
The D-Tree: An Index Structure for Planar Point
Queries in Location-Based Wireless Services

Jianliang Xu, Member, IEEE, Baihua Zheng, Member, IEEE,

Wang-Chien Lee, Member, IEEE, and Dik Lun Lee

Abstract—Location-based services (LBSs), considered as a killer application in the wireless data market, provide information based

on locations specified in the queries. In this paper, we examine the indexing issue for querying location-dependent data in wireless

LBSs; in particular, we focus on an important class of queries, planar point queries. To address the issues of responsiveness, energy

consumption, and bandwidth contention in wireless communications, an index has to minimize the search time and maintain a small

storage overhead. It is shown that the traditional point-location algorithms and spatial index structures fail to achieve either objective or

both. This paper proposes a new index structure, called D-tree, which indexes spatial regions based on the divisions that form the

boundaries of the regions. We describe how to construct a binary D-tree index, how to process queries based on the D-tree, and how

to page the binary D-tree. Moreover, two parameterized methods for partitioning the original space, called fixed grid assignment (FGA)

and adaptive grid assignment (AGA), are proposed to enhance the D-tree. The performance of the D-tree is evaluated using both

synthetic and real data sets. Experimental results show that the proposed D-tree outperforms the well-known indexes such as the

R�-tree, and that both the FGA and AGA approaches can achieve different performance trade-offs between the index search time and

storage overhead by fine-tuning their algorithmic parameters.

Index Terms—Location-dependent data, mobile computing, index structure, energy conservation, spatial database, data broadcast.

�

1 INTRODUCTION

THANKS to the rapid technological development in
wireless networks, mobile devices, and location identi-

fication techniques, location-based services (LBSs) are
emerging as one of the killer applications for mobile
computing and wireless data services [11], [19], [23], [32].
Although LBSs exist in traditional computing environments
(Guides@Yahoo, for example), their greatest potential is in a
mobile computing environment, where users enjoy unrest-
ricted mobility and ubiquitous information access. An LBS
returns location-dependent data (LDD) based on location
information specified in a query. Due to the mobility of a
mobile user, the specified location is typically the current
location of the user. Several studies in the literature have
investigated cache management and query evaluation
techniques to enhance the performance of LBSs [18], [23],
[26], [28], [33], [34]. Different from these previous studies,
this paper aims to develop an efficient index structure to
support planar point queries, which is reduced from LDD
queries, for LBSs in a mobile and wireless environment.

1.1 Location-Dependent Data Queries

Consider a geographical area A (referred to as service area)
covered by an LBS, which provides a type of location-
dependent data (e.g., pollution level). A data instance is an
answer to a query for the offered data type with respect to a
user specified location. Each data instance has a certain valid
scope within which this instance is the only correct answer.
For example, Fig. 1 shows four sensor nodes, o1, o2, o3, and
o4, monitoring air pollution and their respective monitoring
areas, P1, P2, P3, and P4. Thus, P1, P2, P3, and P4 are the
valid scopes of their corresponding data instances (i.e., the
readings of sensor nodes at o1, o2, o3, and o4). Given any
query location q in, say, P3, o3 is the node by which the
location q is covered. The sensor readings of node o3 are
returned as the pollution level for a query issued at q. This
example will be used throughout this paper as the running
example for different index structures.

Given a set of data instances and their valid scopes, an
LDD query is defined as a query in which a data instance is
returned if and only if the query location falls in the
corresponding valid scope of the data instance.

Definition 1. Given a set of data instances O ¼ fo1; o2; � � � ; oNg
and the corresponding set of valid scopes S ¼ fS1; S2; � � � ; SNg,
an LDD query, issued at location q, retrieves the data instance

oi fromO if and only if q is located inSi, where 1 � i � N andN

is the total number of data instances in the data set.

In this paper, we study LDD queries in a two-dimen-
sional space, which is assumed for most LBSs [11], [19], [23].
In the following, we list several possible applications of
such LDD queries:

. Location-Sensitive Information Access: Informa-
tion includes local traffic reports, pollution levels,
public facilities, attractions, entertainments, etc.

1526 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 12, DECEMBER 2004

. J. Xu is with the Department of Computer Science, Hong Kong Baptist
University, Kowloon Tong, KLN, Hong Kong.
E-mail: xujl@comp.hkbu.edu.hk.

. B. Zheng is with the School of Information Systems, Singapore Manage-
ment University, 469 Bukit Timah Road, Singapore 259756.
E-mail: bhzheng@smu.edu.sg.

. W.-C. Lee is with the Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16802.
E-mail: wlee@cse.psu.edu.

. D.L. Lee is with the Department of Computer Science, Hong Kong
University of Science and Technology, Clear Water Bay, KLN, Hong Kong.
E-mail: dlee@cs.ust.hk.

Manuscript received 24 Mar. 2003; revised 6 Nov. 2003; accepted 8 Apr.
2004.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0017-0303.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

Each instance of such a type of information is valid
within a certain geometric region, which may be
bounded by streets, rivers, etc., or based on some
predefined maps.

. Object Tracking: While many positioning techni-
ques return geometric locations (e.g., the latitude/
longitude pair in the GPS), some applications may be
more interested in finding out, for example, in which
monitoring zone or geographical area an object is
situated. In such applications, a data instance is
associated with the symbolic representation of a
zone, and its valid scope is the limit of this zone.

. Location Model Conversion: Many advanced con-
text-aware applications are in support of symbolic
locations such as parks, shopping malls, or room
numbers, but implemented with geometric location-
based positioning techniques [19]. The conversion
from a geometric location to a symbolic location can
be reduced to the problem of LDD queries.

. Nearest Neighbor Search: The nearest neighbor
problem (e.g., finding the nearest restaurant) can be
seen as an LDD query problem when the solution
space is precomputed. For example, in a Euclidean
space, the solution space for nearest neighbors can be
precomputed using the Voronoi Diagram approach
[4], where the Voronoi Cell of each spatial object is
regarded as its valid scope. As a result, a nearest
neighbor search can be solved as an LDD query.

1.2 Indexing Problem for LDD Queries

As mentioned, this study is to explore the use of index to
facilitate efficient evaluationofLDDqueries.To formulate the
indexing problem,we start by defining a notion of data region.

Definition 2. A data region, Pi, is a spatial representation of
the valid scope for a data instance. One data region
corresponds to one data instance, such that [N

i¼1Pi ¼ A, and
Pi \ Pj ¼ � 81 � i; j � N and i 6¼ j, where A is the service
area and N is the number of data instances in the data set.

Without loss of generality, a data region is assumed to
take the shape of a polygon. To efficiently evaluate an LDD
query, an index can be constructed based on data regions of
the service area such that, given a query point (i.e.,
location), the query can identify the data region covering
the query point and return the associated data instance (e.g.,
the pollution index value). Suppose each data region object
maintains a pointer pointing to its associated data instance.
Thus, an LDD query is reduced to a planar point query
defined as follows:

Definition 3. Given a set of data regions P ¼ fP1; P2; � � � ; PNg,
such that [N

i¼1Pi ¼ A, and Pi \ Pj ¼ � 81 � i; j � N and

i 6¼ j, a planar point query returns the polygon Pi from P

that covers the query point p 2 A.

Therefore, for the rest of this paper, we focus on the
planar point queries and investigate efficient indexes to
support their query evaluation in mobile and wireless
environments, where the amount of data access must be a
multiple of pages/packets and the performance objectives
are different from traditional environments.

The readers should note that, although the above
problem formulation assumes nonoverlapping data regions,
it can be extended to handle data sets with overlapped
regions without loss of generality. Basically, an overlapped
area can be treated as a separate data region pointing to
multiple data instances.

1.3 Performance Objectives in Mobile and
Wireless Environments

We now analyze and discuss some requirements for design
and implementation of indexing techniques in location-
based wireless services. There are two basic modes for
disseminating information to mobile clients in a wireless
environment:

. On-Demand Access: The mobile client submits a
request, including the type of information wanted
and the query location, to the server through an
uplink channel. The server locates the appropriate
data and returns it to the mobile client through a
downlink channel. On-demand access is essentially
the same as traditional client-server systems, except
that communication between clients and the server
takes place on wireless channels.

. Periodic Broadcast: Data is broadcast on a wireless
channel open to the public. When a query is issued,
the mobile client tunes into the broadcast channel
and filters out the data according to the query and
the specified location. A major advantage of broad-
cast is that it allows simultaneous access by an
arbitrary number of mobile users. It is envisaged that
in the near future many LBSs (e.g., region-wide
traffic reports and tourist information) will utilize
broadcast for the dissemination of information to the
rapidly increasing population of mobile users.

