ X3 | then x ← 1 else x ← 2;

else
x ′ ←Split({ϒ1, . . . , ϒn−1 });

a ← |(X1 ∪ · · · ∪ Xx ′) ∩ (Xx ′+1
∪ · · · ∪ Xn−1) |;

b ← |(Xx ′+1
∪ · · · ∪ Xn−1) ∩ Xn |;

if a < b then x ← x ′ else x ← n − 1;

return x ;

E HANDLING DUPLICATE RECORDS
In this section, we discuss how to extend our solution to support

authenticated queries over duplicate records. Since our proof of

completeness relies on the distinction of the query attribute, the

idea is to transform the records sharing the same query key into

distinct ones. To do so, we propose to introduce a new virtual

dimension by extending the query attribute for each record with

a random value in this virtual dimension. As such, we ensure that

there is no duplication in the database with respect to each query

key. When processing a query, the query range will be transformed

accordingly to cover the whole space of the virtual dimension,

whereas the rest of the algorithm is the same as that described in

Section 6. Furthermore, it is worth noting that the data records

that share the same query key and the same access policy can be

0.03% 0.1% 0.3% 1%
Query Range

0

200

400

S
P

 C
P

U
 T

im
e

(s
)

Basic
AP2G-Tree
AP2G-Tree (non-ZK)

0.03% 0.1% 0.3% 1%
Query Range

0

200

400

600

800

U
se

r C
P

U
 T

im
e

(s
) Basic

AP2G-Tree
AP2G-Tree (non-ZK)

0.03% 0.1% 0.3% 1%
Query Range

0

50

100

150

V
O

 S
iz

e
(M

B
)

Basic
AP2G-Tree
AP2G-Tree (non-ZK)

Figure 15: Range Query Performance with Duplicate
Records

aggregated into a super-record before the above transformation.

This would reduce the space of the virtual dimension and hence

the quantity of pseudo records that need to be introduced into the

database.

Consider an example where the database contains three records

⟨o1,v1, ϒ1⟩, ⟨o1,v2, ϒ1⟩, and ⟨o1,v3, ϒ3⟩. We first merge the first two

records into ⟨o1,v1 | |v2, ϒ1⟩ since they share the same access policy.

Then, a new virtual dimension x is introduced to distinguish the

remaining two records as ⟨(o1,x1), v1 | |v2, ϒ1⟩ and ⟨(o1,x2), v3, ϒ3⟩,

where 1 ≤ x1 , x2 ≤ Ux and Ux is the upper bound of the x
dimension.

8
Accordingly, if a user issues a range query [α , β], the

query range will be transformed into [(α , 1), (β,Ux)].
Further, in the applications where the zero-knowledge confiden-

tiality requirement can be relaxed, it would be acceptable to disclose

to the user about the distribution of the duplicate data records. As

such, instead of introducing the virtual dimension and its asso-

ciated pseudo records, we can embed the duplicate information

directly in the APP signatures to reduce the database size and boost

query performance. Consider a record ⟨oi ,vi , ϒi ⟩. Its APP signature

will be σi = ABS.Sign(skDO, hash(oi)|hash(vi)|dup_num |dup_id ,
ϒi), where dup_num captures how many duplicate records are as-

sociated with the query attribute oi , and dup_id is used to identify

each duplicate record. Thus, the authenticated query processing

algorithm remains the same as that described in Section 6, and the

user can verify the completeness by checking whether all duplicate

records under the query attribute are present in the VO.

Figure 15 reports the results of performance evaluation over the

default TPC-H database, where the access policies are randomly

assigned to all data records. We compare two solutions of handling

duplicate records: (i) the zero-knowledge approach by adding the

virtual dimension (denoted as AP
2
G-Tree); (ii) the non-zero-knowl-

edge approach by embedding the duplicate information in the APP

signatures (denoted as AP
2
G-Tree (non-ZK)). The index size for

the zero-knowledge approach is 12.17 GB (2.91 GB tree structure

+ 9.26 GB signatures), whereas in the non-zero-knowledge setting

the index is 4.35 GB (1.02 GB tree structure + 3.33 GB signatures).

The additional index overhead incurred for the zero-knowledge

approach, as the cost of achieving the zero-knowledge requirement,

is believed to be reasonable. Regarding the query performance,

AP
2
G-Tree (non-ZK) is approximate to the case without duplicate

records since the duplicate information is seamlessly embedded

in the APP signatures. As shown in Figure 15, the query cost in

the zero-knowledge AP
2
G-tree approach is only no more than 3

times worse than that in AP
2
G-Tree (non-ZK). Moreover, the per-

formance of AP
2
G-tree is only about half that of the basic approach,

which again demonstrates its pruning effectiveness for inaccessible

records.

8
In practice,Ux can be set to the maximum number of distinct access polices associated

with each query key.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Preliminaries
	5 Equality Query Authentication
	5.1 ADS Generation and Query Processing
	5.2 ABS with Predicate Relaxation

	6 Range & Join Query Authentication
	6.1 Range Query Authentication
	6.2 Join Query Authentication

	7 Security Analysis
	7.1 Security Analysis on ABS
	7.2 Security Analysis on Query Authentication

	8 Optimizations
	8.1 Hierarchical Role Assignment
	8.2 Acceleration by Parallelism

	9 Relaxing Zero-Knowledge Confidentiality Requirement
	9.1 Using k-d Tree Index Structure
	9.2 Supporting Continuous Query Attributes

	10 Performance Evaluation
	10.1 Equality Query Performance
	10.2 Range and Join Query Performance
	10.3 Impact of the Optimizations

	11 Conclusion
	References
	A Additional Algorithms for ABS
	A.1 Monotone Span Program
	A.2 ABS Predicate Relaxation Purge Step

	B Proof of Theorem 7.3
	B.1 Proof of Perfect Privacy
	B.2 Proof of Unforgeability

	C Proof of Theorem 7.6
	C.1 Proof of Unforgeability
	C.2 Proof of Zero-Knowledge

	D AP2kd-Tree Split Algorithm
	E Handling Duplicate Records