Indexing is an important technique used to enhance the
performance of query evaluation [1], [5]. Indexes for
traditional database applications are usually very large
and typically stored on disks. Thus, indexing techniques for
traditional client-server systems and on-demand access are
referred to as disk indexing. In contrast, indexing techniques
employed in wireless broadcast to address scalability issue
and to facilitate power saving on mobile devices are
referred to as air indexing [14]. To retrieve a data instance
in wireless data broadcast without indexing, a mobile client
has to continuously monitor the broadcast until the data
arrives. This will consume a lot of energy since the client
has to remain active during its waiting time. The basic idea
of air indexing is to include some index information about
the arrival times of data instances on the broadcast channel.
By accessing the index, mobile clients are able to predict the
arrivals of their desired data. Thus, they can stay in power
saving mode during waiting time and switch to active mode
only when the data of interest arrives.

The metrics used to evaluate disk indexing and air
indexing techniques are different. The performance of disk
indexes is often measured by the number of disk page accesses
required to evaluate a query since the query response time
is generally dominated by disk I/O time. In addition, even

XU ET AL.: THE D-TREE: AN INDEX STRUCTURE FOR PLANAR POINT QUERIES IN LOCATION-BASED WIRELESS SERVICES 1527

Fig. 1. Running example.

though hard disk storage is very cheap today, the index
storage overhead should be kept as small as possible since a
large index typically incurs a high update cost. On the other
hand, access latency and tuning time have been used to
evaluate the performance of air indexes. Access latency is
the period of time elapsed from the moment the mobile
client issues a query to the moment when the requested
data is received by the client. Tuning time is the amount of
time the mobile client stays active in order to obtain the
requested data. While access latency measures the overhead
of broadcasting index information, tuning time reflects the
energy consumption by the mobile client since sending/
receiving data is power dominant [17].1 In wireless
communications, a bit stream is normally delivered in the
unit of the packet (or frame) for such purposes as error-
detecting, error-correction, and synchronization. Thus,
tuning time is measured in terms of the number of packet
accesses [12], [14].

A fundamental issue for both disk indexing and air
indexing techniques is the design of the underlying index
structures. Although disk indexing and air indexing are
employed for different (ultimate) performance objectives,
an index structure serving them shares two common design
goals: 1) the index should offer a good index search
performance in terms of the number of page/packet
accesses required to evaluate a query;2 2) the index should
have a small size.

1.4 Contribution and Paper Organization

In this paper, we develop efficient index structures for LDD
queries (reduced to planar point queries) that are good for
both disk indexing and air indexing. The main contribu-
tions of this paper are summarized as follows:

. We propose a new index structure, called D-tree. The
basic idea is to index data regions based on the
divisions between them. We describe how to
construct a binary D-tree index, how to process
queries based on this index structure, and how to
page the binary D-tree to fit the page capacity.

. Two parameterized methods for partitioning the
original space, namely, fixed grid assignment (FGA)
and adaptive grid assignment (AGA), are proposed to
enhance the D-tree.

. The performance of the D-tree is evaluated using
both synthetic and real data sets. Experimental
results show that 1) the proposed D-tree outper-
forms the well-known indexes such as the R�-tree for
both disk indexing and air indexing, and 2) both the
FGA and AGA approaches can achieve different
performance trade-offs between the index search
time and storage overhead by fine-tuning their
algorithmic parameters.

The rest of this paper is organized as follows: In Section 2,
we review some existing index structures that can be used for
answering planar point queries. Section 3 presents the
proposed D-tree index structure along with the space
partitioning, query processing, and paging algorithms. A
performance comparison of the D-tree and other index
structures is presented in Section 4. Section 5 describes the
techniques to enhance the D-tree, which is followed by a
performance evaluation in Section 6. The related work is
described in Section 7. Finally, Section 8 concludes the paper.

2 EXISTING INDEXES FOR PLANAR POINT QUERIES

LDD queries have been reduced to planar point queries on
nonoverlapped spatial regions. The actual shapes of spatial
regions need to be captured in the index. To do so, there are
two typical types of techniques that can be employed, object
decomposition and object approximation [5], [8]. The former
represents the shape of each data region as the geometric
union of simple shapes such as triangles or trapezoids,
whereas the latter uses simple shapes such as bounding
rectangles to approximate data regions. In the following
sections, we briefly review several representative solutions
and analyze their limitations for planar point queries in
mobile and wireless environments.

2.1 Object Decomposition

The Kirkpatrick’s algorithm [16] and the trapezoidal map
[4] are two well-known methods that fall into the category
of object decomposition. They are improved variants of the
Quad-tree [24]. Both of them are based on the principle of
recursive decomposition of space. The Kirkpatrick’s algo-
rithm first triangulates the original subdivision. It then
recursively removes some vertices, along with all the edges
connected to them, and retriangulates the new subdivision.
This operation continues until the number of triangles
contained in the space is smaller than some predefined
threshold (Tmin). Figs. 2a, 2b, and 2c show the triangulation
process of our running example, where Tmin is set to five.
From Fig. 2a to Fig. 2b, vertices v3, v5, and v6 are removed;

1528 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 12, DECEMBER 2004

1. For systems in which the mobile client is charged on a per-bit basis,
tuning time is also used to measure the access cost.

2. For the purposes of illustration, in the rest of the paper, a disk page
and a wireless packet/frame are uniformly called a page.

Fig. 2. Trian-tree: Index construction using Kirkpatrick’s Algorithm. (a) Triangulation of the original subdivision, (b) retriangulation after v3, v5, and v6
are removed, (c) retriangulation after v4 is also removed, and (d) index structure.

from Fig. 2b to Fig. 2c, vertex v4 is removed. A hierarchical
index tree, shown in Fig. 2d, is built on the triangles
generated in the course of recursive triangulation.

Given a query point, the search begins from the root. It
checks each child sequentially until a triangle covering the
query point is found. Then, the search continues from that
node all the way down to a leaf node. In this paper, we call
the index structure built by the Kirkpatrick’s algorithm the
trian-tree.

In the trapezoidal map approach, the planar subdivision
is viewed as a collection of line segments. The index
structure is built when the line segments are inserted one by
one into the subdivision. From each new vertex created by
the insertion of a line segment, we draw two vertical
extension lines, one going upward and the other going
downward. The extension does not stop until it meets a line
segment that has been previously inserted. Eventually, the
original subdivision is decomposed into a set of trapezoids.

Fig. 3a shows the final trapezoidal map of our example,
where line segments are inserted in the order of s1, s2, s3, s4,
and s5. The corresponding index structure is shown inFig. 3b.
The index consists of two kinds of nodes: the x-nodes,
representedby circles, each ofwhich records the x-coordinate
of a vertex; the y-nodes, represented by hexagons, each of
which records a line segment. Essentially, the left (right)
subtree of an x-node recursively represents the subdivision to
the left (right) of the extension lines originating from the
x-node. Likewise, the left (right) subtree of a y-node
recursively represents the subdivision above (below) the line
segment represented by the y-node.

Given a query point p, the search process begins at the
root and terminates when a leaf node is met. At an x-node,
we evaluate whether p lies to the left or to the right of the
vertical line that goes through the stored x-coordinate. At a
y-node, we evaluate whether p lies above or below the
stored line segment. In this paper, we call the index
structure built using the trapezoidal map approach the
trap-tree.

We can see from the example that both the trian-tree and
the trap-tree have a fairly large index size. For our example,
which consists of only four regions and six vertices, the
index trees have about 10 nodes. As we will see in a later
performance evaluation, the large index size results not
only in a high access latency overhead, but also in inferior
search efficiency. In general, the trap-tree achieves a better
performance than the trian-tree in mobile and wireless
environments [29]. Therefore, the trap-tree is used in the
performance evaluation as the representative of the object
decomposition algorithms.

2.2 Object Approximation

The object approximation technique has been commonly
employed for disk indexing in the spatial database field [8].
The R-tree is a classical spatial index structure [9]. The basic
idea is to approximate a spatial object with a minimal
bounding rectangle (MBR) and to index the MBRs recur-
sively. Each node in the index tree contains a number of
entries according to the page capacity. An entry in an
internal node contains a child-pointer pointing to a lower
level node in the tree and a bounding rectangle covering all
the rectangles in the lower nodes in the subtree. In a leaf
node, an entry consists of a pointer pointing to the data and
a bounding rectangle which bounds the data’s spatial
region. The variants of the R-tree differ from each other in
terms of the criteria used to insert an object and to split an
overflowing node. Extensive experiments conducted in [2]
showed that the R�-tree gives a superior performance for
different types of queries and operations. Fig. 4c shows the
structure of the R�-tree for our running example, where the
corresponding MBRs are shown in Figs. 4a and 4b. In the
performance evaluation, the R�-tree is used as the repre-
sentative of the object approximation technique.

Given a query point p, the search algorithm descends the
tree from the root. The algorithm recursively traverses
down the subtrees of bounding rectangles that cover p.
When a leaf node is reached, the bounding rectangles are
tested and their objects are fetched to verify if they cover p.
When applying the R�-tree to planar point queries, to

XU ET AL.: THE D-TREE: AN INDEX STRUCTURE FOR PLANAR POINT QUERIES IN LOCATION-BASED WIRELESS SERVICES 1529

Fig. 3. Trap-tree: Index construction using trapezoidal map. (a) Final
trapezoidal map and (b) index structure.

Fig. 4. Index construction using the R�-tree. (a) MBRs of data regions, (b) MBRs in the root node, and (c) index structure.

reduce the search time, we modify the tree structure slightly
as follows: One level is added to the R�-tree at the bottom,
as shown in Fig. 4c (the level indicated by the dashed line).
This level consists of the actual shapes of data regions so
that, in the containment test, a costly access of actual data is
avoided.

A problem with R-tree-based methods is that if a point is
covered by two or more sibling MBRs, it may need to
explore several subtrees before the target object can be
located. This will increase the search time. Unfortunately, in
planar point queries, all data regions are adjacent to each
other and, as such, their MBRs will overlap. The nature of
this problem renders the approximation-based spatial index
structures inefficient. As an example, suppose the query
point is p in Figs. 4a and 4b. We need to access a total of six
nodes (i.e., the root, R5, R1, R2, R6, and R3) before we know
it is covered by P3.

3 THE D-TREE INDEX STRUCTURE

This section describes the proposed D-tree index structure.
We first present the overall idea of the D-tree in Section 3.1.
The space partitioning algorithm is described in Section 3.2.
Section 3.3 provides the algorithm for query processing
based on the D-tree. Finally, Section 3.4 explains how to
page the D-tree.

3.1 An Overall Picture

As discussed in the last section, the object decomposition
and approximation approaches suffer from a large index
size and/or a long search time. We also observed that the
actual shapes of data regions are contained, either explicitly
or implicitly, in the index structures of both approaches.
With object decomposition, the shape of each region is
embedded in the index structure, while with object
approximation, it is approximated by an MBR with the
exact shape encoded in an additional level of nodes, as
shown in Fig. 4c. Based on this observation, we propose a
new index structure, called D-tree, to index data regions
directly based on the divisions between them. This new
index structure neither decomposes nor approximates data
regions. In the following, we illustrate the overall idea.

The D-tree is a binary tree which recursively partitions a
space consisting of a set of data regions into two complemen-
tary subspaces containing about the same number of regions
until each subspace has one region only. The partition
between two subspaces is represented by one or more
polylines. The overall orientation of the partition, hereinafter
referred to as partition dimension, can be either x-dimensional

or y-dimensional, which is obtained, respectively, by sorting
thedata regionsbasedon their y-coordinates or x-coordinates
(see Section 3.2 fordetails). Fig. 5a shows thepartitions for our
running example. The polyline plðv2; v3; v4; v6Þ partitions the
original space into P5 and P6, and plðv1; v3Þ and plðv4; v5Þ
further partition P5 into P1 and P2, and P6 into P3 and P4,
respectively. The first polyline is y-dimensional and the
remaining two are x-dimensional. The algorithm of finding
the partition for a space will be described in Section 3.2.

The data structure of a D-tree node is illustrated in Fig. 6.
The meaning of each attribute is summarized in Table 1. In
the D-tree, an internal node contains the partition that
divides the current space into two complementary sub-
spaces, a left (right) pointer storing the address of the node
containing the data regions that lie in the lefthand or upper
(righthand or lower) subspace, and some control para-
meters including bid and header. A leaf node contains the
partition of two data regions, the pointers storing the
addresses of the data instances corresponding to the
regions, and the control parameters as well. A spatial
region can be inferred from the partitions when following
the path from the root towards the corresponding leaf node.
Note that in the data structure of Fig. 6, we place the
pointers before the partition on purpose. We will explain
this in Section 3.4. For the moment, there is no difference for
where the pointers are placed. The binary D-tree satisfies
the following four properties:

1. Every node has exactly two children.
2. All objects in the left subtree of a node are to the left

of or above the partition, and all objects in the right
subtree are to the right of or below the partition.

3. The tree is height-balanced, i.e., the levels of the leaf
nodes differ by at most one (see Section 3.2 for proof
of correctness).

4. The search time for a point query is �ðlogNÞ in
terms of the number of nodes visited, where N is the
number of data regions in the original space (see
Section 3.3 for illustration of correctness).

The D-tree index structure for the running example is
depicted in Fig. 5b, where the header attribute is simplified
and contains the partition dimension only. Compared to the
trian-tree in Fig. 2 and the trap-tree in Fig. 3, the size of the

1530 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 12, DECEMBER 2004

Fig. 5. Index construction using the D-tree. (a) Divisions in the example. (b) D-tree structure.

Fig. 6. Data structure of a D-tree node.

D-tree is much smaller. Compared to the R�-tree in Fig. 4,
the search time for the D-tree is expected to be shorter since
it searches only two nodes for any query point.

3.2 Partitioning Algorithm

Finding a good partition for a space is crucial to the
efficiency of the D-tree. This section describes the proposed
space partitioning algorithm. There are many ways of
dividing one space into two complementary subspaces that
contain almost the same number of data regions. For
example, we can sort the regions according to their
rightmost x-coordinates, and identify the space that
encloses the first N=2 regions as one subspace and the rest
as the other. Alternatively, we can sort the regions
according to their lowest y-coordinates, leftmost x-coordi-
nates, or uppermost y-coordinates, and perform the sub-
space identification in a similar fashion. Moreover, if N is
odd, we may consider the first ðN þ 1Þ=2 or ðN � 1Þ=2
regions as one subspace. Consequently, we evaluate four
partition styles when N is even and eight when N is odd.

For each partition style, the size of the partition is
measured in terms of the number of coordinates that
represent the partition. In selecting among different parti-
tion styles, we choose the one with the smallest partition
size. If they are equal, for tie breaking, we define the
interprob of two subspaces as the probability of a query
being issued from their interlocking part, i.e., for a
y-dimensional (x-dimensional) partition, the area between
the rightmost x-coordinate (lowest y-coordinate) of the
lefthand (uppermost) subspace and the leftmost x-coordi-
nate (uppermost y-coordinate) of the righthand (lower)
subspace (e.g., D2 in Fig. 7a). Ties are broken by favoring
the one with the lowest interprob. The reason for this will
become clear when the reader proceeds to the next two
sections, and we will mention it again later on in Section 3.4.

If several partition styles have the same lowest interprob,
we randomly select one style. Algorithm 1 gives an
overview of the space partitioning algorithm.

Algorithm 1 SpacePartitioning: Partition the Original Space

Recursively

Input: an array of data regions, each represented by the

coordinates of its vertices

Output: the binary D-tree

Procedure:

1. for each possible partition style do

2. evaluate the size of the partition (Algorithm 2);

3. end for

4. construct the index node using the partition style with the

smallest size;

5. recursively invoke Algorithm 1 to construct the left

subtree;

6. recursively invoke Algorithm 1 to construct the right
subtree.

We now describe the algorithm PartitionSize (Algo-
rithm 2) that takes an array of data regions and the partition
style as the input, and evaluates the partition size with this
style. To simplify the illustration, the algorithm is presented
for the style in which the sorting is based on the regions’
rightmost x-coordinates, and N=2 regions are given to the
lefthand subspace. It is obvious to extend it to other
partition styles. The algorithm consists of two phases. In the
first phase (lines 1-3), we identify the lefthand subspace and
construct the extent for this subspace. Specifically, we scan
all polygons in the lefthand subspace and build a hash table
in which each element corresponds to a line segment and
contains the id(s) of its associated polygon(s). Those line
segments with only one associated polygon constitute the
extent. Note that the extent of a subspace could consist of
one or more closed polygons.3 In the second phase (lines 4-
16), we prune some unnecessary segments in the extent
such that the remaining segments are sufficient to guide a
query point to the appropriate subspace. Thus, we prune
the segments that are to the left of the vertical line that goes
through the leftmost x-coordinate of the righthand sub-
space, right_lmc (lines 6-8). In addition, we truncate the
remaining segments by right_lmc (lines 9-15). Note that this
operation does not change the partition size, but it identifies
right_lmc in the partition, which is useful in paging (see
Section 3.4). Fig. 7a gives an example, where the extent of
the lefthand subspace is the union of the dash-dot line and
the solid line. The output partition of Algorithm 2 for this
example would be the solid line. The complexity of
Algorithm 2 is OðN logN þMÞ, where N is the number of

XU ET AL.: THE D-TREE: AN INDEX STRUCTURE FOR PLANAR POINT QUERIES IN LOCATION-BASED WIRELESS SERVICES 1531

3. For example, in Fig. 5a, when the partition plðv2; v3; v4; v6Þ has one or
more vertices (say, v3 and/or v4) touching the left edge of the space, the left
subspace will consist of more than one closed polygon.

TABLE 1
Illustration of the Attributes in a D-Tree Node

Fig. 7. Examples with the Space Partitioning and Query Processing
Algorithms. (a) Partition. (b) Query processing.

regions and M is the number of line segments. Therefore,
the overall complexity of the recursive partitioning for the
original space (i.e., Algorithm 1) is OðN2 logN þMNÞ.

Algorithm 2 PartitionSize: Evaluate the Size of the

Partition

Input: an array of data regions, each represented by the

coordinates of its vertices,

the partition style // assuming N=2 regions in the
// left and rightmost

// x-coordinate sorting in the

// following procedure

Output: the partition and its size

Procedure:

1. sort the regions in the increasing order of their rightmost

x-coordinates;

2. identify the first N=2 regions as the lefthand subspace;
3. construct the extent for the lefthand subspace;

4. right lmc := the leftmost x-coordinate of the righthand

subspace;

5. for each segment sððx1; y1Þ; ðx2; y2ÞÞ in the extent do

6. if sððx1; y1Þ; ðx2; y2ÞÞ is to the left of the vertical line

x ¼ right lmc, then

7. remove sððx1; y1Þ; ðx2; y2ÞÞ from the extent;

8. end if

9. if sððx1; y1Þ; ðx2; y2ÞÞ intersects with the line

x ¼ right lmc at ðright lmc; ysÞ then
10. if x1 > x2 then

11. reduce sððx1; y1Þ; ðx2; y2ÞÞ to
sððx1; y1Þ; ðright lmc; ysÞÞ;

12. else

13. reduce sððx1; y1Þ; ðx2; y2ÞÞ to
sððx2; y2Þ; ðright lmc; ysÞÞ;

14. end if

15. end if

16. end for

17. return the set of polylines consisting of the remaining

segments and its size in terms of the number of

coordinates.

Theorem 1. All leaf nodes in the D-tree have levels that differ by
no more than one, i.e., the length of the path from the root to a
leaf node is either blogNc or dlogNe for a D-tree of size N ,
where N is the number of regions indexed.

Proof. We prove the theorem by induction: 1) for N ¼ 2 and
N ¼ 3, the proof is trivial; 2) for N > 3, suppose all leaf
nodes differ by at most one level for any D-tree of size
N 0 < N . We are going to show that it is also true for
N 0 ¼ N .

Let’s first consider the case where N is an odd
number. After the first partition, the original space is
divided into two subspaces S1 and S2. Without loss of
generality, assume S1 contains bN=2c data regions and S2

contains bN=2c þ 1 data regions. Thus, in the D-tree
index, the root contains two subtrees T1 and T2 of sizes
bN=2c and bN=2c þ 1, respectively. Since bN=2c < N ,
based on our assumption, for any leaf node in T1, the
length of the path from the root to the leaf node is either
blogðbN=2cÞc þ 1 (i.e., blogNc) or dlogðbN=2cÞe þ 1 (i.e.,
blogNc if N ¼ 2m þ 1;m ¼ 1; 2; 3; � � � ; or dlogNe other-
wise). Similarly, the length of the path from the root to a

leaf node in T2 is either blogðbN=2c þ 1Þc þ 1 (i.e., dlogNe
if N ¼ 2m � 1;m ¼ 2; 3; 4; � � � ; or blogNc otherwise) or
dlogðbN=2c þ 1Þe þ 1 (i.e., dlogNe).

Similarly, we can prove that the length of the path
from the root to a leaf node is either blogNc or dlogNe
when N is an even number. tu

3.3 Query Processing Algorithm

This section presents the algorithm for processing point
queries based on the D-tree index structure. The algorithm
works as follows: It starts from the root and recursively
follows either the left subtree or the right subtree according to
the query point and the partition until a leaf node is reached.
The whole procedure is described in Algorithm 3, where the
partition style is assumed to be y-dimensional. It is trivial to
extend the algorithm to the x-dimensional partition style.

Algorithm 3 Query Processing on the D-tree

Input: the query point p // assuming a y-dimensional

// partition in the following

// procedure

Output: the pointer to the correct data instance
Procedure:

1. ptr := the pointer to the root;

2. while ptr is not a data pointer do

3. get the partition of the current node pointed to by ptr;

4. determine if the query point p is to the left or to the

right of the partition (lines 5-26):

5. right lmc := the leftmost x-coordinate of the partition;

6. left rmc := the rightmost x-coordinate of the partition;
7. if p:x < right lmc then

8. ptr := the left pointer of the current node;

9. continue;

10. end if

11. if p:x > left rmc then

12. ptr := the right pointer of the current node;

13. continue;

14. end if

15. draw a horizontal ray lq emanating from p and to the

right;

16. num := 0;

17. for each segment in the partition do

18. if the ray lq intersects the segment then

19. num := num+1;

20. end if

21. end for

22. if num mod 2 == 1 then

23. ptr := the left pointer of the current node;

24. else

25. ptr := the right pointer of the current node;

26. end if

27. end while

28. return ptr.

In the algorithm, the key issue is to determine whether a
given query point p is located to the left or to the right of the
partition. As shown in Fig. 7a, we can see that after
partitioning, a space is divided into three parts: D1, D2, and
D3, whereD1 is bounded by the leftmost x-coordinate of the
righthand subspace and D3 is bounded by the rightmost
x-coordinate of the lefthand subspace. If p falls in D1 (i.e.,
p:x < right lmc), it goes to the lefthand subspace (lines 7-10).

1532 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 12, DECEMBER 2004

If p falls in D3 (i.e., p:x > left rmc), it goes to the righthand
subspace (lines 11-14). If p falls inD2, it has to be determined
by examining the partition since D2 is shared by both
subspaces (lines 15-26). This operation can be illustrated by
an example. In Fig. 7b, suppose that the solid line is the
partition and that the query point is p. Consider a horizontal
ray lq emanating fromp to the right. If thenumberof times that
this ray lq intersects the line segmentsmakingup the partition
is odd, p lies to the left of the partition. If the number is even, p
lies to the right of the partition. In Fig. 7b, since the number
turns out to be one, we know that the query point is in the
lefthand subspace.

Since there is no spatial overlapping among sibling
nodes in the D-tree, the search time for each query, in terms
of the number of nodes visited, is the length of the unique
path from the root to the corresponding leaf node. From
Theorem 1, the length of the path from the root to a leaf
node is either blogNc or dlogNe. Thus, the search time for
the D-tree is �ðlogNÞ.

3.4 Paging of the D-Tree

Both wireless data and disk storage are accessed in the unit
of the page. Thus, it needs to allocate the nodes of a binary
D-tree into pages of fixed size. In this paper, we employ a
top-down approach to carry out the page allocation [22].
The algorithm works as follows: The D-tree is traversed in a
breadth-first order. When inserting a new node, if the
inclusion of the new node in the page where the parent
node is allocated does not exceed the page capacity, the new
node is allocated space in this page. Otherwise, a new page
is allocated to the tree and the new node is allocated to the
beginning of this page. We do not split a tree node unless it
is larger than the page capacity since splitting a small node
will result in two page accesses, instead of one if the node is
not split. Finally, to save storage space, we merge some
partial pages at the leaf level in a greedy way. The
pseudocode of the procedure is described in Algorithm 4.
This algorithm has a complexity of OðN2Þ.

Algorithm 4 D-tree Paging Algorithm

Input: a binary D-tree and the page capacity page size

Output: a paged D-tree

Procedure:

1. arrange the tree nodes in the queue in a breadth-first

traverse;

2. while there are nodes left in the queue do

3. pick up the first node in the queue;

4. node:size := the size of this node;

5. if no parent or node:size > remaining space of the page
of the parent node then

6. while node:size > page size do

7. create a new page;

8. node:size := node:size� page size

9. end while

10. create a new page;

11. reduce the remaining space of the page by node:size;

12. allocate the node in the new pages;
13. for each new page, fill in other info such as the page

id;

14. else

15. allocate the node in the page of the parent node;

16. reduce the remaining space of the page by node:size;

17. end if

18. end while

19. remain := 0;

20. for all leaf pages do

21. if remain >¼ occupied space of the current page

then

22. merge the last page with the current page;

23. end if

24. remain := remaining space of the current page;
25. end for

For a large node that occupies more than one page, the
following special arrangement is made. An additional
coordinate, RMC (i.e., the rightmost x-coordinate in the
partition for a y-dimensional partition or the lowest y-
coordinate for an x-dimensional partition), is inserted before
the partition. The partition starts with the point of LMC
(i.e., the leftmost coordinate in the partition for a
y-dimensional partition or the uppermost coordinate for an
x-dimensional partition). The previous example in Fig. 7a is
used to demonstrate the advantage of this arrangement. For
query points falling in D1 and D3, once we know RMC and
LMC in the first page, we can decide which subtree to
follow, thereby eliminating further page access and im-
proving the search performance. Consequently, we place
the index pointers before the partition to support this early
termination of page access, as discussed in Section 3.1. In
addition, it is obvious that for two partition styles of the
same size, the lower the interprob of two subspaces, the
higher the probability of successful early detection of the
next pointer. For nodes with sizes larger than the page
capacity, this will result in a shorter index search time.
Therefore, in the space partitioning algorithm (Section 3.2),
we break ties by favoring the partition style with a lower
interprob.

The query processing over the paged D-tree is similar to
that over the binary D-tree. We are now going to derive the
search time of the paged D-tree in terms of the number of
page accesses. To do so, we first define some notations in
Table 2.

It is easy to obtain the search time of the root:

li;1 ¼ ð1� ri;1Þ þ ri;1 � dsi;1=spe: ð1Þ

Then, the search time from the root to node ni;j

(1 < j � mi) is derived recursively:

li;j ¼
li;j�1 if ni;j and ni;j�1 are in

the same page;

li;j�1 þ ð1� ri;jÞ þ ri;j � dsi;j=spe otherwise:

8><
>:

ð2Þ

XU ET AL.: THE D-TREE: AN INDEX STRUCTURE FOR PLANAR POINT QUERIES IN LOCATION-BASED WIRELESS SERVICES 1533

TABLE 2
Definition of Notations

Therefore, the average search time of the paged D-tree is
obtained as follows:

EðT Þ ¼
XN
i¼1

pi � li;mi
; ð3Þ

where li;mi
is defined in (1) for mi ¼ 1 and (2) for mi > 1.

4 PERFORMANCE EVALUATION

Thissectioncompares theperformanceof theproposedD-tree
with the existing index structures. We present the results
mainly for two data sets, while we vary the data set size in
some experiments. In the first data set (UNIF), we randomly
generate 100,000 points in a square Euclidean space. The
second set (POST) contains the positions of 123,593 post
offices in the northeast of the United States [7]. The valid
scopes (or data regions) of the points for nearest neighbor
search (see Fig. 8 for the POST data set) are constructed using
the Voronoi Diagram approach [4]. The data regions in the
POST data set aremore clustered than those in the UNIF data
set. We have evaluated two access patterns: 1) data-uniform:
queries are uniformly distributed over the data instances;
2) location-uniform: query locations are randomly distributed
within the whole region. Due to space limitations, we report
the results for the location-uniform pattern only; similar
performance trends are observed for the data-uniform
pattern.

The D-tree is compared to the trap-tree and the R�-tree,
the two typical index structures in the categories of object
decomposition and object approximation, respectively. As
in the D-tree, the nodes in the trap-tree do not fit the page
capacity either. Thus, we page the trap-tree using the same
top-down approach as in the D-tree (see Section 3.4). For the
R�-tree, it is obvious that a better search approach is to
examine candidate pages in depth-first order, such that
once a containment test in a leaf node evaluates to true, the
search can be terminated without accessing useless
branches. We employ this search method for the R�-tree
in the experiments. For the same reason, in wireless
broadcast, the R�-tree is broadcast in depth-first order on
the wireless channel. The trap-tree and the D-tree are
broadcast in breadth-first order to facilitate grouping of
partial leaf nodes. To reduce the index size, the added level
in the R�-tree is also paged in a greedy manner.

The system parameters for the experiments are set as
shown in Table 3. For the trap-tree, the header size is set at 0

since its partition size is fixed. For the R�-tree, the size of an
index pointer is set at two bytes since its nodes fit the page
capacity perfectly and an index pointer stores just the
address of the page containing its child. The header info is
also unnecessary in the R�-tree. In the following two
sections, we present the experimental results for these
index structures in on-demand access and broadcast
environments, respectively. The results are obtained for
1,000,000 randomly generated queries on a PC with
Pentium 4 1.8G CPU and 1G main memory.

4.1 Query Performance with On-Demand Access

This section evaluates the index structures used for disk
indexing in on-demand access environments. We measure
the response time of evaluating point queries on the server.
We assume the server has a buffer available to hold recently
accessed index pages in the main memory. The buffer
employs the LRU replacement policy and its size is set at a
percentage (varied from 1-20 percent) of the D-tree size. The
disk page capacity is set at 4K bytes. Fig. 9 shows the
response time as a function of buffer size. It is clear that the
proposed D-tree has the best performance. Its response time
is two orders of magnitude shorter than that of the R�-tree
and is also shorter than that of the trap-tree at least by a
factor of two. This is mainly due to its better index search
performance in terms of the number of disk pages accessed
(see Fig. 10), which dominates the CPU time and counts for
more than 98.5 percent in the total response time as
observed in the experiments. The R�-tree performs poorly,
for which we shall explain later in this section.

With increasing buffer size, the improvement of the D-
tree over the other two indexes becomes more significant.
This can be explained as follows. With the D-tree and the
trap-tree, evaluating a query requires accessing all nodes on
the path from the root to a leaf node. Thus, with a larger
LRU-based buffer, they can cache more high-level nodes to
reduce disk I/O. However, the trap-tree can cache less
portion of the entire tree than the D-tree as it has a larger
index size (see Fig. 13). As for the R�-tree, because of the
branch-and-bound nature of its search algorithm, adding
buffer has less effect in reducing disk I/O.

Fig. 11 shows the query response time as a function of
database size. The D-tree consistently outperforms the trap-
tree by a factor of about two. The improvement of the D-tree
over the R�-tree, however, increases with the database size.
This is because with the R�-tree, the larger the database size,
the higher the degree of overlapping among index sub-
spaces and, hence, more backtracking operations are
needed for evaluating a query.

1534 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 12, DECEMBER 2004

Fig. 8. The POST data set used for performance evaluation.

TABLE 3
System Parameters Setting

4.2 Query Performance with Wireless Data
Broadcast

This section evaluates the index structures in wireless data
broadcast environments. As mentioned in the introduction,
we are concerned with access latency and tuning time in
such an environment. We assume flat broadcast is

employed for broadcasting data on the wireless channel.
The (1;m) interleaving technique [14] is used to multiplex
the index and data on the channel. The optimal value of m
depends on the index size. It is calculated for each index
structure separately based on the technique presented in
[14]. We do not cache the index pages on mobile clients

XU ET AL.: THE D-TREE: AN INDEX STRUCTURE FOR PLANAR POINT QUERIES IN LOCATION-BASED WIRELESS SERVICES 1535

Fig. 9. Query response time as a function of buffer size. (a) UNIF. (b) POST.

Fig. 10. Number of disk page accesses as a function of buffer size. (a) UNIF. (b) POST.

Fig. 11. Query response time as a function of database size. (a) Buffer size = 1 percent. (b) Buffer size = 10 percent.

since otherwise we need mechanisms to synchronize the
cache and the broadcast, which remains a challenge and is
beyond the scope of this paper.

Fig. 12 shows the access latency under different page
capacities. The results presented are normalized by the
average access latency without any index (or called optimal
access latency, i.e., half of the time needed to broadcast the
whole data set). The access latency is affected by the index
size, i.e., the larger the index size, the longer the access
latency. Fig. 13 shows the index sizes normalized by the
data size for the POST data set. Comparing Fig. 13 and
Fig. 12b, we can see that the relative performance in index
size and access latency is consistent.

We now compare the performance of the different index
structures. The trap-tree has the worst performance, with a
latency of several times of the optimal latency. This suggests
that the trap-tree is almost impracticalunless it canprovidean
extremely good tuning time, which is our main concern. The
D-tree achievesanaccess latencyas short as thatof theR�-tree.
It is much better than the R�-tree when the page capacity is
small. The access latency overheaddue to theD-tree indexing
remains at more or less the same level for all settings of the
page capacity. It is about 55 percent worse than the optimal
latency for both data sets. We expect that the indexing
overhead at this level is acceptable provided that a good
tuning time is achieved.

Fig. 14 shows the tuning time for index search. TheR�-tree
does not have a good tuning time because the overlapping
problemmentioned before often makes the search algorithm
accessmore than one leaf node before thewanted index page
can be located. For both data sets, the D-tree has a better
performance than the trap-tree when the page capacity is
larger than 1K bytes. When the page capacity is smaller than
1K bytes, the D-tree performs worse than the trap-tree. This
can be explained as follows.With a large data set, the sizes of
the partitions for the D-tree nodes at the highest levels are
significant. For example, the root node of the D-tree for either
data set has a size of about 5K bytes. Thus, for a small page
capacity (e.g., 64 bytes), the root node occupies many pages,
thus deteriorating the search performance, although efficient
data structures have been applied to avoid accessing the
whole node for a large number of queries (see the second
paragraph in Section 3.4). When the page capacity increases,
the top-downpaging approach can pack a large branch of the
binary D-tree into a single page. This decreases the height of
the tree greatly and reduces the tuning time.However, due to
its large index size (see Fig. 13), the trap-tree still has a large
height after packing. As a result, the tuning time of the D-tree
is only about half of that of the trap-tree when the page has a
capacity of 2K bytes.

5 EXTENSIONS TO THE D-TREE

In the previous section, we have shown that, overall, the
D-tree substantially outperforms the spatial index structures
in the performance comparison. However, the index search
performance of the D-tree may deteriorate with a small page
capacitybecause eachof the first fewpartitionswouldoccupy
a large number of pages. This section presents extensions for
the D-tree to overcome this problem. The basic idea is to first
divide the original space into smaller grid cells and thenbuild
indexes for those grid cells separately. In the following, we
present two parameterized algorithms for performing grid
assignment, namely, fixed grid assignment (FGA) and adaptive
grid assignment (AGA).

5.1 Fixed Grid Assignment (FGA)

The fixed grid assignment (FGA) algorithm assigns the grid
cells in a fixed manner. The algorithm takes two input
parameters: �x and �y, which are the numbers of expected
partitions along the x and y dimensions, respectively. Let Sx

1536 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 12, DECEMBER 2004

Fig. 12. Normalized access latency as a function of page capacity. (a) UNIF. (b) POST.

Fig. 13. Normalized index size as a function of page capacity.

and Sy, respectively, be the horizontal and vertical lengths of
the original space. The FGA algorithm simply divides the
original space into �x � �y grid cells of the same size (i.e., Sx

�x

wide and
Sy

�y
high). Note that a region may be split into a few

smaller regions if it overlaps with the division lines. A D-tree
is then built for each grid cell.

With this approach, the index consists of two levels (see

Fig. 15). The higher-level index is basically a one-dimensional

array that stores the index pointers to the D-trees of the grid

cells. When paged, the higher-level index is sequentially

allocated to a number of pages. Thus, the number of page

accesses for the higher-level index is either one when the

desired index pointer is stored in the first page, or two

otherwise.The index searchalgorithmworksas follows: First,

we access the header information and get the parameters of

Sx, Sy, �x, and �y. Then, given the query point (x; y), we use a

mapping function, adrðx; yÞ ¼ bx��x

Sx
c þ by��y

Sy
c � �x, to calculate

the address of the pointer pointing to the D-tree covering this

query point. The search over the D-tree is the same as before.

5.2 Adaptive Grid Assignment (AGA)

The adaptive grid assignment (AGA) algorithm takes one
input parameter, �, which is the threshold set for the
maximum number of regions in a grid cell. Similar to the
kd-tree [21], the AGA algorithm recursively divides the
current space into two subspaces such that the numbers of

the regions contained in each subspace are about the same.
The dividing dimension alternates between x and y. This
procedure stops until all subspaces contain less than �
regions. In this paper, we employ the following heuristic to
determine the discriminator of each dimension. If the
current dividing dimension is x (y), we sort the rightmost
x-coordinates (uppermost y-coordinates) of all data regions
in the current space and choose the median as the
discriminator. Similar to FGA, a D-tree is then built for
each grid cell.

The index of this algorithm also consists of two levels
(see Fig. 16). The higher-level index is a kd-tree, in which
the leaf nodes store the index pointers to the D-trees of the
grid cells. Compared to FGA, this approach has a slightly
larger higher-level index, but maintains approximately the
same number of data regions in each grid cell. The kd-tree
index can be paged using the same top-down method
described in Section 3.4. The index search procedure is
simple. First, we follow the kd-tree to locate the grid cell
covering the query point. Then, we proceed to search the
corresponding D-tree.

5.3 Packing the D-Trees

In both FGA and AGA, a D-tree corresponds to a grid cell
and all the D-trees are paged separately. However, the sizes
of some D-trees might be less than the page capacity,
especially when the page capacity is large. Thus, to save
storage overhead, it is possible to pack some small D-trees
into a single page. The packing algorithm (Algorithm 5) is

XU ET AL.: THE D-TREE: AN INDEX STRUCTURE FOR PLANAR POINT QUERIES IN LOCATION-BASED WIRELESS SERVICES 1537

Fig. 14. Tuning time as a function of page capacity. (a) UNIF. (b) POST.

Fig. 15. An example of the fixed grid assignment (�x ¼ 2; �y ¼ 2).

developed to serve this purpose. It works as follows: We
first distinguish small and large D-trees, which are,
respectively, smaller and larger than the page capacity. In
the first-round packing (lines 3-10), we attempt to utilize the
unused space in the pages occupied by large D-trees. In the
second-round packing (lines 11-17), we group small D-trees
in a greedy manner.

Algorithm 5 Packing D-trees

Input: a set of D-trees for packing and the page capacity

page size

Output: a set of packed D-trees

Procedure:

1. small tree set := the set of D-trees of a size less than the
page size

2. large tree set := the set of D-trees of a size larger than the

page size

3. for each D-tree dts in small tree set do

4. for each D-tree dtl in large tree set do

5. if dts can be accommodated in the last page of

dtl then

6. reallocate dts to the last page of dtl;
7. remove dts from the set of small tree set;

8. end if

9. end for

10. end for

11. last tree := NULL;

12. for each D-tree dt in small tree set do

13. if dt can be accommodated in the page where last tree

is allocated then

14. reallocate dt to the page of last tree;

15. end if

16. last tree := dt;

17. end for

5.4 Handling Updates

In LBSs, when data instances are added or deleted, the valid
scope diagram changes in part. In addition, the valid scopes
of data instances might be modified over time. Although
these updates on valid scopes are expected to happen
infrequently in LBSs, this section discusses how to update
the index accordingly with the FGA and AGA approaches.

For the FGA approach, since the grid is fixed, we can just
identify those grid cells where updates occur and rebuild
the D-trees (partially or completely) corresponding to those
affected grid cells. No further action needs to be taken.

For the AGA approach, the update cost would be a little
bit higher. As with the FGA approach, we first identify
those affected grid cells. For each affected grid cell, if it is a
region insertion and if the number of regions in the grid cell
now exceeds the threshold �, we split the grid cell into two
and rebuild the D-trees for both of them; if it is a region
deletion and if the number of the regions now drops below
the minimum number threshold, we merge it with the
subtree rooted at its sibling node, reassign the grid cells if
necessary, and rebuild the D-tree(s); for all other cases, we
only revise the corresponding D-tree.

The D-tree packing procedure discussed in the last
subsection aims to save storage cost. However, when
updates happen, it will incur additional cost since the
updates may increase the size of a D-tree and, thus, need to
reallocate other D-trees in the same page. As such, for disk
indexing, one should balance the trade-off between the
storage cost and update cost when considering whether to
employ the packing procedure. However, for air indexing,
it is recommended that the packing procedure is performed
since the index is generally built on-the-fly and the index
size (transferred to access delay) is a big concern in
periodical broadcast.

6 PERFORMANCE OF FGA AND AGA

This section evaluates the performance of the FGA and
AGA grid assignment approaches. For FGA, the size of the
header for the array is set at eight bytes. In the higher-level
index of FGA and AGA, the size of an index pointer is set at
two bytes. Other parameters are set the same as before (see
Table 3). In on-demand access and broadcast environments,
an index is employed for different performance objectives.
Nevertheless, as demonstrated in Section 4, the perfor-
mance of an index is essentially determined by the index
size and search time in terms of the number of page
accesses required to evaluate a query. Hence, in the
following, we present the results in terms of these two
metrics. The trap-tree is also included as a yardstick. Due to
space limitations, we report the results for the POST data set
only; similar results are obtained for the UNIF data set.

6.1 Performance of FGA

TheFGAapproachhas twoparameters,�x and�y, to tune.For

simplicity,we attach�x to�y such that�x ¼ �y � Sx

Sy
, i.e., a grid

cell has the sameshapeas theoriginal space.Weare interested

in findingout how theparameter,�y, affects theperformance.

Fig. 17 shows the results, where 64 and 1K denote the page

capacities of 64 bytes and 1K bytes.

1538 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 12, DECEMBER 2004

Fig. 16. An example of the Adaptive Grid Assignment (� ¼ 3).

Several observations can be made. First, tuning the �y

parameter strikes abalancebetween the index size and search
time. The larger the�y value, the shorter the index search time
but the larger the index size due to a higher degree of
duplication of data regions in different grid cells (e.g., the
number of regions to be indexed is increased by 114 percent
for �y ¼ 200). Therefore, if we want to optimize the overall
performance, a medium value of �y is the best choice as the
index search time can be improved significantly while only a
small increase in the index size is observed. Fifty to 100 is
recommended as the setting of �y since the index overhead
with this range of settings is within 10 percent, but the index
search time is improved by a factor of eight. Second, with an
appropriate value of �y (i.e., larger than 5), the D-tree
outperforms the trap-tree in terms of both the index size
and search time. Third, the packing procedure is important
for reducing the index size for large �ys. For example, for
�y ¼ 200 and page capacity 1K, the packing reduces the size
from 48.3 percent to 9.5 percent.

6.2 Performance of AGA

There is one parameter, the maximum number of regions in
a grid cell, �, associated with the AGA approach. We are

interested in examining the impact of � over the perfor-
mance. Fig. 18 shows the results, where � varies from
infinity to 20.

From the figures, we can make the following observa-
tions. First, similar to FGA, tuning the � parameter affects
both the index size and search time. However, decreasing �
does not necessarily improve the index search time. For
example, for page capacity 1K, when � drops from 1; 000 to
500, the index search time increases slightly. This can be
explained as follows: When � is decreased, more grid cells
are created, which enlarges the higher-level kd-tree index
and, hence, worsens the index search time in the kd-tree
index. If in this case, the search performance in the lower-
level D-trees is not improved very much, the overall search
performance becomes worse. When the overall performance
is considered, 50-100 is the best choice for � since further
decreasing � slightly improves the search performance but
drastically increases the index size. Second, the D-tree
performs much better than the trap-tree when the value of �
is less than 1,000. Last, the packing procedure works only
for page capacity 1K and � < 50. This suggests that in AGA,
the variance of the number of regions contained in a grid
cell is little, as expected.

XU ET AL.: THE D-TREE: AN INDEX STRUCTURE FOR PLANAR POINT QUERIES IN LOCATION-BASED WIRELESS SERVICES 1539

Fig. 17. Performance of FGA (POST). (a) Normalized index size. (b) Average index search time.

Fig. 18. Performance of AGA (POST). (a) Normalized index size. (b) Average index search time.

6.3 Comparison of FGA and AGA

This section compares the performance of FGA and AGA.
From the results presented in the last two sections, we select
the settings that achieve a good overall performance for the
two approaches and compare their relative performance.
The results are summarized in Tables 4 and 5, where the
index size is set at approximately 8 percent of the data size.
When the page capacity is 64 bytes, the packing procedure
has no effect on the performance. As can be seen, in general,
FGA achieves a better average search performance than
AGA. This is mainly because its fixed assignment of grid
cells makes the upper-level index very small and efficient.
The main problem with FGA is that when the regions are
clustered, the numbers of regions contained in different
grid cells are not balanced. Therefore, it has a worse
variance performance than AGA.

7 RELATED WORK

This section reviews several topics that are highly relevant
to indexing and querying LDD. There is a long stream of
research on spatial indexing (see [1], [5], [8] for recent
surveys), which addresses the problem of designing
efficient disk-based indexes to support various spatial
operations on a large number of spatial objects. The R-tree
was introduced as one of the earliest structures for indexing
spatial objects of nonzero sizes [9]. The R-tree serves as the
basis of many later spatial indexing structures such as the
Rþ-tree [25], the R�-tree [2], and the skd-tree [22]. All of
these R-tree-based indexes share the basic assumption that
spatial objects are approximated by their bounding rectan-
gles before being inserted into the indexes. We have
discussed and compared the representative R�-tree, which
showed an inferior performance than the proposed D-tree
for planar point queries.

Recent research on spatial indexing has concentrated on
high-dimensional data such as multimedia objects and
OLAP [1]. At high-dimensionalities, the R-tree suffers from
a low fanout and a high degree of overlapping among index
subspaces. Solutions to address these two problems have
been extensively explored. To improve fanout, the TV-tree

indexes important dimensions only, not all dimensions [20].
To reduce overlapping, the X-tree modifies the splitting
algorithm of the R-tree and allows super-nodes that span
over multiple pages [3]. To facilitate nearest neighbor search
on high-dimensional data, the SS-tree [27], the SR-tree [15],
the M-tree [6], and distance-based indexing [31] have been
recently proposed. However, in low-dimensional databases,
the performances of these index structures were shown to
be similar to that of the R�-tree. In this paper, we address
the problem of spatial query processing in regard to real-
world physical objects. As such, we consider objects in a
two-dimensional space only.

Many algorithms have also been proposed for dealing
with the planar point-location problem in computational
geometry [4]. However, the studies of planar point-location
have mainly focused on computational complexity (assum-
ing a small-size data set that fits in main memory). In
contrast, we are concerned with the index size and search
time in mobile and wireless environments. Therefore, as
shown in Sections 4 and 6, the typical point-location
algorithm, the trapezoidal map [4], does not perform well
overall.

Several indexing techniques dedicated to wireless broad-
cast (e.g., the hashing index [13], the signature index [12],
and the exponential index [30]) have been introduced in the
literature. However, these studies concentrated on a one-
dimensional index for equality-based queries and, thus, are
inapplicable to indexing LDD where point queries are
involved. Imielinski et al. explored the issue of interleaving
the index tree and the data on the linear wireless channel
such that the tuning time is nearly optimized while making
the access latency as short as possible [14]. This work
complements our study in the sense that the interleaving
technique can be employed to organize the proposed D-tree
and the data on the wireless channel as we did in the
experiments. More recently, a study [10] discussed query
processing for spatial objects over the broadcast channel.
However, its main focus was different from ours as it
studied how to utilize the limited client cache to reduce the
tuning time when traversing spatial index trees.

8 CONCLUSION

While LBSs are becoming increasingly important to mobile
users, query efficiency is a major challenge to service
implementation. In this paper, we have studied the issue of
using indexing techniques for planar point queries to
enhance performance of LDD queries.

Through careful analysis, we found that existing index
structures are not efficient when implemented as a page-
based index structure for planar point queries. Thus, a new
index structure, called D-tree, has been proposed in this
paper. Different from the existing approaches, the D-tree

1540 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 12, DECEMBER 2004

TABLE 4
Performance Comparison of FGA and AGA

(Page Capacity = 64 Bbytes, Unpacked and Packed)

TABLE 5
Performance Comparison of FGA and AGA (Page Capacity = 1K Bytes)

neither decomposes nor approximates data regions; rather, it
indexes them directly based on the divisions between the
regions. The space partitioning algorithm, the query proces-
sing algorithm, and the paging algorithm for the D-tree have
been described. Twoparameterizedmethods for partitioning
the original space, FGAandAGA,have also beenproposed to
enhance the D-tree.

Wehaveevaluated theperformanceof theproposedD-tree
thoroughly using both synthetic and real data sets. The
following results were obtained. In terms of index storage
overhead, the D-tree substantially outperforms the trap-tree
andperforms similarly to theR�-tree. In terms of index search
performance, the D-tree is much better than the R�-tree.
Although the D-tree alone performs worse than the trap-tree
for a small page capacity, the enhancement of the FGA and
AGA approaches makes the D-tree outperform the trap-tree
for a full range of page capacities. Overall, theD-tree achieves
a significantly better performance than the existing index
structures.

This paper represents the first step into the area of LDD
indexing. The D-tree was proposed for efficiently proces-
sing planar point queries. Nevertheless, it can be easily
extended to answer window queries. We are going to
evaluate its performance with window queries in a future
study. The basic idea of the D-tree is to index data regions
based on their boundaries. We plan to extend this idea to
the cases where region boundaries are in arbitrary shapes
(e.g., circles) and/or some regions may be completely
encircled within other regions. Moreover, this paper
considered LDD only under a geometric location model.
There are location-dependent applications that employ
symbolic location models (e.g., cell-id-based location
resolution). Efficient index structures for a symbolic
location model deserve future work. Finally, the update
issue of LDD indexing is an interesting research topic being
pursued by the authors.

ACKNOWLEDGMENTS

A preliminary version of this paper was presented at the
Proceedings of the 19th IEEE International Conference on
Data Engineering (ICDE ’03), Bangalore, India, March
2003. The authors would like to thank the anonymous
reviewers for their valuable comments and suggestions
that improved the quality of this paper. This work was
supported by grants from the Research Grant Council,
Hong Kong SAR, China (Grants HKUST6225/02E and
HKUST6179/03E) and a grant from Hong Kong Baptist
University (Grant FRG/02-03/II-34). W.-C. Lee was
supported in part by US National Science Foundation
grant IIS-0328881.

REFERENCES

[1] C. Böhm, S. Berchtold, and D.A. Keim, “Searching in High-
Dimensional Spaces—Index Structures for Improving the Perfor-
mance of Multimedia Databases,”ACMComputing Surveys, vol. 33,
no. 3, pp. 322-373, Sept. 2001.

[2] N. Beckmann and H.-P. Kriegel, “The R�-Tree: An Efficient and
Robust Access Method for Points and Rectangles,” Proc. ACM
SIGMOD Conf. Management of Data, pp. 322-331, 1990.

[3] S. Berchtold, D.A. Keim, and H.-P. Kriegel, “The X-Tree: An Index
Structure for High-Dimensional Data,” Proc. 22nd Int’l Conf. Very
Large Data Bases (VLDB ’96), Sept. 1996.

[4] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry—Algorithms and Applications. New York:
Springer, 2000.

[5] E. Bertino, B.C. Ooi, R. Sacks-Davis, K.L. Tan, J. Zobel, B.
Shilovsky, and B. Catania, Indexing Techniques for Advanced
Database Systems. Boston: Kluwer Academic, 1997.

[6] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces,” Proc. 23rd Very
Large Databases Conf., pp. 426-435, Aug. 1997.

[7] The R-tree Portal, http://www.rtreeportal.org, 2003.
[8] V. Gaede and O. Günther, “Multidimensional Access Methods,”

ACM Computing Surveys, vol. 30, no. 2, pp. 170-231, June 1998.
[9] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial

Searching,” Proc. ACM SIGMOD Conf. Management of Data, pp. 47-
54, 1984.

[10] S.E. Hambrusch, C.-M. Liu, W.G. Aref, and S. Prabhakar, “Query
Processing in Broadcasted Spatial Index Trees,” Proc. Seventh Int’l
Symp. Spatial and Temporal Databases (SSTD ’01), pp. 502-521, July
2001.

[11] J. Hightower and G. Borriello, “Location System for Ubiquitous
Computing,” Computer, vol. 34, no. 8, pp. 57-66, Aug. 2001.

[12] Q.L. Hu, W.-C. Lee, and D.L. Lee, “Power Conservative Multi-
Attribute Queries on Data Broadcast,” Proc. 16th Int’l Conf. Data
Eng. (ICDE 2000), pp. 157-166, Feb. 2000.

[13] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Power
Efficiency Filtering of Data on Air,” Proc. Fourth Int’l Conf.
Extending Database Technology (EDBT ’94), pp. 245-258, Mar. 1994.

[14] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data on
Air—Organization and Access,” IEEE Trans. Knowledge and Data
Eng., vol. 9, no. 3, May-June 1997.

[15] N. Katayama and S. Satoh, “The SR-Tree: An Index Structure for
High-Dimensional Nearest Neighbor Queries,” Proc. ACM SIG-
MOD Int’l Conf. Management of Data, May 1997.

[16] D.G. Kirkpatrick, “Optimal Search in Planar Subdivisions,” SIAM
J. Computing, vol. 15, no. 2, pp. 28-35, 1983.

[17] R. Kravets and P. Krishnan, “Power Management Techniques for
Mobile Communication,” Proc. Fourth Ann. ACM/IEEE Int’l Conf.
Mobile Computing and Networking (MobiCom ’98), pp. 157-168, Oct.
1998.

[18] U. Kubach and K. Rothermel, “Exploiting Location Information
for Infostation-Based Hoarding,” Proc. Seventh Ann. ACM/IEEE
Int’l Conf. Mobile Computing and Networking (MobiCom ’01), pp. 15-
27, July 2001.

[19] D.L. Lee, W.-C. Lee, J. Xu, and B. Zheng, “Data Management in
Location-Dependent Information Services: Challenges and Issues,”
IEEE Pervasive Computing, vol. 1, no. 3, pp. 65-72, July-Sept. 2002.

[20] K. Lin, H.V. Jagadish, and C. Faloutsos, “The TV-Tree: An Index
Structure for High-Dimensional Data,” Very Large Databases J.,
vol. 3, no. 4, pp. 517-542, 1994.

[21] B.C. Ooi, Efficient Query Processing in Geographic Information
Systems. Springer Verlag, 1990.

[22] B.C. Ooi, R. Sacks-Davis, and K.J. Mcdonell, “Spatial Indexing in
Binary Decomposition and Spatial Bounding,” Information Sys-
tems, vol. 16, no. 2, pp. 211-237, 1991.

[23] Q. Ren and M.H. Dunham, “Using Semantic Caching to Manage
Location Dependent Data in Mobile Computing,” Proc. Sixth Ann.
ACM/IEEE Int’l Conf. Mobile Computing and Networking (MobiCom
2000), pp. 210-221, Aug. 2000.

[24] H. Samet, “The Quadtree and Related Hierarchical Data Struc-
tures,”ACMComputing Survey, vol. 16, no. 2, pp. 187-260, June 1984.

[25] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The Rþ-Tree: A
Dynamic Index for Multi-Dimensional Objects,” Proc. 13th Int’l
Conf. Very Large Data Bases (VLDB ’87), pp. 507-518, 1987.

[26] A.Y. Seydim, M.H. Dunham, and V. Kumar, “Location Dependent
Query Processing,” Proc. Second ACM Int’l Workshop Data Eng. for
Wireless and Mobile Access (MobiDE ’01), pp. 47-53, May 2001.

[27] D. White and R. Jain, “Similarity Indexing with the SS-Tree,” Proc.
11th IEEE Int’l Conf. Data Eng. (ICDE ’95), 1995.

[28] J. Xu, X. Tang, and D.L. Lee, “Performance Analysis of Location-
Dependent Cache Invalidation Schemes for Mobile Environ-
ments,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 2,
pp. 474-488, Mar./Apr. 2003.

[29] J. Xu, B. Zheng, W.-L. Lee, and D.L. Lee, “Energy-Efficient Index
for Querying Location-Dependent Data in Mobile Broadcast
Environments,” Proc. 19th IEEE Int’l Conf. Data Eng. (ICDE ’03),
pp. 239-250, Mar. 2003.

[30] J. Xu, W.-L. Lee, and X. Tang, “Exponential Index: A Parameter-
ized Distributed Indexing Scheme for Data on Air,” Proc. Second
ACM/USENIX Int’l Conf. Mobile Systems, Applications, and Services
(MobiSys ’04), June 2004.

XU ET AL.: THE D-TREE: AN INDEX STRUCTURE FOR PLANAR POINT QUERIES IN LOCATION-BASED WIRELESS SERVICES 1541

[31] C. Yu, B.C. Ooi, K.-L. Tan, and H.V. Jagadish, “Indexing the
Distance: An Efficient Method to KNN Processing,” Proc. 27th Int’l
Conf. Very Large Data Bases (VLDB ’01), pp. 421-430, Sept. 2001.

[32] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D.L. Lee, “Location-
Based Spatial Queries,” Proc. 18th ACM SIGMOD Conf., pp. 443-
454, June 2003.

[33] B. Zheng, J. Xu, and D.L. Lee, “Cache Invalidation and
Replacement Strategies for Location-Dependent Data in Mobile
Environments,” IEEE Trans. Computers, special issue on database
management and mobile computing, vol. 51, no. 10, pp. 1141-1153,
Oct. 2002.

[34] B. Zheng, W.C. Lee, and D.L. Lee, “Semantic Cache for Mobile
Proximity Search,” ACM Wireless Network, 2004.

Jianliang Xu received the BEng degree in
computer science and engineering from Zhe-
jiang University, Hangzhou, China, in 1998, and
the PhD degree in computer science from Hong
Kong University of Science and Technology in
2002. He is an assistant professor in the
Department of Computer Science at Hong Kong
Baptist University. His research interests include
mobile and pervasive computing, Web content
delivery, and wireless networks. He has served

as a session chair and program committee member for several
international conferences including IEEE INFOCOM ’04, IEEE MDM
’04, and ACM SAC ’04. He is a coeditor of a book entitled Web Content
Delivery, to be published by Kluwer. He also serves as an executive
committee member of the ACM Hong Kong Chapter. He is a member of
the IEEE.

Baihua Zheng received the PhD degree in
computer science from Hong Kong University of
Science and Technology. Currently, she is an
assistant professor in the School of Information
Systems at Singapore Management University.
Her research interests include mobile/pervasive
computing and spatial databases. She is a
member of the IEEE, the IEEE Computer
Society, and the ACM.

Wang-Chien Lee received the BS degree from
the Information Science Department, National
Chiao Tung University, Taiwan, the MS degree
from the Computer Science Department, Indiana
University, and the PhD degree from the
Computer and Information Science Department,
the Ohio State University. He is an associate
professor in the Computer Science and En-
gineering Department at Pennsylvania State
University. Prior to joining the faculty at Penn

State, he was a principal member of the technical staff at Verizon/GTE
Laboratories, Inc. His primary research interests lie in the areas of
mobile and pervasive computing, data management, wireless networks,
and Internet technologies. He has guest-edited special issues on mobile
database related topics for several journals, including IEEE Transac-
tions on Computers, IEEE Personal Communications Magazine, ACM
WINET, and ACM MONET. He was the program committee cochair for
the First International Conference on Mobile Data Access (MDA ’99) and
the International Workshop on Pervasive Computing (PC 2000). He has
also been a panelist, session chair, industry chair, and program
committee member to various symposia, workshops, and conferences.
He is a member of the IEEE, the IEEE Computer Society, and the ACM.

Dik Lun Lee received the MS and PhD degrees
in computer science from the University of
Toronto in 1981 and 1985, respectively. He is
a professor in the Department of Computer
Science at the Hong Kong University of Science
and Technology, and was an associate profes-
sor in the Department of Computer and Informa-
tion Science at the Ohio State University,
Columbus, Ohio. He has served as a guest
editor for several special issues on database-

related topics, and as a program committee member and chair for
numerous international conferences. He was the founding conference
chair for the International Conference on Mobile Data Management. His
research interests include document retrieval and management,
discovery, management and integration of information resources on
Internet, and mobile and pervasive computing. He was the chairman of
the ACM Hong Kong Chapter.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1542 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 12, DECEMBER 2004

